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Quantum metrology:

Small probes

Boss et al., Science 2017



World’s largest quantum sensor: LIGO



Problem of waveform estimation: backaction

signal �x(t) measurement �y(t)

Quantum backaction of the measurement process

can destroy the probe sensitivity to the signal

One solution: Repeatedly reprepare the probe state 

Another solution: nondemolition measurement

quantum

probe



Quantum nondemolition measurement

�  is “nondemolition” if �  Ô(t) [Ô(t), Ô(t′ �)] = 0

Measurement now does not disturb measurement later

Tsang & Caves 2012: Can construct QND observables 

satisfying any desired equations of motion

Example: Classical harmonic oscillator

�   and  �   


for 


�

Q̂ = 1
2 ( ̂q1 + ̂q2) ̂P = ̂p1 − ̂p2

Ĥ = 1
2m ( ̂p2

1 + ω2 ̂q2
1)−

1
2m ( ̂p2

2 + ω2 ̂q2
2)



Approximate QND condition with finite energy

QND nominally requires infinite energy:

Hamiltonian unbounded above and below


Generic to QND: S Boulebnane, MP Woods, JMR, in preparation 

Try to approximate with finite energy / dimension:

How large an energy is needed for given estimation error?
We find that precision scales as �  E−1/4

Suppression of both the shot noise and the QBA, and
thus overcoming the standard quantum limit (SQL),
requires more advanced methods than ordinary fre-
quency-independent squeezing. Methods proposed towards
this goal to date [24–27] are challenging as they involve
large-scale installations and/or modifications of the GWD
core optics.
Here, we show that a suitably designed atomic spin

ensemble provides a reference frame in which a broadband
quantum noise reduction in the case of the motion of free
masses, such as the GWD mirrors, is possible.
The scheme.—The schematic of the proposed experi-

mental realization for detection of the free-mass motion in
the negative mass reference frame is presented in Fig. 1.
Two quantum measurements are performed in parallel, the
measurement of the position of the end mirrors of the GW
interferometer with the optical field âI , and the measure-
ment on the auxiliary atomic spin ensemble with the field

âS. The two fields are centered at wavelengths λI and λS,
respectively, where λI is determined by the probing laser of
the GWD (presently 1064 nm) and λS—by an atomic
resonant transition. As we shall show below, if âI and âS
are in an entangled state, both the shot noise and the
radiation pressure (QBA) noise contributions to the joint
measurement on the two systems can be suppressed.
In the absence of optical losses, with the interferometer

tuned on resonance, the Fourier component at the fre-
quency Ω of the phase quadrature of the light mode exiting
the interferometer, b̂sI , measured by a homodyne detector
DI , is [27–29]

b̂sI ¼
κI þ iΩ
κI − iΩ

âsI þ
2κIΘχ

ðκI − iΩÞ2
âcI þ

ffiffiffiffiffiffiffiffiffiffi
2κIΘ

p

κI − iΩ
χ
Fs þFTffiffiffiffiffiffiffi

ℏm
p ;

ð1Þ

where âsI , â
c
I are the phase (sine) and amplitude (cosine)

quadratures of the incident light,Fs is the signal force—for
example, from the GW—and FT is a sum of the thermal
force, seismic noise, and other technical noise sources (the
notations used throughout this Letter are listed in Table I).
The first term describes the shot noise, and the second one
the QBA noise.
If the incident light is in a coherent or in a quadrature

squeezed state with a squeezing phase of zero or π=2, then
the quadratures âsI , â

c
I are uncorrelated and their spectral

densities are equal to e−2r=2 and e2r=2. It is easy to show
[20,27] that in this case the spectral density of the sum of
the shot noise and the QBA quantum noise (normalized to
signal force Fs) cannot be smaller than the force SQL
SFSQL ¼ ℏmΩ2 (this characteristic frequency dependence is
the result of local optimization of the sum quantum noise at
each Ω). Typically, it is recast as the equivalent position
SQL:

SxSQL ¼
SFSQL

ðmΩ2Þ2
¼ ℏ

mΩ2
: ð2Þ

Let us now introduce the second quantum system
consisting of a multiatom spin ensemble. If the spins are
optically polarized along a certain direction x (Fig. 2), the
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FIG. 1. Setup for a GWD beyond the SQL with the negative
mass spin system. The GWD and the atomic system are probed
with entangled light modes aS, aI (dashed lines). The modes are
generated through sum frequency generation (SFG) of the GW
interferometer laser and an auxiliary laser at the atomic frequency
λS, and the subsequent parametric down-conversion (PDC).
Combined signals from detectors DS and DI allow for
backaction-free measurement. PBS, polarization beam splitter;
FR, Faraday rotator.

TABLE I. The main notations used throughout this Letter.

Notation Quantity Value, Adv. LIGO Value, 10 m

r Squeezing factor ≈1.7 ↔ 15db
L Interferometer arm length 4000 m 10 m
m Mirror mass 40 kg 0.1 kg
κI Interferometer half-bandwidth 2π × 500 Hz 2π × 2000 Hz
Ic Optical power circulating in each of the arms 840 kW 1 kW
Θ ¼ ð8ωoIc=mcLÞ Normalized optical power ð2π × 100Þ3 s−3 ð2π × 575Þ3 s−3

ΩS Atomic system eigenfrequency 2π × 3 Hz 2π × 30 Hz
γS Atomic system damping rate 2π × 3 Hz 2π × 30 Hz
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• spin coherent states

• red/blue sidebands

• just truncate

Khalili & Polzik, PRL 2018 



Quasi-ideal clock

Approximate version of a different QND system:


�Ĥ = ̂p
(Also arises from Tsang/Caves using two uncoupled free particles)

For odd dimension � ,


Hamiltonian:   � 


time states: � 


evolve as: �

d

Ĥ =
2π

d ∑
n=ℤd

|n⟩⟨n |

|θk⟩ =
1

d ∑
n∈ℤd

e−2πink/d |n⟩

e−iĤm/ d |θk⟩ = |θk+m⟩

Introduction
Some background

The quasi-ideal clock and non-demolition measurement
Conclusion

The quasi-ideal clock
Description of measurement
Probabilistic interpretation of the measurement

The quasi-ideal clock
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Sami Boulebnane Quantum clocks and non-demolition measurement



Waveform estimation with quasi-ideal clock

Start in a “Gaussian” state of width �  

Measure with “Gaussian” precision �

σs
σm

�Ĥ(t) = (1 + x(t))Ĥ

Ideally, � ̂q(t) = ̂q(0) + ∫
t

0
dτ x(τ)

Measuring time �  gives waveform estimate:


For � , we have 


�

̂T
̂ξj = ̂T( j/ d)/ d

̂ξj − ̂ξj−1 ≈ ∫
j

j−1
dτ x(τ)

As with linear measurements, �  has three contributions:


� (state correlations) + (measurement imprecision) + (backaction) 

⟨ ̂ξj
̂ξk⟩

⟨ ̂ξj
̂ξk⟩ =

σs σm 1/σs 1/σm

Result: minimum detectable � |x | ∝ d−1/4 = E−1/4



Details on the calculation

Not easy to work with �  due to periodicity;


instead consider �  for integer �  and �

⟨ ̂ξj
̂ξk⟩

⟨e
2πiℓ ̂ξj

d e
2πim ̂ξk

d ⟩ ℓ m

Close enough: For � , 


we have �

X ∼ 𝒩(μ, σ2)

⟨eiαX⟩ = eiαμe−
1
2 α2σ2

Evolution between �  and �  is � , with �j − 1 j e−iĤ(t)Δtj/ d Δtj = 1 + ∫
j

j−1
dτ x(τ/ d)

For example, with � , we find  �ℓ = − 1,m = 0 ⟨e
− 2πiξ̃n

d ⟩ = e− 2πi
d ∑n

j=0 ΔtjC1C2C3

C1 = e− πσ2s
2d

C2 = e− πσ2m
2d

�  more complicated: 


Random walk on �  of step size � ; 

contributions when landing on the last position. 

C3

ℤd 𝒩(0,d /4πσ2
m)



Conclusion and open questions

• Estimation errors scale “decently well” with energy


• Cannot expect really fast decay, , e.g. exponential


• How does this relate to errors in timekeeping 


• or covariant quantum error correction?


• What impact does this scaling have in actual setups?


• Can we improve the 1/4 exponent by more sophisticated analysis?


