Complementarity in quantum information processing

Joseph M. Renes

ETHzürich

Complementarity addresses the question

What is the nature of light?

momentum fluctuations due to radiation pressure, Einstein 1909

$$
\overline{\Delta^{2}}=\frac{1}{c}\left[h \rho \nu+\frac{c^{3} \rho^{2}}{8 \pi \nu^{2}}\right] \mathrm{d} \nu f \tau
$$

first term: particle picture second term: wave picture
"It is therefore my opinion that the next stage in the development of theoretical physics will bring us a theory of light that can be understood as a kind of fusion of the wave and emission theories of light."

Complementarity also applies to information processing

Regard classical info processing protocol as the "particle" description of a quantum process.

Q: What does the "wave" description tell us about the original protocol?

A: Security!

Leakage of amplitude information is equivalent to phase errors

Outline

Quantifying complementarity via uncertainty games
Entropic formulations
Applications to QKD and QEC

Complementarity of the MZ interferometer

"particle" observable: well-defined path

"wave" observable: well-defined interference
"particle" state:
eigenvector of σ_{z}

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

"wave" state:

$$
\text { eigenvector of } \sigma_{x}
$$

wave states are superpositions of particle states and vice versa

Classical protocol ~ "particle" description:

- Associate bit values with "particle" properties
- Measuring σ_{z} gives a classical RV

$$
0 \leftrightarrow\binom{1}{0}=|0\rangle \quad 1 \leftrightarrow\binom{0}{1}=|1\rangle
$$

- Track only quantum evolution of σ_{z}

Quantifying complementarity: Uncertainty games

Uncertainty principle: Cannot simultaneously know complementary values

Game:

Alice makes 1 of 2
complementary measurements; Bob tries to guess.

Can Bob win?

Quantifying complementarity: Uncertainty games

Alice makes 1 of 2 complementary measurements; Bob tries to guess.

Version T

1. Bob prepares qubit, sends to Alice
2. Bob announces guess for both measurements
3. Alice randomly measures, tells Bob.

Bob has to guess at both
Cannot always win

Version B

1. Bob prepares qubit, sends to Alice
2. Alice commits to one measurement,
3. Alice asks for guess, Bob delivers.
4. Alice measures, tells Bob.

Bob has to be ready to guess either
Can win: use entanglement

New entropic uncertainty relations

Maassen \& Uffink 1988

$$
A
$$

$$
H\left(X_{A}\right)_{\rho}+H\left(Z_{A}\right)_{\rho} \geq \log \frac{1}{c}
$$

$$
c=\max _{j, k}\left|\left\langle\psi_{j} \mid \varphi_{k}\right\rangle\right|^{2}
$$

With side information:
R \& Boileau, PRL 103, 020402 (2009)
Berta, Christandl, Colbeck, R, Renner, NatPhys 6, 659 (2010)

Bipartite $H\left(X_{A} \mid B\right)_{\rho}+H\left(Z_{A} \mid B\right)_{\rho} \geq \log \frac{1}{c}+H(A \mid B)_{\rho}$
Tripartite $H\left(X_{A} \mid C\right)_{\rho}+H\left(Z_{A} \mid B\right)_{\rho} \geq \log \frac{1}{c}$

Applications: quantum communication and cryptography

Use in quantum cryptography

Secret key creation: need bound on Eve's info

$$
H\left(X_{A} \mid C\right)_{\rho}+H\left(Z_{A} \mid B\right)_{\rho} \geq \log \frac{1}{c}
$$

In BB84 QKD:
one basis generates the key, the other tests for leakage
The possibility of testing is what makes quantum crypto "quantum"

Use in quantum error correction

$$
H\left(X_{A} \mid B\right)_{\rho}+H\left(Z_{A} \mid B\right)_{\rho} \geq \log \frac{1}{c}+H(A \mid B)_{\rho}
$$

Decode "amplitude" then "phase"
Renes \& Boileau PRA 78, 032335 (2008)

Uses:

1. Structured decoder for arbitrary channels @ capacity
2. Channel-adapted decoders
3. Quantum polar codes

Good small codes for near-term use

Choice of code \& decoder has huge impact on performance

Physical qubits subject to amplitude damping noise

Efficient \& high-rate quantum codes

Polar codes, Arıkan 2009:

- first efficient classical ECC to achieve capacity
- encoding: recursive use of CNOT gate

Construction:

- combine 2 channels with CNOT,
- split into better and worse,
- repeat till channels polarize

worse channel

better channel

Efficient \& high-rate quantum codes

Polar codes, Arıkan 2009:

- first efficient classical ECC to achieve capacity
- encoding: recursive use of CNOT gate

Quantum version:

- polarization of both amplitude and phase
- build quantum decoder from classical
- efficient, high-rate codes for Pauli \& erasure
- "alignment" of polar codes

R, Dupuis, Renner, PRL 109, 050504 (2012); QIP 2012
R \& Wilde, IEEE TIT 60, 2090 (2014)
R, Sutter, Dupuis, Renner, IEEE TIT 61, 6395 (2015)
R, Sutter, Hassani, IEEE JSAC 34, 224 (2016)

Summary

"But you can't go through life applying Heisenberg's Uncertainty Principle to everything."

Sure you can!

At least, to crypto and coding

$$
\overline{\Delta^{2}}=\frac{1}{c}\left[h \rho \nu+\frac{c^{3} \rho^{2}}{8 \pi \nu^{2}}\right] \mathrm{d} \nu f \tau
$$

