9th NCCR QSIT Winter School

Quantum Information Theory
 Joseph M. Renes
 ETH Zürich

What is quantum information theory? What is it good for?

Outline

- Concepts:

Information \& Quantum

- Mathematical setting: Qubits 1,2,3
- Application:

Quantum Computing

- Application:

Quantum Crypto

- Challenges of Quantum Information Processing

Concepts: Information \& Quantum

What is information?

- Wiener: "Because information depends, not merely on what is actually said, but on what might have been said, its measure is a property of a set of possible messages..."
- Amount of information: number of messages. Count logarithmically: measure in bits.
- Information processor: manipulate possible symbols (don't care how they are physically manifested)

Is this an information processor?

There's only one message. (need butter)

What about:

Concepts: Information \& Quantum

Consider superposition of symbols

Quantum Information Processing: manipulating superpositions of symbols

Quantum: need to use quantum statistical description; not that QM is required to describe physical device

Superposition invalidates counterfactual reasoning: e.g. what might have been said

We know this because of experimental loophole-free Bell inequality violations:
"Unperformed experiments have no results" -Asher Peres

Trouble for quantum information processing?

Quantum Toasters

Focus on devices, not experiments

No machine can copy every possible quantum message

But any given state can be cloned

Metrology

Applications

Communication

Computing

Quantum Simulation

Qubits

Coherent: test interference of 0 and 1

1. Prepare qubit states
2. Rotate qubit states:
unitary dynamics (Schrödinger equation)
3. Measure them:

$$
\operatorname{Pr}(0)_{|\psi\rangle}=|\langle 0 \mid \psi\rangle|^{2}
$$

$$
\operatorname{Pr}(0)_{|+\rangle}=|\langle 0 \mid+\rangle|^{2}=\frac{1}{2}
$$

Many Qubits

basis: sequence of bits

$$
|0\rangle_{A} \otimes|0\rangle_{B} \otimes|1\rangle_{C}
$$

And superpositions:

$$
|0\rangle_{A} \otimes|0\rangle_{B} \otimes|0\rangle_{C}+|1\rangle_{A} \otimes|1\rangle_{B} \otimes|1\rangle_{C}
$$

Abbreviate: $\quad|000\rangle_{A B C}+|111\rangle_{A B C}$

Entanglement: superposition of many qubit state

$$
|0\rangle_{A} \otimes|0\rangle_{B} \otimes|0\rangle_{C}+|1\rangle_{A} \otimes|1\rangle_{B} \otimes|1\rangle_{C}
$$

No cloning argument:
No machine can copy every input state

$$
M(|\psi\rangle \otimes|0\rangle)=|\psi\rangle \otimes|\psi\rangle
$$

M is described by a unitary operator: linear

$$
U_{M}|\psi\rangle \otimes|0\rangle=\alpha U_{M}|0\rangle \otimes|0\rangle+\beta U_{M}|1\rangle \otimes|0\rangle
$$

Suppose it works for 0,1 :

$$
\begin{aligned}
& =\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \\
& \neq|\psi\rangle \otimes|\psi\rangle
\end{aligned}
$$

Application:

Computing

Famously: efficient factoring, searching

Also: might like to simulate quantum systems

Task is the same: classical input, classical output But with favorable scaling

Computing models

Measurement-based:

Adiabatic:
Circuit model: qubit memory + gates

1. start in ground state of simple Hamiltonian
2. slowly change to final Hamiltonian
3. ground state encodes solution of the problem
make cluster state + measure

Topological: qubits are ground state degen. of QFT manipulate excitations to perform gates

Efficiency: How many steps in circuit? How slow an adiabatic process?

1-bit function f: balanced or constant?

Deutsch-Jozsa

$$
\begin{gathered}
\text { identity, NOT } \\
f(0) \neq f(1)
\end{gathered}
$$

$$
f(0)=f(1)
$$

Classically: Need two queries to f
Quantumly: Just one!
Quantum query: $\quad|x\rangle|y\rangle \xrightarrow{U_{f}}|x\rangle|y \oplus f(x)\rangle$

Q: What happens if superpose the target?
A: Phase kickback

$$
|x\rangle|-\rangle \xrightarrow{U_{f}}(-1)^{f(x)}|x\rangle|-\rangle
$$

the effect of the function f is purely in the phase

$$
\text { Proof: } \quad|x\rangle(|0\rangle-|1\rangle) \xrightarrow{U_{f}}|x\rangle|f(x)\rangle-|x\rangle|1 \oplus f(x)\rangle
$$

Now superpose the controls: Query in superposition!

Application:

Cryptography Have: insecure classical and quantum channels

Focus on creating secret key for one-time pad.
Problem is "solved" if Alice and Bob share a secret key

Classically: Catch-22
Quantumly: Use the uncertainty principle!

Uncertainty games

Alice makes one of two complementary measurements; Bob tries to guess.

Version A

1. Bob prepares qubit, sends to Alice
2. Bob makes a guess for each measurement
3. Alice randomly measures, tells Bob.

Version B

1. Bob prepares qubit, sends to Alice
2. Alice commits to one measurement,
3. Alice asks for guess, Bob delivers.
4. Alice measures, tells Bob.

Can win:
prepare entangled state, keep half \& measure appropriately

1. Alice prepares entangled state, sends half to Bob. (repeat \times zillion)
2. A+B compare some qubits. Alice measures X or Z, Bob guesses
3. If guesses are good, use remaining qubits for key via X / Z meas.

Resulting key is private. Why?
$\begin{aligned} & \text { If guesses are good, } \\ & \mathrm{AB} \text { state is entangled: }\end{aligned} \quad|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}$ (ver. B)

Consider a remaining qubit pair: Alice measures Z to create key. Bob could have predicted X, so Eve cannot predict Z. (ver. A)

Can convert to "prepare \& measure" scheme: BB84

Blackbox: Statistics same

Challenges of Quantum Information Processing

Noise!

Error correction Fault tolerance

