# Complementarity in quantum information processing Joseph M. Renes

# Complementarity addresses the question What is the nature of light?

momentum fluctuations due to radiation pressure, Einstein 1909

$$\overline{\Delta^2} = \frac{1}{c} \left[ h\rho\nu + \frac{c^3\rho^2}{8\pi\nu^2} \right] \mathrm{d}\nu f\tau$$

first term: particle picture

second term: wave picture

"It is therefore my opinion that the next stage in the development of theoretical physics will bring us a theory of light that can be understood as a **kind of fusion of the wave and emission theories of light**."

# Complementarity also applies to information processing



Leakage of amplitude information is equivalent to phase errors

# Outline

Quantifying complementarity via uncertainty games

**Entropic formulations** 

Applications to QKD and QEC

# Complementarity of the MZ interferometer



wave states are superpositions of particle states and vice versa

Classical protocol ~ "particle" description:

- Associate bit values with "particle" properties
- Measuring  $\sigma_z$  gives a classical RV
- Track only quantum evolution of  $\sigma_z$

$$\mathbf{0} \leftrightarrow \begin{pmatrix} 1\\ 0 \end{pmatrix} = |0\rangle \qquad \mathbf{1} \leftrightarrow \begin{pmatrix} 0\\ 1 \end{pmatrix} = |1\rangle$$

# Quantifying complementarity: Uncertainty games

Uncertainty principle: Cannot simultaneously know complementary values



Can Bob win?

# Quantifying complementarity: Uncertainty games



Alice makes 1 of 2 complementary measurements; Bob tries to guess.

#### Version T

- 1. Bob prepares qubit, sends to Alice
- 2. Bob announces guess for *both* measurements
- 4. Alice randomly measures, tells Bob.

Bob has to guess at both

Cannot always win

#### Version B

- 1. Bob prepares qubit, sends to Alice
- 2. Alice commits to one measurement,
- 3. Alice asks for guess, Bob delivers.
- 4. Alice measures, tells Bob.

Bob has to be ready to guess either

Can win: use entanglement

## New entropic uncertainty relations

Maassen & Uffink 1988  

$$A \qquad H(X_A)_{\rho} + H(Z_A)_{\rho} \ge \log \frac{1}{c}$$

$$c = \max_{j,k} |\langle \psi_j | \varphi_k \rangle|^2$$

With side information:

R & Boileau, PRL 103, 020402 (2009) Berta, Christandl, Colbeck, R, Renner, NatPhys 6, 659 (2010)

$$(A) C$$

$$(A) C$$

$$(A) C$$

$$(B) - - - C$$

Bipartite 
$$H(X_A|B)_{\rho} + H(Z_A|B)_{\rho} \ge \log \frac{1}{c} + H(A|B)_{\rho}$$
  
Tripartite  $H(X_A|C)_{\rho} + H(Z_A|B)_{\rho} \ge \log \frac{1}{c}$ 

Applications: quantum communication and cryptography

# Use in quantum cryptography

#### Secret key creation: need bound on Eve's info

 $H(X_A|C)_{\rho} + H(Z_A|B)_{\rho} \ge \log \frac{1}{2}$ 



In BB84 QKD: one basis generates the key, the other tests for leakage

The possibility of testing is what makes quantum crypto "quantum"

#### Use in quantum error correction

$$H(X_A|B)_{\rho} + H(Z_A|B)_{\rho} \ge \log \frac{1}{c} + H(A|B)_{\rho}$$

Decode "amplitude" then "phase" Renes & Boileau PRA 78, 032335 (2008)



#### Uses:

- 1. Structured decoder for arbitrary channels @ capacity
- 2. Channel-adapted decoders
- 3. Quantum polar codes

#### Good small codes for near-term use

#### Choice of code & decoder has huge impact on performance



amplitude damping noise

Complementarity breaks problem down into easier pieces

## Efficient & high-rate quantum codes

#### Polar codes, Arıkan 2009:

- first efficient classical ECC to achieve capacity
- encoding: recursive use of CNOT gate

#### **Construction:**

- combine 2 channels with CNOT,
- split into better and worse,
- repeat till channels polarize









better channel

# Efficient & high-rate quantum codes

#### Polar codes, Arıkan 2009:

- first efficient classical ECC to achieve capacity
- encoding: recursive use of CNOT gate

#### Quantum version:

- polarization of both amplitude and phase
- build quantum decoder from classical
- efficient, high-rate codes for Pauli & erasure
- "alignment" of polar codes

R, Dupuis, Renner, PRL 109, 050504 (2012); QIP 2012 R & Wilde, IEEE TIT 60, 2090 (2014) R, Sutter, Dupuis, Renner, IEEE TIT 61, 6395 (2015) R, Sutter, Hassani, IEEE JSAC 34, 224 (2016)





# Summary



Sure you can! At least, to crypto and coding

