9th NCCR QSIT Winter School

Quantum Information Theory

Joseph M. Renes ETH Zürich

What is quantum information theory? What is it good for?

Outline

Concepts: Information & Quantum

• Mathematical setting: Qubits 1,2,3

Application: Quantum Computing

Application: Quantum Crypto

• Challenges of Quantum Information Processing

Concepts: Information & Quantum

What is information?

- Wiener: "Because information depends, not merely on what is actually said, but on what *might have been said*, its measure is a property of *a set of* possible messages..."
- Amount of information: *number* of messages. Count logarithmically: measure in *bits*.
- Information processor: manipulate possible symbols (don't care how they are physically manifested)

Is this an information processor?

There's only one message. (need butter)

What about:

Concepts: Information & Quantum

What is quantum?

Consider superposition of symbols

Quantum Information Processing: manipulating superpositions of symbols

Quantum: need to use quantum statistical description; not that QM is required to describe physical device Superposition invalidates *counterfactual reasoning:* e.g. what might have been said

We know this because of experimental loophole-free Bell inequality violations:

"Unperformed experiments have no results" —Asher Peres

Trouble for *quantum* information processing?

Quantum Toasters

This book covers the use and care of the following Sunbeam Toasters: TA3220 Quantum 2 - 2 Slice Chrome cool-touch toaster TA3220B Quantum 2 - 2 Slice Chrome cool-touch toaster TA3420 Quantum 4 - 4 Slice Chrome cool-touch toaster TA3420B Quantum 4 - 4 Slice brushed stainless cool-touch toaster

Please read these instructions carefully and retain for future reference.

Focus on devices, not experiments

Cloning

No machine can copy every possible quantum message

But any given state can be cloned

Metrology

Applications

Communication

Computing

Quantum Simulation

Qubits

spins, polarization, ground/excited, etc.

 $|0\rangle \qquad |1\rangle$ $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$

Coherent: test interference of 0 and 1

1. Prepare qubit states

2. Rotate qubit states: unitary dynamics (Schrödinger equation)

3. Measure them:

 $\Pr(0)_{|\psi\rangle} = |\langle 0|\psi\rangle|^2$

 $\Pr(0)_{|+\rangle} = |\langle 0|+\rangle|^2 = \frac{1}{2}$

Many Qubits

basis: sequence of bits $|0
angle_A\otimes|0
angle_B\otimes|1
angle_C$

And superpositions: $|0\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C + |1\rangle_A \otimes |1\rangle_B \otimes |1\rangle_C$

Abbreviate: $|000\rangle_{ABC} + |111\rangle_{ABC}$

Entanglement: superposition of many qubit state $|0\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C + |1\rangle_A \otimes |1\rangle_B \otimes |1\rangle_C$

No cloning argument: No machine can copy every input state $M(|\psi\rangle\otimes|0\rangle)=|\psi\rangle\otimes|\psi\rangle$

> M is described by a unitary operator: *linear* $U_M |\psi\rangle \otimes |0\rangle = \alpha U_M |0\rangle \otimes |0\rangle + \beta U_M |1\rangle \otimes |0\rangle$

Suppose it works for 0, 1:

 $= \alpha |0\rangle \otimes |0\rangle + \beta |1\rangle \otimes |1\rangle$ $\neq |\psi\rangle \otimes |\psi\rangle$

Application:

Computing

Famously: efficient factoring, searching

Also: might like to simulate quantum systems

Task is the same: classical input, classical output But with favorable scaling

Computing models

Measurement-based:

Circuit model: qubit memory + gates

Adiabatic:

- 1. start in ground state of simple Hamiltonian
- 2. slowly change to final Hamiltonian
- 3. ground state encodes solution of the problem

make cluster state + measure

Topological: qubits are ground state degen. of QFT manipulate excitations to perform gates

Efficiency: How many steps in circuit? How slow an adiabatic process?

Deutsch-Jozsa

identity, NOT $f(0) \neq f(1)$

1-bit function f:

balanced or constant?

Classically: Need two queries to f Quantumly: Just one!

Quantum query: $|x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|y \oplus f(x)\rangle$

Q: What happens if superpose the target?

 $|x\rangle|-\rangle \xrightarrow{U_f} (-1)^{f(x)}|x\rangle|-\rangle$ A: Phase kickback

the effect of the function f is purely in the phase

Proof:
$$|x\rangle(|0\rangle - |1\rangle) \xrightarrow{U_f} |x\rangle|f(x)\rangle - |x\rangle|1 \oplus f(x)\rangle$$

Now superpose the controls: Query in superposition!

$$|+\rangle|-\rangle \xrightarrow{U_f} \sum_{x=0}^{1} (-1)^{f(x)} |x\rangle|-\rangle \xrightarrow{|+\rangle|-\rangle} \text{ if constant}$$
$$|-\rangle|-\rangle \quad \text{if balanced}$$
$$|0\rangle \xrightarrow{n} H^{\otimes n} \xrightarrow{U_f} U_f$$
$$|1\rangle \xrightarrow{H} H^{\otimes n} \xrightarrow{U_f} U_f$$

Application:

Cryptography

Want: *private* communication between Alice and Bob Have: *insecure* classical and quantum channels

????

Focus on creating secret key for one-time pad.

????

Problem is "solved" if Alice and Bob share a secret key

Plaintext →	Encrypt	Ciphertext	Decrypt \rightarrow Plaintext \uparrow_{K_D} \bigwedge_{Bob}			one-tim andon every n	ne p n ke ness	ad: y symbol for sage symbol	
H E	L	L O	message	E Q	N	V	Z	ciphertext	
7 (H) 4 (E)	11 (L) 1	1 (L) 14 (O)	message	4 (E) 16 (Q)	13 (N)	21 (V) 2	25 (Z)	ciphertext	
+ 23 (X) 12 (M)	2 (C) 1	LO (K) 11 (L)	key	- 23 (X) 12 (M)	2 (C)	10 (K) 1	l1 (L)	key	
= 30 16	13 2	21 25	message + key	= -19 4	11	11 1	14	ciphertext - key	
= 4 (E) 16 (Q)	13 (N) 2	21 (V) 25 (Z)	message + key (mod 26)	= 7 (H) 4 (E)	11 (L)	11 (L) 1	L4 (O)	ciphertext - key (mo	d 26)
E Q	Ν	V Z	→ ciphertext	H E	L	L	0	→ message	

Great! All we need is the key.

Classically: Catch-22 Quantumly: Use the uncertainty principle!

Uncertainty games

Alice makes one of

two complementary measurements; Bob tries to guess.

Version A

- 1. Bob prepares qubit, sends to Alice
- 2. Bob makes a guess for *each* measurement
- 3. Alice randomly measures, tells Bob.

Cannot win: like predicting position and momentum

Version B

- 1. Bob prepares qubit, sends to Alice
- 2. Alice commits to one measurement,
- 3. Alice asks for guess, Bob delivers.
- 4. Alice measures, tells Bob.

Can win:

prepare entangled state, keep half & measure appropriately Alice prepares entangled state, sends half to Bob. (repeat x zillion)
 A+B compare some qubits. Alice measures X or Z, Bob guesses
 If guesses are good, use remaining qubits for key via X/Z meas.

Resulting key is private. Why?

If guesses are good, AB state is entangled: $|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B$ (ver. B)

Consider a remaining qubit pair: Alice measures Z to create key. Bob could have predicted X, so Eve cannot predict Z. (ver. A)

Can convert to "prepare & measure" scheme: BB84

Blackbox: Statistics same

Challenges of Quantum Information Processing

Noise!

Error correction Fault tolerance