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Isn’t quantum compression already understood?
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Finite blocklength & second-order asymptotics

Can we make more refined statements?

• What about a fixed �  and � ?

• What about the next order for large � ?

n ϵ
n
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Fig. 8. Rate-blocklength tradeoff for the BSC with crossover probability and maximal block error rate .

More precisely, for equal-power and maximal-power con-
straints, the term in (291) can be bounded by

(294)

whereas for average-power constraint we have

(295)

Proof: Appendix L.

The approximation in Theorem 54 (up to ) is attributed
in [7] to Shannon [3] for the case of equipower codewords.16

However, in Theorem 54 the rate is changing with , while ex-
pressions [3, eqs. (9) and (73)] are not directly applicable here
because they are asymptotic equivalence relations for fixed rate.
Similarly, an asymptotic expansion up to the term is put
forward in [47] based on a heuristic appeal to the central-limit
theorem and fine quantization of the input/output alphabets.

16A different term is claimed in [7] for the case of codebook-averaged
power which is not compatible with Theorem 54.

C. Normal Approximation versus Finite Blocklength Bounds

In Figs. 8–11, we compare the normal approximation (289)
and (290) to the tight bounds, computed in Section III-H (BSC)
and Section III-I (BEC), correspondingly. Similarly, Figs. 12
and 13 depict the normal approximation (291) for
(maximal power constraint) along with the bounds (208) and
(220) for the AWGN channel. In view of (294) and the empirical
evidence, we have chosen the following as a normal approxima-
tion for the AWGN channel:

(296)

Although generally pessimistic, the normal approximation
is excellent for blocklengths higher than 200 (BSC(0.11) and
BEC(0.5) with and AWGN, with

) and 800 (AWGN, , and
BSC(0.11), ). The conclusion from these figures is that
the normal approximation is quite accurate when transmitting at
a large fraction (say ) of channel capacity. For example,
in the Table I we show the numerical results for the blocklength
required by the converse, guaranteed by the achievability and
predicted by error-exponents and normal approximation17 for
achieving rate .

17For the BSC and the AWGN channel we use the approximation formula
(289) which has an additional term. For the AWGN channel the DT
bound is replaced by the bound. The error-exponent approximation is

, where is known since the rate is above critical.

Polyanskiy, Poor, and Verdú, IEEE Transactions Info Theory, 2010

Breakthrough in classical information theory:

Tight finite-size bounds & matching 2nd order

At �  and �  for BSC(0.11):

lower bound: � 

upper bound: �

n = 500 ϵ = 10−3

m ≥ 190
m ≤ 194

 �R ≈ nC − nVQ−1(ϵ) + O(log n)



Known bounds for compression
Datta and Leditzky, IEEE Transactions Info Theory 2015

� 


�

m ≥ nH(ρ) + nV(ρ)Q(1 − ϵ) + O(log n)

m ≤ nH(ρ) + nV(ρ)Q( 1 − ϵ) + O(log n)

Protocol: cut off small probabilitiesConverse: using hypothesis testing

Which one (if any) is tight?

Our Result: The direct part (upper bound) is tight!
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Figure 1: Compression bounds for the qubit case ⇢A = �|0ih0|+ (1��)|1ih1|
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Qubit example

Blocksize � :


lower bound � 


upper bound � 


(old lower bound: � )

n = 250

m ≥ 135

m ≤ 137
m ≥ 130



A look at the proof
First: Relate compression & state merging

Quantum State Merging
I Pure state flABR .
I F

2
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I Free classical communication.
I Entanglement cost E (flABR , ‘)
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Quantum State Merging
When Bob’s State is Trivial

+ Fre munication
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Quantum State Merging
When Bob’s State is Trivial
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Minimize entanglement used Trivial Bob

For trivial Bob:

compress 


and

teleport



A look at the proof
Second: Find a converse bound for state merging

Anshu et al., arXiv:1807.05630: 

“partially-smoothed” conditional min-entropy…

… can be formulated as a semidefinite program.

Third: Specialize SDP to pure states,

play around with numerics till you see the form of the optimizer,


then prove it. 

Fourth: Work out the asymptotics of the resulting quantity.



Summary and open questions

Tight finite-size bounds for quantum compression

Tight second-order (even third order) asymptotics


Make use of “partially-smoothed” quantity

Can we extend to general state merging?


Second order of partially smoothed quantity not uniform in the state!

 

For pure states the second order term is: � ,

but other states have: �

nV(ρ)Q( 1 − ϵ)
nV(ρ)Q(1 − ϵ)
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