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Overview

. Information theory

> hypothesis testing converse for privacy
amplification against classical side
information

Il. Coding theory
>how to use channel codes for lossy
compression



Information theory



Privacy amplification

deterministic function uniform randomness
Pyzi1 | = Ry [—
Y V V
> PZ —>
A A

variational distance

K.(Y|Z)p := max | V| such that e-good f exists



Guessing probability converse

1
Watanabe/Hayashi 1SIT 2013 K(Y|2), > P geueSS(Y | Z)p

Consider worst case (for Alice) guessing probability (for Eve)

Oyz(¥,2)
(Y|Z)p := max Py;_.(y) Pgiess(Y [ Z)p := min max 2

Pauess ¥:Z o~.P yz Pz(2)

Pguess (V)| Z) 2 Py (Y Z)

Difficult to compute for finite-blocklength due to Q minimization;
relax to information spectrum quantity



Guessing probability LP formulation

Peuess(Y1Z)p = minimum

such that A1y Pz > Qv

Tyz > Pyz — Qyz
TI‘[Tyz] S €

TI'[Qyz] =1
Nyz,Qvz >0

Note: by normalization of Q, we have 1|Y| > 1

Guessing bound is never looser than the trivial bound K.(Y|Z), < |Y]|



Hypothesis-testing converse

S
R, arXiv:1708.05685 K.(Y|Z)p < ner[IOnln_ a7 Peiy(Pyz1yP7)

> B,(P,0Q) := min{Tr[AQ] : Tr[AP] > 2,0 < A L 1}

» a—56(P,Q) <p(P,0)

> P Pryyz L iryP2) < Po(Pyz,1yPy)

Q bound does not hold for quantum Z




Finite blocklength example
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Relation to guessing bound

.1
K(Y|Z)p < nef[glllllel ;ﬂem(P vz 1yP7) — € 2 Eyjx (Pyz, RyPy7)

Yang, Schaefer, Poor
IEEE TIT 2019

E/(P, Q) := max{Tr[AP] — yTr[AQ] : 0 < A < 1}

Using properties of Ey divergence from Liu, Cuff, Verdu (EEE TIT 2017), we obtain

A

K12, > Pguess(Y | Z)p PgeueSS(Y\Z)p = ml)l\’lgn%lm A
such that Aly Py > Qyz
Tyz 2 Pyz —Qyz
Tr|Tyz] < e
Hence the HT bound is a relaxation FriQy o=+

of the guessing bound NTyz,Qvz >0



pe

guess

It can happen that P

Equivalence!

1
cuess Y | Z)p < —

gucess | Y |

meaning the HT bound can be looser than the trivial bound (!)

Y1Z)p

= minimum
A 9 Q 9 T

such that

A

My Pz > Qvz
Qvz > Pyz —Tvz
TI‘[Tyz] S €

Nlyz,Qvz >0

-1

> => 1 —e <Tr[Qy,] <A|Y|

Therefore, whenever HT is nontrivial
the HT and guessing bounds are equivalent!



More equivalence: Achievability

Recent approach from quantum information: partial smoothing
PgeueSS(Y\Z )p = minimum \
)\7@7T
such that )\]lypz Z QYZ
Tyz > Pyz — Qvz

<
Anshu, Berta, Tr[Tyz] < e
Jain, and Tomamichel Fre{Qyzi—1+
arXiv:1807.05630 Qz < Py

MNlyz,Qvz >0

Can also obtain achievability bounds using the collision entropy

But partial smoothing = global smoothing classically,
therefore Anshu et al.’s bound = Yang et al.’s bound



Coding theory



Lossy compression

b > F > D > P >
| x C X/ | x
AN H—— N, A H——
YA VA
X . X

* Compress X so that average distortion of the reconstruction X’ is small.
* Usual examples:

+ (Gaussian source: recover up to small mean-squared error

+ Uniform discrete source: recover up to Hamming distortion

(fraction of incorrect bits)

Rate-distortion function

R(d)= min IX:Y)
Py x:(d(X.Y))<d



A “curious duality”

Erasure quantization BEQ(e): Martinian & Yedidia Allerton 2004
X‘ 0 1 ? { 0 z="a2 =z=2a
d(z,z") =
Px ‘ %(1—6) %(1—6) e 1 else
R(d) = (1 —e)(1 — hy( )) Kostina & VerdU IEEE TIT 2012

1 —e

* Consider zero distortion
* Quantize using linear code: Assign 0/1 to ?’s to get a codeword

* M&Y:

If linear codes Cn achieve the capacity 1-e for BEC(e) under optimal decoding,
then their duals C¢, achieve R(0) for BEQ(1-e) under optimal quantization.

“The statement and proof of the two preceding results contain a curious duality between
erased/known symbols in source coding and known/erased symbols in channel coding.”

This curious duality is quantum!



Compression via privacy amplification

> W o~

Pick a channel achieving R. This gives Pkxy.
Find (linear) f for PA of Y relative to X.
Extend to reversible g:Y—(V,T). This gives Prvx.

Quantizer is channel Pryx.
Dequantizer is g-1.

Both use common randomness V.

Derandomize if desired. Similar to, but more direct than:
_ _ Muramatsu, IEEE TIT 2014,
Size of the code is |T|=|Y|/|V] Yassaee, Aref, Gohari, IEEE TIT 2014

Why does it work?

f(x") = syndromes of C,

* [nput to quantizer is: Ry Py =, Pyy

* Quantizer produces: @Q(R,Py) ~, Pryy

g!(t,v) = t-th codeword,
offset to v-th coset

* Dequantizer gives: 9o Q(R,Py) =, Pyy



Privacy amplifcation via channel coding

* Pxy also defines the channel Pyxjy.

* (Get extractor for Y | X from channel code for dual of Pxjy

(M, €) code for P)%'Y < (M,+\/2¢) extractor for Y |X R IEEE TIT 2018

(M, €) code for P)%'Y —> (| Y|/M,+/2¢) quantizer for Py

For i.i.d. Xn, achieve a rate of %log l—;l — 1 = C(Pygy)

If capacity optimizer is uniform, then C(P)éy) =1-IX:Y)

+ Hamming distortion * BEQ(e)

Therefore, we recover the optimal quantizer rate!
The “curious duality” is a quantum duality.

Dual of uniform bit compression: pure state channel



Outlook

. Information theory

> Still missing good PA bounds for quantum
adversaries... (Could try duality.)

Il. Coding theory
»Can we go from lossy compression to

channel coding? (Does compression always
effectively implement PA?)



