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I. Information theory 
‣hypothesis testing converse for privacy 

amplification against classical side 
information  

II. Coding theory 
‣how to use channel codes for lossy 

compression

Overview



Information theory



Privacy amplification

PY Z f RV

⇡"

PZ

Y V

Z Z

V

such that ε-good f exists  Kϵ(Y |Z )P := max |V |

δ( PVZ , RVPZ ) ≤ ϵ
variational distance

deterministic function uniform randomness



Guessing probability converse

Watanabe/Hayashi ISIT 2013

Consider worst case (for Alice) guessing probability (for Eve) 

1
Kϵ(Y |Z)P

≥ Pϵ
guess(Y |Z)P

Pguess(Y |Z )P := max
y,z

PY|Z=z(y) Pϵ
guess(Y |Z )P := min

Q≈ϵP
max

y,z

QYZ(y, z)
PZ(z)

Pϵ
guess( f(Y ) |Z ) ≥ Pϵ

guess(Y |Z )

Difficult to compute for finite-blocklength due to Q minimization;

relax to information spectrum quantity



Guessing probability LP formulation

Note: by normalization of Q, we have λ |Y | ≥ 1

Guessing bound is never looser than the trivial bound  Kϵ(Y |Z )P ≤ |Y |

P ✏
guess(Y |Z)P = minimum

�,Q,T
�

such that � Y PZ � QY Z

TY Z � PY Z �QY Z

Tr[TY Z ]  ✏

Tr[QY Z ] = 1

�, TY Z , QY Z � 0



Hypothesis-testing converse

Kϵ(Y |Z)P ≤ min
η∈[0,1−ϵ]

1
η βϵ+η(PYZ,1YPZ)

bound does not hold for quantum Z

R, arXiv:1708.05685

βα(P, Q) := min{Tr[ΛQ] : Tr[ΛP] ≥ α,0 ≤ Λ ≤ 1}‣  

α − δ(P, Q) ≤ βα(P, Q)‣  

βα(Pf(Y )Z,1f(Y )PZ) ≤ βα(PYZ,1YPZ)‣  



Finite blocklength example

The QY Z appearing in both directions of the above proof is smaller than PY Z , which is precisely the kind of
smoothing employed by Renner and Wolf [5]. In particular, the converse in their Theorem 1 is the statement

1
K"(Y |Z)P

� b�"min(Y |Z)P , (27)

where b�"min(Y |Z)P := min{� : � Y PZ � QY Z ,QY Z  PY Z , h Y Z ,QY Zi � 1� ";�,Q � 0}. In light of the above,
it is perhaps not too suprising that

b�"min(Y |Z)P = �̄"min(Y |Z)P , (28)

and thus (27) is equivalent to (25). This follows because, on the one hand, QY Z = PY Z � TY Z for TY Z optimal
in the latter is feasible in the former, and on the other, TY Z = PY Z �QY Z for QY Z optimal in the former is
feasible for the latter.

Meanwhile, the smooth min-entropy bound of Watanabe and Hayashi [7, Theorem 1] is simply

1
K"(Y |Z)P

� �"min(Y |Z)P . (29)

(This bound can be shown using the stochastic map W as in (9), which is essentially the same as their proof.)
Nominally, then, the equivalent bounds (9), [10, Lemma 5], (25), and [5, Theorem 1] are relaxations (29).
However, these are all equivalent whenever the former are nontrivial.

Proposition 3. If �̄"min(Y |Z)P > 1
|Y | , then �̄"min(Y |Z)P = �"min(Y |Z)P .

Proof. Since the optimal TY Z is positive and has no entry larger than that of PY Z , the smallest normalization
of the possible QY Z is less than one. The largest is �|Y |, and hence a normalized QY Z can be found whenever
the optimal � is larger than 1

|Y | .
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Figure 2: Comparison of finite blocklength bounds on randomness extraction from Y n relative to Zn

for the i.i.d. case of Z obtained from uniform Y through a BSC of crossover probability 0.11 and a
target security parameter of " = 10�10. The asymptotic rate for this example is 1/2.

To compare the bounds for a fixed example, consider Z obtained from uniform Y through a binary sym-
metric channel with crossover probability 0.11 and a target security parameter of " = 10�10. We follow [12,
Theorem 35] in computing �↵(P⇥n

Y Z , Y n⇥RZn). Assuming QZ uniform, the lower bound of (10) and that of [7,
Equation 9] are essentially identical, with (10) improving on the latter by only four bits. The hybrid bound
of [7, Theorem 6] is considerably better. Better yet is Theorem 18 in [10]3. On the converse side, (9) and
[10, Lemma 5] allow us to sidestep the numerical difficulties associated with smoothing and still compute the
min-entropy bound [7, Theorem 1]. This yields a substantial improvement over the information-spectrum
relaxation [7, Equation 10]. The relaxation of [8, Lemma 29] is substiantially better, only two bits worse in

3Equations 150 and 153 contain a small error: The term gn(�) inside the square root should be gn(�)2 (Wei Yang, private communi-
cation).

8

ϵ = 1/1010 Z = Y + X X = Ber(0.11)

311 ± 17 at blocklength 1000



Relation to guessing bound 

Yang, Schaefer, Poor 

IEEE TIT 2019

ϵ ≥ EY/Kϵ
(PYZ, RYPZ)Kϵ(Y |Z )P ≤ min

η∈[0,1−ϵ]

1
η βϵ+η(PYZ,1YPZ) ⟺

Eγ(P, Q) := max{Tr[ΛP] − γTr[ΛQ] : 0 ≤ Λ ≤ 1}

Using properties of Eγ divergence from Liu, Cuff, Verdú (IEEE TIT 2017), we obtain

1
Kϵ(Y |Z )P

≥ ̂Pϵ
guess(Y |Z )P

Hence the HT bound is a relaxation 

of the guessing bound

P̂ ✏
guess(Y |Z)P = minimum

�,Q,T
�

such that � Y PZ � QY Z

TY Z � PY Z �QY Z

Tr[TY Z ]  ✏

Tr[QY Z ] = 1

�, TY Z , QY Z � 0



Equivalence!

It can happen that ̂Pϵ
guess(Y |Z )P <

1
|Y |

meaning the HT bound can be looser than the trivial bound (!)

⇒ 1 − ϵ ≤ Tr[QYZ] ≤ λ |Y |

Therefore, whenever HT is nontrivial 

the HT and guessing bounds are equivalent!

P̂ ✏
guess(Y |Z)P = minimum

�,Q,T
�

such that � Y PZ � QY Z

QY Z � PY Z � TY Z

Tr[TY Z ]  ✏

�, TY Z , QY Z � 0

}



More equivalence: Achievability

Recent approach from quantum information: partial smoothing

P ✏
guess(Y |Ż)P = minimum

�,Q,T
�

such that � Y PZ � QY Z

TY Z � PY Z �QY Z

Tr[TY Z ]  ✏

Tr[QY Z ] = 1

QZ  PZ

�, TY Z , QY Z � 0

Can also obtain achievability bounds using the collision entropy

But partial smoothing = global smoothing classically,

therefore Anshu et al.’s bound = Yang et al.’s bound

Anshu, Berta, 

Jain, and Tomamichel


arXiv:1807.05630



Coding theory



Lossy compression

Compress X so that average distortion of the reconstruction X’ is small.

Usual examples:


Gaussian source: recover up to small mean-squared error

Uniform discrete source: recover up to Hamming distortion 


                                                         (fraction of incorrect bits)

PX E D PX

⇤
X C X 0

X

Z 0
⇤

X

X

Z
⇡"

Rate-distortion function
R(d̄) = min

PY|X:⟨d(X,Y )⟩≤d̄
I(X : Y )



A “curious duality”

“The statement and proof of the two preceding results contain a curious duality between 
erased/known symbols in source coding and known/erased symbols in channel coding.”

Erasure quantization BEQ(e): 

d(x, x0) =

(
0 x =?, x0 =?, x = x0

1 else

Martinian & Yedidia Allerton 2004

Consider zero distortion

Quantize using linear code: Assign 0/1 to ?’s to get a codeword

M&Y:


If linear codes Cn achieve the capacity 1-e for BEC(e) under optimal decoding, 

then their duals Cdn achieve R(0) for BEQ(1-e) under optimal quantization.

R(d̄) = (1 − e)(1 − h2(
d̄

1 − e
)) Kostina & Verdú IEEE TIT 2012

This curious duality is quantum!

X 0 1 ?

PX
1
2 (1� e) 1

2 (1� e) e



Compression via privacy amplification

1. Pick a channel achieving R.   This gives PXY.

2. Find (linear) f for PA of Y relative to X. 

3. Extend to reversible g:Y→(V,T).   This gives PTVX. 
4. Quantizer is channel PT|VX.  

Dequantizer is g-1.

5. Both use common randomness V. 


Derandomize if desired.

6. Size of the code is |T|=|Y|/|V| 

Why does it work? 


Input to quantizer is:


Quantizer produces:


Dequantizer gives: 

RVPX ≈ϵ PVX

𝒬(RVPX) ≈ϵ PTVX

𝒟 ∘ 𝒬(RVPX) ≈ϵ PYX

f(xn) = syndromes of C, 


g-1(t,v) = t-th codeword, 

              offset to v-th coset

Similar to, but more direct than:

Muramatsu, IEEE TIT 2014, 

Yassaee, Aref, Gohari, IEEE TIT 2014



Privacy amplifcation via channel coding

R IEEE TIT 2018

PXY also defines the channel PX|Y. 


Get extractor for Y | X from channel code for dual of PX|Y

(M, ϵ) code for P⊥
X|Y ⟺ (M, 2ϵ) extractor for Y |X

(M, ϵ) code for P⊥
X|Y ⟹ ( |Y | /M, 2ϵ) quantizer for PXY

For i.i.d. Xn, achieve a rate of 1
n log |Y |

M → 1 − C(P⊥
X|Y)

If capacity optimizer is uniform, then C(P⊥
X|Y) = 1 − I(X : Y )

❖ Hamming distortion ❖ BEQ(e)

Therefore, we recover the optimal quantizer rate! 

The “curious duality” is a quantum duality.

Dual of uniform bit compression: pure state channel 



Outlook

I. Information theory 
‣Still missing good PA bounds for quantum 

adversaries… (Could try duality.) 

II. Coding theory 
‣Can we go from lossy compression to 

channel coding? (Does compression always 
effectively implement PA?) 


