Privacy amplification, lossy compression, and their duality to channel coding

> Joseph M. Renes ETH Zürich

> > arXiv:1708.05685

## **Overview**

#### I. Information theory

 hypothesis testing converse for privacy amplification against classical side information

#### **II. Coding theory**

how to use channel codes for lossy compression

## Information theory

# **Privacy amplification**



 $K_{\epsilon}(Y|Z)_P := \max |V|$  such that  $\epsilon$ -good f exists

## **Guessing probability converse**

Watanabe/Hayashi ISIT 2013

$$\frac{1}{K_{\epsilon}(Y|Z)_{P}} \ge P_{\text{guess}}^{\epsilon}(Y|Z)_{P}$$

Consider worst case (for Alice) guessing probability (for Eve)

 $P_{guess}(Y|Z)_{P} := \max_{y,z} P_{Y|Z=z}(y) \qquad P_{guess}^{\epsilon}(Y|Z)_{P} := \min_{Q \approx_{\epsilon} P} \max_{y,z} \frac{Q_{YZ}(y,z)}{P_{Z}(z)}$  $P_{guess}^{\epsilon}(f(Y)|Z) \ge P_{guess}^{\epsilon}(Y|Z)$ 

Difficult to compute for finite-blocklength due to Q minimization; relax to information spectrum quantity

## **Guessing probability LP formulation**

$$P_{guess}^{\epsilon}(Y|Z)_{P} = \min_{\lambda,Q,T} \lambda$$
  
such that  $\lambda \mathbb{1}_{Y} P_{Z} \ge Q_{YZ}$   
 $T_{YZ} \ge P_{YZ} - Q_{YZ}$   
 $\operatorname{Tr}[T_{YZ}] \le \epsilon$   
 $\operatorname{Tr}[Q_{YZ}] = 1$   
 $\lambda, T_{YZ}, Q_{YZ} \ge 0$ 

Note: by normalization of Q, we have  $\lambda |Y| \ge 1$ 

Guessing bound is never looser than the trivial bound  $K_{\epsilon}(Y|Z)_{P} \leq |Y|$ 

# Hypothesis-testing converse

R, arXiv:1708.05685

$$K_{\epsilon}(Y|Z)_{P} \leq \min_{\eta \in [0,1-\epsilon]} \frac{1}{\eta} \beta_{\epsilon+\eta}(P_{YZ}, 1_{Y}P_{Z})$$

- $\beta_{\alpha}(P,Q) := \min\{\operatorname{Tr}[\Lambda Q] : \operatorname{Tr}[\Lambda P] \ge \alpha, 0 \le \Lambda \le 1\}$
- $\bullet \ \alpha \delta(P,Q) \leq \beta_{\alpha}(P,Q)$
- $\ \ \, \beta_{\alpha}(P_{f(Y)Z},1_{f(Y)}P_Z) \leq \beta_{\alpha}(P_{YZ},1_YP_Z)$



bound does not hold for quantum Z

#### Finite blocklength example



 $\epsilon = 1/10^{10}$  Z = Y + X X = Ber(0.11)

 $311 \pm 17$  at blocklength 1000

### **Relation to guessing bound**

$$K_{\epsilon}(Y|Z)_{P} \leq \min_{\eta \in [0,1-\epsilon]} \frac{1}{\eta} \beta_{\epsilon+\eta}(P_{YZ}, 1_{Y}P_{Z}) \qquad \Longleftrightarrow \qquad \epsilon \geq E_{Y/K_{\epsilon}}(P_{YZ}, R_{Y}P_{Z})$$
Vana Schoofer Dec

Yang, Schaefer, Poor IEEE TIT 2019

$$E_{\gamma}(P,Q) := \max\{\mathrm{Tr}[\Lambda P] - \gamma \mathrm{Tr}[\Lambda Q] : 0 \le \Lambda \le 1\}$$

Using properties of  $E_{\gamma}$  divergence from Liu, Cuff, Verdú (IEEE TIT 2017), we obtain

$$\begin{split} \frac{1}{K_{\epsilon}(Y|Z)_{P}} \geq \hat{P}_{guess}^{\epsilon}(Y|Z)_{P} & \hat{P}_{guess}^{\epsilon}(Y|Z)_{P} = \min_{\lambda,Q,T} & \lambda \\ & \text{such that} & \lambda \mathbb{1}_{Y}P_{Z} \geq Q_{YZ} \\ & T_{YZ} \geq P_{YZ} - Q_{YZ} \\ & Tr[T_{YZ}] \leq \epsilon \\ & \text{Hence the HT bound is a relaxation} \\ & \text{of the guessing bound} & \lambda, T_{YZ}, Q_{YZ} \geq 0 \end{split}$$

## **Equivalence!**

It can happen that 
$$\hat{P}_{guess}^{\epsilon}(Y|Z)_{P} < \frac{1}{|Y|}$$

meaning the HT bound can be looser than the trivial bound (!)

$$\hat{P}_{guess}^{\epsilon}(Y|Z)_{P} = \min_{\lambda,Q,T} \lambda$$
such that
$$\lambda \mathbb{1}_{Y}P_{Z} \ge Q_{YZ}$$

$$Q_{YZ} \ge P_{YZ} - T_{YZ}$$

$$Tr[T_{YZ}] \le \epsilon$$

$$\lambda, T_{YZ}, Q_{YZ} \ge 0$$

$$\lambda = 1 - \epsilon \le Tr[Q_{YZ}] \le \lambda |Y|$$

Therefore, whenever HT is nontrivial the HT and guessing bounds are equivalent!

## More equivalence: Achievability

Recent approach from quantum information: partial smoothing

 $P_{guess}^{\epsilon}(Y|\dot{Z})_{P} = \min_{\lambda,Q,T} \lambda$ such that  $\lambda \mathbb{1}_{Y} P_{Z} \ge Q_{YZ}$   $T_{YZ} \ge P_{YZ} - Q_{YZ}$ Tr $[T_{YZ}] \le \epsilon$ Tr $[T_{YZ}] \le \epsilon$ Tr $[Q_{YZ}] = 1$   $Q_{Z} \le P_{Z}$   $\lambda, T_{YZ}, Q_{YZ} \ge 0$ 

Can also obtain achievability bounds using the collision entropy

But partial smoothing = global smoothing classically, therefore Anshu et al.'s bound = Yang et al.'s bound **Coding theory** 

#### Lossy compression



- \* Compress X so that average distortion of the reconstruction X' is small.
- \* Usual examples:
  - \* Gaussian source: recover up to small mean-squared error
  - Uniform discrete source: recover up to Hamming distortion

(fraction of incorrect bits)

Rate-distortion function  $R(\bar{d}) = \min I(Y \cdot Y)$ 

 $R(\bar{d}) = \min_{P_{Y|X}: \langle d(X,Y) \rangle \le \bar{d}} I(X:Y)$ 

# A "curious duality"

Erasure quantization BEQ(e):

Martinian & Yedidia Allerton 2004

$$\begin{array}{c|cccc} \mathcal{X} & 0 & 1 & ? \\ \hline P_X & \frac{1}{2}(1-e) & \frac{1}{2}(1-e) & e \end{array}$$

$$d(x, x') = \begin{cases} 0 & x = ?, x' = ?, x = x' \\ 1 & \text{else} \end{cases}$$

 $R(\bar{d}) = (1 - e)(1 - h_2(\frac{\bar{d}}{1 - e}))$  Kostina & Verdú IEEE TIT 2012

- \* Consider zero distortion
- \* Quantize using linear code: Assign 0/1 to ?'s to get a codeword
- \* M&Y:
- If linear codes  $C_n$  achieve the capacity 1-e for BEC(e) under optimal decoding, then their duals  $C^{d_n}$  achieve R(0) for BEQ(1-e) under optimal quantization.

"The statement and proof of the two preceding results contain a curious duality between erased/known symbols in source coding and known/erased symbols in channel coding."

#### This curious duality is quantum!

# **Compression via privacy amplification**

- 1. Pick a channel achieving *R*. This gives  $P_{XY}$ .
- 2. Find (linear) *f* for PA of *Y* relative to *X*.
- 3. Extend to reversible  $g: Y \rightarrow (V, T)$ . This gives  $P_{TVX}$ .
- 4. Quantizer is channel  $P_{T|VX}$ . Dequantizer is g<sup>-1</sup>.
- 5. Both use common randomness *V*. Derandomize if desired.
- 6. Size of the code is |T| = |Y| / |V|

Similar to, but more direct than: Muramatsu, IEEE TIT 2014, Yassaee, Aref, Gohari, IEEE TIT 2014

Why does it work?

- \* Input to quantizer is:  $R_V P_X \approx_{\epsilon} P_{VX}$
- \* Quantizer produces:  $Q(R_V P_X) \approx_{\epsilon} P_{TVX}$
- \* Dequantizer gives:  $\mathscr{D} \circ \mathscr{Q}(R_V P_X) \approx_{\epsilon} P_{YX}$

 $f(x^n)$  = syndromes of *C*,

 $g^{-1}(t,v) = t$ -th codeword, offset to *v*-th coset

#### Privacy amplifcation via channel coding

- \*  $P_{XY}$  also defines the channel  $P_{X|Y}$ .
- \* Get extractor for  $Y \mid X$  from channel code for dual of  $P_{X \mid Y}$

 $(M, \epsilon) \text{ code for } P_{X|Y}^{\perp} \iff (M, \sqrt{2\epsilon}) \text{ extractor for } Y|X \qquad \mathsf{R} \text{ IEEE TIT 2018}$  $(M, \epsilon) \text{ code for } P_{X|Y}^{\perp} \implies (|Y|/M, \sqrt{2\epsilon}) \text{ quantizer for } P_{XY}$ 

For i.i.d.  $X^n$ , achieve a rate of  $\frac{1}{n} \log \frac{|Y|}{M} \to 1 - C(P_{X|Y}^{\perp})$ 

If capacity optimizer is uniform, then  $C(P_{X|Y}^{\perp}) = 1 - I(X : Y)$ 

Hamming distortion
 BEQ(e)

Therefore, we recover the optimal quantizer rate! The "curious duality" is a quantum duality.

Dual of uniform bit compression: pure state channel

## Outlook

#### I. Information theory

 Still missing good PA bounds for quantum adversaries... (Could try duality.)

#### **II. Coding theory**

Can we go from lossy compression to channel coding? (Does compression always effectively implement PA?)