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76 binary erasure channel

Example 3.8 ((3, 6)-Regular Code). Consider the parity-check matrix

(3.9)
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= H.

øe bipartite graph representingC(H) is shownon the le of Figure 3.10. Each check
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Figure 3.10: Le : Tanner graph of H given in (3.9). Right: Tanner graph of [7, 4, 3]
Hamming code corresponding to the parity-check matrix on page 15.øis graph is
discussed in Example 3.11.

node represents one linear constraint (one row ofH). For the particular example we
start with 20 degrees of freedom (20 variable nodes).øe 10 constraints reduce the
number of degrees of freedomby atmost 10 (and exactly by 10 if all these constraints
are linearly independent as in this speci⌧c example).øerefore at least 10 degrees of
freedom remain. It follows that the shown code has rate (at least) one-half. n

§3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at
least one sparse Tanner graph. øe primary reason for focusing on such codes is

What is perhaps most distinctive about the 
graphical model approach is its naturalness 
in formulating probabilistic models of complex 
phenomena in applied fields, while 
maintaining control over the computational 
cost associated with these models. 
                     —Michael I. Jordan
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node represents one linear constraint (one row ofH). For the particular example we
start with 20 degrees of freedom (20 variable nodes).øe 10 constraints reduce the
number of degrees of freedomby atmost 10 (and exactly by 10 if all these constraints
are linearly independent as in this speci⌧c example).øerefore at least 10 degrees of
freedom remain. It follows that the shown code has rate (at least) one-half. n
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least one sparse Tanner graph. øe primary reason for focusing on such codes is



To do research in quantum information 
theory, pick a favorite text on classical 
information theory, open to a chapter, 
and translate the contents into 
quantum-mechanical language. 
                   —Benjamin Schumacher 
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Graphical models
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issue of eliminating variables, which leads to the sum-
mary-product algorithm. We first consider instances of
this algorithm for decoding, then we turn to Kalman
filtering, and then the wide area of signal processing by
message passing is addressed. We conclude with some
remarks on topics ranging from convergence issues to
analog realizations of the sum-product algorithm. 

Factor Graphs
As mentioned, we will use FFGs rather than the origi-
nal factor graphs of [24] (see “Other Graphical
Models”). An FFG is a diagram as in Figure 1 that rep-
resents the factorization of a function of several vari-
ables. Assume, for example, that some function
f (u, w, x , y , z ) can be factored as 

f (u, w, x , y , z ) = f1(u, w, x ) f2(x , y , z ) f3(z ). (1)

This factorization is expressed by the FFG shown in
Figure 1. In general, an FFG consists of nodes, edges,
and “half edges” (which are connected only to one
node), and the FFG is defined by the following rules:
! There is a (unique) node for every factor. 
! There is a (unique) edge or half edge for every vari-
able.

! The node representing some factor g is connected
with the edge (or half edge) representing some variable
x if and only if g is a function of x . 

Implicit in this definition is the assumption that no
variable appears in more than two factors. We will see
how this seemingly severe restriction is easily circum-
vented. 

The factors are sometimes called local functions, and
their product is called the global function. In (1), the
global function is f , and f1, f2, f3 are the local func-
tions.

A configuration is a particular assignment of values
to all variables. The configuration space ! is the set of
all configurations; it is the domain of the global func-
tion f . For example, if all variables in Figure 1 are
binary, the configuration space ! is the set {0, 1}5 of all
binary 5-tuples; if all variables in Figure 1 are real, the
configuration space is R5. 

We will primarily consider the case where f is a
function from ! to R+, the set of nonnegative real
numbers. In this case, a configuration ω ∈ ! will be
called valid if f (ω) "= 0. 

In every fixed configuration ω ∈ !, every variable
has some definite value. We may therefore consider also
the variables in a factor graph as functions with domain
!. Mimicking the standard notation for random vari-
ables, we will denote such functions by capital letters.
Therefore, if x takes values in some set X , we will write 

X : ! → X : ω $→ x = X (ω). (2)

A main application of factor graphs are probabilistic
models. (In this case, the sample space can usually be
identified with the configuration space !.) For exam-
ple, let X , Y , and Z be random variables that form a
Markov chain. Then their joint probability density (or
their joint probability mass function) pX Y Z (x , y , z ) can
be written as

pX Y Z (x , y , z ) = pX (x )pY |X (y |x )pZ |Y (z |y ). (3)

This factorization is expressed by the FFG of Figure 2.

! 1. An FFG.

u
f1

w

x
f2

f3

z

y

! 2. An FFG of a Markov chain.

X Y Z

pX pY|X pZ|Y

Other Graphical Models

he figures below show the representation of the
factorization 

p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x)

in four different graphical models.

Advantages of FFGs
! suited for hierarchical modeling (“boxes within boxes”)
! compatible with standard block diagrams 
! simplest formulation of the summary-product message

update rule
! natural setting for Forney’s results on Fourier transforms

and duality. 

T

(a) Forney-style factor graph (FFG); (b) factor graph as in
[24]; (c) Bayesian network, (d) Markov random field (MRF).
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PUWXYZ = PUPWPX|UWPY|XPZ|X

Loeliger, IEEE Signal Processing Magazine (2004)

Forney-style 
factor graph

Usual 
factor graph

Bayesian network Markov network



Forney-style factor graphs…                           …are tensor networks!                       

Represent factorization of a function, e.g. a probability distribution 

• One vertex / node per factor, 
• Edge or half-edge per variable (duplicate variables with equality nodes if necessary), 
• Node f connected to edge x when x appears in f, 
• Sum over variables associated to edges
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Belief propagation: marginalization by message passing

P(x1, x2, x3, x4) = f(x1, x2) g(x2, x3, x4)

f = g

x2 x3x1 x4

P(x2) = ∑x1,x3,x4
f(x1, x2) g(x2, x3, x4)

f = g

x2

x3x1 x4
= = =

Messages are contracted tensors

Easy for tree factor graphs



Belief propagation in coding

encoder

decoder

W

message

decoded message

W W W

uniformly random

linear code

decode bitwise



Belief propagation in coding

+ +

X2 X3X1 X4

W W W W

Y2Y1 Y3 Y4

= H = (0 1 1 1
1 1 0 0)



Belief propagation in coding

+ +

X2

X3X1 X4

W W W W

Y2Y1 Y3 Y4

=

= = =

H = (0 1 1 1
1 1 0 0)



Belief propagation in coding

+ +

X2

X3X1 X4

W W W W

=

= = =

y1 y4y3y2

H = (0 1 1 1
1 1 0 0)



Belief propagation in coding

+ +

X3X1 X4

W W W W

=

X2

y1 y4y3y2

Contract to find estimate of  
given observed .

X2
y1y2y3y4

Run in parallel to estimate all 
other codeword bits.



Other uses for BP (not the topic of this talk)

• Compute Bethe-Peierls approximate free energy (classical or quantum)  

• Marginalize density matrices  

• Decode quantum stabilizer codes (classical BP)  

Yedidia, Freeman, Weiss, IEEE TIT 2005 
Hastings, PRB, 2007 
Poulin & Chung, QIC 2008 
Liefer & Poulin, Ann. Phys. 2008 
Poulin & Bilgin, PRA 2008 
Poulin & Hastings, PRL 2011
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• Summary and open questions



BP for decoding quantum codes

classical encoder

quantum decoder

W

classical message

decoded message

W W W

uniformly random

linear code

decode bitwise

CQ channel



BP for decoding quantum codes

+ +

X3X1 X4

W W W W

Q2Q1 Q3 Q4

=

X2

Pick the simplest possible 
quantum extension: 

Channel with symmetric 
pure state outputs |φx⟩

Need to construct a measurement to estimate  from  X2 Q1Q2Q3Q4

Tensor network contraction is not enough!



CQ channel output description

|φ0⟩|φ1⟩

Bloch sphere

̂z

̂x

z
Bloch vector: 

  ̂n = z ̂z + (−1)x 1 − z2 ̂x



Quantum message passing algorithm: BPQM

+ +

X3X1 X4

W W W W

Q2Q1 Q3 Q4

=

X2



Quantum message passing algorithm: BPQM

• Traverse the tree from  leaves to root 

• Associate a qubit and  parameter to each node 

• At = nodes: Apply unitary , discard 2nd qubit. 
Set param to .  

• At + nodes: Apply CNOT, measure 2nd qubit . 
Discard 2nd qubit.                                                         
Reset  and set param to . 

• Measure last qubit in  basis.   

W

z

U(z1, z2)
z1z2

→ k

z2 ← (−1)kz2
z1 + z2

1 + z1z2

̂x

+

W W W W

= =



Quantum message passing algorithm: BPQM

• =: Apply unitary , discard 2nd qubit. Set param to .  

• +: Apply CNOT, measure 2nd qubit . Discard 2nd qubit.                                                         
Reset  and set param to . 

• Measure last qubit in  basis.   

U(z1, z2) z1z2

→ k
z2 ← (−1)kz2

z1 + z2

1 + z1z2

̂x

+

W W W W

= =
U

U

H

1 3 42



BPQM implements the bitwise optimal measurement

• Consider channel from any node to its leaves 

• = node output:  or . Repackage 
into a single qubit with appropriate unitary: 

.  

• + node output: After CNOT, the output becomes
, with the state 

parameter as in the algorithm and some 
probabilities .   

• Recursively simplify the factor graph

|φ0⟩ |φ′ 0⟩ |φ1⟩ |φ′ 1⟩

U(z1, z2)

∑k∈{0,1} pk φ(k)x ⊗ |k⟩⟨k |

pk

+

W W W W

= =
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Successive BPQM for decoding entire codeword

• Run bitwise decoders sequentially 

• Hope bitwise error probability low;                          
use union bound for entire codeword. 

• Will work for capacity-achieving codes!

+

W W W W

= = +

W W W W

=

=



Successive BPQM for decoding entire codeword

• Problem: Intermediate measurements.              
Solution: Perform BPQM coherently.                  
Rewind the circuit after measuring the output qubit. 

U

U

H

U

U

H



Successive BPQM for decoding entire codeword

• Problem: Intermediate measurements.              
Solution: Perform BPQM coherently.                  
Rewind the circuit after decoding each bit.  

• Problem: Exponential overhead from + controls.                                                     
Solution: Quantize  register. Uncompute after use. 

• Problem: Need infinite dimensions.                    
Solution: Discretize to finite precision.                       
For target error , register size only .  

• All messages passed are now quantum! 

z

ε O(log 1/ε)



BPQMv2: Blockwise optimality

BPQMv2: Adjust measured qubit before rewinding & use updated factor graph  
Rengaswamy et al. arXiv:2003.04356

U

U

H



BPQMv2: Blockwise optimality

BPQMv2: Adjust measured qubit before rewinding & use updated factor graph  
Rengaswamy et al. arXiv:2003.04356

Advantages:  
1. Simplifies decoding of subsequent bits. 
2. Appears to implement the block optimal measurement!

14

x2 ⊕ x3 = x̂1

c̃1

x2

W2

x3

W2

x4 ⊕ x5 = x̂1

c̃2

x4

W4

x5

W5

FIG. 7. The reduced factor graph after estimating bit 1 to be x̂1.

Lemma 4. Let C := (I2)1 ⊗ CNOT2→3 ⊗ CNOT4→5 and |Γx̂1〉 := cos θ!

0
2 |00〉+ (−1)x̂1 sin θ!

0
2 |11〉. Then

Cρ̃(m1)
±,b C† =



























1

PBPQM
succ,1

|m1θ〉 〈m1θ|1 ⊗ [W ! W ](x̂1)23 ⊗ [W ! W ](x̂1)45

+
p20

PBPQM
succ,1

[

0.5(1 + sinϕ!
00)− 1

]

|m1θ〉 〈m1θ|1 ⊗ |Γx̂1〉 〈Γx̂1 |23 ⊗ |Γx̂1〉 〈Γx̂1 |45 if x̂1 = x1,

|m1θ〉 〈m1θ|1 ⊗ |Γx̂1〉 〈Γx̂1 |23 ⊗ |Γx̂1〉 〈Γx̂1 |45 if x̂1 %= x1.

(60)

Proof. We know from the definition of the factor node convolution operation of BPQM that

C (|m1θ〉 〈m1θ|1 ⊗ [W ! W ](x̂1)23 ⊗ [W ! W ](x̂1)45)C
†

= |m1θ〉 〈m1θ|1 ⊗





∑

j∈{0,1}

pj
∣

∣m1θ
!

j

〉 〈

m1θ
!

j

∣

∣

2
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∑
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pk
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k
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∣

4
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 (61)

= ρm1,b. (62)

This in turn implies that Cρm1,bC
† = |m1θ〉 〈m1θ|1 ⊗ [W ! W ](x̂1)23 ⊗ [W ! W ](x̂1)45. Ignoring the first qubit and

the constant factor for simplicity, observe that

ρ̃(m1)
±,b

∣

∣

∣

∣

x̂1=x1

=
∑

j,k∈{0,1}2

pjpk

(

∣

∣

∣

〈

m1| ± ϕ!

jk

〉
∣

∣

∣

2
− 1 + 1

)

(

∣

∣m1θ
!

j

〉 〈

m1θ
!

j

∣

∣

2
⊗ |j〉 〈j|3

)

⊗
(
∣

∣m1θ
!

k

〉 〈

m1θ
!

k

∣

∣

4
⊗ |k〉 〈k|5

)

(63)

= ρm1,b + p20
[

0.5(1 + sinϕ!
00)− 1

] (∣

∣m1θ
!

0

〉 〈

m1θ
!

0

∣

∣

2
⊗ |0〉 〈0|3

)

⊗
(∣

∣m1θ
!

0

〉 〈

m1θ
!

0

∣

∣

4
⊗ |0〉 〈0|5

)

. (64)

We have used the fact that except when j = k = 0, assuming x̂1 = x1,
〈

m1| ± ϕ!

jk

〉

=
〈

m1|m1ϕ
!

jk

〉

= 〈m1|m1〉 = 1.

Finally, using CNOT2→3

(∣

∣m1θ
!

0

〉

2
⊗ |0〉3

)

= |Γx̂1〉, the result follows for both cases x̂1 = x1 and x̂1 %= x1. !

Therefore, after reversing the operations of BPQM for bit x1, the 5-qubit system is in the state

ρ̃m1,a = PBPQM
succ,1 · Cρ̃(m1)

±,b

∣

∣

∣

∣

x̂1=x1

C† +
(

1− PBPQM
succ,1

)

· Cρ̃(m1)
±,b

∣

∣

∣

∣

x̂1 #=x1

C† (65)

= |m1θ〉 〈m1θ|1 ⊗ [W ! W ](x̂1)23 ⊗ [W ! W ](x̂1)45

+ p20
[

0.5(1 + sinϕ!
00)− 1

]

|m1θ〉 〈m1θ|1 ⊗ |Γx̂1〉 〈Γx̂1 |23 ⊗ |Γx̂1〉 〈Γx̂1 |45
+
(

1− PBPQM
succ,1

)

· |m1θ〉 〈m1θ|1 ⊗ |Γx̂1〉 〈Γx̂1 |23 ⊗ |Γx̂1〉 〈Γx̂1 |45 (66)

= |m1θ〉 〈m1θ|1 ⊗ [W ! W ](x̂1)23 ⊗ [W ! W ](x̂1)45, (67)

since PBPQM
succ,1 = p20 · 0.5(1 + sinϕ!

00) + (1 − p20).
At this point, we have decoded x̂1 = 0 if m1 = + and x̂1 = 1 if m1 = −. We can absorb the value of x̂1 in the FG

by updating the parity checks c1 and c2 to impose x2 ⊕ x3 = x̂1 and x4 ⊕ x5 = x̂1, respectively. Now we have two
disjoint FGs as shown in Fig. 7. It suffices to decode x2 and x4 since x̂3 = x̂2 ⊕ x̂1 and x̂5 = x̂4 ⊕ x̂1. Also, due to
symmetry, it suffices to analyze the success probability of decoding x2 (resp. x4) and x3 (resp. x5). For this reduced

5

W1

x1

c1

x2

W2

x3

W3

c2

x4

W4

x5

W5

H =

(

x1 x2 x3 x4 x5

c1 1 1 1 0 0
c2 1 0 0 1 1

)

FIG. 2. Factor graph and parity-check matrix for the 5-bit linear code in the running example.

input was x ∈ X . Here, X and Y represent the input and output alphabets of the channel, respectively. A well-known
example for such a channel is the binary symmetric channel (BSC). For the BSC, Y = {0, 1} = X and the transition
matrix is defined as

WBSC :=

[

1− p p
p 1− p

]

, (4)

where the (i, j)-th entry is WBSC(y = j|x = i) and 0 ≤ p ≤ 0.5. The FG in Fig. 2 shows the channel Wk associated
with each bit k as a separate factor node that provides the channel transition probability value for the observed output
yk for input xk = 0 (and xk = 1). These channels are not necessarily BSCs, but for simplicity we will assume that all
bits go through the same channel, i.e., Wk = W for all k.
Given the channel output vector, y, the decoder tries to determine the codeword x ∈ C that was actually sent at

the input. The block maximum-a-posteriori (MAP) decoder calculates the posterior probability for each codeword in
the code, given y, and chooses the codeword with the maximum value. This is the optimal decoder in terms of block
error rate. For the example 5-bit code C, when all codewords are transmitted with equal probability, it calculates

p(x|y) =
p(y|x) · p(x)

∑

x∈{0,1}5 p(y|x) · p(x)
(5)

=

∏5
k=1 W (yk|xk) · P[x ∈ C]

p(y)
(6)

∝
5
∏

k=1

W (yk|xk) · [I(x1 ⊕ x2 ⊕ x3 = 0)I(x1 ⊕ x4 ⊕ x5 = 0)] (7)

= W (y1|x1) · [I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)] · [I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)] , (8)

x̂MAP := argmax
x∈{0,1}5

p(x|y), (9)

where the constant of proportionality in (7) is independent of x. In general, the complexity of this scheme grows
exponentially with the code dimension k because the block-MAP decoder calculates the posterior probability for each
codeword in the code. A more efficient scheme is the bit-MAP decoder which marginalizes the above joint posterior
for each bit and makes a decision bit-wise. Hence, to decode bit 1, the bit-MAP decoder computes

x̂1
MAP := argmax

x1∈{0,1}

∑

x2,x3,x4,x5∈{0,1}4

p(x|y) (10)

= argmax
x1∈{0,1}

{

W (y1|x1) ·





∑

x2,x3∈{0,1}2

I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)





·





∑

x4,x5∈{0,1}2

I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)





}

. (11)
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Applications of BPQM: Classical communication

• Polar codes have a tree structure 
• BPSK on pure loss Bosonic channel 
• BPQM: BPSK-capacity-achieving decoder

U1 W Y1

U2 W Y2

U3 W Y3

U4 W Y4

U5 W Y5

U6 W Y6

U7 W Y7

U8 W Y8



Applications of BPQM: Quantum communication

• Quantum polar codes use classical-input 
polar codes as subroutines 

• Classical “pieces” of amplitude damping: 
1. Classical Z channel 
2. Heralded pure state output channel 

• BPQM gives an efficient capacity-achieving 
decoder! 
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Summary & Open questions

• BPQM: efficient bitwise-optimal quantum message passing decoder  

• BPQMv2: Blockwise optimal?  

• LDPC codes?  

• BPQM for factor graphs with loops? 

• BPQM for mixed state output channels?


