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Quantum metrology:

Small probes






Problem of waveform estimation: backaction

quantum
probe
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signal x(7) measurement y(?)

Quantum backaction of the measurement process
can destroy the probe sensitivity to the signal

One solution: Repeatedly reprepare the probe state

Another solution: nondemolition measurement



Quantum nondemolition measurement

O(1) is “nondemolition” if [O(£), O(t))] = 0

Measurement now does not disturb measurement later

Tsang & Caves 2012: Can construct QND observables
satisfying any desired equations of motion

Example: Classical harmonic oscillator
A 1 ~ ~ A ~ ~
Q=G +qy and P=p;—p,
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Approximate QND condition with finite energy

QND nominally requires infinite energy:
Hamiltonian unbounded above and below

Generic to QND: S Boulebnane, MP Woods, JMR, in preparation
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Try to approximate with finite energy / dimension: D{E w T
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How large an energy is needed for given estimation error?

We find that precision scales as E -1/



Quasi-ideal clock

Approximate version of a different QND system:
H=p

(Also arises from Tsang/Caves using two uncoupled free particles)

For odd dimension d,
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evolve as: e~ IHMA/d 160,) = 16,.,,)



Waveform estimation with quasi-ideal clock

Measuring time fgives waveform estimate:
For & = T(j/\/d)/\/d, we have
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Start in a “Gaussian” state of width o,
Measure with “Gaussian” precision o,

As with linear measurements, (é?]fk) has three contributions:

(cszfk) = (state correlations) + (measurement imprecision) + (backaction)

O, 0,, 1/O'S 1/O'm

Result: minimum detectable |x| « d~ 4 = E~1/4



Details on the calculation

Not easy to work with z £ due to periodicity;
y <5]5k> P y Close enough: For X ~ A (u, 6°),
-, . 1
20E 2mimey we have {e'*%) = el 7V

instead consider (¢ V¢ e V4 ) for integer £ and m
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C, =e 24  contributions when landing on the last position.



Conclusion and open questions

Estimation errors scale “decently well” with energy

Cannot expect really fast decay, , e.g. exponential

How does this relate to errors in timekeeping

or covariant guantum error correction?

- What impact does this scaling have in actual setups?

- Can we improve the 1/4 exponent by more sophisticated analysis?



