Belief propagation decoding by passing quantum messages

Joseph M. Renes, ETH Zürich

QuSoft Seminar, 26 February 2021

Joint work with Christophe Piveteau
arXiv:1607.04833
arXiv:2103.?????

What is perhaps most distinctive about the graphical model approach is its naturalness in formulating probabilistic models of complex phenomena in applied fields, while maintaining control over the computational cost associated with these models.
-Michael I. Jordan

To do research in quantum information theory, pick a favorite text on classical information theory, open to a chapter, and translate the contents into quantum-mechanical language.
-Benjamin Schumacher

Example 3.8 ((3,6)-Regular Code). Consider the parity-check matrix
(3.9)

$$
\underbrace{1}
$$

The bipartite graph representing $C(H)$ is shown on the left of Figure 3.10. Each check

Quantum belief propagation decoding?

Figure 3.10: Left: Tanner graph of H given in (3.9). Right: Tanner graph of $[7,4,3]$ Hamming code corresponding to the parity-check matrix on page 15. This graph is discussed in Example 3.11
ode represents one linear constraint (one row of H). For the particular example w start with 20 degrees of freedom (20 variable nodes). The 10 constraints reduce the number of degrees of freedom by at most 10 (and exactly by 10 if all these constraints are linearly independent as in this specific example). Therefore at least 10 degrees of freedom remain. It follows that the shown code has rate (at least) one-half.
\$3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at least one sparse Tanner graph. The primary reason for focusing on such codes is

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

Graphical models

Forney-style factor graph

Bayesian network

Usual factor graph

Markov network

$$
P_{U W X Y Z}=P_{U} P_{W} P_{X \mid U W} P_{Y \mid X} P_{Z \mid X}
$$

Forney-style factor graphs... ...are tensor networks!

Represent factorization of a function, e.g. a probability distribution

- One vertex / node per factor,
- Edge or half-edge per variable (duplicate variables with equality nodes if necessary),
- Node f connected to edge x when x appears in f,
- Sum over variables associated to edges

$$
P_{Y Z}(y, z)=\sum_{u, w, x} P_{U}(u) P_{W}(w) P_{X \mid U W}(x \mid u, w) P_{Y \mid X}(y \mid x) P_{Z \mid X}(z \mid x)
$$

Belief propagation: marginalization by message passing

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f\left(x_{1}, x_{2}\right) g\left(x_{2}, x_{3}, x_{4}\right)
$$

$$
P\left(x_{2}\right)=\sum_{x_{1}, x_{3}, x_{4}} f\left(x_{1}, x_{2}\right) g\left(x_{2}, x_{3}, x_{4}\right)
$$

Messages are contracted tensors
Easy for tree factor graphs

Belief propagation in coding

Belief propagation in coding

$$
H=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Belief propagation in coding

$$
H=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Belief propagation in coding

$$
H=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Belief propagation in coding

Contract to find estimate of X_{2} given observed $y_{1} y_{2} y_{3} y_{4}$.

Run in parallel to estimate all other codeword bits.

Other uses for BP (not the topic of this talk)

- Compute Bethe-Peierls approximate free energy (classical or quantum)
- Marginalize density matrices
- Decode quantum stabilizer codes (classical BP)

Yedidia, Freeman, Weiss, IEEE TIT 2005
Hastings, PRB, 2007
Poulin \& Chung, QIC 2008
Liefer \& Poulin, Ann. Phys. 2008
Poulin \& Bilgin, PRA 2008
Poulin \& Hastings, PRL 2011

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

BP for decoding quantum codes

BP for decoding quantum codes

Pick the simplest possible quantum extension:

Channel with symmetric pure state outputs $\left|\varphi_{x}\right\rangle$

Need to construct a measurement to estimate X_{2} from $Q_{1} Q_{2} Q_{3} Q_{4}$
Tensor network contraction is not enough!

CQ channel output description

Bloch vector:

$$
\hat{n}=z \hat{z}+(-1)^{x} \sqrt{1-z^{2}} \hat{x}
$$

Bloch sphere

Quantum message passing algorithm: BPQM

Quantum message passing algorithm: BPQM

- Traverse the tree from W leaves to root

- Associate a qubit and z parameter to each node
- At = nodes: Apply unitary $U\left(z_{1}, z_{2}\right)$, discard 2nd qubit. Set param to $z_{1} z_{2}$.
- At + nodes: Apply CNOT, measure 2nd qubit $\rightarrow k$.

Discard 2nd qubit.
Reset $z_{2} \leftarrow(-1)^{k} z_{2}$ and set param to $\frac{z_{1}+z_{2}}{1+z_{1} z_{2}}$.

- Measure last qubit in \hat{x} basis.

Quantum message passing algorithm: BPQM

- =: Apply unitary $U\left(z_{1}, z_{2}\right)$, discard 2 nd qubit. Set param to $z_{1} z_{2}$.
- +: Apply CNOT, measure 2nd qubit $\rightarrow k$. Discard 2nd qubit.

Reset $z_{2} \leftarrow(-1)^{k} z_{2}$ and set param to $\frac{z_{1}+z_{2}}{1+z_{1} z_{2}}$.

- Measure last qubit in \hat{x} basis.

BPQM implements the bitwise optimal measurement

- Consider channel from any node to its leaves
- = node output: $\left|\varphi_{0}\right\rangle\left|\varphi_{0}^{\prime}\right\rangle$ or $\left|\varphi_{1}\right\rangle\left|\varphi_{1}^{\prime}\right\rangle$. Repackage into a single qubit with appropriate unitary: $U\left(z_{1}, z_{2}\right)$.
- + node output: After CNOT, the output becomes $\sum_{k \in\{0,1\}} p_{k} \varphi(k)_{x} \otimes|k\rangle\langle k|$, with the state parameter as in the algorithm and some probabilities p_{k}.
- Recursively simplify the factor graph

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

Successive BPQM for decoding entire codeword

- Run bitwise decoders sequentially
- Hope bitwise error probability low; use union bound for entire codeword.
- Will work for capacity-achieving codes!

Successive BPQM for decoding entire codeword

- Problem: Intermediate measurements.

Solution: Perform BPQM coherently.
Rewind the circuit after measuring the output qubit.

Successive BPQM for decoding entire codeword

- Problem: Intermediate measurements. Solution: Perform BPQM coherently. Rewind the circuit after decoding each bit.
- Problem: Exponential overhead from + controls. Solution: Quantize z register. Uncompute after use.
- Problem: Need infinite dimensions.

Solution: Discretize to finite precision.
For target error $\mathcal{\varepsilon}$, register size only $O(\log 1 / \varepsilon)$.

- All messages passed are now quantum!

BPQMv2: Blockwise optimality

BPQMv2: Adjust measured qubit before rewinding \& use updated factor graph Rengaswamy et al. arXiv:2003.04356

BPQMv2: Blockwise optimality

BPQMv2: Adjust measured qubit before rewinding \& use updated factor graph Rengaswamy et al. arXiv:2003.04356

Advantages:

1. Simplifies decoding of subsequent bits.
2. Appears to implement the block optimal measurement!

FIG. 2. Factor graph and parity-check matrix for the 5 -bit linear code in the running example.

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

Applications of BPQM: Classical communication

- Polar codes have a tree structure
- BPSK on pure loss Bosonic channel
- BPQM: BPSK-capacity-achieving decoder

Applications of BPQM: Quantum communication

- Quantum polar codes use classical-input polar codes as subroutines
- Classical "pieces" of amplitude damping:

1. Classical Z channel
2. Heralded pure state output channel

- BPQM gives an efficient capacity-achieving decoder!

Outline

- Factor graphs and belief propagation
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Applications: Efficient decoders at capacity
- Summary and open questions

Summary \& Open questions

- BPQM: efficient bitwise-optimal quantum message passing decoder
- BPQMv2: Blockwise optimal?
- LDPC codes?
- BPQM for factor graphs with loops?
- BPQM for mixed state output channels?

