

Error exponents

Information reconciliation and symmetric CQ channel coding

Error probability for a good code C of rate R, blocklength n, and channel W:

$$P_{\text{err}} \approx 2^{-nE(W,R)}$$
 for $n \to \infty$

For classical channels and rates below capacity:

$$E(W,R) \ge \max_{s \in [0,1]} (E_0(s, W) - sR)$$

Fano, Gallager, ...

$$E(W,R) \le \sup_{s \ge 0} (E_0(s,W) - sR)$$

Shannon, Gallager, Berlekamp

$$E_0(s, W) = \max_{P_Z} s \, \overline{I}_{1/1+s}^{\uparrow}(Z:B)$$

Error probability for a good code C of rate R, blocklength n, and channel W:

$$P_{\text{err}} \approx 2^{-nE(W,R)}$$
 for $n \to \infty$

For classical-quantum channels and rates below capacity:

$$E(W,R) \ge \max_{s \in [0,1]} (E_0(s, W) - sR)$$

Pure state channels: Burnashev & Holevo

$$E(W,R) \le \sup_{s \ge 0} (E_0(s,W) - sR)$$

Dalai, Winter

$$E_0(s, W) = \max_{P_Z} s \, \overline{I}_{1/1+s}^{\uparrow}(Z:B)$$

Error probability for a good code C of rate R, blocklength n, and channel W:

$$P_{\text{err}} \approx 2^{-nE(W,R)}$$
 for $n \to \infty$

For classical-quantum channels and rates below capacity:

$$E(W,R) \ge \max_{s \in [0,1]} (E_0(s,W) - sR)$$
 arXiv:2207.08899 [quant-ph]

This talk: extend the achievability result to symmetric channels using duality

Specifically: convert a security exponent result from Hayashi 2015 to an information reconciliation error exponent, and from there to a channel coding result

Reduction from reconciliation to channel coding

Channel (*n*-fold iid)

Information reconciliation

Bipartite source

Channel coding

Reduction from reconciliation to channel coding

Connection between privacy amplification and reconciliation

Bipartite source

Purified tripartite source

Tripartite uncertainty relation R2018

$$P_{\text{guess}}(\hat{Z} | B^n \check{Z})_{\Psi} = \max_{\sigma} F(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \sigma_{E^n})^2$$

 \hat{Z},\check{Z} : measure \hat{A},\check{A} in standard basis

 \hat{X} : measure \hat{A} in Fourier conjugate basis

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$\lim_{n\to\infty} \frac{-1}{n} \log D(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \Psi_{E^n}) \ge \max_{\alpha \in [1,2]} (\alpha - 1) \left(\tilde{H}_{\alpha}^{\downarrow}(X_A \mid E)_{\psi} - R_{PA} \right)$$

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$\lim_{n\to\infty} \frac{-1}{n} \log D(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \Psi_{E^n}) \ge \max_{\alpha \in [1,2]} (\alpha - 1) \left(\tilde{H}_{\alpha}^{\downarrow}(X_A \mid E)_{\psi} - R_{PA} \right)$$

LHS: Bound D by F and use uncertainty relation to obtain

$$\lim_{n\to\infty} \frac{-1}{n} \log P_{\text{err}}(\hat{Z} | B^n \check{Z})_{\Psi} \ge \lim_{n\to\infty} \frac{-1}{n} \log D(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \Psi_{E^n})$$

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$\lim_{n\to\infty} \frac{-1}{n} \log D(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \Psi_{E^n}) \ge \max_{\alpha \in [1,2]} (\alpha - 1) \left(\tilde{H}_{\alpha}^{\downarrow}(X_A \mid E)_{\psi} - R_{PA} \right)$$

RHS: Another uncertainty relation & PA / IR rate relations:

$$\bar{H}_{1/\alpha}^{\uparrow}(Z_A \mid B)_{\psi} + \tilde{H}_{\alpha}^{\downarrow}(X_A \mid E)_{\psi} = \log d_A \qquad \qquad R_{PA} = \log d_A - R_{IR}$$

$$\max_{\alpha \in [1,2]} (\alpha - 1) \left(\tilde{H}_{\alpha}^{\downarrow}(X_A \mid E)_{\psi} - R_{PA} \right) = \max_{\alpha \in [1,2]} (\alpha - 1) \left(R_{IR} - \bar{H}_{1/\alpha}^{\uparrow}(Z_A \mid B)_{\psi} \right)$$
$$= \max_{\alpha \in [1/2,1]} \frac{1 - \alpha}{\alpha} \left(R_{IR} - \bar{H}_{\alpha}^{\uparrow}(Z_A \mid B)_{\psi} \right)$$

Error exponent of information reconciliation

We have the following achievability result:

$$\lim_{n\to\infty} \frac{-1}{n} \log P_{\text{err}}(\hat{Z} \mid B^n \check{Z})_{\Psi} \ge \max_{\alpha \in [1/2,1]} \frac{1-\alpha}{\alpha} \left(R_{IR} - \bar{H}_{\alpha}^{\uparrow}(Z_A \mid B)_{\psi} \right)$$

Compare with the converse bound from Cheng, Hanson, Datta, Hsieh 2021

$$\lim_{n\to\infty} \frac{-1}{n} \log P_{\text{err}}(\hat{Z} | B^n \check{Z})_{\Psi} \le \sup_{\alpha \in [0,1]} \frac{1-\alpha}{\alpha} \left(R_{IR} - \bar{H}_{\alpha}^{\uparrow} (Z_A | B)_{\psi} \right)$$

Error exponent of channel coding

Uniform P_Z is optimal in $\max_{P_Z} \bar{I}_{\alpha}^{\uparrow}(Z_A:B)_{\psi}$ for symmetric channels, meaning

$$\max_{P_Z} \bar{I}_{\alpha}^{\uparrow}(Z_A : B)_{\psi} = \log d_A - \bar{H}_{\alpha}^{\uparrow}(Z_A \mid B)_{\psi}$$

By the IR \rightarrow coding reduction, for which $R = \log d - R_{IR}$, we get

$$\lim_{n \to \infty} \frac{-1}{n} \log P_{\text{err}}(W) \ge \max_{\alpha \in [1/2, 1]} \frac{1 - \alpha}{\alpha} \left(\bar{I}_{\alpha}^{\uparrow} (Z_A : B)_{\psi} - R \right)$$

$$= \max_{s \in [0, 1]} s \left(\bar{I}_{1/1+s}^{\uparrow} (Z_A : B)_{\psi} - R \right),$$

which is what we wanted to prove.

Apply IR bounds to PA: sphere-packing

Cheng, Hanson, Datta, Hsieh 2021 give polynomial prefactors in their sphere-packing converse bound, which when applied to PA yields

$$-\frac{1}{n}\log P(\Psi'_{\hat{X}C^n},\pi_{\hat{X}}\otimes\Psi'_{C^n})\leq \frac{1}{2}E_{SP-PA}(R_{PA})+\frac{1}{4}(1+|E'_{SP-PA}(R_{PA})|)\frac{\log n}{n}+\frac{K}{n}.$$

$$E_{SP-PA}(R_{PA}) = \sup_{\alpha \ge 1} (\alpha - 1)(\tilde{H}_{\alpha}^{\downarrow}(X_A \mid C)_{\psi'} - R_{PA})$$

This sharpens a recent result by Li, Yao, and Hayashi 2022 (but only for linear extractors)

Apply IR bounds to PA: strong converse

Cheng, Hanson, Datta, Hsieh 2021 also find the strong converse exponent for IR

$$E_{SC-IR}(R_{IR}) = \sup_{\alpha \ge 1} \frac{1-\alpha}{\alpha} \left(R_{IR} - \tilde{H}_{\alpha}^{\uparrow}(Z_A \mid B)_{\psi} \right)$$

By the uncertainty relation, $\max_{\sigma} F(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \sigma_{E^n})^2$ will have the same exponent (at least for linear extractors)

Now use yet another Renyi duality $\tilde{H}_{\alpha}^{\uparrow}(Z_A \mid B)_{\psi} + \tilde{H}_{\alpha/(2\alpha-1)}^{\uparrow}(X_A \mid E)_{\psi} = \log d_A$ to get

$$\lim_{n\to\infty} \frac{-1}{n} \log \max_{\sigma} F(\Psi_{\hat{X}E^n}, \pi_{\hat{X}} \otimes \sigma_{E^n})^2 = \sup_{\alpha \in [1/2, 1]} \frac{1-\alpha}{\alpha} \left(R_{PA} - \tilde{H}_{\alpha}^{\uparrow}(X_A \mid E)_{\psi} \right)$$

This matches a recent result by Li and Yao 2022 (again, just for linear extractors)

Open questions

Can this duality be applied directly to channels?

Do we always have to use linear functions?