Joseph M. Renes ETH Zürich

Joint work with Dina Abdelhadi (EFPL) arXiv:1905.08268 [quant-ph]

On the second-order asymptotics of the partially-smoothed conditional min-entropy & Applications to quantum compression

Optimal quantum compression

Joseph M. Renes ETH Zürich

Joint work with Dina Abdelhadi (EFPL) arXiv:1905.08268 [quant-ph]

Isn't quantum compression already understood?

Rate
$$R = \frac{m}{n}$$
 1

n = 9 input systems

lim $R = H(\rho)$, the von Neuman entropy $\rightarrow \infty$

Schumacher 1995

Finite blocklength & second-order asymptotics

Rate-blocklength tradeoff for the BSC with crossover probability $\delta = 0.11$ and maximal block error rate $\epsilon = 10^{-3}$.

Polyanskiy, Poor, and Verdú, IEEE Transactions Info Theory, 2010

Can we make more refined statements?

- What about a fixed n and ϵ ?
- What about the next order for large *n*?

Breakthrough in classical information theory: Tight finite-size bounds & matching 2nd order

At n = 500 and $\epsilon = 10^{-3}$ for BSC(0.11): lower bound: $m \ge 190$ upper bound: $m \le 194$

$$R \approx nC - \sqrt{nVQ^{-1}(\epsilon)} + O(\log n)$$

2000

Known bounds for compression

Datta and Leditzky, IEEE Transactions Info Theory 2015

$$m \ge nH(\rho) + \sqrt{nV(\rho)}Q(1-\epsilon) + O(\log n)$$
$$m \le nH(\rho) + \sqrt{nV(\rho)}Q(\sqrt{1-\epsilon}) + O(\log n)$$

Converse: using hypothesis testing Protocol: cut off small probabilities

Which one (if any) is tight?

Our Result: The direct part (upper bound) is tight!

Qubit example

Figure 1: Compression bounds for the qubit case $\rho_A = \delta |0\rangle \langle 0| + (1 - \delta) |1\rangle \langle 1|$

Blocksize n = 250: lower bound $m \ge 135$ upper bound $m \le 137$ (old lower bound: $m \ge 130$)

A look at the proof

First: Relate compression & state merging

Minimize entanglement used

Trivial Bob

Ref

A look at the proof

Second: Find a converse bound for state merging

Anshu et al., arXiv:1807.05630: "partially-smoothed" conditional min-entropy...

... can be formulated as a semidefinite program.

Third: Specialize SDP to pure states, play around with numerics till you see the form of the optimizer, then prove it.

Fourth: Work out the asymptotics of the resulting quantity.

Summary and open questions

For pure states the second of

but other states h

- Tight finite-size bounds for quantum compression
- Tight second-order (even third order) asymptotics
 - Make use of "partially-smoothed" quantity

- Can we extend to general state merging?
- Second order of partially smoothed quantity not uniform in the state!

order term is:
$$\sqrt{nV(\rho)}Q(\sqrt{1-\epsilon})$$
, nave: $\sqrt{nV(\rho)}Q(1-\epsilon)$

arXiv:1905.08268 [quant-ph]