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What is quantum information theory?  
What is it good for? 



• Concepts:                         Information & Quantum 

• Mathematical setting:       Qubits 1,2,3  

• Application:                      Quantum Computing 

• Application:                      Quantum Crypto 

• Challenges of Quantum Information Processing

3.2. Qubits
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Figure 3.1: The Bloch sphere. Every qubit state can be associated with a point on the unit sphere.

are usually just denoted |±i. These three bases are the eigenbases of the three Pauli8 operators:

�x = |0ih1|+ |1ih0|=
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0 1
1 0
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, (3.6)

�y =�i |0ih1|+ i |1ih0|=
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�z = |0ih0|� |1ih1|=
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here the matrices are the representations of the respective operators in the basis {|0i, |1i}. A linear
combination of Pauli operators with real coefficients leads to a Hermitian9 operator.

These three operators, together with the identity operator , form a very convenient basis for
operators on C2, i.e. a basis for End(C2). This follows because we can very easily construct the ma-

trices
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0 1
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, etc. from the Pauli operators, and the latter is evidently a basis for End(C2).

Writing A= a0 + ~a · ~� for an operator A, with ~� = x̂�x + ŷ�y + ẑ�z , it is straightforward to verify
that |± âi are the eigenstates of A, with eigenvalues �

±
= a0±k~ak2. Here â is the normalized version

of ~a.
Using this relation, we can immediately infer that the projection operators ⇧n̂ := |n̂ihn̂| take the

form

⇧n̂ =
1
2 ( + n̂ ·�). (3.9)

Then it is simple to verify that for the state |m̂i, the probability of obtaining ⇧n̂ in a measurement is
just

P [⇧n̂ |m̂] =
1
2 (1+ n̂ · m̂). (3.10)

8Wolfgang Ernst Pauli, 1900 – 1958, Austrian-born Swiss theoretical physicist.
9Charles Hermite, 1822 – 1901, French mathematician.
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• Wiener: “Because information depends, not merely on 
what is actually said, but on what might have been said, 
its measure is a property of a set of possible 
messages…” 

• Amount of information: number of messages.              
Count logarithmically: measure in bits.  

• Information processor: manipulate possible symbols         
(don’t care how they are physically manifested)

Concepts: Information & Quantum

What is information?



Is this an information processor? 

There’s only one message.

What about:

(need butter)



Concepts: Information & Quantum

Quantum: need to use quantum statistical description; 
not that QM is required to describe physical device

Consider superposition of symbols

What is quantum?

Quantum Information Processing: 
manipulating superpositions of symbols 



Superposition invalidates counterfactual reasoning: 
e.g. what might have been said

We know this because of experimental  
loophole-free Bell inequality violations: 

“Unperformed experiments have no results”   
—Asher Peres

Trouble for quantum information processing?



 Quantum Toasters
Instruction Booklet

This book covers the use and care of the following Sunbeam Toasters:
TA3220 Quantum 2 – 2 Slice Chrome cool-touch toaster
TA3220B Quantum 2 – 2 Slice brushed stainless cool-touch toaster
TA3420 Quantum 4 – 4 Slice Chrome cool-touch toaster
TA3420B Quantum 4 – 4 Slice brushed stainless cool-touch toaster

Please read these instructions carefully 
and retain for future reference. 

Cloning No machine can copy every  
possible quantum message

Focus on devices, not experiments

But any given state can be cloned



CryptoThermo

Communication

Quantum  
Simulation

Metrology

Computing

Applications



3.2. Qubits

✓

x̂

ŷ'
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Qubits

|0i |1i

| i = ↵|0i+ �|1i 2 C2

1. Prepare qubit states 2. Rotate qubit states:  
unitary dynamics (Schrödinger equation)

3. Measure them: Pr(0)| i = |h0| i|2

Pr(0)|+i = |h0|+i|2 = 1
2

Coherent: test interference of 0 and 1 

spins, polarization, ground/excited, etc.



|0iA ⌦ |0iB ⌦ |1iC

basis: sequence of bits

|0iA ⌦ |0iB ⌦ |0iC + |1iA ⌦ |1iB ⌦ |1iC

And superpositions:

|000iABC + |111iABCAbbreviate:

Many Qubits



No cloning argument:  
No machine can copy every input state

M(| i ⌦ |0i) = | i ⌦ | i

M is described by a unitary operator: linear
UM | i ⌦ |0i = ↵UM |0i ⌦ |0i+ �UM |1i ⌦ |0i

Suppose it works for 0, 1:
= ↵|0i ⌦ |0i+ �|1i ⌦ |1i

6= | i ⌦ | i

Entanglement: superposition of many qubit state
|0iA ⌦ |0iB ⌦ |0iC + |1iA ⌦ |1iB ⌦ |1iC



Application:

Computing



Famously: efficient factoring, searching

Also: might like to  
simulate quantum systems

Task is the same: classical input, classical output
But with favorable scaling



Computing models Circuit model: qubit memory + gates

Adiabatic: 
1. start in ground state of simple Hamiltonian 
2. slowly change to final Hamiltonian 
3. ground state encodes solution of the problem 

make cluster state + measure

Measurement-based:

Topological: 
qubits are ground state degen. of QFT 

manipulate excitations to perform gates

Efficiency:  How many steps in circuit?   How slow an adiabatic process?



Deutsch-Jozsa

1-bit function f:  
balanced or constant?

Classically: Need two queries to f
Quantumly: Just one!

Quantum query: |xi|yi Uf�! |xi|y � f(x)i

output 0 or 1
f(0) = f(1)

identity, NOT
f(0) 6= f(1)



|+i|�i Uf�!
1X

x=0

(�1)f(x)|xi|�i

Now superpose the controls: Query in superposition!

Q: What happens if superpose the target? 

the effect of the function f is purely in the phase

|xi|�i Uf�! (�1)f(x)|xi|�iA: Phase kickback

|xi(|0i � |1i) Uf�! |xi|f(x)i � |xi|1� f(x)iProof:

|+i|�i if constant

|�i|�i if balanced



Application:

Cryptography



number of the page would be sent with the encoded message. The recipient would reverse the procedure
and then destroy his copy of the page. The German foreign office put this system into operation by
1923.[11]

A separate notion was the use of a one-time pad of letters to encode plaintext directly as in the example
below. Leo Marks describes inventing such a system for the British Special Operations Executive during
World War II, though he suspected at the time that it was already known in the highly
compartmentalized world of cryptography, as for instance at Bletchley Park.[13]

The final discovery was by Claude Shannon in the 1940s who recognized and proved the theoretical
significance of the one-time pad system. Shannon delivered his results in a classified report in 1945, and
published them openly in 1949.[4] At the same time, Vladimir Kotelnikov had independently proven
absolute security of the one-time pad; his results were delivered in 1941 in a report that apparently
remains classified.[14]

Example
Suppose Alice wishes to send the message "HELLO" to Bob. Assume two pads of paper containing
identical random sequences of letters were somehow previously produced and securely issued to both.
Alice chooses the appropriate unused page from the pad. The way to do this is normally arranged for in
advance, as for instance 'use the 12th sheet on 1 May', or 'use the next available sheet for the next
message'.

The material on the selected sheet is the key for this message. Each letter from the pad will be combined
in a predetermined way with one letter of the message. (It is common, but not required, to assign each
letter a numerical value, e.g., "A" is 0, "B" is 1, and so on.)

In this example, the technique is to combine the key and the message using modular addition. The
numerical values of corresponding message and key letters are added together, modulo 26. So, if key
material begins with "XMCKL" and the message is "HELLO", then the coding would be done as
follows:

      H       E       L       L       O  message
   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) message
+ 23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= 30      16      13      21      25     message + key
=  4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) message + key (mod 26)
      E       Q       N       V       Z  → ciphertext

If a number is larger than 26, then the remainder after subtraction of 26 is taken in modular arithmetic
fashion. This simply means that if the computations "go past" Z, the sequence starts again at A.

The ciphertext to be sent to Bob is thus "EQNVZ". Bob uses the matching key page and the same
process, but in reverse, to obtain the plaintext. Here the key is subtracted from the ciphertext, again
using modular arithmetic:

       E       Q       N       V       Z  ciphertext
    4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) ciphertext
-  23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= -19       4      11      11      14     ciphertext – key
=   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) ciphertext – key (mod 26)
       H       E       L       L       O  → message

number of the page would be sent with the encoded message. The recipient would reverse the procedure
and then destroy his copy of the page. The German foreign office put this system into operation by
1923.[11]

A separate notion was the use of a one-time pad of letters to encode plaintext directly as in the example
below. Leo Marks describes inventing such a system for the British Special Operations Executive during
World War II, though he suspected at the time that it was already known in the highly
compartmentalized world of cryptography, as for instance at Bletchley Park.[13]

The final discovery was by Claude Shannon in the 1940s who recognized and proved the theoretical
significance of the one-time pad system. Shannon delivered his results in a classified report in 1945, and
published them openly in 1949.[4] At the same time, Vladimir Kotelnikov had independently proven
absolute security of the one-time pad; his results were delivered in 1941 in a report that apparently
remains classified.[14]

Example
Suppose Alice wishes to send the message "HELLO" to Bob. Assume two pads of paper containing
identical random sequences of letters were somehow previously produced and securely issued to both.
Alice chooses the appropriate unused page from the pad. The way to do this is normally arranged for in
advance, as for instance 'use the 12th sheet on 1 May', or 'use the next available sheet for the next
message'.

The material on the selected sheet is the key for this message. Each letter from the pad will be combined
in a predetermined way with one letter of the message. (It is common, but not required, to assign each
letter a numerical value, e.g., "A" is 0, "B" is 1, and so on.)

In this example, the technique is to combine the key and the message using modular addition. The
numerical values of corresponding message and key letters are added together, modulo 26. So, if key
material begins with "XMCKL" and the message is "HELLO", then the coding would be done as
follows:

      H       E       L       L       O  message
   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) message
+ 23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= 30      16      13      21      25     message + key
=  4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) message + key (mod 26)
      E       Q       N       V       Z  → ciphertext

If a number is larger than 26, then the remainder after subtraction of 26 is taken in modular arithmetic
fashion. This simply means that if the computations "go past" Z, the sequence starts again at A.

The ciphertext to be sent to Bob is thus "EQNVZ". Bob uses the matching key page and the same
process, but in reverse, to obtain the plaintext. Here the key is subtracted from the ciphertext, again
using modular arithmetic:

       E       Q       N       V       Z  ciphertext
    4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) ciphertext
-  23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= -19       4      11      11      14     ciphertext – key
=   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) ciphertext – key (mod 26)
       H       E       L       L       O  → message

Want: private communication between Alice and Bob 
Have: insecure classical and quantum channels ????

Focus on creating secret key for one-time pad.
Problem is “solved” if Alice and Bob share a secret key

Great! All we need is the key.     ????

one-time pad: 
random key symbol for  
every message symbol



Classically: Catch-22 
Quantumly: Use the uncertainty principle!

Uncertainty  
games  Alice makes one of  

two complementary measurements; 
 Bob tries to guess.

1. Bob prepares qubit, sends to Alice 
2. Bob makes a guess for each measurement 
3. Alice randomly measures, tells Bob. 

Version A
1. Bob prepares qubit, sends to Alice 
2. Alice commits to one measurement,  
3. Alice asks for guess, Bob delivers.  
4. Alice measures, tells Bob. 

Version B

Cannot win:  
like predicting position and momentum

Can win: 
prepare entangled state,  

keep half & measure appropriately



Consider a remaining qubit pair: Alice measures Z to create key. 
Bob could have predicted X, so Eve cannot predict Z. (ver. A) 

QKD1. Alice prepares entangled state, sends half to Bob. (repeat x zillion) 
2. A+B compare some qubits. Alice measures X or Z, Bob guesses 
3. If guesses are good, use remaining qubits for key via X/Z meas.

Resulting key is private. Why?

|0iA|0iB + |1iA|1iBIf guesses are good,  
AB state is entangled:

(ver. B)

Can convert to “prepare & 
measure” scheme: BB84

Blackbox: Statistics same



Challenges of Quantum Information Processing

Noise!

Error correction 
Fault tolerance




