Quantum message-passing algorithm for optimal and efficient decoding

Christophe Piveteau and Joseph M. Renes
Institute for Theoretical Physics, ETH Zürich

2022 IEEE
INTERNATIONAL SYMPOSIUM
ON INFORMATION THEORY

JUNE 26-JULY 1 AT AALTO UNIVERSITY
IN ESPOO, FINLAND

Simple quantum decoding problem

uniformly random
linear code

CQ channel
????

Simple quantum decoding problem

uniformly random
linear code

CQ channel

Follow BP and try to decode bitwise...

BPQM algorithm

- Introduced at ISIT 2017: "Beifief ropopagioion decoding of quantum chammels by passing guantum messages"
- Studied by Rengaswamy et al. at ISIT 2020
- Simplification in sequential decoding
- Block optimality in a 5-bit example
- What's new this year?
- Actual message passing version - original does not pass all info!
- Efficient implementation - above flaw means original algorithm not efficient!
- Application to non-tree codes via approximate cloning
- Proof of block optimality for all tree codes

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

Belief propagation decoding as tensor network contraction

Contract to find estimate of X_{2} given observed $y_{1} y_{2} y_{3} y_{4}$.

Run in parallel to estimate all other codeword bits.

Belief propagation decoding acting on output bits: BSC

- Associate a bit b and likelihood $\ell=\frac{\delta}{1-\delta}$ to each node
- Traverse tree from leaves to root, generating node (b, ℓ) data from children node data.

Belief propagation decoding acting on output bits: BSC

- Associate a bit b and likelihood $\ell=\frac{\delta}{1-\delta}$ to each node
- Traverse tree from leaves to root, generating node (b, ℓ) data from children node data.
- Leaf nodes: b is channel output, δ from W
- At + nodes: $b=b_{1} \oplus b_{2}$ and $\ell=\frac{\ell_{1}+\ell_{2}}{1+\ell_{1} \ell_{2}}$.
- At $=$ nodes: $b=b_{1}$. Determine parity $k=b_{1} \oplus b_{2}$, set $\ell_{2} \leftarrow \ell_{2}^{(-1)^{k}}$ and then $\ell=\ell_{1} \ell_{2}$
- At root, generate estimate given the root bit b and l.

Belief propagation decoding acting on output bits: BSC

- Message passing: b and ℓ
- The operations add to the factor graph, but then it simplifies by channel combining rules.
- Results in a single input to a BSC whose output is the root bit b, with channel param. ℓ
- Completely unnecessary, of course: LLR processing in BP includes both b and ℓ

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

BP for decoding CQ channel outputs

Pick the simplest possible quantum extension:

Channel with symmetric pure state outputs $\left|\varphi_{x}\right\rangle$

BP for decoding CQ channel outputs

Pick the simplest possible quantum extension:

Channel with symmetric pure state outputs $\left|\varphi_{x}\right\rangle$

Need to construct a measurement to estimate X_{2} from $Q_{1} Q_{2} Q_{3} Q_{4}$
Tensor network contraction method not possible!

CQ channel output description

Bloch sphere

Bloch vector:

$$
\hat{n}=z \hat{z}+(-1)^{x} \sqrt{1-z^{2}} \hat{x}
$$

Like ℓ from BSC:
Small value indicates a reliable channel

Quantum message passing algorithm: BPQM

- Associate a qubit and z parameter to each node
- Traverse the tree from W leaves to root

Quantum message passing algorithm: BPQM

- Associate a qubit and z parameter to each node
- Traverse the tree from W leaves to root
- At = nodes: Apply unitary $U\left(z_{1}, z_{2}\right)$ and keep just 1st qubit. Set $z=z_{1} z_{2}$.
- At + nodes: Apply CNOT, measure 2nd qubit $\rightarrow k$. Reset $z_{2} \leftarrow(-1)^{k} z_{2}$ and set param to $\frac{z_{1}+z_{2}}{1+z_{1} z_{2}}$.
- Measure root qubit in \hat{x} basis.

Quantum message passing algorithm: BPQM

- =: Apply unitary $U\left(z_{1}, z_{2}\right)$, discard 2 nd qubit. Set param to $z_{1} z_{2}$.
- +: Apply CNOT, measure 2nd qubit $\rightarrow k$. Discard 2nd qubit.

Reset $z_{4} \leftarrow(-1)^{k} z_{4}$ and set param to $\frac{z_{3}+z_{4}}{1+z_{3} z_{4}}$.

- Measure last qubit in \hat{x} basis.

Quantum message passing algorithm: BPQM

- Implements optimal bitwise measurement: operations are actually reversible
- Factor graph simplifies as before, to a single classical input and pure state output.
- Messages passed are one part classical (z), one part quantum (qubit)

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

Successive BPQM for decoding entire codeword

Successive BPQM for decoding entire codeword

- Problem: Intermediate measurements.

Solution: Perform BPQM coherently ("deferred measurement"). Rewind the circuit after measuring the output qubit.

Successive BPQM for decoding entire codeword

- Problem: Intermediate measurements.

Solution: Perform BPQM coherently. Rewind the circuit after decoding each bit.

- Problem: Exponential overhead from + controls. Solution: Quantize z register. Uncompute after use.
- Problem: Need infinite dimensions for z register. Solution: Discretize to finite precision.
 For target error ε, register size only $O(\log 1 / \varepsilon)$.
- All messages passed are now quantum!

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

Loopy BPQM: Setup

Unroll Tanner graph to computational graph

(a)

(b)

(c)

(d)

Figure 16: Tanner graph of the $(8,4)$ code \mathcal{C} and associated X_{1} computation trees for $h=1,2,3$.

Run BPQM:

Initialize leaves with approximately cloned qubits and appropriate z

Loopy BPQM: Performance

Figure 17: Numerical results from decoding X_{1}, X_{5} and the complete codeword in the 8-bit code.

Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions

Summary \& Open questions

- BPQM: efficient bitwise-optimal quantum message passing decoder
- Also blockwise optimal!
- Applications to capacity-achieving polar codes:
- BPSK on pure loss Bosonic channel for transmitting classical information
- CSS codes for amplitude damping channel for transmitting quantum information
- LDPC codes?
- Codes with loops?
- BPQM for mixed state output channels?

