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Complementarity addresses the question 

What is the nature of light?

momentum fluctuations due to radiation pressure, Einstein 1909 

first term: particle picture        second term: wave picture

“It is therefore my opinion that the next stage in the development of 
theoretical physics will bring us a theory of light that can be understood 
as a kind of fusion of the wave and emission theories of light.”
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Complementarity also applies to information processing

amplitude

σZ basis

data

environment

σX basis

phase
data

environment

Leakage of amplitude information is equivalent to phase errors

Full adder in CMOS

Regard classical info processing protocol as the 
“particle” description of a quantum process.

Q: What does the “wave” description 

     tell us about the original protocol?
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Outline
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Quantifying complementarity via uncertainty games


Entropic formulations


Applications to QKD and QEC
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Complementarity of the MZ interferometer
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For finite-dimensional systems, complete disturbance to Z
in the Schrödinger picture amounts to its eigenstates all be-
ing mapped to a fixed output. In the worst case, this holds
even when conditioning on the classical outcome of the AX

apparatus. That is, it is not possible to perform some sub-
sequent “recovery” operation conditional on the measurement
outcome which restores the Z observable. This stronger no-
tion of disturbance was used recently by Buscemi et al. [29].
Our measure of disturbance is how well the action of AX ap-
proximates a channel with a constant output on both RX and
S0 when both channels are input with eigenstates of Z (or
mixtures thereof).
To ensure that all inputs to AX are mixtures of Z eigen-

states, we may first perform the ideal non-selective measure-
ment Q

\
Z , which measures the the state in the Z basis and

discards the result. Then the post-measurement state is nec-
essarily diagonal in the Z basis. Therefore, the disturbance
is large if the map AX � Q

\
Z is close to a map C which has

constant output for any input state %. We are thus led to a
disturbance measure of the form

⌘Z(AX) := d�1
d �min

C

�(AX �Q
\
Z , C), [6]

since a better approximation means greater disturbance. In
the Methods section we show that ⌘Z is always positive.
To motivate this definition in the Heisenberg picture, notice

that the non-selective measurement Q
\
Z has no e↵ect on the

Z observable itself. Then, to the extent that X and Z are
incompatible, AX followed by Q

\
Z should completely scramble

all observables of the system. Indeed, this behavior is mea-
sured by [6], since the action of C on observables is given by
C
0(A) = Tr[A�] for the same � 2 S(H) and A 2 B(H), where

B(H) is the set of bounded operators.
As with joint measurement, we expect that both "X(AX)

and ⌘Z(AX) cannot both be small if X and Z are incom-
patible. For finite-dimensional observables we again measure
complementarity in terms of the eigenvectors, but this time
by the function

c2(X;Z) := d�1
d �max

z

X

x

{
1
d � |h'x|#zi|

2
}+, [7]

where {x}+ = max{x, 0} and d = dim(HS). Then we have
the following uncertainty relation, whose proof is again found
in the Methods section:
Theorem 2. (Error-Disturbance Tradeo↵) For finite-dimensional
observables X and Z, any apparatus AX which attempts to
gain information about observable X satisfies

p

2 "X(AX)
1
2 + ⌘Z(AX) � c2(X;Z). [8]

Applications in Quantum Information Processing
The action of every quantum channel N can be described by
letting the input system interact with some environment, and
then disregarding the state on this additional system. If we
instead disregard the original output system, the correspond-
ing quantum channel is called the complement N

] of N . The
complement N

] naturally describes the information received
by the environment—or an eavesdropper which tries to extract
information about the input system.
A useful tool in the construction of quantum information

processing protocols is the link between reliable transmis-
sion of X eigenstates through a channel N and Z eigenstates
through N

], particularly when the observables X and Z are
maximally complementary, i.e. |h'x|#zi|

2 = 1
d for all x, z. Due

to the uncertainty principle, we expect that a channel cannot
reliably transmit the bases to both the environment and the

actual output system, since this would provide a means to si-
multaneously measure X and Z. This link has been used by
Shor and Preskill to prove the security of quantum key distri-
bution [47] and by Devetak to determine the quantum channel
capacity [48]. Entropic state-preparation uncertainty relations
from [40, 41] can be used to understand both results, as shown
in [49, 50].
However, the above approach has the serious drawback that

it can only be used in cases where the specific X-basis trans-
mission over N and Z-basis transmission over N ] are in some
sense compatible and not counterfactual ; because the argu-
ment relies on a state-dependent uncertainty principle, both
scenarios must be compatible with the same quantum state.
Fortunately, compatibility holds for both QKD security and
quantum capacity, because at issue is whether X-basis (Z-
basis) transmission is reliable (unreliable) on average when
the states are selected uniformly at random. Choosing among
either basis states at random is equivalent to a random mea-
surement in either basis of one half of a maximally-entangled
state, and so bothX and Z basis scenarios are indeed compati-
ble. The same restriction to uniformly-chosen input states uni-
formly appears in [29], as it also relies on a state-preparation
uncertainty relation.
Using Theorem 2 we can extend the method above to coun-

terfactual uses of arbitrary channels N . In particular, if acting
with the channel N does not substantially a↵ect the possibil-
ity of performing an X measurement, then Z-basis inputs to
N

] yield an essentially constant output. Concretely, we have
Corollary 3. Given a channel N and complementary channel
N

], suppose that there exists a measurement ⇤X such that
�(QX ,⇤X � N )  ". Then there exists a constant channel C
such that �(N ]

�Q
\
Z , C)  2

p
" + d�1

d � c2(X;Z). For maxi-

mally complementary X and Z, �(N ]
�Q

\
Z , C)  2

p
".

Proof may be found in SI Text, section C. This formulation
is important because in more general cryptographic scenarios
we are interested in the worst-case behavior of the protocol,
not the average case under some particular probability distri-
bution. For instance, in [?] the goal is to construct a classical
computer resilient to leakage of Z-basis information by estab-
lishing that reliable X basis measurement is possible despite
the interference of the eavesdropper. However, such an X
measurement is entirely counterfactual and cannot be recon-
ciled with the actual Z-basis usage, as the Z-basis states will
be chosen deterministically in the classical computer.

Connection to Complementarity Relations
In [39] Englert presents a wave-particle complementarity rela-
tion in a Mach-Zehnder interferometer, quantifying the extent
to which “the observations of an interference pattern and the
acquisition of which-way information are mutually exclusive”.
The particle-like “which-way” information is obtained by ad-
ditional detectors in both arms of the interferometer, while
fringe visibility is measured by the population di↵erence be-

�

RX

phase shifter

which-way detector

S

S0

Fig. 3. The Mach-Zehnder interferometer setup considered by Englert [39]. The
entire device can be regarded as an apparatus AMZ which takes the input system S
to output S0 and the classical measurement result RX . It is subject to Theorem 2.

Footline Author PNAS Issue Date Volume Issue Number 3

“particle” observable: 

well-defined path

“wave” observable: 

well-defined interference
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◆“particle” state: 

eigenvector of �z

“wave” state: 
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wave states are superpositions of particle states and vice versa

0 $
✓
1
0

◆
= |0i 1 $

✓
0
1

◆
= |1i

Classical protocol ~ “particle” description: 

— Associate bit values with “particle” properties

— Measuring      gives a classical RV

— Track only quantum evolution of  

�z

�z
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Quantifying complementarity: Uncertainty games

Alice makes 1 of 2 

complementary measurements;

Bob tries to guess.

Uncertainty principle: Cannot simultaneously know complementary values

Can Bob win?

Game:
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Alice makes 1 of 2 

complementary measurements;

Bob tries to guess.

Quantifying complementarity: Uncertainty games

1. Bob prepares qubit, sends to Alice

2. Bob announces guess for both measurements


4. Alice randomly measures, tells Bob. 

Version T
1. Bob prepares qubit, sends to Alice

2. Alice commits to one measurement, 

3. Alice asks for guess, Bob delivers. 

4. Alice measures, tells Bob. 

Version B

Cannot always win Can win: use entanglement

Bob has to guess at both Bob has to be ready to guess either



New entropic uncertainty relations
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Applications: quantum communication and cryptography

⇢

A

B C

R & Boileau, PRL 103, 020402 (2009)
Berta, Christandl, Colbeck, R, Renner, NatPhys 6, 659 (2010) 

⇢

A

B C

H(XA)⇢ +H(ZA)⇢ � log
1

c

c = maxj,k|h j |'ki|2

Maassen & Uffink 1988

With side information:

H(XA|B)⇢ +H(ZA|B)⇢ � log
1

c
+H(A|B)⇢Bipartite

H(XA|C)⇢ +H(ZA|B)⇢ � log
1

c
Tripartite
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Use in quantum cryptography

Secret key creation: need bound on Eve’s info

H(XA|C)⇢ +H(ZA|B)⇢ � log
1

c

In BB84 QKD:

one basis generates the key,


the other tests for leakage

The possibility of testing is what

makes quantum crypto “quantum”
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 AB

|0iA0

|0iA00

⇤Z

VZ

�X

VX V

 A0B �AA00

Uses:

1. Structured decoder for arbitrary channels @ capacity

2. Channel-adapted decoders   

3. Quantum polar codes

Decode “amplitude” then “phase” 
Renes & Boileau PRA 78, 032335 (2008)

H(XA|B)⇢ +H(ZA|B)⇢ � log
1

c
+H(A|B)⇢

Use in quantum error correction



Good small codes for near-term use

Complementarity breaks problem down into easier pieces
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Physical qubits subject to 
amplitude damping noise

Petrović, ETH Master’s thesis, 2017 
surface code & MWPM decoder

Piedrafita and R, PRL 119, 250501 (2017)

Bacon-Shor code 

& adapted Clifford decoder 

Choice of code & decoder has huge impact on performance



Efficient & high-rate quantum codes
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Polar codes, Arıkan 2009: 

• first efficient classical ECC to achieve capacity

• encoding: recursive use of CNOT gate 

U1 W Y1

U2 W Y2

U3 W Y3

U4 W Y4

U5 W Y5

U6 W Y6

U7 W Y7

U8 W Y8

U1 W Y1

U2 W Y2

X1

X2

Construction:

• combine 2 channels with CNOT, 

• split into better and worse,

• repeat till channels polarize

U1 W Y1

U2 W Y2

X1

X2

worse channel

U1

U1 W Y1

U2 W Y2

X1

X2

better channel



Efficient & high-rate quantum codes
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⇤Z �X

|0i

|0i

Polar codes, Arıkan 2009: 

• first efficient classical ECC to achieve capacity

• encoding: recursive use of CNOT gate 

U1 W Y1

U2 W Y2

U3 W Y3

U4 W Y4

U5 W Y5

U6 W Y6

U7 W Y7

U8 W Y8

Quantum version:

• polarization of both amplitude and phase

• build quantum decoder from classical

R, Dupuis, Renner, PRL 109, 050504 (2012); QIP 2012 
R & Wilde, IEEE TIT 60, 2090 (2014) 
R, Sutter, Dupuis, Renner, IEEE TIT 61, 6395 (2015) 
R, Sutter, Hassani, IEEE JSAC 34, 224 (2016) 

• efficient, high-rate codes for Pauli & erasure

• “alignment” of polar codes



Summary

Sidney Harris
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At least, to crypto and coding
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