On the second-order asymptotics of the partially-smoothed conditional min-entropy \& Applications to quantum compression
 Joseph M. Renes
 ETH Zürich

Optimal quantum compression

Joseph M. Renes
ETH Zürich

Joint work with Dina Abdelhadi (EFPL)
arXiv:1905.08268 [quant-ph]

Isn't quantum compression already understood?

$n=9$ input systems

Rate $R=\frac{m}{n} \quad \lim _{n \rightarrow \infty} R=H(\rho)$, the von Neuman entropy
Schumacher 1995

Finite blocklength \& second-order asymptotics

Rate-blocklength tradeoff for the BSC with crossover probability $\delta=0.11$ and maximal block error rate $\epsilon=10^{-3}$

Polyanskiy, Poor, and Verdú, IEEE Transactions Info Theory, 2010

Can we make more refined statements?

- What about a fixed n and ϵ ?
- What about the next order for large n ?

Breakthrough in classical information theory:
Tight finite-size bounds \& matching 2nd order
At $n=500$ and $\epsilon=10^{-3}$ for BSC(0.11):
lower bound: $m \geq 190$
upper bound: $m \leq 194$
$R \approx n C-\sqrt{n V} Q^{-1}(\epsilon)+O(\log n)$

Known bounds for compression

Datta and Leditzky, IEEE Transactions Info Theory 2015

$$
\begin{gathered}
m \geq n H(\rho)+\sqrt{n V(\rho)} Q(1-\epsilon)+O(\log n) \\
m \leq n H(\rho)+\sqrt{n V(\rho)} Q(\sqrt{1-\epsilon})+O(\log n)
\end{gathered}
$$

Converse: using hypothesis testing
Protocol: cut off small probabilities

Which one (if any) is tight?
Our Result: The direct part (upper bound) is tight!

Qubit example

Blocksize $n=250$:
lower bound $m \geq 135$
upper bound $m \leq 137$
(old lower bound: $m \geq 130$)

Figure 1: Compression bounds for the qubit case $\rho_{A}=\delta|0\rangle\langle 0|+(1-\delta)|1\rangle\langle 1|$

A look at the proof

First: Relate compression \& state merging

For trivial Bob:
compress
and teleport

Minimize entanglement used
Trivial Bob

A look at the proof

Second: Find a converse bound for state merging

Anshu et al., arXiv:1807.05630:
"partially-smoothed" conditional min-entropy...
... can be formulated as a semidefinite program.

Third: Specialize SDP to pure states, play around with numerics till you see the form of the optimizer, then prove it.

Fourth: Work out the asymptotics of the resulting quantity.

Summary and open questions

Tight finite-size bounds for quantum compression
Tight second-order (even third order) asymptotics
Make use of "partially-smoothed" quantity

Can we extend to general state merging?
Second order of partially smoothed quantity not uniform in the state!
For pure states the second order term is: $\sqrt{n V(\rho)} Q(\sqrt{1-\epsilon})$, but other states have: $\sqrt{n V(\rho)} Q(1-\epsilon)$

