
Quantum message-passing algorithm for optimal and efficient decoding

Christophe Piveteau and Joseph M. Renes

Institute for Theoretical Physics, ETH Zürich

Simple quantum decoding problem

classical encoder

quantum decoder

W

classical message

decoded message

W W W

uniformly random

linear code

????

CQ channel

Simple quantum decoding problem

classical encoder

quantum decoder

W

classical message

decoded message

W W W

uniformly random

linear code

Follow BP and try

to decode bitwise…

CQ channel

BPQM algorithm

• Introduced at ISIT 2017: “Belief propagation decoding of quantum channels by passing quantum messages”

• Studied by Rengaswamy et al. at ISIT 2020

• Simplification in sequential decoding

• Block optimality in a 5-bit example

• What’s new this year?

• Actual message passing version — original does not pass all info!

• Efficient implementation — above flaw means original algorithm not efficient!

• Application to non-tree codes via approximate cloning

• Proof of block optimality for all tree codes

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

Belief propagation decoding as tensor network contraction

Contract to find estimate of
given observed .

X2
y1y2y3y4

Run in parallel to estimate all
other codeword bits.

+

X3X1 X4

W W W W

=

X2

y1 y4y3y2

+ +

Belief propagation decoding acting on output bits: BSC

+

X3X1 X4

W W W W

=

X2

+ +

Y2Y1 Y3 Y4

• Associate a bit and likelihood to each node

• Traverse tree from leaves to root, generating node (,)

data from children node data.

b ℓ = δ
1 − δ

b ℓ

Belief propagation decoding acting on output bits: BSC

+

X3X1 X4

W W W W

=

X2

+ +

Y2Y1 Y3 Y4

• Associate a bit and likelihood to each node

• Traverse tree from leaves to root, generating node (,)

data from children node data.

b ℓ = δ
1 − δ

b ℓ

• Leaf nodes: is channel output, from

• At + nodes: and .

• At = nodes: . Determine parity , set
 and then

• At root, generate estimate given the root bit and .

b δ W

b = b1 ⊕ b2 ℓ = ℓ1 + ℓ2

1 + ℓ1ℓ2

b = b1 k = b1 ⊕ b2
ℓ2 ← ℓ(−1)k

2 ℓ = ℓ1ℓ2

b ℓ

Belief propagation decoding acting on output bits: BSC

• Message passing: and

• The operations add to the factor graph,
but then it simplifies by channel
combining rules.

• Results in a single input to a BSC whose
output is the root bit , with channel
param.

• Completely unnecessary, of course: LLR
processing in BP includes both and

b ℓ

b
ℓ

b ℓ

+

X3X1 X4

W W W W

=

X2

+ +

Y2Y1 Y3 Y4

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

BP for decoding CQ channel outputs

+

X3X1 X4

W W W W

=

X2

+ +

Q2Q1 Q3 Q4

Pick the simplest possible
quantum extension:

Channel with symmetric
pure state outputs |φx⟩

BP for decoding CQ channel outputs

+

X3X1 X4

W W W W

=

X2

+ +

Q2Q1 Q3 Q4

Pick the simplest possible
quantum extension:

Channel with symmetric
pure state outputs |φx⟩

Need to construct a measurement to estimate from X2 Q1Q2Q3Q4

Tensor network contraction method not possible!

CQ channel output description

|φ0⟩|φ1⟩

Bloch sphere

̂z

̂x

z
Bloch vector:

 ̂n = z ̂z + (−1)x 1 − z2 ̂x

Like from BSC:

Small value indicates a reliable channel

ℓ

Quantum message passing algorithm: BPQM

• Associate a qubit and parameter to each node

• Traverse the tree from leaves to root

z

W
+

W W W W

= =

Quantum message passing algorithm: BPQM

• Associate a qubit and parameter to each node

• Traverse the tree from leaves to root

• At = nodes: Apply unitary and keep just 1st
qubit. Set .

• At + nodes: Apply CNOT, measure 2nd qubit .
Reset and set param to .

• Measure root qubit in basis.

z

W

U(z1, z2)
z = z1z2

→ k
z2 ← (−1)kz2

z1 + z2

1 + z1z2

̂x

+

W W W W

= =

Quantum message passing algorithm: BPQM

• =: Apply unitary , discard 2nd qubit. Set param to .

• +: Apply CNOT, measure 2nd qubit . Discard 2nd qubit.
Reset and set param to .

• Measure last qubit in basis.

U(z1, z2) z1z2

→ k
z4 ← (−1)kz4

z3 + z4

1 + z3z4

̂x

U

U

H

1 3 42

+

W W W W

= =

• Implements optimal bitwise measurement:
operations are actually reversible

• Factor graph simplifies as before, to a single
classical input and pure state output.

• Messages passed are one part classical (), one
part quantum (qubit)

z

+

W W W W

= =

Quantum message passing algorithm: BPQM

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

Successive BPQM for decoding entire codeword

Successive BPQM for decoding entire codeword

• Problem: Intermediate measurements.
Solution: Perform BPQM coherently (“deferred measurement”).
Rewind the circuit after measuring the output qubit.

U

U

H

U

U

H

Successive BPQM for decoding entire codeword

• Problem: Intermediate measurements.
Solution: Perform BPQM coherently.
Rewind the circuit after decoding each bit.

• Problem: Exponential overhead from + controls.
Solution: Quantize register. Uncompute after use.

• Problem: Need infinite dimensions for register.
Solution: Discretize to finite precision.
For target error , register size only .

• All messages passed are now quantum!

z

z

ε O(log 1/ε)

+

W W W W

= =

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

Loopy BPQM: Setup
✓1 ✓2 ✓3 ✓4 ✓6 ✓8 ✓10 ✓11 ✓12 ✓14 ✓16✓5 ✓7 ✓9 ✓13 ✓15 ✓17

+ + + + + + + +

“ “ “ “
` `

“
“

(a) (b)

Figure 15: (a) MPG of a (17,11) code w.r.t. X1. The labels of the edges are not depicted. (b) Decoder
suboptimality ✏ of the (17,11) code obtained through numerical simulations. The size B of the angle registers is
varied. The codeword to be decoded is the all-zero codeword.

` X1 `

X4

`

X2

` X3

X5

X6 X7

X8

(a)

X1

` `X5

X2

X8

X4

(b)

X1

` `X5

X2

X8

X4

` `X6

X3 X3

X7

(c)

X1

` `X5

X2

X8

X4

` `X6

X3 X3

X7

` `X7

X4 X2

X6

(d)

Figure 16: Tanner graph of the (8,4) code C and associated X1 computation trees for h “ 1,2, 3.

starts with the check nodes processing their inputs and sending their outputs to the variable nodes, upon
which the variable nodes process their inputs and output the result among all their edges. Before the first
round is executed, all variable nodes simply send the messages received from the channel output to their
edges.

Consider a Tanner graph containing cycles on which classical BP is executed for h rounds in order to
decode the codeword bit Xr . The output of the algorithm is obtained from local node operations, so we
can unroll the Tanner graph into a tree of depth h that exactly represents this computation. We refer to
this as the depth-h computation tree of Xr . Consider as an example the (8,4) linear code with Tanner graph
depicted in Fig. 16a. The associated computation trees of X1 for h “ 1, 2, 3 are depicted in Figs. 16b to 16d.
The depth-h computation tree exactly represents the computations required to obtain the output of BP after
h time steps.

But it can also be interpreted in a different manner: As discussed in the introduction and depicted in
Fig. 2, by associating a unique variable to each node we can consider the unrolled depth-h graph to be
the Tanner graph of an (n1, k1) code, which we denote by C1. In this sense, performing classical BP on the
original non-tree factor graph of C for h time steps is equivalent to performing classical BP on the tree
factor graph of C1. Note that for this purpose, certain bits of the noisy channel output must be duplicated,
since they appear at multiple locations. For example, in the h “ 3 case of the 8-bit code, the variables
X2, X3, X4, X6, X7 all appear twice in the computation tree, so the corresponding channel outputs must be

30

Unroll Tanner graph to computational graph

Run BPQM:

Initialize leaves with approximately cloned qubits and appropriate z

Loopy BPQM: Performance

0 �/2 �/4

Channel parameter �

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
su

cc
es

s

BPQM h=1

BPQM h=2

BPQM h=3

ideal classical decoder

ideal quantum decoder

0.75 0.80 0.85

0.88

0.90

0.92

0.94

(a)

0 �/2 �/4

Channel parameter �

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
su

cc
es

s

BPQM h=1

BPQM h=2

BPQM h=3

ideal classical decoder

ideal quantum decoder

0.75 0.80 0.85

0.875

0.900

0.925

0.950

(b)

0 �/2 �/4

Channel parameter �

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
su

cc
es

s

BPQM h=1

BPQM h=2

BPQM h=3

ideal classical decoder

ideal quantum decoder

0.75 0.80 0.85
0.7

0.8

0.9

(c)

Figure 17: Numerical results from decoding X1, X5 and the complete codeword in the 8-bit code.

bit-MAP case it is the Helstrom measurement of the corresponding channel from input codeword bit to
quantum outputs, whereas in the codeword case it is realized by the PGM.

The numerics reveal that our approach can significantly outperform the best possible classical decoder
in any of the analyzed cases. Furthermore we see that it is not beneficial to make the number of rounds h
as large as possible—at some point the benefits of considering more rounds is smaller than the drawback
incurred by having to do more approximate cloning. This is a strongly different characteristic compared to
the classical belief propagation, where increasing the number of rounds generally improves the quality of
the result.

One might wonder whether cloning is really necessary to achieve the best possible performance. For
instance, it may be possible to simply employ BPQM defined for a spanning tree of the original Tanner graph.
In Appendix H we investigate such alternative decoders and argue that it is unlikely that any such decoder
can reach the same performance as the ENU+BPQM decoder.

6.2 Optimal approximate cloner

While the ENU cloner is conceptually very simple, there is a priori no reason why it should be the best choice
of approximate cloner. In this section we restrict ourselves to the simplest case in which the cloning operation
produces just two approximate copies of the input. Bruß et al. [46] characterized the operation which maps
|Qp0,✓qy |0y and |Qp1,✓qy |0y to some two-qubit states |�0y and |�1y, respectively, which maximizes the
average global fidelity

1
2

`
| xQp0,✓q| xQp0,✓q| ¨ |�0y |2 ` | xQp1,✓q| xQp1,✓q| ¨ |�1y |2

˘
. (62)

The optimal cloner is a unitary operation (which simply embeds the two input states into the span of the
ideal cloned states), and a particularly simple choice is given by

Uopt “ 1?
2

¨

˚̊
˝

a` ´a´ 0 0
0 0 1 1
0 0 1 ´1

a´ a` 0 0

˛

‹‹‚, (63)

for a˘ “ 1˘ f?
1` f 2

and f the fidelity of the input states (compare with the transpose of Uf given in (25)). For

completeness, we give a circuit decomposition of Uopt in Appendix D.

31

Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions

Summary & Open questions

• BPQM: efficient bitwise-optimal quantum message passing decoder

• Also blockwise optimal!

• Applications to capacity-achieving polar codes:

• BPSK on pure loss Bosonic channel for transmitting classical information

• CSS codes for amplitude damping channel for transmitting quantum information

• LDPC codes?

• Codes with loops?

• BPQM for mixed state output channels?

