Universal Polar Codes for More Capable and Less Noisy Channels and Sources

arXiv: 1312.5990

David Sutter, Joseph M. Renes

Institute for Theoretical Physics

ISIT 2014, Hawaii

Motivation

Existence of optimal non-universal codes

Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$ with the same capacity-achieving input distribution and the same capacity. Does there exist a code that achieves the capacity of W but not of V, using **optimal decoding**?

- In general, it is desirable to have universal codes
- A non-universal capacity-achieving code could be beneficial for sending quantum information over a quantum channel at a rate > coherent information [Renes et al.'13]

Motivation

Existence of optimal non-universal codes

Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$ with the same capacity-achieving input distribution and the same capacity. Does there exist a code that achieves the capacity of W but not of V, using **optimal decoding**?

- In general, it is desirable to have universal codes
- A non-universal capacity-achieving code could be beneficial for sending quantum information over a quantum channel at a rate > coherent information [Renes et al.'13]

Canditate: polar codes

- Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$
- X^n with X_i i.i.d. Bernoulli(p), $p \in [0,1]$;
- $Y^n = W^n X^n$ and $Z^n = V^n X^n$
- $U^n = G_n X^n$ with $G_n := \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right)^{\log n}$

For $\varepsilon > 0$ consider the two low-entropy sets

- $\blacktriangleright \mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Y^{n}) \leq \varepsilon \right\}$

- Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$
- X^n with X_i i.i.d. Bernoulli(p), $p \in [0,1]$;
- $Y^n = W^n X^n$ and $Z^n = V^n X^n$
- $U^n = G_n X^n$ with $G_n := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{\log n}$

For $\varepsilon > 0$ consider the two low-entropy sets

- $\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Y^{n}) \leq \varepsilon \right\}$
- $\mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Z^{n}) \leq \varepsilon \right\}$

Definition: degraded

► V is a (stochastically) degraded version of W if $\exists T : Y \to Z$ s.t. $V(z|x) = \sum_{y \in Y} W(y|x)T(z|y) \ \forall x \in X, z \in Z$

- Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$
- X^n with X_i i.i.d. Bernoulli(p), $p \in [0,1]$;
- $Y^n = W^n X^n$ and $Z^n = V^n X^n$
- $U^n = G_n X^n$ with $G_n := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{\log n}$

For $\varepsilon > 0$ consider the two low-entropy sets

• $\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Y^{n}) \leq \varepsilon \right\}$

$$\bullet \ \mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Z^{n}) \leq \varepsilon \right\}$$

Definition: degraded, less noisy

- ► V is a (stochastically) degraded version of W if $\exists T : Y \to Z$ s.t. $V(z|x) = \sum_{y \in Y} W(y|x)T(z|y) \forall x \in X, z \in Z$
- ► W is less noisy than V if $I(U; Y) \ge I(U; Z) \forall P_{U,X}$ where $U \rightarrow X \rightarrow (Y, Z)$

• Given two DMCs $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$

• X^n with X_i i.i.d. Bernoulli(p), $p \in [0,1]$;

•
$$Y^n = W^n X^n$$
 and $Z^n = V^n X^n$

•
$$U^n = G_n X^n$$
 with $G_n := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{\log n}$

For $\varepsilon > 0$ consider the two low-entropy sets

• $\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Y^{n}) \leq \varepsilon \right\}$

Definition: degraded, less noisy, more capable

- ► V is a (stochastically) degraded version of W if $\exists T : Y \to Z$ s.t. $V(z|x) = \sum_{y \in Y} W(y|x)T(z|y) \ \forall x \in X, z \in Z$
- ▶ W is less noisy than V if $I(U; Y) \ge I(U; Z) \forall P_{U,X}$ where $U \rightarrow X \rightarrow (Y, Z)$
- W is more capable than V if $I(X; Y) \ge I(X; Z) \forall P_X$

Universality of Polar Codes — History & Contribution

•
$$W: \mathcal{X} \to \mathcal{Y}$$
 and $V: \mathcal{X} \to \mathcal{Z}$

$$\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Y^{n}) \leq \varepsilon \right\}$$

• $\mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Z^{n}) \leq \varepsilon \right\}$

Badly understood ③

Relation between $\mathcal{D}_{\varepsilon}^{n}(X|Y)$ and $\mathcal{D}_{\varepsilon}^{n}(X|Z)$?

Would be extremely helpful for

- code construction
 - BEC is easy
 - channel up/downgrading [Tal-Vardy'11];
- network coding tasks
 - wiretap channel [Mahdavifar-Vardy'11, Şaşoğlu-Vardy'13]
 - broadcast channel [Goela et al.'13]
 - <u>►</u> ...
- quantum error correction [Renes et al.'13]

Universality of Polar Codes — History & Contribution

•
$$W: \mathcal{X} \to \mathcal{Y}$$
 and $V: \mathcal{X} \to \mathcal{Z}$

$$\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Y^{n}) \leq \varepsilon \right\}$$

• $\mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Z^{n}) \leq \varepsilon \right\}$

Badly understood ③

Relation between $\mathcal{D}_{\varepsilon}^{n}(X|Y)$ and $\mathcal{D}_{\varepsilon}^{n}(X|Z)$?

Would be extremely helpful for

- code construction
 - BEC is easy
 - channel up/downgrading [Tal-Vardy'11];
- network coding tasks
 - wiretap channel [Mahdavifar-Vardy'11, Şaşoğlu-Vardy'13]
 - broadcast channel [Goela et al.'13]

٠...

quantum error correction [Renes et al.'13]

Good news ©

For specific classes of channels a few things are known

Universality of Polar Codes — History & Contribution

•
$$W: \mathcal{X} \to \mathcal{Y} \text{ and } V: \mathcal{X} \to \mathcal{Z}$$

$$\mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Y^{n}) \le \varepsilon \right\}$$

 $\quad \mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i}|U^{i-1}, Z^{n}) \leq \varepsilon \right\}$

```
V degrad. w.r.t. W \mid \mathcal{D}_{\varepsilon}^{n}(X|Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X|Y) [Arıkan'09]
W less noisy than V
W more cap. than V
no relation
```


Universality of Polar Codes — History & Contribution				
	$W: \mathcal{X} \to \mathcal{Y} \text{ and } V$ $\mathcal{D}_{\varepsilon}^{n}(X Y) \coloneqq \left\{ i \in [n] \\ \mathcal{D}_{\varepsilon}^{n}(X Z) \coloneqq \left\{ i \in [n] \right\} \right\}$	$ \begin{array}{l} : \mathcal{X} \to \mathcal{Z} & \mathcal{A} \subseteq \mathcal{B} \text{ means } \mathcal{A} \setminus \mathcal{B} = o(n) \\] : \mathcal{H}(U_i U^{i-1}, Y^n) \leq \varepsilon \\] : \mathcal{H}(U_i U^{i-1}, Z^n) \leq \varepsilon \\ \end{array} $		
	V degrad. w.r.t. W	$\mathcal{D}_{\varepsilon}^{n}(X Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X Y) \text{ [Arikan'09]}$		
	W less noisy than V			
	W more cap. than V	 Dⁿ_ε(X Z) ⊈ Dⁿ_ε(X Y) [Hassani <i>et al.</i>'09] using optimal decoding every good code for V is also good for W [Şaşoğlu'11] 		
	no relation	modified protocols (cf. two previous talks) [Hassani-Urbanke'14], [Şaşoğlu-Wang'14]		

Universality of Polar Codes — History & Contribution			
	$W: \mathcal{X} \to \mathcal{Y} \text{ and } V$ $\mathcal{D}_{\varepsilon}^{n}(X Y) \coloneqq \left\{ i \in [n] \\ \mathcal{D}_{\varepsilon}^{n}(X Z) \coloneqq \left\{ i \in [n] \right\} \right\}$	$ \begin{array}{l} : \mathcal{X} \to \mathcal{Z} & \mathcal{A} \subseteq \mathcal{B} \text{ means } \mathcal{A} \setminus \mathcal{B} = o(n) \\] : H(U_i U^{i-1}, Y^n) \le \varepsilon \\] : H(U_i U^{i-1}, Z^n) \le \varepsilon \\ \end{array} $	
	V degrad. w.r.t. W	$\mathcal{D}_{\varepsilon}^{n}(X Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X Y) \text{ [Arikan'09]}$	
	W less noisy than V	$\mathcal{D}_{\varepsilon}^{n}(X Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X Y)$	
	W more cap. than V	• $\mathcal{D}_{\varepsilon}^{n}(X Z) \notin \mathcal{D}_{\varepsilon}^{n}(X Y)$ [Hassani <i>et al.</i> '09] • using optimal decoding every good code for <i>V</i> is also good for <i>W</i> [\$aşoğlu'11] • for P_X that maximizes $I(X;Y) - I(X;Z)$ and $\varepsilon = O(2^{-n^{0.49}}), \mathcal{D}_{\varepsilon}^{n}(X Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X Y)$	
	no relation	modified protocols (cf. two previous talks) [Hassani-Urbanke'14], [Şaşoğlu-Wang'14]	

Polar codes are universal for less noisy channels

Theorem: universality for less noisy channels

Let $W: \mathcal{X} \to \mathcal{Y}$ and $V: \mathcal{X} \to \mathcal{Z}$ be two DMCs such that W is less noisy than V. Then for any $\varepsilon \in (0,1)$, $n = 2^k$, $k \in \mathbb{N}$ we have $\mathcal{D}_{\varepsilon}^n(X|Z) \subseteq \mathcal{D}_{\varepsilon}^n(X|Y)$.

• Let V and W be symmetric. Every polar code built for V can be used for W with SC decoding

Polar codes are universal for less noisy channels

Theorem: universality for less noisy channels

Let $W: \mathcal{X} \to \mathcal{Y}$ and $V: \mathcal{X} \to \mathcal{Z}$ be two DMCs such that W is less noisy than V. Then for any $\varepsilon \in (0,1)$, $n = 2^k$, $k \in \mathbb{N}$ we have $\mathcal{D}_{\varepsilon}^n(X|Z) \subseteq \mathcal{D}_{\varepsilon}^n(X|Y)$.

- Let V and W be symmetric. Every polar code built for V can be used for W with SC decoding
- Recall that the class of less noisy channels is strictly larger than the class of degradable channels

Example: BEC – BSC pair [El Gamal-Kim'11]

Let $W = BEC(\alpha)$ for $\alpha \in (0, \frac{1}{2})$ and $V = BSC(\beta)$. Then

- $0 < \alpha \le 2\beta$: *V* is a degraded w.r.t. *W*
- $2\beta < \alpha \leq 4\beta(1-\beta)$: *W* is less noisy than *V*

Proof Sketch

To show: $\mathcal{D}_{\varepsilon}^{n}(X|Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X|Y)$

Lemma 1: [thanks to Chandra Nair]

Let W and V be two DMCs such that W is less noisy than V. Then, W^n is less noisy than V^n for all $n \in \mathbb{N}$.

Lemma 2: [Csiszár-Körner'78]

Let $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$ be two DMCs s.t. W is more capable than V. Then $I(X; Y|U) \ge I(X; Z|U) \forall P_{U,X}$, where $U \multimap \mathcal{X} \multimap (Y, Z)$.

Proof Sketch

To show: $\mathcal{D}_{\varepsilon}^{n}(X|Z) \subseteq \mathcal{D}_{\varepsilon}^{n}(X|Y)$

Lemma 1: [thanks to Chandra Nair]

Let W and V be two DMCs such that W is less noisy than V. Then, W^n is less noisy than V^n for all $n \in \mathbb{N}$.

Lemma 2: [Csiszár-Körner'78]

Let $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$ be two DMCs s.t. W is more capable than V. Then $I(X; Y|U) \ge I(X; Z|U) \forall P_{U,X}$, where $U \multimap \mathcal{X} \multimap (Y, Z)$.

Recall that

- $\blacktriangleright \ \mathcal{D}_{\varepsilon}^{n}(X|Y) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Y^{n}) \leq \varepsilon \right\}$
- $\blacktriangleright \ \mathcal{D}_{\varepsilon}^{n}(X|Z) \coloneqq \left\{ i \in [n] : H(U_{i} | U^{i-1}, Z^{n}) \leq \varepsilon \right\}$

Lemma 1 implies $H(U_1|Y^n) \le H(U_1|Z^n)$ To show: $H(U_i|U^{i-1}, Y^n) \le H(U_i|U^{i-1}, Z^n)$ for $2 \le i \le n$

Proof Sketch (con't)

To show: $H(U_i|U^{i-1}, Y^n) \leq H(U_i|U^{i-1}, Z^n)$ for $2 \leq i \leq n$

Lemma 1: [thanks to Chandra Nair]

Let W and V be two DMCs such that W is less noisy than V. Then, W^n is less noisy than V^n for all $n \in \mathbb{N}$.

Lemma 2: [Csiszár-Körner'78]

Let $W : \mathcal{X} \to \mathcal{Y}$ and $V : \mathcal{X} \to \mathcal{Z}$ be two DMCs s.t. W is more capable than V. Then $I(X; Y|U) \ge I(X; Z|U) \forall P_{U,X}$, where $U \multimap \mathcal{X} \multimap (Y, Z)$.

Consider the Markov chain $U^{i-1} \rightarrow U^i \rightarrow X^n \rightarrow (Y^n, Z^n)$

$$H(U_{i}|U^{i-1}, Y^{n}) = H(U^{i}|U^{i-1}, Y^{n})$$

Lemma 1 & Lemma 2 $\rightarrow = H(U^{i}|U^{i-1}, Z^{n})$
 $= H(U_{i}|U^{i-1}, Z^{n})$

Universality for more capable channels

- Let $W: \mathcal{X} \to \mathcal{Y}$ and $V: \mathcal{X} \to \mathcal{Z}$ be two DMCs s.t. W is more capable than V
- In general, Dⁿ_ε(X|Z) ∉ Dⁿ_ε(X|Y), i.e., a polar code for V cannot be used for W under SC decoding [Hassani et al.'09]

Universality for more capable channels

- Let $W: \mathcal{X} \to \mathcal{Y}$ and $V: \mathcal{X} \to \mathcal{Z}$ be two DMCs s.t. W is more capable than V
- In general, Dⁿ_ε(X|Z) ∉ Dⁿ_ε(X|Y), i.e., a polar code for V cannot be used for W under SC decoding [Hassani et al.'09]

Theorem: universality for more capable channels

Let P_X be such that it maximizes I(X; Y) - I(X; Z). Then for $\varepsilon = O(2^{-n^{\beta}})$ with $\beta < \frac{1}{2}$, we have $\mathcal{D}_{\varepsilon}^n(X|Z) \subseteq \mathcal{D}_{\varepsilon}^n(X|Y)$.

Recall: $\mathcal{A} \notin \mathcal{B}$ means $|\mathcal{A} \setminus \mathcal{B}| = o(n)$

Summary & Outlook

- Polar codes are universal for less noisy (symmetric) channels
- For a specific input distribution, polar codes are universal for more capable channels
- Can this be useful for code construction?
- This new insights might be useful for multi-terminal coding tasks
 - wiretap channel [Mahdavifar-Vardy'11, Şaşoğlu-Vardy'13]
 - broadcast channel [Goela et al.'13]
 - <u>۲</u>