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Isn’t quantum compression already understood?
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Finite blocklength & second-order asymptotics

Can we make more refined statements?
e What about a fixed n and €?
 What about the next order for large n?
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: Breakthrough in classical information theory:
Tight finite-size bounds & matching 2nd order
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Blocklength, n

Rate-blocklength tradeoff for the BSC with crossover probability 6 = 0.11 and maximal block error rate ¢ = 1073,

Polyanskiy, Poor, and Verdu, |IEEE Transactions Info Theory, 2010 R Ay nC — 4 / nVQ —1 (6) —|— O(IOg n)



Known bounds for compression

Datta and Leditzky, IEEE Transactions Info Theory 2015

m > nH(p) ++/nV(p)Q(1 — €) + O(log n)
m < nH(p) + 1/nV(p)0(/1 — €) + O(log n) 4\

Converse: using hypothesis testing Protocol: cut off small probabilities

Which one (if any) is tight?

Our Result: The direct part (upper bound) is tight!



Qubit example
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Figure 1: Compression bounds for the qubit case p, = 6|0)(0| + (1 —6)|1)(1|



A look at the proof

First: Relate compression & state merging
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A look at the proof

Second: Find a converse bound for state merging

Anshu et al., arXiv:1807.05630:
“partially-smoothed” conditional min-entropy...

... can be formulated as a semidefinite program.

Third: Specialize SDP to pure states,
play around with numerics till you see the form of the optimizer,
then prove It.

Fourth: Work out the asymptotics of the resulting quantity.



Summary and open questions

Tight finite-size bounds for guantum compression
Tight second-order (even third order) asymptotics

Make use of “partially-smoothed” quantity

Can we extend to general state merging”?

Second order of partially smoothed quantity not uniform in the state!

For pure states the second order term is: \/ nV(p) Q(\/ 1 —e¢),
but other states have: 1/nV(p)Q(1 — €)
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