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Figure 5.6.1. Random-coding exponent, E.(R), for two channels. (a) Typical
behavior. (b) Special case where 9*E,[0p* = 0.
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Information reconciliation and symmetric CQ channel coding
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Error probability for a good code C of rate R, blocklength n, and channel W:

For classical channels and rates below capacity:

E(W,R) > max (Ey(s, W) — sR) Fano, Gallager, ...
s€[0,1]

E(W,R) < sup (Ey(s, W) — sR) Shannon, Gallager, Berlekamp
s>0

— 71 :
Ey(s, W) = n}%xsl | /1+S(Z . B)



Error probability for a good code C of rate R, blocklength n, and channel W:

For classical-quantum channels and rates below capacity:

E(W,R) > max (EO(Sa W) — sR) Pure state channels:
s€[0,1] Burnashev & Holevo
E(W,R) < sup (EO(S, W) — sR) Dalai, Winter
s>()

— 71 :
Ey(s, W) = n}%xsl | /1+S(Z . B)



Error probability for a good code C of rate R, blocklength n, and channel W:

For classical-quantum channels and rates below capacity:

E(W,R) > m[g}f] (E()(S , W) — sR) arXiv:2207.08899 [quant-ph]
se€[0,

This talk: extend the achievability result to symmetric channels using duality

Specifically: convert a security exponent result from Hayashi 2015 to an
information reconciliation error exponent, and from there to a channel coding result



Reduction from reconciliation to channel coding
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Reduction from reconciliation to channel coding

—
* Works for any channel

Channel * Average error for coding < IR error
« Rateis logd — R

» Achieves capacity for symmetric W

Decode

Channel coding



Connection between privacy amplification and reconciliation

Bipartite source

purified tripartite source Tripartite uncertainty relation rR2018

Pguess(i‘ BnZ)\P — IMax F(lP)A(E”’ 71')2 ® GEn)z

7 : measure A,A In standard basis

Z,
X : measure A in Fourier conjugate basis



Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:



Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

LHS: Bound D by F and use uncertainty relation to obtain

lim _71 log Por(Z| B"Z)y > lim _71 log D(Wspn, g & W)

n—0o0 n— Qoo



Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

lim = log D(¥gp., 75 ® ¥p) > max (a — 1)(HYX, | E), — Rp,)

n— 00 ac|1,2]

RHS: Another uncertainty relation & PA / IR rate relations:

H! (Z,|B), + HyX,|E), = logd, Rpy = logd, — Ry

max (a — 1)(AYX,|E), — Rpy) = max (a—1)(Rg— Al (Z,|B),)
ac1.2] ac[1,2] ’

l -« =
max — (R — HY(Z,|B),)
ac|1/2,1]




Error exponent of information reconciliation

We have the following achievability result:

lim =- log Por(Z| B"Z)y > max
n—oo ag[1/2,1]

— (Rz — H\(Z,] B)W)

a

Compare with the converse bound from Cheng, Hanson, Datta, Hsieh 2021

lim %log Perr(Z\B”Z)xp < sup -

n—00 ac[0,1]

“(Rg — HY(Z,] B)w)



Error exponent of channel coding

Uniform P, is optimal in max I (Z, : B),, for symmetric channels, meaning
Pz
max I}(Z, : B),, = logd, — H{(Z,|B),,
PZ

By the IR—coding reduction, for which R = log d — R;5, we get

lim _71 log Por(W) > max - (T&(ZA ' B),, — R)

11— 00 ac[1/2,1] ¢
= max s(I' . (Z,:B). —R),
$€[0.1] ( /145 A W )

which is what we wanted to prove.



Apply IR bounds to PA: sphere-packing

Cheng, Hanson, Datta, Hsieh 2021 give polynomial prefactors
INn their sphere-packing converse bound, which when applied to PA yields

1 : : 1 1 : logn K
——log P(W5, . 73 @ W) < SEgp pa(Rpa)+7(1 + | Egp_pp(Rpp) [ )—— +—.

n

Esp_pa(Rpy) = sup(a — 1)(1:1(%[(XA | C)l,/ — Rpy)

a>1

This sharpens a recent result by Li, Yao, and Hayashi 2022 (but only for linear extractors)



Apply IR bounds to PA: strong converse

Cheng, Hanson, Datta, Hsieh 2021 also find the strong converse exponent for IR

l —a ~
Esc_ig(Rjg) = sup (RIR ~ HY(Z,| B)l,,)

a
a>1

By the uncertainty relation, max F (‘P)A(E”’ Ty @ GEn)2 will have the same exponent
o (at least for linear extractors)

Now use yet another Renyi duality H!(Z, | B), + H l

/(Za—l)(XA | E)l// = logd, to get

a1 2 _
lim — log max F(Y gz, 75 @ 0)" = sup
700 o ag[1/2,1]

“(Rps — HI(X, | E)w)

This matches a recent result by Li and Yao 2022 (again, just for linear extractors)



Open questions

Can this duality be applied directly to channels?

Do we always have to use linear functions?



