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What Iis perhaps most distinctive about the

graphical model approach is its

naturalness

iNn formulating probabillistic models of complex
ohenomena in applied fields, while
maintaining control over the computational

cost associated with these Mmoo

els.

—Michael |. Jorda

A






To do research in guantum information
theory, pick a favorite text on classical
information theory, open to a chapter,
and translate the contents into
guantum-mechanical language.
—Benjamin Schumacher




76 BINARY ERASURE CHANNEL

ExaMPLE 3.8 ((3,6)-REGULAR CoDE). Consider the parity-check matrix

12 3 45 6 7 8 910111213 14 1516 17 18 19 20
1 00001000111000010001)
2]100000011001101010000
31]01100010000000010101
4]100000101010000001110
5111001000000010001010} =H.
6 ]00000010001101100001
71]00011101000010100000
8]1]10100000100011100000
9]11110000010000001000
10 \00010100100100000110/

(3.9)

The bipartite graph representing C( H) is shown on the left of Figure 3.10. Each check
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Figure 3.10: Left: Tanner graph of H given in (3.9). Right: Tanner graph of [7, 4, 3]
Hamming code corresponding to the parity-check matrix on page 15. This graph is
discussed in Example 3.11.

node represents one linear constraint (one row of H). For the particular example we
start with 20 degrees of freedom (20 variable nodes). The 10 constraints reduce the
number of degrees of freedom by at most 10 (and exactly by 10 if all these constraints
are linearly independent as in this specific example). Therefore at least 10 degrees of
freedom remain. It follows that the shown code has rate (at least) one-half. O

§3.4. LOoW-DENSITY PARITY-CHECK CODES

In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at
least one sparse Tanner graph. The primary reason for focusing on such codes is

Quantum belief propagation decoding?
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Graphical models

A?U
Forney-style w Y x — 4 ~ ,)\( O Usual
factor graph W T 7 factor graph
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Loeliger, IEEE Signal Processing Magazine (2004)

Pywxyz = PyPwP X| owl Y|XP Z|X



Forney-style factor grapnhs... ...are tensor networks!

Represent factorization of a function, e.g. a probability distribution

One vertex / node per factor,

—dge or half-edge per variable (duplicate variables with equality nodes if necessary),
Node f connected to edge x when x appears in f,

Sum over variables associated to edges

W X = A Py,(y,2) = 2 Py(u) Py/(w) waw(ﬂua w) PY|X()"X) PZ|X(Z‘X)

UW,X




Belief propagation: marginalization by message passing

P(xy, Xy, X3, X4) = (X1, Xp) (X, X3, Xy) P(x,) = leax3vx4 J(xp, x) 8(%, X3, X4)
18 18
X3 Xy
X1 X, X3 Xy Y ==

Messages are contracted tensors

Easy for tree factor graphs



Belief propagation in coding

message uniformly random

encoder iInear code

decods bitwise
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Belief propagation in coding

Contract to find estimate of X,
given observed Yy, V3 V4.

Run In parallel to estimate all
other codeword bits.




Other uses for BP (not the topic of this talk)

Compute Bethe-Pelerls approximate free energy (classical or guantum)

Marginalize density matrices
Decode guantum stabilizer codes (classical BP)

Yedidia, Freeman, Weiss, I[EEE TIT 2005
astings, PRB, 2007

Poulin & Chung, QIC 2008

_efer & Poulin, Ann. Phys. 2008

Poulin & Bilgin, PRA 2008

Poulin & Hastings, PRL 2011
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BP for decoding quantum codes

classical message uniformly random

l

classical encoder linear code

I
CQ channel

guantum decoder decode bitwise

decoded message



BP for decoding quantum codes

Pick the simplest possible

guantum extension:
Xl
Channel with symmetric
pure state outputs | @, )
o

Need to construct a measurement to estimate X, from Q,0,0,0,

Tensor network contraction is not enough!



CQ channel output description

Bloch vector:
ﬁ=22+(—1)x\/1 — 72 %

Bloch sphere



Quantum message passing algorithm: BPQM




Quantum message passing algorithm: BPQM

- [raverse the tree from W leaves to root

- Associlate a qubit and Z parameter to each node

- At = nodes: Apply unitary U(z,, z,), discard 2nd qubit.
Set param to z;2.

At + nodes: Apply CNOT, measure 2nd qubit — k.
Discard 2nd qubit.

1+ Z
Reset z, <« (—1)*z, and set param to ——=

| +21Z2.

Measure last qubit In x basis.



Quantum message passing algorithm: BPQM
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=: Apply unitary U(z;, 2,), discard 2nd qubit. Set param to z;2,.

+: Apply CNOT, measure 2nd qubit — k. Discard 2nd qubit.
Reset z, « (— l)l‘z2 and set param to 4t o .

Measure last qubit in X basis.



BPQM implements the bitwise optimal measurement

- Consider channel from any node to its leaves

+ = node output: |¢y) |@)) or |@,)|e;). Repackage
INnto a single qubit with appropriate unitary:
U(z), 2)-

* + node output: After CNOT, the output becomes
Y iero Pe@®), ® [k)(k|, with the state

parameter as in the algorithm and some
probabillities p;,.

+ Recursively simplify the factor graph
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Successive BPQM for decoding entire codeword

- Run bitwise decoders sequentially

+ Hope bitwise error probability low:;
use union bound for entire codeword.

- WIll work for capacity-achieving codes!




Successive BPQM for decoding entire codeword

- Problem: Intermediate measurements.
Solution: Perform BPQM coherently.
Rewind the circult after measuring the output qublt.




Successive BPQM for decoding entire codeword

Problem: Intermediate measurements.
Solution: Perform BPQM coherently.
Rewind the circult after decoding each DIt.

Problem: Exponential overhead from + controls.
Solution: Quantize z register. Uncompute after use.

Problem: Need infinite dimensions.
Solution: Discretize to finite precision.

For target error g, register size only O(log 1/¢).

- All messages passed are now gquantum!



BPQMvV2: Blockwise optimality

BPQMvZ2: Adjust measured qubit before rewinding & use updated factor graph
Rengaswamy et al. arXiv:2003.04356

[] |
I H



BPQMv2: Blockwise optimality

BPQMV2: Adjust measured qubit before rewinding & use updated factor graph
Rengaswamy et al. arXiv:2003.04356

Advantages:
1. Simplifies decoding of subsequent bits.
2. Appears to implement the block optimal measurement!

Wi
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FIG. 2. Factor graph and parity-check matrix for the 5-bit linear code in the running example. FIG. 7. The reduced factor graph after estimating bit 1 to be ;.
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Applications of BPQM: Classical communication

1

— - Polar codes have a tree structure

P
LY m
N

BPSK on pure loss Bosonic channel

N

BPQM: BPSK-capacity-achieving decoder
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Applications of BPQM: Quantum communication

Quantum polar codes use classical-input

polar codes as subroutines " <

Classical “pieces” of amplitude damping: Ay N | s
1. Classical Z channel 0)* S J
2. Heralded pure state output channel o) @

BPQM gives an efficient capacity-achieving 2

decoder!
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Summary & Open questions

- BPQM: efficient bitwise-optimal guantum message passing decoder

- BPQMv2: Blockwise optimal?
- LDPC codes?
- BPQM for factor graphs with loops?

- BPQM for mixed state output channels?



