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1Essential features of quantum error correction
1.1 But quantum error correction is impossible!

In the early days of quantum information theory, it was thought that quantum error correction is
impossible. The goal of the first chapter is to sketch Shor’s1 original construction of a quantum
error correcting code and show how it avoids this conclusion.

There were two main arguments to the claim that quantum error correction is impossible.

1. No cloning. The simplest method of classical error correction is to simply repeat the message.
However, in the quantum setting this method would require the ability to copy an arbitrary
quantum state, in violation of the no-cloning theorem.

2. Finite precision control. Quantum information appears to be analog information, not digital
or discrete, in that specifying a qubit state |ψ〉 requires specifying two real numbers in the
representation |ψ〉 = α|0〉+ β |1〉 (where α,β ∈ C subject to |α|2 + |β |2 = 1 and the overall
phase of the state is irrelevant).

If the analog properties of the information carriers are truly vital for the computation to
work, then it would appear to be necessary to perform error correction to arbitrary precision.
But this is not going to be possible with only finite precision control. For instance, how can
we possibly correct arbitrarily tiny rotations with relatively crude qubit control? If, on the
other hand, we only need to keep the information from being disturbed by errors above a
fixed finite precision, then we have effectively discretized the problem. In this case, error
correction with finite precision control might be possible, were it not for the non-cloning
objection above.

Shor was confronted with these arguments after developing his famous factoring algorithm,
causing him to reconsider them quite carefully. We shall see that quantum information defies
easy categorization, and while the information itself is sort of analog, the noise that affects the
information is in some sense discrete. No-cloning turns out not to be an obstacle, and indeed
quantum error correction is possible.

1.2 Repetition coding

Let us step back and consider the simplest classical error-correcting code, the repetition code. Sup-
pose a sender would like to transmit a single bit message, 0 or 1, to a receiver. However, the
communication channel connecting them is noisy and occasionally flips the bit value. To transmit
0 using the repetition code, the sender transmits three zeros: 000; to transmit a 1, three 1s: 111.

A noisy version of the original transmission is delivered to the receiver, in which some (or even
all) of the bits have been flipped to the opposite value. The task of the receiver is to determine
what message the sender transmitted. Assuming bit flips only happen occasionally, a reasonable
course of action is for the receiver to assume that the sender’s intended message is whatever bit
value appears most often in the noisy received version. This is called majority vote decoding.

The entire procedure ensures that the intended message is properly received even if there is a
single error in the transmission. Supposing that errors occur independently on the transmitted bits

1Peter Shor
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1. ESSENTIAL FEATURES OF QUANTUM ERROR CORRECTION

with identical probability p, the probability of error using the three-bit repetition code is 3p2(1−
p) + p3, the probability of two or three errors. When using no code at all, the error rate would be
simply p, so the code has succeeded in reducing the probability of error from p to O(p2) (provided
p < 1

2).

1.2.1 Structure of the correction procedure

This simple example illustrates the important features of general error correction procedures. First,
the message is encoded into the codewords, here 000 and 111, by the transmitter. The set of code-
words is the code. Here the code C = {000,111}. Next, the noise acts on the codewords in some
manner, here by flipping single or multiple bits. Finally, the receiver decodes the noisy codeword
by analyzing it in some manner, here by computing the majority vote, and outputs an estimate of
the original message. The procedure is successful when the output equals the input. The following
block diagram, reading left to right, depicts the setup.

Encoder noise Decoder

Note that the noise is assumed to only act on the encoded information on its way from the
sender to the receiver. This is the case of interest in communication engineering, as reflected in
the language of “transmitter” and “receiver”. Here the operations of the encoder and decoder are
assumed to be free of noise. If this is not the case, more intricate methods of error correction are
required. We will revisit this issue in ...

1.2.2 Encoding

The encoding operation simply needs to copy the value of the single-bit message, call it x ∈ F2, to
two additional ancilla bits which are initialized to 0. This can be accomplished by CNOT gates in a
Boolean circuit. The CNOT gate has the action (x , y) 7→ (x , x + y) for (x , y) ∈ F2

2, so that addition
is modulo 2, and it is represented diagramamtically as follows.

x x

y x + y

We may then specify the action of the encoding operation by the following circuit diagram.

0

0

1.2.3 Syndrome decoding

It is not actually necessary to employ majority vote in order to decode the repetition code. Instead,
we can use the fact that it is a linear code and employ syndrome decoding. Trivially in this case, the
sum of two codewords is also a codeword. Observe that an arbitrary codeword x ∈ C, whose bit
values we call x1 x2 x3, satisfies the two parity checks s1 = x2+x3 = 0 and s2 = x1+x3 = 0. A pattern
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1.3. Quantum repetition code

of bit flip errors z ∈ F3
2 acts on a codeword by addition, producing from x the noisy codeword

y = x + z. Computing the parity checks on y now produces the syndromes s1 := y2 + y3 = z2 + z3
and s2 := y1 + y3 = z1 + z3. These syndromes allow the decoder to diagnose and correct the error.
For example, if z = 100, then s1 = 0 and s2 = 1. No other single bit flip will result in this syndrome,
so upon seeing this syndrome, the decoder can simply flip the first bit. All the syndrome possibilities
are given in the following table:

Syndrome s1s2 Error position
00 ;
01 1
10 2
11 3

Note that, as claimed, the syndromes uniquely specify an error location (under the assumption that
only one error occurred).

Syndrome decoding therefore consists of three steps.

1. The syndrome of the received noisy codeword is computed.

2. The location of the error is determined from the syndrome value, here by simply looking it
up in the table.

3. The corresponding bit is flipped in order to (hopefully) restore the original codeword.

The following circuit diagram depicts the computation of the syndrome, which is stored in two
ancilla bits.

0 s1

0 s2

Syndrome decoding is a kind of codespace decoding (note: this is not standard terminology),
since the codeword is restored, not the message directly. The original codeword can be further
decoded back to an estimate of the message by using the inverse of the encoding operation.

1.3 Quantum repetition code

As we have specified the encoding and decoding operations of the repetition code via Boolean
circuits, we may instead regard these circuits as quantum circuits and apply them to superposition
input states. That is, instead of trying to create a quantum repetition code by repeating arbitrary
states to be protected, which is forbidden by no cloning, let us just quantize the classical repetition
code. The resulting code will protect a single qubit from flips of the standard basis states {|0〉, |1〉},
errors which correspond to the action of the Pauli operator σx , which we shall denote by X .

3



1. ESSENTIAL FEATURES OF QUANTUM ERROR CORRECTION

1.3.1 Encoding

In particular, we replace the encoding circuit with

|0〉

|0〉

and the noise with Pauli X operators.
Therefore an input state |ψ〉 of the form |ψ〉= a|0〉+ b|1〉 with a, b ∈ C will be transformed by

the encoder into |Òψ〉 = a|0〉 ⊗ |0〉 ⊗ |0〉+ b|1〉 ⊗ |1〉 ⊗ |1〉. We will usually drop the tensor product
symbols and simply write |000〉 and |111〉, or sometimes |000〉123 to emphasize that we are dealing
with qubits 1, 2, and 3. The code C is now the span of such states, i.e. C = span(|000〉, |111〉).
Observe that the operator X1X2X3 = X1 ⊗ X2 ⊗ X3 interchanges the two codewords |000〉 and
|111〉, while Z1 = Z1 ⊗ 12 ⊗ 13 for Z = σz gives a −1 phase to |111〉. The pair bX = X1X2X3 and
bZ = Z1 are logical operators for the code; they act on the codespace the way X and Z act on a single
qubit.

1.3.2 Decoding

On the decoding side, we must now measure in order to obtain the syndromes, like so:

|0〉 s1

|0〉 s2

Just as in the classical case, the CNOT gates add the value of the control qubit to that of the ancilla,
and so each ancilla accumulates one of the syndrome parities. Then the value of the syndrome
parity is read out by measurement.

Another way to understand this operation is that measurement of the first ancilla has the same
effect as measuring the observable Z2Z3 = 11 ⊗ Z2 ⊗ Z3, whose corresponding eigenprojectors are
P0 = 11⊗(|00〉〈00|+ |11〉〈11|)23 and P1 = 11⊗(|01〉〈01|+ |10〉〈10|)23. Measurement of the second
is equivalent to measuring Z1Z3 = Z1 ⊗ 12 ⊗ Z3, which has similar parity-based eigenprojectors.
Observe that for both measurements, it is not the case that Z1, Z2, and Z3 are individually measured
and then the parities computed. Instead, the parity calculation is done quantum-mechanically by
the CNOT gates, and then the resulting parity values are measured from the ancilla qubits.

The remainder correction procedure continues very much as before. Indeed, the second step of
determining the error location is precisely the same as before; this is a classical computation. The
third step differs in that now the correction operation is an X at the appropriate qubit location. The
following circuit diagram illustrates all three steps of the correction procedure. After the syndrome
measurement, a classical computation (denoted ‘Select’) determines which correction operation U
to apply. Observe that the fact that the computation of the correction operation is purely classical is
reflected in the diagram by the ‘Select’ operation only having classical inputs (the horizontal double
wires) and outputs (the vertical double wire).

4



1.3. Quantum repetition code

s1

s2

U

|0〉
Select

|0〉

1.3.3 Correction maintains superposition of encoded information

It can be seen by direct calculation that any single qubit bit flip error will be corrected, no matter the
encoded state |Òψ〉. For example, if the second qubit is flipped, then |Òψ〉 becomes |Òψ′〉 = a|010〉+
b|101〉. Measurement of s1 will yield s1 = 1 since the parity of the second and third bits differs.
Moreover, importantly, the state |Òψ′〉 will be unchanged by the measurement. Measurement of s2
will yield s2 = 0, again leaving the state unchanged. Finally, the correction procedure will indicate
that qubit two should be flipped, which restores the original state |Òψ〉. Thus, the syndrome decoding
procedure is able to correct the error without destroying the superposition!

1.3.4 Discretization of errors

Instead of a bit flip of a single qubit, consider rotation of a single qubit around the bx axis by

some angle θ ∈ R. The unitary operator which implements this rotation is simply U = e−i
θ
2σx =

cos θ2 1+ sin θ2 X , a superposition of correctable errors. In this case the error correction procedure,
specifically the syndrome measurement, breaks the superposition and discretizes the error to either
of these two cases!

Suppose the rotation affects the first qubit. Then the noisy codeword is given by

|Òψ′〉= U |Òψ〉= cos θ2 |Òψ〉+ sin θ2 X1|Òψ〉 . (1.1)

For s1, both terms in the superposition lead to a measurement result of s1 = 0. That is, the mea-
surement outcome is deterministic, and will necessarily be s1 = 0. However, for s2 the first term
leads deterministically to s2 = 0, while the second leads to s2 = 1. The probabilities of the two
cases are cos2 θ

2 and sin2 θ
2 , respectively. Therefore, for s1s2 = 00 the post-measurement state is

proportional to |Òψ〉, while for s1s2 = 01 the post-measurement state is proportional to X1|Òψ〉.
In the former case the syndrome correctly indicates that there is no error, so the decoder will

take no action. In the latter case the syndrome correctly indicates that the error is on the first qubit,
so the decoder will apply X1 to X1|Òψ〉, which restores |Òψ〉. Hence, in both cases the encoded state
is correctly recovered. The angle of the rotation only determines the relative probability of the two
different cases s2 = 0 and s2 = 1. For a small angle, the syndrome measurement will most often
result in s1s2 = 00, while for a large angle it will often result in s1s2 = 10. In this way the analog
rotation error is discretized to a probabilistic mixture of either no rotation (1) or a π rotation (X ).

The coefficients of the two terms in (1.1) come from the unitary operation, but actually their
particular form played no role in the argument. The syndrome decoding scheme can correct an
arbitrary single-qubit error of the form E = c11 + c2X , where c1, c2 ∈ C. As before, the coeffi-
cients only determine the probabilities of the various syndrome measurement results. The trivial
syndrome indicating no error will occur with probability |c1|2/(|c1|2 + |c2|2), while the nontrivial
syndrome will occur with probability |c2|2/(|c1|2 + |c2|2).

5



1. ESSENTIAL FEATURES OF QUANTUM ERROR CORRECTION

Syndrome decoding of the quantum repetition code illustrates how the original objections to the
possibility of quantum error correction are overcome. First, it is not necessary to clone the qubit
state |ψ〉. Second, the decoding procedure does not damage the analog nature (superposition)
of the quantum information. Third, the decoding procedure does discretize all errors which are
superpositions of 1 and X to a probabilistic mixture of either 1 or X . The drawback is that this
repetition code only protects against single-qubit errors of the form E = c11+ c2X .

1.4 Repetition coding to correct phase errors

Of course, there is nothing special about X error operators. We could just rotate the entire error
correction scheme so that it protects against Z errors, or any errors along any axis. Single qubit
Z errors are called phase flips. To protect against single-qubit phase flips it is sensible to change
the encoding so that |ψ〉 = a|+〉+ b|−〉 is transformed to |Òψ〉 = a|+++〉+ b|−−−〉, where |±〉 =

1p
2
(|+〉± |−〉). This can be accomplished by applying the Hadamard gate, denoted H, to the inputs

and outputs of the repetition code encoder. The Hadamard gate has the action |x〉 7→ 1p
2
(|0〉 +

(−1)x |1〉) for x ∈ F2. The resulting encoder for the phase flip repetition code takes the following
form.

H H

|0〉 H

|0〉 H

Note that the logical operators are now X1 and Z1Z2Z3.

Similarly, we may utilize the Hadamard gate in order to recycle the decoding circuit from the
bit flip repetition code. To check for ± parity in the second two qubits, for instance, simply apply H
to all qubits in order to rotate |±〉 to the standard basis, compute the parities as usual, and finally
apply H to rotate back. The end result is to measure the observables X2X3 and X1X3. The resulting
circuit is just the following.

H H

H H

H H

|0〉 s1

|0〉 s2

The syndrome is used to determine the location of the error exactly as before. Now, however, the
correction operation is Z at the appropriate location. The phase-flip repetition code corrects all
single-qubit phase-flip errors, as well as single-qubit errors of the form E = c11+ c2Z .

6



1.5. The Shor code

1.5 The Shor code

1.5.1 Concatenation

Shor’s insight was to realize that concatenating the bit flip and phase flip repetition codes produces
a code which can correct any single-qubit error. Code concatenation refers to concatenating the
encoders, first applying the encoder of a given code and then applying to each of its outputs the
encoder of another code. In the Shor code, the qubit to be protected is first encoded into the phase
flip repetition code, and then each physical qubit is separately encoded in the bit flip repetition
code. The encoding circuit is a concatenation of the phase and bit flip repetition encoders and
takes the form

H H

|0〉

|0〉

|0〉 H

|0〉

|0〉

|0〉 H

|0〉

|0〉

The second encoder, in this case the bit flip repetition code, is the “inner code” (in the sense
that it is closer to the noisy channel), while the first encoder is the “outer code”.

We can think of concatenation in a different but also very useful way: The codewords of the
outer encoder are not built from the physical qubits directly, but from the codewords of the inner
code. That is, instead of taking the phase flip repetition codewords to be products of the single qubit
|±〉 states, we instead use the encoded |b±〉 states from the bit flip repetition code. The encoded |±〉
states of the Shor code, denoted by |e±〉, are the following nine-qubit states:

|e+〉= |b+〉|b+〉|b+〉= (|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) , (1.2)

|e−〉= |b−〉|b−〉|b−〉= (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (1.3)

The encoded |e0〉 and |e1〉 states are simply |e0〉 = |e+〉+ |e−〉 and |e1〉 = |e+〉 − |e−〉. Expanding out the
expressions yields

|e0〉= |b0b0b0〉+ |b0b1b1〉+ |b1b0b1〉+ |b1b1b0〉 (1.4)

= |000000000〉+ |000111111〉+ |111000111〉+ |111111000〉 (1.5)

|e1〉= |b0b0b1〉+ |b0b1b0〉+ |b1b0b0〉+ |b1b1b1〉 (1.6)

= |000000111〉+ |000111000〉+ |111000000〉+ |111111111〉 (1.7)

This way of viewing a concatenated code implies that the logical operators should essentially
be the logical operators of the phase-flip repetition code, but the physical qubit operators therein
should be replaced with the logical operators of the bit-flip repetition code. That is, the logical

7



1. ESSENTIAL FEATURES OF QUANTUM ERROR CORRECTION

operators ought to be X̃ = X1X2X3 and Z̃ = Z1Z4Z7. It is straightforward to verify that these
operators indeed have the action on |0̃〉 and |1̃〉 that X and Z have on |0〉 and |1〉, respectively.2

1.5.2 Correction

The decoding operation is also based on concatenation, proceding in reverse order to the encod-
ing. First bit flip errors are corrected using the inner code, and subsequently phase flip errors are
corrected by the outer code. Let us examine this procedure more carefully to see how single-qubit
errors are corrected. The first step to establishing that the Shor code can correct any single-qubit er-
ror is to establish that it can correct any single-qubit Pauli error. To this end we begin by considering
single X and Z errors.

Bit flips are corrected just as before by the inner code, in each of the three blocks of three
qubits. Syndrome measurements as defined above are made in each block of three qubits, and the
damaged qubit is identified and corrected by possibly applying an X operator. When the error is a
single X , this procedure will restore the original Shor-encoded state. On the other hand, when the
error is a single Z , then the procedure does nothing. The single Z commutes with the syndrome
measurement, and therefore the syndrome is trivial. No correction operation will be applied, but
the single Z remains. And finally, when the error is a single Y , then the syndrome measurment
will again infer its location and apply a correction X . Therefore the overall action on the code is
X Y = iZ , meaning the Y error is converted into a Z error.

After the correction operations of the inner code, only a possible Z error remains. Observe that
the codewords are such that a Z error acting on any position in a block is equivalent to it acting
on the first position in the block. That is, for example, Z2 and Z1 have the same effect on |b±〉123.
Namely, they both produce |b∓〉123. Two errors that have the same effect on the codespace are said
to be degenerate. Due to the degeneracy, we can assume that only the first qubit in any block could
be affected by a phase flip.

To correct phase flips, syndrome measurements for the phase repetition code need to be per-
formed, in order to indicate which block is in error. The outer layer essentially sees the encoded
states of the inner layers, not the bare qubit states themselves; after all, the inner layer decoder en-
sures that the qubits are in the bit-flip repetition codespace. Following the procedure for construct-
ing the logical operators, the observables to be measured are therefore bX ii bX iii and bX i bX iii where the
hat indicates the bit flip logical operator and the index i, ii, or iii indicates the block. In terms of Pauli
operators on the physical qubits, we have bX ii bX iii = X4X5X6X7X8X9 and bX i bX iii = X1X2X3X7X8X9.

Thus, s1 = 0 corresponds to the projector 1123 ⊗ (|b+b+〉〈b+b+| + |b−b−〉〈b−b−|)456789 and s1 = 1 to
the projector 1123 ⊗ (|b+b−〉〈b+b−|+ |b−b+〉〈b−b+|)456789. The syndrome indicates which block of three
qubits, be it 123, 456, or 789, has the error. The error is then removed by applying Z to qubit 1,
4, or 7 as appropriate. This procedure restores the original codeword from any single-qubit Pauli
error. If we wish to obtain the original encoded qubit at this point, we may simply run the encoding
circuit in reverse.

Just as the syndrome decoder measurements of the bit flip repetition code discretizes super-
positions of 1 and X , the syndrome decoder measurements of the Shor code will discretize any
superposition of Pauli errors, any error of the form E = c01 + c1X + c2Y + c3Z for ci ∈ C. This
holds because each term in this expression leads to a different value of the measured syndromes.
Since every linear operator E on qubits can be written in this way (the Pauli operators span the set

2Note that our convention for the codewords and logical operators differs from that of Nielsen and Chuang. We
have the logical X operator composed of Pauli X operators and similarly for logical Z .
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1.6. The stabilizer formalism

of 2x2 matrices when complex linear combinations are allowed), every single-qubit error can be
corrected.

1.6 The stabilizer formalism

It is a lot more convenient to describe the Shor code and many other quantum error-correcting
codes in terms of their stabilizers. Let us start back with the repetition code.

1.6.1 Stabilizers

Recall the codewords are |000〉 and |111〉, so the code subspace itself is the span of these two
vectors. Observe that this subspace is the simultaneous +1 eigenspace of the operators Z2Z3 and
Z1Z3: For x ∈ {0, 1} we have

I1 ⊗ Z2 ⊗ Z3|x x x〉= |x x x〉 and Z1 ⊗ I2 ⊗ Z3|x x x〉= |x x x〉 , (1.8)

simply because there are an even number of Z factors in each operator and Z |1〉= −|1〉.
These two operators are stabilizers of the code, since they leave the codewords invariant. A

stabilizer code is a quantum code (a subspace of the full quantum state space) which is defined
as the simultaneous +1 eigenspace of some collection of stabilizer operators. We typically only
consider stabilizer operators which are products of Pauli operators, as here.

Note that the product of stabilizers is also a stabilizer, e.g. Z1Z2 is also a stabilizer. In general,
the stabilizers will form a group, and it is enough to specify generators of the group. For the three-
qubit repetition code, generators are Z2Z3 and Z1Z3, while the group itself is {I , Z1Z2, Z2Z3, Z1Z3}.
Any two of the nontrivial group elements could serve as generators.

1.6.2 Syndromes

Not coincidentally, the syndromes of the repetition code are precisely the result of measuring the
stabilizer operators. For Pauli stabilizers, which is the case of interest to us, the stabilizers are not
only unitary but also Hermitian. Thus they are valid quantum observables, and we may consider
measurement corresponding to their eigensubspaces.

Indeed, the parity projection operators P0 = 11⊗(|00〉〈00|+|11〉〈11|)23 and P1 = 11⊗(|01〉〈01|+
|10〉〈10|)23 introduced in §1.3.2 are precisely the eigensubspace projectors of Z2Z3. Since this op-
erator squares to the identity, we have

P0 =
1
2(I + Z2Z3) and P1 =

1
2(I − Z2Z3) . (1.9)

The former is associated with syndrome value 0 and the latter with syndrome value 1. This fits
the standard formalism of quantum mechanics by defining the syndrome value s in terms of the
eigenvalue λ of Z2Z3 as λ= (−1)s. This framework also applies to the stabilizer Z1Z3.

1.6.3 Errors

It is important to see that the stabilizers have relatively simple measurment circuits, but it is not
necessary to use these circuits or the projector description in order to understand what happens in
the decoding process. Instead, note that an error Xk on qubit k will transform the encoded state
into a state which is again the simultaneous eigenstate of the two stabilizer operators. The reason

9
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is that the operator Xk either commutes or anticommutes with each stabilizer. If it commutes
with the stabilizer, say we have X1 and Z2Z3, then clearly X1|Òψ〉 is still a +1 eigenstate of Z2Z3:
Z2Z3X1|Òψ〉 = X1Z2Z3|Òψ〉 = X1|Òψ〉. On the other hand, if the two anticommute, as X1 does with
Z1Z3, then the eigenvalue is simply flipped to −1: Z1Z3X1|Òψ〉= −X1Z1Z3|Òψ〉= −X1|Òψ〉.

Since the syndrome is the eigenvalue of the associated stabilizer for the noisy codeword, the
effect of an error is simply to change the syndrome of all stabilizers with which it anticommutes. The
stabilizer measurement will not cause further changes to the state. It is then easy to check that all
single-qubit X errors lead to distinct syndromes, and therefore can be corrected.

1.6.4 Correctable errors

Which errors are correctable depends on the properties of the code; this is not a property which
defines a code. That is, we define a code, perhaps by giving stabilizer operators, and then determine
which errors are correctable.

Moreover, there can be different sets of correctable errors. For instance, the repetition code can
correct errors X2X3, X1X3, and X1X2, along with no error (I). The syndrome 00 still indicates no
error, 01 indicates X2X3, 10 indicates X1X3, and 11 indicates X1X2. Each syndrome is associated
with one of the correctable errors, so the appropriate correction can be performed.

Note that this does not imply that the repetition code can correct all single and two-qubit errors
simultaneously! It can correct all single-qubit errors or it can correct all two-qubit errors, but not
both sets at the same time.

Additionally, in the quantum case it turns out that the above property that each syndrome is
associated to a single correctable error is sufficient for correction, but not necessary. As we have
already seen with the Shor code, different errors can have the same effect on the code space. Since
multiple errors can have the same effect, it is enough for the syndrome to identify which of these
effects occurred on the codespace and correct it.

1.6.5 Shor code stabilizer structure

We have already implicitly seen the stabilizers of the Shor code; they are the observables measured
to obtain the syndrome. There are six of Z-type: Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, and Z8Z9, and two
of X -type: X4X5X6X7X8X9 and X1X2X3X7X8X9. Laid out the nine qubits as a square lattice and
using · to indicate an identity operator, the six Z-type stabilizers are

Z Z ·
· · ·
· · ·

,
· Z Z
· · ·
· · ·

,
· · ·
Z Z ·
· · ·

,
· · ·
· Z Z
· · ·

,
· · ·
· · ·
Z Z ·

,
· · ·
· · ·
· Z Z

(1.10)

while the two X -type stabilizers are

X X X
X X X
· · ·

,
· · ·
X X X
X X X

(1.11)

Finally, the logical operators are just X operators in the first row or Z operators in the first column:

eX =
X X X
· · ·
· · ·

, eZ =
Z · ·
Z · ·
Z · ·

(1.12)
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It is straightforward to check that all single-qubit Pauli errors are correctable. They either lead
to distinct syndromes, or have equivalent action on the codespace for the same syndrome, as shown
in the following table. The syndromes are partitioned into pairs, the first three corresponding to
the three pairs of Z-type checks in each row and the final pair the two X -type checks.

Error Syndrome
X1 10 00 00 00
X2 11 00 00 00
X3 01 00 00 00
X4 00 10 00 00
X5 00 11 00 00
X6 00 01 00 00
X7 00 00 10 00
X8 00 00 11 00
X9 00 00 01 00

Error Syndrome
Y1 10 00 00 10
Y2 11 00 00 10
Y3 01 00 00 10
Y4 00 10 00 11
Y5 00 11 00 11
Y6 00 01 00 11
Y7 00 00 10 01
Y8 00 00 11 01
Y9 00 00 01 01

Error Syndrome
; 00 00 00 00

Z7 ≃ Z8 ≃ Z9 00 00 00 01
Z1 ≃ Z2 ≃ Z3 00 00 00 10
Z4 ≃ Z5 ≃ Z6 00 00 00 11
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2General quantum codes
In this chapter we investigate quantum error correction at a more general level. We start with
how noise is described, then give a definition of quantum error correction, and finally establish the
Knill-Laflamme conditions on exact correction.

2.1 Quantum noise

2.1.1 Unitary description

Noise affecting quantum information comes from interaction with its surroundings, which is usually
just called the environment. In the standard formalism of quantum mechanics, any interaction is
described by a unitary transformation of the information of interest, stored in quantum system
labelled A, and the environmental degrees of freedom, which we will label E. The environment
is essentially everything outside of A, and is regarded as initially independent of A and in a pure
state, say |0〉E . Then any noise process is of the form

|ψ〉A⊗ |0〉E → |ψ′〉AE = UAE |ψ〉A|0〉E , (2.1)

for some unitary UAE .

2.1.2 Kraus operator description

We can describe the effect of the noise solely in terms of A as a quantum channel N , by tracing out
the environment E in the expression above:

N : |ψ〉〈ψ|A 7→ TrE[UAE(|ψ〉〈ψ|A⊗ |0〉〈0|E)U
†
AE] . (2.2)

It is convenient to expand in an orthonormal basis of E and define the Kraus1 operators:

|ψ′〉AE =
∑

k

(Mk|ψ〉)A⊗ |k〉E , (2.3)

which holds for Mk = E〈k|UAE |0〉E , an operator on A. Unitarity of UAE , i.e. 〈ψ′|ψ′〉= 1 for all input
|ψ〉, translates into the condition

∑

k M†
k Mk = 1. Then the action of the channel on A is given more

simply in terms of the Kraus operators:

N : |ψ〉〈ψ| 7→
∑

k

Mk|ψ〉〈ψ|M
†
k . (2.4)

In §1.3.4 the error operator E = c01 + c1σx + c2σy + c3σz was just an arbitrary Kraus operator
acting on a qubit.

2.1.3 Examples: qubit channels

Examples of qubit channels include

1Karl Kraus
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Pauli channels. We have already implicitly considered the case of a Pauli channel in the previous
lecture, when considering Pauli operators as errors, i.e. as Kraus operators. A general Pauli
channel takes the form ρ 7→

∑3
k=0 pkσkρσk, where σk are the Pauli operators with σ0 = 1

and pk ≥ 0 are probabilities, meaning
∑

k pk = 1.

Depolarization. Several special cases of Pauli channels are of interest. In the depolarizing channel
p1 = p2 = p3, so that the Bloch vector of the input qubit simply shrinks towards the origin.

Dephasing. The dephasing channel describes loss of coherence in superpositions of the standard
basis states. Here there are no bit flip errors, i.e. p1 = p2 = 0, and the Bloch vector shrinks
toward the ẑ axis.

Independent bit and phase errors. The case of independent bit and phase noise is a conve-
nient channel to study. For bit errors occuring at probability p and phase errors occuring at
probability q, this channel is the Pauli channel with p1 = p(1− q), p2 = pq, p3 = (1− p)q.

Leakage. The quantum erasure channel describes leakage of the qubit information into some other
levels of the physical system (e.g. in a trapped ion qubit in which two specified electronic
levels are used as the qubit, leakage occurs when the population moves to some other level).
Formally, the input qubit remains as it was with some probability 1−q and moves to another
level, call it |2〉, with probability q: ρ 7→ (1− q)ρ + q|2〉〈2|. It can be shown that this action
has Kraus operators M0 =

p

1− q1, M1 =
p

q|2〉〈0| and M2 =
p

q|2〉〈1|.

Note that the output is no longer a qubit. It can be restored to the qubit space by simply
randomly mapping the state |2〉 to either |0〉 or |1〉. Physically this would correspond to mea-
suring the system to see if the population is still in the qubit subspace, and mapping it back
if not. In this case the measurement result indicates whether the qubit is ok or leaked, which
is an additional piece of information (a classical bit). The channel can then be described by
ρ 7→ (1− q)ρ ⊗ |ok〉〈ok|+ qτ⊗ |leak〉〈leak|, where τ= 1

21 is the maximally-mixed state.

Amplitude damping. The process of spontaneous decay of the |1〉 to the |0〉 state is described by
the amplitude damping channel. It is defined by the damping parameter γ ∈ [0,1] and has
two Kraus operators

M0 = |0〉〈0|+
p

1− γ|1〉〈1| and M1 =
p
γ|0〉〈1| . (2.5)

The latter corresponds to decay, as |1〉 jumps to |0〉, which occurs with probability γ (when
the initial state is |1〉). The former Kraus operator corresponds to the reweighting of the state
in favor of |0〉 which occurs when no decay occurs. Essentially, the decay event should be
accompanied by some observable change in the environment, e.g. a photon is emitted by an
atom jumping from an excited state |1〉 to a lower-energy state |0〉, and when no photon is
observed the conclusion is that the state was more likely to already have been in the state
|0〉.

2.1.4 I.I.D. channels

Noise acting on a collection of qubits can take an arbitrary form consistent with (2.1). In these
notes we will focus on the case of noise in which each qubit experiences the same noise channel,
independently of all other qubits. For example, consider noise N acting on the nine qubits of the
Shor code of the form N = N ′1 ⊗ N ′2 ⊗ · · · ⊗ N ′9, where the qubit channel N ′j is a Pauli channel
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that acts on qubit j. When all the N ′j are identical, the Pauli errors on the qubits are independently
and identically distributed, so this kind of channel is called i.i.d. The Kraus operators of an i.i.d.
channel (or even just independent but not identical) are tensor products of the Kraus operators of
the individual qubit channels.

From the starting point of i.i.d. noise we can branch out into independent but not identical noise,
for instance, or consider weak correlations between noise on different qubits. Other noise models,
such as collective rotation of all qubits, are also of interest, but are less immediately relevant to
contemporary experiments. Note that a collective rotation of some collection of qubits, say three,
is implemented by an operator of the form eiθ ((σx )1+(σx )2+(σx )3), where (σx)2 = 1⊗σx ⊗ 1 and so
forth. The exponential of a sum of product operators is not itself a product operator, and hence
collective rotation is not an instance of i.i.d. noise.

2.1.5 Errors versus channels

Often we specify noise directly in terms of error operators, some {Mk} such that the noise action is
given by (2.4). The distinction to starting with a bone fide quantum channel is that the error op-
erators might not obey the normalization condition

∑

k M†
k Mk = 1. At the mathematical level, the

resulting mapping N is completely-positive, meaning it maps positive operators to positive opera-
tors, even when acting only on parts of entangled states, but it is not necessarily trace-preserving. It
turns out that the trace-preserving condition is not terribly crucial to the mathematical formulation
of error correction, as we will see below.

2.2 Definition of quantum error correction

2.2.1 Error correction

Setup Suppose that N is a noisy channel that transforms a collection of n qubits in some way,
maybe even to some other kinds of quantum systems. Let’s lump all the qubits together and call
them system A and the output of the channel system B. Usually we will consider the case that B ≃ A,
as in the Shor code, where the output of the noise is also a nine-qubit system. However it is useful
to keep the input and output systems distinct in the following arguments, and no simplification is
gained by having B ≃ A.

We would like to store some quantum information in A and protect it from NB|A. At least
formally, we can imagine that initially the quantum information is stored in system Q and then it
is encoded into A by an encoding operation EA|Q. After the action of the noise N , the quantum
information is decoded from B back to Q by a decoding operation DQ|B. Any quantum operation,
noise or not, is described by some quantum channel, and therefore the encoding operation E and
the decoding operation D are each described by a quantum channel.

Exact correction If the quantum information is indeed protected from NB|A, then there is a de-
coding quantum operation DQ|B which transforms B back to Q such that the composition DQ|B ◦
NB|A ◦ EA|Q is equal to the identity channel IQ on Q:

D ◦N ◦ E = I . (2.6)

This is the basic requirement for exact quantum error correction. Error correction is specified by
the encoder and decoder. Depending on their properties, they either can or cannot correct the
action of N .
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An equivalent condition is that D ◦N ◦ E preserves the maximally-entangled state. Let |Φ〉QQ′

be the maximally-entangled state on the bipartite system QQ′, where |Q′| = |Q|. Then (2.6) is
equivalent to

DQ|B ◦NB|A ◦ EA|Q[ΦQQ′] = ΦQQ′ . (2.7)

Note that D ◦N ◦ E acts only on Q, while Q′ is an ancilla system. The equivalence follows from
the Choi isomorphism of quantum channels and certain bipartite quantum states, which says that
the action of the channel DQ|B ◦NB|A ◦ EA|Q on an arbitrary input can be computed using the state
DQ|B ◦NB|A ◦ EA|Q[ΦQQ′]. Therefore (2.7) implies (2.6); the other direction is immediate.

Approximate correction If some pair (E ,D) cannot exactly correct N , it is natural to ask how
well (or poorly) they can correct N . This is the notion of approximate correction. Nominally,
we would like to have D ◦N ◦ E ≈ϵ I for some small ϵ > 0. But we must define the notion of
approximation, what ≈ϵ actually means. There are several ways to do this. For simplicity, in these
notes we will say that D ◦N ◦ E ≈ϵ I holds when the fidelity (squared) of the output of D ◦N ◦ E
applied to a maximally-entangled state ΦQQ′ with ΦQQ′ itself is larger than 1− ϵ:

Tr[ΦQQ′D ◦N ◦ E[ΦQQ′]]≥ 1− ϵ . (2.8)

Setting the approximation parameter ϵ = 0 returns us to the case of exact correction above. Another
common approximation measure again uses the fidelity (squared), but considers the worst-case
input pure state, e.g. the lefthand side of (2.8) is replaced by minΨQQ′

Tr[ΨQQ′D ◦N ◦ E[ΨQQ′]].
A common example of approximate error correction is when a subset of the Kraus operators of

a given channel are exactly correctable, but the remainder are not. This is the case with the Shor
code faced with an i.i.d. Pauli channel N =N ′1⊗N

′
2⊗· · ·⊗N

′
9, where the qubit channel N ′j is a Pauli

channel that acts on qubit j. Since the Kraus operators of i.i.d. channels (or even just independent
but not identical) are tensor products of the Kraus operators of the individual qubit channels, the
Kraus operators of N are products of Pauli operators. One of the Kraus operators is proportional
to the identity, and there are a further 27 which have only a single nontrivial Pauli factor. As we
have seen, this collection of 28 Kraus operators is correctable. These are the Pauli products with
weight 0 and 1, respectively. Not all of the higher-weight Pauli products are exactly correctable
along with the lowest weight set (though some are). Taking N ′j to be the depolarizing channel

with small depolarization parameter p≪ 1, the higher-weight errors occur with probability O(p2)
and smaller. Therefore the Shor code corrects depolarization noise up to and including order p. It
is easy to show that the fidelity criterion above is 1−O(p2), and so ϵ = O(p2).

Errors versus channels The example above is not the only kind of approximate correction; Sec-
tion 2.4 will discuss an example in which no Kraus operator is corrected exactly. However, this
simple example explains the focus on “errors”, i.e. sets of not-necessarily-normalized Kraus opera-
tors (which are hopefully correctable) instead of “channels”, i.e. full sets of proper Kraus operators.
For i.i.d. Pauli noise, the name of the game in error correction is to be able to correct the likely er-
rors, i.e. those with low weight.

We can define exact correctability of a set of errors M j by regarding the errors as Kraus operators
of an improperly-normalized channel N , as discussed in §2.1.5, and requiring there to exist an
encoder E and decoder D (both proper quantum channels) such that

D ◦N ◦ E∝ I . (2.9)

As with properly-normalized channels, this is equivalent to

D ◦N ◦ E[ΦQQ′]∝ ΦQQ′ . (2.10)
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Moreover, (2.9) is equivalent to demanding that each error is exactly corrected, which is per-
haps a definition more often encountered in the literature. Specifically, with M j : ρ 7→ M jρM†

j ,

D ◦M j ◦ E∝ I ∀ j (2.11)

To see the equivalence, write (2.9) as
∑

j D ◦M j ◦ E ∝ I. Applied to the pure state |ψ〉Q, the
statement becomes

∑

j ρ j = a|ψ〉〈ψ| for some a > 0, where ρ j = D ◦M j ◦ E[|ψ〉〈ψ|]. Picking out
some particular ρ j , we have a|ψ〉〈ψ| −ρ j =

∑

j′ ̸= j ρ j′ and hence a|ψ〉〈ψ| −ρ j ≥ 0. Now we can
easily show that ρ j must be proportional to |ψ〉〈ψ|. Consider a vector |ψ′〉 which is orthogonal to
|ψ〉 but contained in the support of ρ j (if no such |ψ′〉 exists, then certainly ρ j ∝ |ψ〉〈ψ|). We
should have 〈ψ′|(a|ψ〉〈ψ| − ρ j)|ψ′〉 ≥ 0 by the positivity statement. However, the expression on
the lefthand side is manifestly negative, and so it must indeed be that ρ j∝ |ψ〉〈ψ|.

Developing a notion of approximate correctability for general sets of errors is complicated by
their improper normalization. Here we will only consider approximate correction at the level of
channels and not errors.

2.2.2 Error-correcting codes

Isometric encoding In the Shor code example the encoding quantum operation was isometric,
meaning it simply isometrically embeds the two-dimensional qubit space from Q into the nine
qubits A. This is guaranteed by the fact that the codewords |e±〉 are orthogonal, so inner products of
general states are preserved: 〈ψ|φ〉Q = 〈 eψ| eφ〉A. Isometries can always be implemented by unitary
operators acting on the input as well as additional ancilla systems, as we will see more concretely
later. Taking E to be an isometry in the above definitions of exact and approximate error correction,
the image of Q under E defines the (quantum) code, which is just a subspace C in A. A collection of
orthogonal states in the code are called codewords. While non-isometric encoding is possible, we
will not consider it further here.

Codespace decoding The decoder we considered for the Shor code was actually not of the kind
described above in Section 2.2.1. Instead, we called it a codespace decoder. This kind of decoder is
sensible when E is an isometry, for then we can define the codespace decoder bD to map B not to Q,
but back to the code subspace C in A. Then the decoder D of (2.6) and (2.8) can be constructed as
D = E−1◦ bD, where the inverse is defined only on the range of E , i.e. the code. Codespace decoding
is useful in the setting of quantum computation, where the information needs to remain encoded
until the very last step of the computation. In contrast, the original notion of decoding is more
appropriate in a communication setting.

Isometric decoding The decoder in the Shor code is also of a particular nature. The stabilizer
measurement projects onto orthogonal two-dimensional subspaces, each of which is then isomet-
rically mapped back to the codespace by the corresponding correction operation. An isometric
decoder2 has Kraus operators V †

j which are adjoints of isometries Vj from Q to B, such that the
images of Vj and Vk for j ̸= k are disjoint. The action of such a decoder can be thought of just as in
the Shor decoder, first performing a measurement described by the projection operators Π j = VjV

†
j

and subsequently isometrically mapping the identified subspace to Q using V †
j .

2Called a homomorphic decoder by Kretschmann and Werner, for reasons we won’t get into here.
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Degenerate errors As we saw in the Shor code, it can happen that distinct errors have the same
effect on the code subspace. There, a single-qubit phase error in any of the three blocks of three
qubits has the same effect as a single-qubit phase error on any of the other qubits in the same block.

For an arbitrary code C, two errors M1 and M2 are said to be degenerate precisely when, for all
|Òψ〉 ∈ C,

M1|Òψ〉= M2|Òψ〉 . (2.12)

Note that the errors M1 and M2 are not necessarily correctable in this definition. But error degen-
eracy does mean that it is not necessary to determine precisely which error occurred in order to
recover from the noise. It is only necessary to determine the error up to degeneracy.

Examples: Four- and five-qubit codes Two particularly simple but interesting codes with fewer
qubits than the Shor code are the four- and five-qubit codes. The four-qubit code has the following
(unnormalized) codewords

|0〉= |0000〉+ |1111〉 and |1〉= |0011〉+ |1100〉 . (2.13)

There are several versions of the five-qubit code. A particular choice has the following codewords

|0〉= |00000〉 − |00110〉 − |01001〉 − |01111〉+ |10011〉 − |10101〉 − |11010〉 − |11100〉 , (2.14)

|1〉= |11111〉 − |11001〉 − |10110〉 − |10000〉 − |01100〉+ |01010〉+ |00101〉+ |00011〉 . (2.15)

2.3 Knill-Laflamme conditions for exact correction

It would seem that determining whether a given set of errors acting on a given code subspace is
exactly correctable would require either constructing a decoder, as we did with the Shor code, or
proving that no decoding operation exists. For instance, we might like to determine if the four- or
five-qubit codes can correct single-qubit Pauli errors (and therefore all single-qubit errors). How-
ever, there is a simple set of conditions on the code subspace and set of errors which is equivalent
to exact correctability, known as the Knill3-Laflamme4 conditions.

2.3.1 Statement of the conditions

Suppose {MB|A( j)}rj=1 is a set of errors and C ⊂HA is a code of dimension d. Consider the action of
the errors on a maximally-entangled state on the codespace and a reference system Q′ of dimension
d, described using the unitary interaction with the environment. This interaction results in the state

|Ψ〉Q′BE =
1
p

d

r
∑

j=1

d
∑

k=1

|k〉Q′ ⊗MB|A( j)|bk〉A⊗ | j〉E (2.16)

for orthonormal bases {|k〉Q′} in Q′, {|bk〉A} the encoded version of the basis in Q′, i.e. an orthonormal
set of codewords, and {| j〉E} in system E of dimension r. When the errors are Kraus operators of
a channel, this state is properly normalized, but normalization will not be crucial in what follows,
so we may consider an arbitrary set of errors. As formalized by the following statement, error
correction is possible precisely when the marginal state on Q′E is completely uncorrelated.

3Emanuel Knill
4Raymond Laflamme
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2.3. Knill-Laflamme conditions for exact correction

Proposition 2.1: Knill-Laflamme conditions

The set of errors {MB|A( j)} is exactly correctable using the code C if and only if there exists a
normalized density operator σE such that, for πQ′ =

1
d 1Q′ and some a > 0,

TrB[|Ψ〉〈Ψ|Q′BE] = aπQ′ ⊗σE . (2.17)

Equivalently, in matrix components this condition reads as follows, with s j, j′ =
1
d 〈 j|σ| j

′〉,

〈bk′|M( j′)†M( j)|bk〉= as j, j′δk,k′ ∀ j, j′ ∈ {1, . . . , r} , k, k′ ∈ {1, . . . , d} . (2.18)

The above expressions hold with a = 1 when the errors are Kraus operators of a normalized
quantum channel, i.e. when they satisfy

∑

j MB|A( j)†MB|A( j) = 1A.

2.3.2 Examples

Applied to the four- and five-qubit codes, the Knill-Laflamme conditions imply that the former can-
not correct single-qubit Pauli errors, while the latter can. Thus, we expect that the five-qubit code
can correct an arbitrary single-qubit error by the discretization argument described in Section 1.5.2.
However, that argument was made using a syndrome decoder, which we have not (yet) established
works for the five-qubit code.

For the four-qubit code, consider phase flips on the first and third qubits, i.e. errors Z1 = Z I I I
and Z3 = I I Z I . Then we find 〈0|Z1Z3|0〉 = 1 while 〈1|Z1Z3|1〉 = −1. Therefore (2.18) is not
satisfied by any s j, j′ independent of the encoded state. Put differently, Z1Z3 is a logical Z operator
for the information encoded in the four-qubit code. In contrast, for the five-qubit code, a tedious
calculation reveals that the Knill-Laflamme conditions are satisfied with s j, j′ ∝ δ j, j′ , where the j
index all 16 possible single-qubit or no-qubit Pauli errors.

Not all errors are Pauli errors, though, and indeed the four-qubit code can correct single-qubit
erasure errors. By the discussion in Section 2.1.3, the Kraus operators of erasure have the form
|leak〉 ⊗ σk for some Pauli operator σk. Therefore the quantity M j′ † M j will be zero whenever
the error M j concerns erasure of some qubit and M j′ does not, i.e. when M j′ describes no error,
or erasure of a different qubit. Thus it is sufficient to check the Knill-Laflamme conditions for the
case that M†

j′M j is at most a Pauli operator of weight one (as opposed to weight up to two for the
case of single-qubit Pauli errors which have no side information indicating their location). Then it
is not difficult to see that the conditions are satisfied in this case.

2.3.3 Properties of the KL conditions

Before examining in more detail why the Knill-Laflamme conditions are necessary and sufficient
for the existence of an exact decoder, a few observations are in order.

Correctability is a property of the span of error operators Given a set of correctable errors
{M j}rj=1, every other set formed by arbitrary linear combinations of the M j is also correctable.

That is, the operators Kℓ =
∑r

j=1 bℓ j M j for arbitrary coefficients bℓ j ∈ C with ℓ ∈ {1, . . . , r ′} are
correctable if the M j are. This follows directly from (2.18):

〈bk′|K†
ℓ′

Kℓ|bk〉=
r
∑

j, j′=1

b∗ℓ′ j′ bℓ j〈bk′|M
†
j′M j|bk〉 ∝

r
∑

j, j′=1

b∗ℓ′ j′s j′ j bℓ jδkk′ = s′ℓ′ℓδkk′ , (2.19)
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2. GENERAL QUANTUM CODES

where we have implicitly defined s′
ℓ′ℓ

in the last equality. The matrix s′ is positive if s is, as s′ = b†sb.
Therefore (2.18) holds for the Kℓ as well.

Further equivalent forms There are several further equivalent forms of the KL conditions which
are often more immediately useful than (2.17) or (2.18). To state them, let PA be the projector
onto the codespace. Then the further conditions below are equivalent to (2.17) and (2.18):

• There exists a positive semidefinite matrix with components s j, j′ such that

PAMB|A( j)
†MB|A( j)PA = s j, j′P , (2.20)

• There exists a positive semidefinite matrix with components s j, j′ such that for all |Òψ〉, |Òψ′〉 ∈ C

A〈Òψ|MB|A( j)
†MB|A( j)|Òψ′〉A = s j, j′〈Òψ|Òψ′〉 , (2.21)

• There exists a positive semidefinite matrix with components s j, j′ such that for all |Òψ〉 ∈ C

A〈Òψ|MB|A( j)
†MB|A( j)|Òψ〉A = s j, j′〈Òψ|Òψ〉 . (2.22)

The condition (2.20) follows from (2.18) since

PM†
j′M j P =

d
∑

k,k′=1

|bk〉〈bk|M†
j′M j|bk′〉〈bk′|= as j, j′

∑

k

|bk〉〈bk|= (as j, j′)P . (2.23)

Then (2.20) implies (2.21) by multiplying (2.20) on the left by 〈Òψ| and the right by |Òψ′〉. This
immediately implies (2.22). Finally, (2.22) implies (2.18). The k = k′ case is immediate; the
k ̸= k′ case can be obtained by considering |Òψ〉= |bk〉+ |bk′〉 and |Òψ〉= |bk〉+ i|bk′〉 for all orthonormal
|bk〉 and |bk′〉 in C.

Relaxed positivity requirement Often the KL conditions are stated without the positivity re-
quirement on s j, j′; instead any s j, j′ ∈ C are allowed. This is possible since the lefthand side of
the KL conditions (in whatever form) imply that that s j, j′ has to be Hermitian, and can therefore

be diagonalized as in the linear span argument. Then, setting |Òψ′〉 = |Òψ〉 in (2.21), it is apparent
that the eigenvalues of s j, j′ have to be positive. Hence it is no loss of generality to simply require
positivity up front.

2.3.4 Necessity of the KL conditions

Now we turn to the proof of Proposition 2.1. We begin with the necessity of the KL condition.

Noiseless quantum channels do not leak information A crucially important fact about quan-
tum channels is that noiseless channels cannot leak any information about the input to the envi-
ronment, i.e. the output in the environment must be completely uncorrelated with the input. This
is completely different from the case of noiseless classical channels, which could just as well copy
the input to the environment. For instance, a copy machine which keeps the copy is a noiseless
classical channel, since the input is returned unchanged to the user.

More formally, we have the following statement.
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2.3. Knill-Laflamme conditions for exact correction

Proposition 2.2: Noiseless quantum channels do not leak information

Suppose NA is a quantum channel stemming from a unitary interaction UAE with the environ-
ment system E. If NA[|ψ〉〈ψ|A] = |ψ〉〈ψ|A for all |ψ〉A, then there exists a state |ξ〉E such that
for all |ψ〉A, UAE(|ψ〉A⊗ |0〉E) = |ψ〉A⊗ |ξ〉E .

This can be regarded as a statement that, in quantum mechanics, there is “no information (gain)
without disturbance”. If the interaction U should deposit some information about the input state
|ψ〉A in the environment system E, then it must change the state of A in some way.

The proof is simple. By assumption, the marginal state TrE[|Ψ〉〈Ψ|AE] of |Ψ〉AE = UAE(|ψ〉A ⊗
|0〉E) satisfies TrE[|Ψ〉〈Ψ|AE] = |ψ〉〈ψ|A. Consider purifications of these two states. In particular,
|Ψ〉AE is a purification of the former, while |ψ〉A ⊗ |0〉E is a purification of the latter. Since all
purifications of a given state having the same purifying system, here E, are related by unitary
operators on that system, it follows that there exists some unitary UE such that |Ψ〉AE = |ψ〉A ⊗
UE |0〉E . Set |ξ〉E = UE |0〉E . Since |Ψ〉AE = |ψ〉A ⊗ |ξ〉E holds for all |ψ〉A, it must be that |ξ〉 is
independent of |ψ〉. Otherwise the lefthand side would depend linearly on |ψ〉 while the righthand
side would depend quadratically on |ψ〉. More concretely, suppose |ψ0〉 leads to |ξ0〉 while |ψ1〉
leads to |ξ1〉. Then the action of UAE on |ψ0〉+ |ψ1〉 produces |ψ0〉|ξ0〉+ |ψ1〉|ξ1〉 by superposition
of these two cases. But by assumption UAE produces (|ψ0〉+ |ψ1〉)⊗ |ξ′〉 for some |ξ′〉. This can
only hold if |ξ′〉= |ξ0〉= |ξ1〉.

For application to error correction, we need a slight generalization of the statement, basically
dropping the unitary requirement. Given a set {MA( j)} of error operators on system A, define
the mapping VAE|A : |ψ〉A 7→

∑

j MA( j)|ψ〉A ⊗ | j〉E . A similar argument to that above implies the
following. If
∑

j MA( j)|ψ〉〈ψ|AMA( j)† ∝ |ψ〉〈ψ|A for all |ψ〉A, then there exists a state |ξ〉E such
that VAE|A|ψ〉A∝ |ψ〉A⊗ |ξ〉E for all |ψ〉A.

Necessity argument We can apply the above considerations to exact correction, and for this
purpose (2.9) is particularly convenient. Assume that exact correction is possible and so D◦N ◦E∝
I. Consider the state resulting from applying D ◦N ◦ E to some state |ψ〉, where we keep track of
the environment E and the ancillary degrees of freedom involved in the decoding operation, which
has Kraus operators DQ|B(k):

|Ψ〉QF E =
∑

jk

DQ|B(k)MB|A( j)VQ|A|ψ〉Q|k〉F | j〉E . (2.24)

By the non-normalized version of Proposition 2.2, since the Q part of the state is returned to |ψ〉Q,
it must be that there exists a state |σ〉EF such that |Ψ〉QF E ∝ |ψ〉Q ⊗ |σ〉EF . Now compute the
marginal state of E:

σE∝ TrQF [ΨQF E] =
∑

j j′k

〈Òψ|MB|A( j
′)†DQ|B(k)

†DQ|B(k)MB|A( j)|Òψ〉A | j〉〈 j′|E (2.25a)

=
∑

j j′
〈Òψ|MB|A( j

′)†MB|A( j)|Òψ〉A | j〉〈 j′|E . (2.25b)

This holds for all |Òψ〉, and taking matrix elements gives (2.22) with s j j′ = 〈 j|σ| j′〉. We have estab-
lished the ‘only if’ part of Proposition 2.1.
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2. GENERAL QUANTUM CODES

2.3.5 Sufficiency of the KL conditions

Sufficiency of the KL conditions can be established immediately from (2.17). Consider purifications
of the statesΨQ′E and aπQ′⊗σE . For the former we can simply use |Ψ〉Q′BE from (2.16). For the latter
may define |σ〉EE′ to be a purification of σE , with |E′| equal to the rank of σE , and take

p
a|Φ〉QQ′⊗

|σ〉E′E . Any two purifications of the same state, here ΨQ′E , are related by a partial isometry from
the purifying systems of one purification to the purifying systems of the other. (A partial isometry
is an operator which is an isometry on its support; it may annihilate some part of the input space.)
That is, there exists a partial isometry WB|QE′ such that |Ψ〉Q′BE =

p
a WB|QE′ |Φ〉QQ′ |σ〉E′E . If the

dimension of B is larger than that of QE′, then WB|QE′ can be taken to be an isometry, not just a
partial isometry. This will always be the case here. Since the overall state is pure, the rank of ΨB is
the same as that of ΨQ′E = aπQ′ ⊗σE . This implies |B| ≥ rank(ΨB) = |Q′||E′|= |Q||E′|.

Then the decoder DQ|B is implemented by first applying W †, which is a partial isometry from B
to QE′, followed by tracing out of E′. The first step of the decoder gives

W †|Ψ〉Q′BE =
p

a W †W |Φ〉QQ′ |σ〉E′E =
p

a |Φ〉QQ′ |σ〉E′E . (2.26)

Therefore DQ|B ◦ NB|A ◦ EA|Q[ΦQQ′] = aΦQQ′ , and the condition for exact correction in (2.10) is
satisfied. This establishes the ‘if’ statement of Proposition 2.1.

In fact, the decoder just constructed is isometric. The Kraus operators of the decoder are
DQ|B( j) = E′〈 j|W

†
B|QE′ , whose adjoints are the isometries VB|Q( j) = WB|QE′ | j〉E′ . Their images are

distinct, since VB|Q(k)†VB|Q( j) = E′〈k|W
†
B|QE′WB|QE′ | j〉E′ = 〈k| j〉 = δ jk. Note that there is in fact an

entire family of isometric decoders corresponding to the choice of basis in system E′.
The isometric property of the decoder also implies that the decoder so constructed for some

set of errors {M j} also corrects any other set of errors Kℓ formed by linear combination of the M j .
Previously we established that if one set is correctable, then the other is as well. However, that left
open the question of whether different decoders would be needed for the different sets of errors.
Note that this is not an issue when thinking about correcting channels: If two sets of Kraus oper-
ators represent the same channel, then a decoder for one set necessarily works for the other. For
errors, though, the Kℓ will generally give rise to a different improperly-normalized channel than
the M j . Return to (2.16) and notice that the analogous state for the errors Kℓ is just |Ψ′〉Q′BE =
LE |Ψ〉Q′BE , where L =

∑

ℓ, j bℓ j|ℓ〉〈 j|. But then we have |Ψ′〉Q′BE =
p

a WB|QE′ |Φ〉QQ′ |σ′〉EE′ for
|σ′〉EE′ = LE |σ〉EE′ , and so the decoder based on WB|QE′ will correct any set of errors formed from
the span of the M j .

2.3.6 Degeneracy for correctable errors

Error degeneracy is present in a set of correctable errors whenever σE in (2.17) does not have full
rank. That is, σE has a zero eigenvalue for some set {M j} of errors if and only if it is possible to
find two errors K ′1 and K ′2 which are linear combinations of the M j and which act degenerately on
the code space. Here is the proof.

⇒ Suppose {Mℓ} is a set of errors such that s j j′ has a zero eigenvalue. Moving to the errors K j

which diagonlize s j j′ , there is some j such that K j =
∑

ℓ b j,ℓMℓ satisfies PK†
j K j P = 0. This

implies that K j annihilates all codewords |Òψ〉 ∈ C. Now define K ′1 = b j,ℓ′Mℓ′ for the first ℓ′

such that b j,ℓ′ ̸= 0 and K ′2 = −
∑

ℓ>ℓ′ b j,ℓMℓ. Then K j = K ′1 − K ′2. Hence K ′1|Òψ〉 = K ′2|Òψ〉 for

all |Òψ〉 ∈ C.
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2.4. Approximate error correction

⇐ Suppose K ′1 and K ′2 are linear combinations of the Mℓ which act degenerately on C. Then
K ′1 − K ′2 is a linear combination which annihilates C. Say it has coefficients b′

ℓ
. Then the

vector corresponding to b′
ℓ

is an eigenvector of sℓ,ℓ′ with eigenvalue 0.

Evidently, the single-qubit and no-qubit errors are not degenerate on the five-qubit code de-
scribed above. Note that five qubits is precisely the minimal number of qubits needed for a code to
correct such errors when they act nondegenerately. There are 16 possible error actions, and since
their action in this case maps the code subspace to disjoint subspaces, each of which has dimention
2, there need to be at least 32 dimensions in total to contain all of the subspaces. This is precisely
the dimension of the state space of five qubits.

2.4 Approximate error correction

2.4.1 Example: Amplitude damping and the four-qubit code

An example of approximate error correction is furnished by the four-qubit code subject to amplitude
damping noise. Unlike the simpler example mentioned in Section 2.2.1, here no Kraus operator
is exactly corrected at all. Instead, each Kraus operator is corrected up to order γ, the damping
parameter.

The amplitude damping channel has but two Kraus operators, given in (2.5), meaning the i.i.d.
channel on four qubits has 16 Kraus operators, each of the form Kx1 x2 x3 x4

= Mx1
⊗Mx2

⊗Mx3
⊗Mx4

for x j ∈ {0,1}. Note that the Kraus operators are all of weight four, since no factor is trivial.
However, most of the operators only contribute at high orders in γ, and the code does not attempt
to correct these at all. These high-order Kraus operators are the equivalent of the uncorrected Pauli
errors in a Pauli channel. To see which Kraus operators one should attempt to at least approximately
correct, consider M1, which describes the damping event. It occurs with probability γ, and, clearly,
M1 is linear in

p
γ. On the other hand, M0 = 1− 1

2γ|1〉〈1|+O(γ2) = 1−O(pγ).
Therefore, it is sensible to focus on Kraus operators with only one damping event and further-

more to consider an approximation of these errors in which M0 is replaced by 1. Then, to first order
in
p
γ, the action of the channel is described by the five Kraus operators K ′0 = 1111, K ′1 = 111M1,

K ′2 = 11M11, K ′4 = 1M111, and K ′8 = M1111. The labelling corresponds to the binary strings
x1 x2 x3 x4. Direct calculation shows that these five error operators satisfy the Knill-Laflamme con-
ditions for the four-qubit code. In particular, the s j, j′ is diagonal, with s0,0 = 1 and s j, j = γ/2 for
j ∈ {1, 2,3, 4}. Therefore, there exists a decoder which exactly corrects these errors. Note that the
decoder constructed in this way is only defined on the subspace of the four-qubit state space which
can be reached by action of the K ′j . To extend the decoder to the entire space, we can first measure
if the qubits are in the subspace, apply the exact decoder if so, and simply output a fixed state, say
|0000〉B, if not.

The correctability of the K ′ error operators implies that the corresponding decoder will approx-
imately correct the actual output of the amplitude damping channel to first order in γ. To see why,
define the joint state

|Ψ′〉Q′BE =
2−γ

2
p

1−γ
βVB|Q|Φ〉QQ′ |0〉E + β

3
∑

j=0

K ′B(2
j)VB|Q|Φ〉QQ′ |2 j〉E , (2.27)

for β = 2
p
γ2−3γ+2p

7γ3−18γ2+4γ+8
. Here the label j in the orthonormal states | j〉E ranges from 0 to 15, and

corresponds to the 4-bit binary strings x used in the discussion of Kx above. This state is close
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to the actual state |Ψ〉Q′BE from (2.16) encountered in the error-correction procedure. By direct
calculation it can be verified that |〈Ψ|Ψ′〉|2 = 1− 5

2γ
2 +O(γ3). (Indeed, the state was constructed

to maximize this fidelity.) The decoder for the K ′x , applied to |Ψ′〉 will result in exact recovery of
|Φ〉QQ′ since each term will be exactly corrected. Because the fidelity will not decrease under the
decoding operation, the action of the amplitude damping channel will be corrected to first order
in γ, and therefore (2.8) is satisfied with ϵ = O(γ2).

2.4.2 Approximate Knill-Laflamme conditions

The Knill-Laflamme conditions enable us to decide if exact decoding is possible without having to
explicitly construct a decoder. One may then wonder if something similar is possible for approxi-
mate correction. Fortunately, the answer is yes.

Proposition 2.3

For a code C and noisy channel NB|A the state ΨQ′E from (2.16) satisfies ΨQ′E ≈ϵ πQ′ ⊗σE for
some σE in the sense that the fidelity squared satisfies F(ΨQ′E ,πQ′ ⊗σE)2 ≥ 1− ϵ if and only
if there exists a decoder such that (2.8) is satisfied.

Proof. The proof is very similar to the case of exact correction and additionally involves using
Uhlmann’s theorem. Specifically, suppose that F(ΨQ′E ,πQ′ ⊗ σE)2 ≥ 1 − ϵ. Then, by Uhlmann’s
theorem there exists a partial isometry WB|QE′ such that |Q′BE〈Ψ′|WB|QE′ |Φ〉QQ′ |σ〉EE′ |2 ≥ 1 − ϵ,
where |σ〉EE′ is a purification of σE . Tracing out E gives the decoder as before, and preserves the
fidelity. This establishes the ‘only if’ part of Proposition 2.3.

For the other direction, suppose a decoder DQ′|B exists such that F(ΦQQ′ ,DQ|B[ΨQ′B])2 ≥ 1− ϵ.
Consider the purifications |Φ〉QQ′ |σ〉EE′ and V ′QE′|B|Ψ〉Q′BE , for V ′ the isometry which implements
the decoding operation and involves the ancillary system E′ and |σ〉EE′ an arbitrary bipartite pure
state. Proceeding via Uhlmann’s theorem just as above implies that there exists a unitary on EE′

such that |Q′BE〈Ψ|V
†

QE′|BUEE′ |Φ〉QQ′ |σ〉EE′ |2 ≥ 1− ϵ. Absorbing UEE into |σ〉EE′ and tracing out QE′

implies F(ΦQ′E ,πQ′ ⊗σE)2 ≥ 1− ϵ. This establishes the ‘if’ part of Proposition 2.3.

Unlike the case of exact correction, for approximate correction the decoder might not be iso-
metric. As we saw there, isometric decoding relies on |B| ≥ |Q||E′|. However, this inequality is
violated for the optimal decoder in the example of the four qubit code and amplitude damping
noise. The optimal σE in the squared fidelity can be computed by means of semidefinite program-
ming, and appears to have rank 11. Since |Q| = 2 and |B| = 16, the inequality is violated. Indeed,
the optimal decoder can also be directly constructed by semidefinite programming, and does not
appear to have the isometric structure. It is still an open question whether for any decoder of an
approximate code there always exists an isometric decoder with similar performance. For the four-
qubit code example, the optimal squared fidelity appears to be 1 − 5

4γ
2 + O(γ3) from numerical

calculation. In this case the performance of the optimal decoder with approximation parameter ϵ
is nearly replicated by the isometric decoder, which has parameter ≈ 2ε.

24



3Stabilizer codes and the Pauli group
We are mostly interested in noise which is described by Pauli operators and stabilizer codes whose
generators are Pauli operators. In particular, in this chapter we define the Pauli group and stabilizer
codes, see how to determine the size and logical operators of a stabilizer code given its stabilizers,
and finally how to decompose a general Pauli error into a stabilizer contribution, a logical operator
contribution, and a contribution from the “destabilizers”.

3.1 Motivation: Surface code

Besides the Shor code, another stabilizer code is the surface code, one of the leading codes for
experimental implementation of quantum error correction. The surface code is a family of codes,
one for each size (m1, m2). The stabilizers of the 3 × 3 surface code are, in the same format as
(1.10) and (1.11) for the Shor code,

Z Z ·
Z Z ·
· · ·

,
· Z Z
· · ·
· · ·

,
· · ·
Z Z ·
· · ·

,
· · ·
· Z Z
· Z Z

,

X · ·
X · ·
· · ·

,
· X X
· X X
· · ·

,
· · ·
X X ·
X X ·

,
· · ·
· · X
· · X

.

(3.1)

It is simpler to represent the stabilizers by “plaquettes” in a 3× 3 lattice, as shown below.

Here the black dots represent qubits, the blue “plaquettes” represent Z-type stabilizers which in-
volve the qubits on the corners of the plaquette, and the red plaquettes represent X -type stabilizers.
Again there are a total of eight stabilizers, just like the Shor code, though this time there are an
equal number of X -type and Z-type stabilizers. Observe that the left and right boundaries are red,
in the sense that looking from left and right one sees red plaquettes. Similarly, the top and bot-
tom boundaries are blue. By alternating plaquettes in this checkerboard pattern and satisfying the
red/blue boundary constraint, one can define the surface code for an arbitrary m1 ×m2 lattice of
qubits.

How many qubits does the 3 × 3 surface code encode? What are its logical operators? How
would we encode information into the code? How do we decode it? To answer these questions
for the surface code and codes in general, we look now at the structure of the Pauli group in more
detail.
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3. STABILIZER CODES AND THE PAULI GROUP

3.2 Definition and basic properties

3.2.1 Single-qubit Pauli operators

Just for concreteness, we start with the definitions of the single-qubit Pauli operators in terms of a
fixed basis with elements |0〉 and |1〉: For k ∈ F2 we have

σ0 = 1|k〉= |k〉 σ1 = σx |k〉= |k+ 1〉
σ3 = σz|k〉= (−1)k|k〉 σ2 = σy |k〉= iσxσz|k〉

. (3.2)

The matrix representatives of these operators, when acting to the right on the vectors |0〉 ≃
�

1
0

�

and |1〉 ≃
�

0
1

�

are therefore

1=

�

1 0
0 1

�

, σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

, σz =

�

1 0
0 −1

�

. (3.3)

We will usually denote these operators by I , X , Y, Z , respectively.
The single qubit Pauli operators have the property that the product of any two is just another,

up to some phase factor ±1 or ±i. That is, for every j, k ∈ Z4, σ jσk = icσℓ for some c,ℓ ∈ Z4.
The following multiplication table for the Pauli operators gives all the particular phases; each entry
is the product of the corresponding Pauli operator listed in the row with the corresponding Pauli
operator listed in the column.

I X Y Z
I I X Y Z
X X I iZ −iY
Y Y −I Z I iX
Z Z iY −iX I

. (3.4)

3.2.2 Definition of the Pauli group

A Pauli operator on n qubits is an operator of the form

ibσj1 ⊗σj2 ⊗ · · · ⊗σjn , (3.5)

where b and all the jk for k = 1, . . . , n are elements of Z4. Call this set of operators Pn.

3.2.3 Properties of the Pauli group

Anticommutation Since the single-qubit Pauli operators either commute or anticommute, the
elements of Pn either commute or anticommute depending on the parity of the number of anticom-
muting factors. That is, if two Pauli operators g and g ′ are such that ℓ of their factors anticommute
and the remaining n−ℓ commute, then g and g ′ commute when ℓ is even and anticommute when
ℓ is odd.

Group structure By (3.4), the product of any two elements of Pn is also in Pn. The identity
operator is clearly an element of Pn: Choose b = 0 and jk = 0 for all k ∈ 1, . . . , n in (3.5). Moreover,
for any g ∈ Pn with particular b and jk, the operator g ′ ∈ Pn with identical j′k = jk but b′ = 3b is
the inverse of g. Hence Pn forms a finite group.
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3.2. Definition and basic properties

Center The center of Pn (the subgroup of elements of Pn which commute with everything in Pn)
is just the four operators ib1 for b ∈ Z4. Denote this Z(Pn).

Hermitian subset Evidently, a Pauli operator is Hermitian when b ∈ {0, 2} in (3.5), so that the
prefactor to the Pauli tensor product is real-valued. Call P±n the subset of Hermitian operators in
Pn; note that it is not a group since X Z /∈ P±n . The elements of P±n are also unitary, since their
eigenvalues are ±1. Hence g2 = 1 for all g ∈ P±n .

It will also be convenient to define P+n as the set of all Pauli operators with b = 0 in (3.5).
The non-Hermitian subset of Pn is just iP±n , that is, the elements of P±n multiplied by i. So

Pn = P±n ∪ iP±n .

Real Pauli group The collection of g ∈ Pn such that the matrix representation using (3.3) has
only real-valued entries forms the real Pauli group. Denote it by P r

n . It is a group since the product
of two real-valued matrices is necessarily itself real-valued. We will not make that much use of it,
though, because the Hermitian properties of P±n are more useful than the group properties of P r

n .

3.2.4 Representation of the Pauli group over F2n+2
2

Since Y = iX Z , all elements of Pn can be uniquely written as

ic(−1)t X uZ v , (3.6)

for c, t ∈ F2 and u, v ∈ Fn
2. Here X u denotes X u1 ⊗ X u2 ⊗ · · · ⊗ X un with X 0 = I and X 1 = X , and

similarly for Z v . Each g ∈ Pn is specified by a vector w= (u, v) ∈ F2n
2 and a phase (t, c) ∈ F2

2.
For instance, consider the example X1Y2. This satisfies X1Y2 = (X⊗I)(I⊗Y ) = (X⊗I)(I⊗iX Z) =

i(X ⊗ X )(I ⊗ Z). Therefore (t, c) = (0,1), u= (1, 1) and v = (0,1); w= (1,1, 0,1).
The real Pauli group P r

n corresponds to c = 0 and t unconstrained. Elements of the P±n satisfy
c = u · v, where the dot product is computed modulo 2. For elements of P+n things are slightly more
complicated. Let |uv| be the number of 1s in the pointwise product of u and v (i.e. u · v computed
modulo 2 as above is just |uv| mod 2). Then t = 0 if |uv| mod 4 is 0 or 1, and t = 1 otherwise.

The product of two Pauli operators has a nice representation in these terms as well. Since X
anticommutes with Z ,

X uZ v = (−1)u·v Z vX u , (3.7)

which is to say that when reversing the order of X u and Z v there is one factor of (−1) for every
qubit j ∈ 1, . . . n such that u j = v j = 1. Therefore we have

(ic(−1)t X uZ v)(ic′(−1)t
′
X u′Z v′) = ic+c′(−1)t+t ′(−1)u

′·vX u+u′Z v+v′ . (3.8)

Thus multiplication in Pn can be expressed as addition in F2n
2 along with some adjustment to the

phase. In particular, for g ∈ Pn represented by (t, c, w) and g ′ ∈ Pn represented by (t ′, c′, w′), the
product g g ′ is represented by

(t, c, w) ∗ (t, c′, w′) := (t + t ′ + u′ · v + cc′, c + c′, w+w′) , (3.9)

where addition in each entry is modulo 2. If we ignore the phase, meaning we work with the Pauli
group modulo its center, Pn/Z(Pn), then multiplication is just addition in F2n

2 .
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3. STABILIZER CODES AND THE PAULI GROUP

3.3 (Pauli) Stabilizer groups and codes

Now we turn to stabilizer codes based on the Pauli group. We give the definition, then determine
the size of the stabilizer code for a given stabilizer group, and finally define the logical operators
of the code.

3.3.1 Definition and basic properties

Stabilizers and their associated codes Consider a subset G ⊆ Pn of Pauli operators and define C
to be the common +1 eigenspace of all the g j . Thus the g j stabilize C in the sense that g j|ψ〉= |ψ〉
for all g j ∈ G and |ψ〉 ∈ C. C is the stabilizer code defined by G.

Properties Note that for the trivial case C = 0, G can be composed of arbitrary operators. How-
ever, assuming that C ̸= 0, the following properties hold:

1. By construction, the g j have a +1 eigenvalue, and hence G ⊆ P±n .

2. Each element of G is its own inverse (immediately implied by G ⊆ P±n ).

3. All elements of G commute. For suppose there exist g, g ′ ∈ G such that [g, g ′] ̸= 0. Since
g g ′ is also a stabilizer of C, g g ′ ∈ P±n and hence (g g ′)2 = 1. On the other hand, (g g ′)2 =
g g ′g g ′ = −g2(g ′)2 = −1, a contradiction.

Stabilizer group As we just saw, g g ′ stabilizes C if g and g ′ do. This implies that G generates
a group, since every element will be its own inverse. We denote the resulting stabilizer group by
S; its elements are stabilizers, and the elements of G are the stabilizer generators. By the above
properties, the interesting groups S (with nontrivial C) are those that are consist of commuting
Pauli operators drawn from P±n . There is one particular element of P±n which cannot be part of any
nontrivial stabilizer group S, namely −I .

Independent generators Suppose that S is a stabilizer group with generators G. It is most useful
to consider the case of independent generators, i.e. when no element of G is the product of any
collection of the remainder. Independence of a given set G of elements of P±n is equivalent to the
statement that the product of any subset of Gs elements is unequal to 1; if the product is 1, then
any one of them is the product of the remainder.

In terms of the vector representation, independence of a set G = {g j ∈ P±n }
m
j=1 is equivalent to

linear independence of the associated vectors {w j ∈ F2n
2 }. Suppose the elements of G are depen-

dent, meaning
∏m

j=1 g
a j

j = 1 for some a j ∈ F2. Then the associated vector representatives satisfy
∑m

j=1 a jw j = 0, meaning the w j are dependent. Conversely, suppose that
∑m

j=1 a jw j = 0 holds for

some a j ∈ F2. Then the product of the g j satisfies
∏m

j=1 g j = ib1 for some b ∈ Z4. But b must
equal zero since the product of the g j is a stabilizer and therefore b ̸= 0 is ruled out.

Syndrome decoding For a stabilizer code on n qubits with m independent stabilizer generators,
the syndrome s ∈ Fm

2 is the classical data which results from quantum measurement of each of
the stabilizer generators. Measurement of an element of P±n has two possible outcomes, and our
convention is that the jth bit s j of s corresponds to the eigenvalue (−1)s j of the jth stabilizer
generator.
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3.3. (Pauli) Stabilizer groups and codes

The task of a syndrome decoder, which is a type of codespace decoder, is to determine an
appropriate correction operator from the syndrome and then apply it to the qubits. For Pauli noise
models, it turns out that taking the correction operator to be Pauli operators loses nothing in error-
correction performance. Indeed, we may as well choose the correction to be an element of P+n as the
phase of the correction operator will not be important. Nonetheless, for more general noise models
more general correction operations are possible. Moreover, it may be that syndrome decoding is
also no longer appropriate.

3.3.2 Examples

The five qubit code It turns out that five physical qubits are necessary in order to protect a single
qubit of information from arbitrary single-qubit errors. Here are the stabilizers of such a code:

X Z ZX I , IX Z ZX , X IX Z Z , ZX IX Z . (3.10)

Note that the stabilizers are cyclic shifts of each other. The final shifted stabilizer, Z ZX IX , is not
independent; it is the product of all of the listed generators.

The Steane code Independently of Shor, Steane also discovered that quantum error correction
is possible. He constructed a seven-qubit code encoding one qubit based on the classical Hamming
code of seven bits. Like the Shor code, the stabilizers come in X and Z types:

X X I X X I I
X I X X I X I
I X X X I I X

and
Z Z I Z Z I I
Z I Z Z I Z I
I Z Z Z I I Z

. (3.11)

In this case the two sets of stabilizers are identical, except for X ↔ Z . Since each stabilizer has
weight four and overlaps with any of the others in only two qubit positions, all the stabilizers
commute.

The four-qubit code and general Shor codes Instead of concatenating two three-bit repetition
codes, we could concatenate an m1-bit repetition code with an m2-bit repetition code. For example,
concatenating two two-bit repetition codes results in a four-qubit code that encodes one qubit. Its
stabilizers are

Z Z I I , I I Z Z , X X X X . (3.12)

The four qubit code cannot recover from arbitrary errors, but can recover from a single erasure.

Types of stabilizer codes There are four major types of stabilizer codes:

1. General stabilizer codes; the stabilizers come from P±n .

2. Codes whose stabilizers come from P±n ∩ P r
n , i.e. the stabilizers are Hermitian and come from

the real Pauli group. For instance, the five-qubit code.

3. Calderbank-Shor-Steane (CSS) codes, which have a generating set in which each stabilizer
generator is either of X type or of Z type, e.g. the Shor and Steane codes.

4. Classical linear codes, a special case of CSS codes in which all the stabilizers are of Z type.
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3. STABILIZER CODES AND THE PAULI GROUP

3.3.3 Size of C

For a given stabilizer group S, how large is its stabilizer code C, i.e. what is the dimension of C?

Proposition 3.1

For a stabilizer group having m independent generators (and which does not contain −1),
the dimension of C is equal to 2n−m. That is, a stabilizer code with m independent stabilizer
generators can encode k = n−m qubits.

Proof. The caveat that S not contain −1 rules out the case C = 0.
For each g j ∈ G, consider the operator π j =

1
2(1+ g j). Since g2

j = 1, each π j is a projector:

π2
j =

1
4(1+2g j + g2

j ) = π j . And because the g j all commute, the π j are a collection of commuting
projectors. Their common +1 eigensubspace is V , and indeed this common eigensubspace is the
+1 eigensubspace of their product π=

∏m
j=1π j .

The size of the +1 eigenspace of π is simply equal to its trace. Expanding this out, we have

Tr[π] = Tr[
m
∏

j=1

1
2(1+ g j)] =

1
2m Tr[1+
∑

j

g j+
∑

j ̸= j′
g j g j+
∑

j ̸= j′ ̸= j′′
g j g j′ g j′′+ · · ·+ g1 g2 · · · gm] , (3.13)

where the · · · indicate the missing terms, which are sums over products of distinct quadruples of
the g js, then products of five, then six, and so on. The last term, as given, is the product of all the
generators. By assumption the generators are independent, and thus all terms but the first are not
equal to 1. Hence the trace of all terms but the first is zero. This gives Tr[π] = 1

2m Tr[1] = 2n−k as
claimed.

A simple way to remember this is that each independent generator halves the size of the com-
mon +1 eigenspace.

3.3.4 Logical operators

Idea of the logical operators Consider a quantum error-correcting code C which encodes k
qubits. The idea of the logical operators on C is that they are to the code space what the single-qubit
Pauli operators are to the space of k qubits. Their action on C should be a representation of Pk.

Normalizer of S in Pn One thing the logical operators should do is map C to itself. In the setting
of stabilizer codes, a logical operator g ∈ Pn should satisfy

sg|ψ〉= g|ψ〉 ∀s ∈ S, |ψ〉 ∈ C . (3.14)

Multiplying both sides by g−1 yields g−1sg|ψ〉 = |ψ〉 for all s ∈ S and |ψ〉 ∈ C. Therefore g−1sg
has to be an element of S. The set of such g ∈ Pn is called the normalizer of S in Pn, denoted by
N(S, Pn). Formally,

N(S, Pn) := {g ∈ Pn : g−1sg ∈ S ∀s ∈ S} . (3.15)

Since all g and s in the definition commute or anticommute for the Pauli group, gsg−1 = ±s.
And indeed it must be that gsg−1 = s, as otherwise gsg−1 would not be in S. Hence the normalizer
is actually equal to the centralizer C(S, Pn) := {g ∈ Pn : gs = sg ∀s ∈ S}.
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3.4. Symplectic structure of the Pauli group

Defintion of logical operators The logical operators of a stabilizer code with stabilizer group
S are the operators in N(S, Pn)/S, i.e. all Pauli operators in the normalizer of S modulo elements
of S itself. In the following section, we will see that the logical operators as so defined do indeed
represent Pk.

Examples Looking at (3.1), we can easily verify that the logical operators of the Shor code given
in (1.12) are also logical operators of the 3× 3 surface code. That is, the logical Z operator is a
product of Z operators on a vertical line of qubits stretching from the bottom to the top, while the
logical X operator is a product of X operators on a horizontal line of qubits between the left and
right. This holds for surface codes of arbitrary size. The logical operators are indeed independent
of the stabilizers: no product of Z-type stabilizers will result in the product of Z along a vertical
line.

Similarly, one can confirm that X X X X X and Z Z Z Z Z are logical operators of the five-qubit
code, X X X X X X X and Z Z Z Z Z Z Z are logical operators of the Steane code, and X X I I and Z I Z I
are logical operators of the four-qubit code. Since the logical operators are really only defined up
to stabilizers, these choices are not unique; an alternate set of logical operators for the Steane code
is for instance X I I IX X I and Z I I I Z Z I .

3.4 Symplectic structure of the Pauli group

The commutation structure of the Pauli group endows the vector representation on F2n
2 with a sym-

plectic structure, making it a symplectic vector space. This structure allows us to easily construct
logical operators for a stabilizer code.

3.4.1 Commutation

Symplectic form To understand the nature of the normalizer N(S, Pn), it is useful to first start
with the commutation structure of the Pauli group. Consider two elements g, g ′ of Pn with associ-
ated vectors w= (u, v) and w′ = (u′, v′) from §3.2.4. By the (3.8) it follows that

[g, g ′] = 0 ⇐⇒ u · v′ + u′ · v mod 2= 0 . (3.16)

This condition defines a symplectic structure on F2n
2 . First define

J =

�

0 1
1 0

�

. (3.17)

Then using J we define the symplectic bilinear form 〈w, w′〉 ∈ F2 of w, w′ ∈ F2n
2 by regarding w and

w′ as column vectors and setting
〈w, w′〉 := wT Jw′ . (3.18)

Then (3.16) becomes
[g, g ′] = 0 ⇐⇒ 〈w, w′〉= 0 . (3.19)

“Symplectic” just means that the bilinear form is alternating (〈w, w〉 = 0) and non-degenerate
(〈w, w′〉 = 0 for all w′ ∈ F2n

2 implies w = 0). (The symplectic form is not an inner product in the
usual sense, due to the alternating property: every vector would have “length” zero.)
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3. STABILIZER CODES AND THE PAULI GROUP

Parity-check matrices The symplectic form and vector representation gives a simple means to
compute the syndrome of a given error for a given code. Suppose that the stabilizer code C has
independent stabilizers {g j}mj=1, with associated vectors w j ∈ F2n

2 . For a Pauli error g with associ-

ated vector w, by (3.19) the syndrome bit s j = wT
j Jw. Collecting the wT

j into an m× 2n matrix H,

whose jth row is wT
j , the entire syndrome of w is given by

s = HJw . (3.20)

Hence the syndrome s is a convenient, linear function of w. Note that the commutation requirement
of the stabilizer generators can be expressed as HJHT = 0.

For CSS codes with mx X -type checks and mz Z-type checks, the matrix H has the form

H =

�

HX 0
0 HZ

�

(3.21)

for an mx × n matrix HX and an mz × n matrix HZ . The commutation condition above reduces to
HX HT

Z = 0 in this case.
The formalism also encompasses the case of classical linear codes. In this setting the only errors

we care about are of X -type, while the stabilizers are of Z-type (or vice versa). Thus w = (u, 0)
for u, 0 ∈ Fn

2, while H has block form H =
�

0 Hc
�

, where the 0 is now the zero matrix. Then
s = HJw = Hcu, which is the standard syndrome calculation in terms of the classical parity check
matrix Hc and error vector u.

3.4.2 Properties of the normalizer

Normalizer as symplectic complement Overloading notation, let S also denote the subspace
of F2n

2 spanned by the vector representatives w j of a set of independent stabilizer generators. By
the discussion in §3.3.1, the dimension of S is m. And by the discussion in the previous section,
the elements of the normalizer have vector representatives w such that 〈w, w′〉 = 0 for all w ∈ S.
Denote this set, the symplectic complement, by S⊥ := {w ∈ F2n

2 : 〈w, w′〉 ∀w′ ∈ S}; we also overload
S⊥ to refer to N(S, Pn).

Size from rank-nullity The dimension of S⊥ is the number of independent generators of N(S, Pn).
To determine its size, consider the map f : F2n

2 → F
m
2 defined by f (w) = HJw. It has rank equal

to m, since the m rows of H are independent and J is invertible. The kernel of the map is S⊥, and
therefore by the rank-nullity theorem it follows that m + dim(S⊥) = 2n. Thus the dimension of
S⊥ is 2n − m. As a subspace of S⊥, S contributes m of these dimensions, leaving 2(n − m) = 2k
dimensions for S⊥/S. This subspace corresponds to 2k independent generators for N(S, Pn)/S, an
appropriate number of generators needed to represent Pk, as an X and a Z are needed for each
qubit. But we still need to confirm that the algebraic structure of N(S, Pn)/S is indeed Pk.

Isotropic and Lagrangian subspaces This argument also implies that at most n linearly inde-
pendent elements in F2n

2 can be pairwise symplectic orthogonal. More than n would imply S⊥ has
dimension less than n, but this would contradict the assumption that S ⊆ S⊥. In the study of sym-
plectic vector spaces, a subspace like S which is contained in its symplectic complement (S ⊆ S⊥)
is called isotropic. If S has maximal dimension n, such that S = S⊥, it is called Lagrangian. A
subspace S is symplectic when S ∩ S⊥ = 0. Observe that the rank-nullity argument above applies
for arbitrary H, not just those corresponding to isotropic subspaces. When m = 2n and the rows
of H are independent, it follows that S⊥ = 0 and S is symplectic. That is, no Pauli operator can
commute with every one of a set of 2n independent generators.
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3.4. Symplectic structure of the Pauli group

3.4.3 Symplectic bases for the Pauli group

Standard generators for Pn The Pauli group Pn has a standard set of generators, namely the X
and Z operators acting on the individual qubits. These generators have the property that they come
in pairs, one pair for each qubit, such that the operators in the pair anticommute, but they each
commute with all the elements of all other pairs.

Symplectic basis The structure of the standard generators is related to the symplectic structure
given by J on F2n

2 : The vectors associated to the standard generators of Pn form a symplectic basis
for F2n

2 . A symplectic basis for F2n
2 is a basis with elements e1, e2, . . . , en and f1, f2, . . . , fn such that

〈e j , ek〉= 〈 f j , fk〉= 0 while 〈e j , fk〉= δ j,k. It is easy to see that a collection of vectors w j , arranged
as rows of a 2n× 2n matrix M is a symplectic basis when, for an appropriate ordering of the w j ,
MJ M T = J . Such a matrix is called a symplectic matrix.

Associated to a symplectic basis of F2n
2 is a set of symplectic generators for the Pauli group. This

is a set of 2n Pauli operators, which we may group into pairs (g j , g̃ j) for j = 1, . . . , n, such that g j
commutes with all gk and g̃k for k ̸= j and anticommutes with g̃ j , and similarly for g̃ j . A set of
symplectic generators is also sometimes called a full tableau.

Every Pauli operator g ∈ Pn can be written as a product of the g j and g̃ j , times a prefactor ±1
or ±i. Which operators appear is determined by the commutation structure. Specifically, g j is a
factor in the decomposition of g precisely when g anticommutes with g̃ j , g̃ j when g anticommutes
with g j . This follows from the biorthogonality property of the symplectic basis.

Stabilizer tableau Importantly, the standard generators are not the only set of generators of Pn
which have the symplectic structure. Put differently, there are many symplectic bases of F2n

2 . Given
a stabilizer S, it is possible to construct a symplectic basis for Pn which has as elements generators
of both S and of N(S, Pn)/S. Such a basis for Pn is called a (full) stabilizer tableau.

For example, Table 3.1 gives a stabilizer tableau of the five-qubit code.

1 X Z Z X I X I X X X
2 I X Z Z X I X X I I
3 X I X Z Z X I I I X
4 Z X I X Z I X X X X
5 X X X X X Z Z Z Z Z

Table 3.1: Stabilizers (left), destabilizers (right), and logical operators (bottom) associated with
the five-qubit code.

The stabilizer tableau is not unique; for example, Table 3.2 gives another tableau for the five-qubit
code which has the same stabilizer generators but different logical operators and destabilizers.

1 X Z Z X I X Z X I I
2 I X Z Z X X Z I I I
3 X I X Z Z X Z I X I
4 Z X I X Z X I I I I
5 X Z I I Z I Z I X X

Table 3.2: Another stabilizer tableau for the five-qubit code.
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3. STABILIZER CODES AND THE PAULI GROUP

3.4.4 Symplectic Gram-Schmidt procedure

Idea of SGS The standard Gram-Schmidt procedure for constructing an orthonormal basis for
an arbitrary collection of vectors can be easily modified to yield a means of constructing a basis
adapted to the symplectic structure from an arbitrary collection of linearly independent vectors.
Let us call it SGS, and describe how it works directly on elements of the Pauli group Pn. Due to the
vector correspondence, SGS has essentially the same action on F2n

2 .

Input and output of SGS The input to SGS is an arbitrary sequence of independent Pauli opera-
tors, call it G ⊆ Pn. The outputs of SGS are two-fold: a sequence C of independent commuting Pauli
operators and a sequence Q of pairs of Pauli operators, such that all operators are independent and
every operator commutes with all other operators in C and Q, except their partner in their pair. For
m the number of independent elements of G, the sizes |C | and |Q| will satisfy |C |+ 2|Q|= m.

Procedure Initially C and Q are empty sets and G is given. Then we repeat the following SGS
iterations until G is empty. First pick the first element from G (remove it from G), call it ga. Next,
check if it anticommutes with any other element of G. If not, append g to C , and start the next
SGS iteration. If it does, pick/remove the first anticommuting element from G, call it gb. Then,
for all elements g ∈ G, compute j = 〈w(g), w(ga)〉 and k = 〈w(g), w(gb)〉 and replace g by gk

a g j
b g.

Append the pair (ga, gb) to Q and start the next SGS iteration.

Analysis

• The SGS procedure is designed to adjust the commutation of Pauli operators, or equivalently
the symplectic property of vectors in F2n

2 . It does not deal with independence, which is why
the input sequence G is assumed to be independent. This is unlike the familiar case of Gram-
Schmidt over Rn, which targets orthogonality under the inner product. Since orthogonality
and independence are related in that setting, Gram-Schmidt over Rn simultaneously handles
independence. (Note that there are some independence constraints from commutativity in
the symplectic case, as we saw for Lagrangian subspaces.)

• The output C will contain operators which commute with themselves and everything in Q.
Thus, it will essentially be the center of G (it will generate the center of the group generated
by G).

• The symplectic structure is enforced by the adjustment to G when an anticommuting pair
(ga, gb) is found. This step ensures that all the updated elements of G commute with both
ga and gb. Any g ∈ Pn which anticommutes with ga can be made to commute by multiplying
it with gb, since then the product gb g has two factors which anticommute with ga.

3.4.5 Constructing stabilizer tableau

Logical operators Now it is straightforward in principle to construct the logical operators of a
stabilizer code given an independent set of stabilizer generators. The generators are given by the
rows of the matrix H. First construct generators of S⊥ by finding a basis for the (right) null space
of the matrix HJ . In particular, the basis should be chosen to include the generators of S as the
first m elements. Then apply SGS to the basis of S⊥. This will return a set of generators of S in
C and a set of generators of S⊥/S in Q. Hence the logical operators do indeed represent Pk for k
encoded qubits.
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3.5. Correction of Pauli errors

Full stabilizer tableau Given an independent set of generators of S is it also nice to construct
a symplectic basis for Pn which is adapted to S. Such a symplectic basis is called a (full) stabi-
lizer tableau, and it also contains generators of S⊥/S. More specifically, a stabilizer tableau is a
symplectic basis consisting of pairs (g j , g̃ j) for j = 1, . . . , n such that {g j}mj=1 generates S and the

pairs {(g j , g̃ j)}nj=m+1 generate S⊥/S. The partners { g̃ j}mj=1 of the stabilizers are often called the
“destabilizers”. Another good name would be “antistabilizers”, but “destabilizers” is funnier.

Note that the stabilizer S does not uniquely determine the tableau. We will say two stabilizer
tableau are equivalent when one can be obtained by the following operations on the other. Sta-
bilizers and logical operators can be multiplied by arbitrary stabilizers and destabilizers by any
operators, such that the symplectic structure is maintained.

One way to construct a stabilizer tableau from {g j}mj=1 is as follows. First append to {g j} the
standard generators to obtain a sequence of m+2n Pauli operators. These are not all independent,
so remove elements from the end of the sequence until an independent set of n generators is
reached. Applying SGS to the result will generate a symplectic basis adapted to the stabilizer S. In
general, for 2n independent generators, SGS will return C = {} and Q a symplectic basis for Pn.
This is because at most n independent Pauli operators can commute. Due to the ordering of the
input to SGS, in this case the first elements of the first m pairs in Q will generate S. The remaining
n−m pairs generate S⊥/S, just as above.

3.5 Correction of Pauli errors

3.5.1 Syndrome decoding

Consider the effect of a Pauli error g ∈ Pn on the codeword |Òψ〉 of a stabilizer code C. For stabilizer
generators bg which commute with g, the state g|Òψ〉 will again be stabilized by bg. However, when
bg anticommutes with g, the effect is that the stabilizer is changed to −bg:

bg g|Òψ〉= −gbg|Òψ〉= −g|Òψ〉 . (3.22)

Thus, the effect of a Pauli error on a stabilizer code is simply to change the sign of some stabilizer
generators. Measuring the stabilizers to generate the syndrome reveals precisely which ones are
changed, and moreover, this measurement does not cause any change to the state g|Òψ〉.

Given the observed syndrome, the decoder decides on a correction operation g ′, and therefore
upon correction the state becomes g ′g|Òψ〉. When g ′g ∈ S, the state is properly restored. Denoting
by synd : Pn→ Fm

2 the function which maps an error g to its syndrome s ∈ Fm
2 and by corr : Fm

2 → P±n
the function which specifies the correction operation g ′ given the syndrome s, we can write the
condition that an error g is correctly decoded as

corr(synd(g))g ∈ S . (3.23)

It is illuminating to consider the operation of the syndrome decoder using the decomposition
of the error g into stabilizers, destabilizers, and logical operators.

• Only the destabilizer part can be detected. This is the only part of g which anticommutes with
the stabilizer and can thus change the stabilizer measurement outcome.

• The stabilizer contribution is responsible for error degeneracy. Errors which only differ by a
stabilizer will certainly have the same syndrome and therefore the same correction operation
will be applied. There is also no point in including a stabilizer contribution to the correction
Pauli operator, as it will have no effect on the qubits.
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3. STABILIZER CODES AND THE PAULI GROUP

• Logical operators are uncorrectable errors. This is by design, since they should manipulate the
encoded information in the codespace. But therefore they will have a trivial syndrome and
be completely undetectable to syndrome decoding.

Therefore, what the syndrome decoder needs to do for each correctable error is determine
whether (and what kind) of logical operator it contains, given its destabilizer contribution. The
correction operation is then the destabilizer times the logical operator. The former ensures that
the system is returned to the codespace, while the latter (hopefully) ensures that the vectors in the
code subspace are each properly restored. Both of these aspects are contained in the statement
(3.23).

There is a subtlety in this picture of error correction in that the logical contribution to a given
error is not independent of the destabilizer contribution. The decomposition is relative to a given
stabilizer tableau, and different choices of logical generators will lead to different statements about
whether a given error does or does not contain a logical operator in its decomposition. Put differ-
ently, the correction operation is independent of the particular stabilizer tableau, but its destabilizer
and logical contributions can each vary. This is essentially just the fact that a given vector has dif-
ferent components relative to different bases. Nonetheless, in the context of error correction, it can
be tempting to think that that the logical contribution to a given Pauli operator is unique.

3.5.2 Correctable errors

The syndrome decoder can only choose one correction operation for each value of the syndrome,
but this does not mean that the decoder can only correctly decode a single error per syndrome value.
If g ∈ Pn is correctly decoded, then so too is g ′, provided g g ′ ∈ S. The destabilizer contributions
to g and g ′ must therefore be identical, and hence the correction will be identical. The correction
operation will be g ′′g for some g ′′ ∈ S, so that g is corrected. Applied to g ′, the combined action
of error and correction is simply g ′′g g ′, which acts trivially on the codespace.

The syndrome decoder will therefore succeed on any set of Pauli errors such that when the
errors are partitioned into subsets according to syndrome (destabilizer contribution), the errors in
each subset only differ by stabilizers. The stabilizer measurement will determine the subset, and
within each subset the logical contribution of all the errors is identical. So the correction operation
can be chosen to be the destabilizer indicated by the syndrome times the logical operator indicated
by the error subset. Put differently, a sufficient condition for correctability of a set of Pauli errors
by syndrome decoding is that the product g g ′ of any two errors g and g ′ is either a stabilizer
(meaning g and g ′ have the same syndrome) or anticommutes with some stabilizer (meaning they
have different syndromes).

By the same logic, this condition is also necessary. That is, syndrome decoding cannot correctly
decode both g and g ′ if they have the same syndrome (same destabilizer contribution), but different
logical contributions. The combined effect of error and correction would in this case be a logical
operator, meaning the input state would not be correctly restored.

In fact, these are the same necessary and sufficient conditions that arise directly from the Knill-
Laflamme conditions. Hence if a set of Pauli errors are exactly correctable by some decoder, then
they are correctable by the syndrome decoder. Applied to stabilizer codes and Pauli errors, the KL
conditions have the simpler form

Proposition 3.2
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3.5. Correction of Pauli errors

A set {g j ∈ Pn}tj=1 of Pauli errors is correctable using a Pauli stabilizer code C defined by a

stabilizer group S if and only if for all j, k either g†
j gk ∈ S or g†

j gk anticommutes with some
element of S.

That the condition is sufficient for correctability is established by the syndrome decoder, but let us
give a completely self-contained proof.

Proof. To see that correctability follows from the stated conditions, we give a set of c j,k such that
the Knill-Laflamme conditions hold. When g†

j gk ∈ S, it follows that P g†
j gkP = P, and therefore

c j,k = 1. On the other hand, when g†
j gk anticommutes with some bg ∈ S, then c j,k = 0 since

P g†
j gkP = P g†

j gk gP = −P g g†
j gkP = −P g†

j gkP . (3.24)

To show necessity, we establish the contrapositive, that the negation of the condition implies
uncorrectability. So suppose that for some j, k g†

j gk commutes with S but is not contained in S.

Therefore it is a logical operator, and thus the value of 〈Òψ|g†
j gk|Òψ〉 will vary with the state |Òψ〉.

For instance, |Òψ〉 an eigenstate of g†
j gk will lead to a different value than an eigenstate of a logical

operator which anticommutes with g†
j gk. In this case the Knill-Laflamme conditions cannot possibly

be satisfied, and the set of errors is necessarily uncorrectable.

Note that the number of possible syndromes may be much larger than the number of subspaces
which are ostensibly correctable, or even the number of errors which are ostensibly correctable.
For instance, the Shor code can correct all single-qubit errors as well as no error, which is a total
of 28 possibilities. But the eight-bit syndrome can identify 28 = 256 different subspaces. These
correspond to higher-weight errors.

Distance The distance d of a stabilizer code C with stabilizer S is the smallest weight of the
logical operators N(S, Pn)/S. By the discussion above, it is the smallest number of qubits that can
be in error such that the error is undetectable by the code, assuming that the identity operator is
a correctable “error”. In terms of the Knill-Laflamme conditions, PM P ̸= cP for some c ∈ C for an
operator M ∈ Pn of weight d. A code of distance d can correct all Pauli errors of weight no larger
than t = ⌊ d−1

2 ⌋: Since the project of any two such errors M j and Mk has weight 2t, PM†
j MkP = cP

is satisfied for some c ∈ C.
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4Encoding, decoding, and the Clifford group
In this chapter we study the Clifford group of unitary operators, which give a means to construct
encoding and measurement circuits of stabilizer codes. We will also see how to simulate Clif-
ford unitary operations and measurements of Pauli operators just using the formalism of stabilizer
tableau, a result is usually known as the Gottesman-Knill theorem.

4.1 The Clifford group

4.1.1 Unitaries which preserve the Pauli group

An important class of n-qubit unitary operations are those U which map Pauli operators to Pauli
operators under conjugation: U gU† ∈ Pn for g ∈ Pn, i.e. the normalizer N(Gn, Un) of the Pauli
group in the group of unitaries Un. Since the overall phase of an operator U drops out when U acts
by conjugation, we are ultimately interested in N(Gn, Un)/U(1), the quotient group in which Us
with different phases are identified. This group is known as the Clifford group Cn. Since unitaries
in the normalizer cannot change eigenvalues, the elements of the Clifford group map P±n to itself.
This allows the action of Cn to be described in terms of the Pauli group itself.

4.1.2 Single- and two-qubit Clifford operators

We have already met two examples of Clifford unitaries, namely the Hadamard and CNOT gates.
Another single-qubit Clifford unitary is the S =

p
Z gate, whose action is |x〉 7→ i x |x〉 for x ∈ F2. In

the matrix representation on the standard basis states of one and two qubits, these operators take
the form

H = 1p
2

�

1 1
1 −1

�

, S =

�

1 0
0 i

�

, CNOT12 =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (4.1)

In the CNOT gate, qubit 1 is the control and qubit 2 is the target.

Action on X and Z

• We have already seen that HX H = Z and HZH = X .

• For the S gate, clearly SZS† = Z . And by direct calculation we find SXS† = Y = iX Z .

• The CNOT gate is more interesting. When qubit 1 is the control and qubit 2 the target, we have
UCNOT = |0〉〈0|1⊗12+|1〉〈1|1⊗(σx)2. Therefore I1X2 is invariant, i.e. UCNOT I1X2U†

CNOT = I1X2,
since X is the operator in the target. Similarly, Z1 I2 is also invariant, since the control is done
in the Z basis. We will just write these as X2 and Z1 from now on, omitting the identity I
factors. For X1 on the other hand, it is clear that flipping the control and then applying CNOT

is equivalent to first applying CNOT and then flipping both the control and target. Therefore,
X1 is transformed into X1X2. Rewriting the target in the eigenbasis ofσx gives the equivalent
expression UCNOT = 11⊗|+〉〈+|2+(σz)1⊗|−〉〈−|2, i.e. while CNOT12 is nominally a controlled
bit flip on qubit 2, controlled on the Z eigenstate of qubit 1, it is equally well a controlled
phase flip on qubit 1, controlled on the X eigenstate of qubit 2. Hence, by the same logic as
above, Z2 is transformed into Z1Z2.
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4. ENCODING, DECODING, AND THE CLIFFORD GROUP

Altogether we have the following tables:

H
X Z
Z X

S
X Y
Z Z

CNOT12

X1 X1X2
Z1 Z1

X2 X2
Z2 Z1Z2

Generator representation on F2n+2
2 These transformation rules completely determine how H,

S, and CNOT gates will act on any given Pauli operator, since single-qubit X and Z operators are
the standard basis of Pn. In terms of the F2n

2 representation, we can write g = (−1)t icX uZ v for
t, c ∈ F2 and u, v ∈ Fn

2, and then compute

U gU† = (−1)t icUX uU†UZ vU† = (−1)t icUX u1
1 U†UX u2

2 U† · · ·UX un
n U†UZ v1

1 U† · · ·UZ vn
n U† . (4.2)

The H and S gates only act on a single qubit, and their action on, say, qubit j in the F2 representation
is simply

H j : (t, c, (u j , v j)) 7→ (t + u j v j , c, (v j , u j)) (4.3)

S j : (t, c, (u j , v j)) 7→ (t + cu j , c + u j , (u j , u j + v j)) (4.4)

S†
j : (t, c, (u j , v j)) 7→ (t + u j + cu j , c + u j , (u j , u j + v j)) . (4.5)

Here we include only the u j and v j components of w, since all others will be unaffected.
The CNOT gate is more complicated, as it involves two qubits. Suppose that qubit j is the control

and qubit k is the target. Then the effect of CNOT j,k is

CNOT j,k : (t, c, (u j , uk, v j , vk))→ (t, c, (u j , u j + uk, v j + vk, vk)) . (4.6)

In this case the phase is completely unaffected, since the CNOT gate neither changes the ordering
of X and Z operators when conjugating the expression (X u1 ⊗ X u2)(Z v1 ⊗ Z v2), nor introduces Y
operators.

Other useful single- and two-qubit Clifford operations

• Conjugation by a Pauli operator is a Clifford operation, too, but one which only affects the
sign. In particular,

X j : (t, c, (u j , v j)) 7→ (t + v j , c, (u j , v j)) (4.7)

Z j : (t, c, (u j , v j)) 7→ (t + u j , c, (u j , v j)) . (4.8)

• The SWAP j,k operator, which interchanges qubits j and k, can be decomposed into three CNOT

gates: SWAP j,k = CNOT j,kCNOTk, j CNOT j,k. Clearly X j↔ Xk and Z j↔ Zk, meaning

SWAP j,k : (t, c, (u j , uk, v j , vk))→ (t, c, (uk, u j , vk, v j)) . (4.9)

• Related to CNOT is the controlled-phase gate CPHASE, U = |0〉〈0|1⊗12+|1〉〈1|⊗(σz)2. Unlike
CNOT, the CPHASE gate is even more symmetric in how it operates on X and Z . Clearly it
commutes with both Z1 and Z2. Since CPHASE12 = H2CNOT12H2, it maps X1 to X1Z2 and
likewise X2 to Z1X2. Hence we have

CPHASE j,k : (t, c, (u j , uk, v j , vk))→ (t + u1u2, c, (u j , uk, uk + v j , u j + vk)) . (4.10)
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4.2. Decomposing Clifford operations

4.1.3 Representation of Cn over F2

As we have seen above, since U g1 g2U† = U gU†U g2U† for g1, g2 ∈ Pn, the action of Clifford
operators on the standard generators of Pn completely specifies the action on all Pauli operators.
Therefore, a Clifford unitary U ∈ Cn can be specified by a set of symplectic generators {(g j , g̃ j)}nj=1

taken from P±n , the image under U of the standard generators. We may then recycle the F2n+2
2

representation of Pn to represent elements of Cn. The only restriction is that the phase contribution
c for each g j and g̃ j , with F2n

2 vector (u, v), must satisfy c = u·v. Hence an element of Cn is specified
by a vector of phases (t1, . . . , tn) ∈ Fn

2 and a symplectic matrix M whose rows are the w ∈ F2n
n .

Ignoring phases, the action of U ∈ Cn on some g ∈ Pn is given by wT M . This corresponds
to expanding g as a product of standard generators, replacing these with their images under U ,
and then performing the multiplication by addition in F2n

2 . To determine the correct phase of the
output, we do precisely the same thing, but use (3.9) to perform the multiplication. Denoting the
representation of g by (t, c, (u, v)), the product we want to compute is (−1)t ic

∏n
j=1 g

u j

j

∏n
k=1 g̃ vk

k
using (3.9).

4.2 Decomposing Clifford operations

It turns out that the three operations CNOT, Hadamard, and phase are enough to generate the
Clifford group.

4.2.1 Setup

Consider a Clifford unitary U ∈ Cn, specified by a full tableau T consisting of a 2n× 2n symplectic
matrix M and a 2n×2 matrix of pairs (t j , c j)which specify the phase. Initially the c j are such that the
Pauli operator corresponding to (t j , c j , w j), for w j the jth row of M , is Hermitian. The full tableau
corresponds to a sequence of g j ∈ P±n , j = 1, . . . , 2n such that g j and gn+ j are anticommuting pairs,
for j = 1, . . . , n. Here we switch convention of the symplectic basis to a length-2n sequence of Pauli
operators instead of a length-n sequence of pairs of Pauli operators.

The following procedure will generate a sequence K = (K1, K2, . . . ) of Clifford generators in
which each element is either CNOT, H, S†, X , or Z , such that

∏

j=ℓ Kℓ = U†. This is done by making

use of a block decomposition of M as M =

�

A B
C D

�

, where the blocks are all n× n matrices.

The procedure sequentially transforms the Pauli operators g j and gn+ j into ±X j and ±Z j , re-
spectively, and then fixes the signs. A sequential procedure is possible because the commutation
relations will require that the constructed gk and gn+k for k > j have only identity factors on qubits
1 to j. Thus, the operations required to bring the original g j to and gn+ j to the desired form do not
inadvertently undo the work done in previous steps.

The procedure has four specific parts. In the first step the qubits are reordered so that the jth
qubit of the (n+ j)th generator gn+ j is either a Y or a Z . In the second step the (n+ j)th generator
is transformed to ±Z j . In the third step the jth generator g j is transformed to ±X j . Finally, in the
last step, the signs are fixed to +1.

4.2.2 Procedure

Start with K = {}. For j in 1, . . . , n, do the following:
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4. ENCODING, DECODING, AND THE CLIFFORD GROUP

1. Pick the first k ≥ j such that one of C j,k and Dj,k is nonzero. Append (CNOT j,k, CNOTk, j , CNOT j,k)
to K and update the tableau by interchanging columns ( j, k) and (n+ j, n+ k) of M .

2.1. For k ≥ j with C j,k = 1, if Dj,k = 0 append Hk to K , else append (S†
k, Hk) to K . Update the

tableau by using (4.3) and/or (4.5) as necessary.

2.2. For k > j with Dj,k = 1, append CNOTk, j to K and update M using (4.6).

3.1. For k ≥ j with B j,k = 1, if A jk = 0 append Hk to K , else append S†
k to K . Update the tableau

by using (4.3) or (4.5) accordingly.

3.2. For k > j with A j,k = 1, append CNOT j,k to K and update M using (4.6).

4. If t j = 1 append Z j to K and if tn+ j = 1 append X j to K . Update the tableau by setting
t j = tn+ j = 0.

4.2.3 Analysis

This procedure is essentially equivalent to a method suggested by Gidney.1

The second step first removes all the X factors of the (n + j)th generator, converting X s and
Y s to Zs. Then it removes all the Z factors except Z j . The third step fixes the jth generator to be
the anticommuting partner X j of Z j . Since all the operations preserve the symplectic structure of
M , it must be that A j, j = 1 at the beginning of the third step. If the jth qubit of the jth generator
is X , then no futher action is required on this qubit. If it is Y , then we need to transform Y to
X while preserving Z , which is precisely the action of S†. Then step 3.1 continues, and removes
all Z factors in the jth generator; these steps leave Z j unchanged. Finally, all X factors except
X j are removed by CNOT gates controlled on the jth qubit, so that again Z j is unchanged. The
result is that B j,k = C j,k = 0 and A j,k = Dj,k = δ j,k. The symplectic constraint then implies that
Ak, j = Bk, j = Ck, j = Dk, j = 0 for k > j. Hence the jth and (n + j)th generators are completely
decoupled from the remaining generators. They must be ±X j and ±Z j , respectively, as the Clifford
operations will ensure the output is Hermitian. The phases can be easily fixed by conjugation with
appropriate Pauli operators, and the procedure can proceed with the next pair of generators.

There should be at most O(n2) gates.

4.2.4 The real Clifford group

Observe that if M is such that none of the Pauli operators contains a Y factor, then the S† gate
will never be necessary. The resulting decomposition will be in terms of H and CNOT only. These
two operations plus the X and Z Pauli operators generate the real Clifford group, the subgroup of
Cliffords whose matrix representatives on Cn

2 have real entries. It turns out that the real Clifford
group is actually the normalizer of the real Pauli group in the orthogonal group of size n, i.e. those
matrices O on Cn

2 for which OOT = OT O = 1.

4.3 Encoding & measurement circuits

The decomposition procedure in the previous section allows us to construct encoding and measure-
ment circuits for a stabilizer code given a list of independent stabilizer generators.

1See here.

42

https://quantumcomputing.stackexchange.com/questions/26031/the-construction-of-every-element-of-the-clifford-group-using-h-s-and-cnot-circu


4.3. Encoding & measurement circuits

4.3.1 Encoding circuits

An encoding circuit for a quantum stabilizer code should map the single-qubit Z stabilizers of the
ancilla qubits to the stabilizer generators. Since this will take a commuting part of a symplectic
basis to a commuting part of a different symplectic basis, the transformation can be accomplished
by a Clifford operation.

To construct an encoding circuit, simply regard the stabilizer generators as defining m × n
matrices C and D, where m is the number of stabilizer generators, set M =

�

C D
�

, and apply
steps 1 and 2 of the procedure for j = 1, . . . , m. Applying the inverses of the gates in K in reverse
order gives a circuit which encodes an arbitrary state of m+1, . . . , n and m ancilla qubits in the |0〉
state into n qubits.

I believe the encoding circuit will require O(nm) gates.
Returning to the types of stabilizer codes, we find

1. General stabilizer codes will have encoding circuits with all three Clifford generators.

2. Codes with stabilizers in the real Pauli group will have encoding circuits generated by H and
CNOT.

3. With a slight modification to the decomposition procedure, it is easily seen that encoding
circuits of CSS codes are entirely composed of CNOT gates, plus a round of Hadamard gates
in the first step. The modification is that only steps 2.2 and 3.2 need be performed, on the
Z-type generators and X -type generators, respectively, and finally the resulting individual X j
generators should subsequently be transformed to Z j by H j .

4. Classical linear codes have encoding circuits composed solely of CNOT gates.

Example: The five-qubit code Here is an encoding circuit for the five-qubit code. The first input
corresponds to the stabilizer ZX IX Z , the second to IX Z ZX , the third to X Z ZX I , the fourth to
X IX Z Z , and the final qubit is the input qubit. The initial Y and H gates ensure that the X and
Z operators of the input bit are mapped to logical X X X X X and Z Z Z Z Z . More directly, X and Z
are mapped to −X Z I I Z and −I Z IX X , which are equivalent to X X X X X and Z Z Z Z Z modulo the
stabilizers (by multiplication with the last three in the former case and the first two in the latter
case).

|0〉

|0〉 H

|0〉

|0〉 H H H H

Y H H H

4.3.2 Stabilizer measurement circuits

Measurement of the stabilizer generators can be accomplished by employing m additional ancilla
qubits initialized to |0〉, applying a suitable Clifford operation on the m + n qubits, and finally
individually measuring the ancilla qubits in the Z basis. Here are two possibilities for the Clifford
operation.
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First, we could measure the individual stabilizers separately. Each separate measurement re-
quires only a single ancilla, which should be initialized to the |+〉 state by applying H to the |0〉
state. Then, for each non-trivial factor X , Y , or Z in the stabilizer generator, apply a control op-
eration from the ancilla to the jth qubit, where the operation on the target is the corresponding
X , Y , or Z . Note that controlled-Y from qubit j to k is simply SkCNOT jkS†

k. Finally, a Hadamard is
needed on the ancilla state to convert X basis measurement to Z basis measurement.

Second, we could reuse the decomposition procedure above. Modify stabilizer generators
g1, . . . , gm, to be g ′1 = g1 ⊗ Zn+1, g ′2 = g2 ⊗ Zn+2, and so forth, enlarging the Pauli group to n+m
elements. Now consider a Clifford operator which transforms Zn+ j to g ′j , which is specified by a
m×2(n+m)matrix M . Utilizing the Clifford decomposition procedure used in the encoding circuit
construction gives a quantum circuit such that applying the circuit and measuring Zn+ j gives the
same result as measuring g j directly.

4.4 Simulation of Clifford unitaries and Pauli measurements

We can simulate the action of Clifford unitaries and Pauli measurements just using the F2 repre-
sentation of the Pauli group. That is, we can avoid using the quantum state space representation,
and therefore the simulation can be much more efficient.

4.4.1 Simulating unitaries

Section 4.1.3 describes the procedure for simulating the action of Clifford unitaries on individual
Pauli operators, collections of them, all the way up to full tableau.

Another useful simulation is of Pauli errors. Here we are less concerned about keeping track
of the phase, since the effect of a Pauli error on an error-correcting code state for the purposes of
error correction does not depend on the phase. Suppose U describes a quantum circuit and E is
a Pauli error. The effect of E followed by U can be expressed as a modified error E′ following the
circuit U , where E′ = U EU† so that U E = E′U . In this sense E is propagated through the circuit
U . The vector w′ corresponding to E′ can be easily computed from the vector w corresponding to
E and the matrix M corresponding to U: w′T = wT M .

4.4.2 Simulating Pauli measurement

Setup Luckily, we can also describe the effect of Pauli measurement on a stabilizer code in terms
of the Pauli operators. The reason is that measurement of a Pauli operator g ∈ P±n will definitely
result in a state which is an eigenstate of g, either stabilized by g or −g. So measurement can
potentially modify the stabilizer. It can also modify the logical operators, and we will see that Pauli
measurements can induce Clifford operations on stabilizer code states.

Measurement of Pauli operator g on a state |ψ〉 which is stabilized by a Pauli operator g ′ that
anticommutes with g will lead to a completely random outcome. This is simply because the prob-
ability of a 0 outcome, 〈ψ|12(1+ g)|ψ〉, is equal to the probability of a 1 outcome, 〈ψ|12(1− g)|ψ〉:

〈ψ|12(1+ g)|ψ〉= 〈ψ|12(1+ g)g ′|ψ〉= 〈ψ|12(1− g)|ψ〉 . (4.11)

Thus, there are no difficulties in determining complicated measurement outcome probability dis-
tributions.

Nominally we should aim to simulate the measurement of a given Pauli operator on a partic-
ular state: Unlike the case of describing unitaries, surely a state is needed to decide whether the
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measurement outcome is deterministic (and what value it will take) or random. We could there-
fore hope to simulate Pauli measurements on stabilizer states, states |ψ〉 on n qubits which have
a stabilizer group with n independent generators. However, we do not need to be so restrictive.
Instead, we can use the full tableau to simulate the action of measurement for a wide class of input
states.

4.4.3 Example: Teleportation

Let us see how teleportation can be modelled in this formalism. Recall that the teleportation pro-
tocol is specified as follows. The initial state is comprised of three qubits: an arbitrary input qubit,
number 1, and two qubits 2 and 3 in the maximally-entangled state |Φ〉= |00〉+ |11〉. Then qubits
1 and 2 are measured in the basis of the Bell states, which amounts to measuring X1X2 and Z1Z2.
Finally, qubit three is subject to the Pauli operator X bZa, where a is the outcome of the X1X2
measurement and b is the outcome of the Z1Z2 measurement.

The full tableau initially is just
X2X3 Z2
Z2Z3 X3

X1 Z1

(4.12)

Here the input qubit is listed last and the left column of the first two rows is the stabilizer.
Now we are meant to measure X1X2. It anticommutes with the stabilizer Z2Z3, so the measure-

ment result will be uniformly distributed. After the measurement the system will certainly be in the
eigenspace of X1X2 corresponding to the measurement result a ∈ F2. That is, (−1)aX1X2 will be a
stabilizer. But what will be the effect on the remainder of the tableau? The simplest case would be
if X1X2, anticommuted with just one of the stabilizer operators, i.e. if X1X2 were the destabilizer
associated to one of the stabilizers. Then the two operators would switch roles, and there would
be no effect on the rest of the tableau.

In fact we can find a tableau equivalent to the initial tableau for which this is the case. The
initial destabilizer of interest is the one which anticommutes with the stabilizer with which X1X2
anticommutes, i.e. X3. Evidently, multiplying it by the other X -type stabilizer X2X3 and the logical
operator X1 results in X1X2. Consider these steps one at a time. Multiplication with X2X3 does not
change anything, since X2X3 is a stabilizer. But we will need to adjust the Z-type operators in the
tableau to maintain the commutation relations. In particular, when replacing X3 by X2 = X2X3X3
we should also replace Z2 by Z3 = Z2Z2Z3, i.e. multiply the associated partner operators together.
Doing so produces the tableau

X2X3 Z3
Z2Z3 X2

X1 Z1

(4.13)

(Note that we could have started with this tableau in the first place.) We can do the same to
multiply by X1. Replacing a destabilizer with a destabilizer times a logical operator does not change
anything, since the destabilizer does not determine the state anyway. Meanwhile, the logical Z1
operator will be multiplied by Z2Z3 in order to preserve commutation. But this is a stabilizer, so
this does not meaningfully change the logical operators. The tableau is now

X2X3 Z3
Z2Z3 X1X2

X1 Z1Z2Z3

(4.14)
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We are ready to update the tableau to include the measurement operation. Since X1X2 is a destabi-
lizer, we simply swap it with Z1Z2 and include the phase factor from the measurement. The tableau
becomes

X2X3 Z3
(−1)aX1X2 Z2Z3

X1 Z1Z2Z3

(4.15)

Next we measure Z1Z2, which anticommutes with X2X3 and X1. Again the measurment result is
uniformly distributed. Adjusting the tableau and inserting the measurement result (−1)b, we have

(−1)bZ1Z2 X2X3
(−1)aX1X2 Z2Z3

X1X2X3 Z1Z2Z3

(4.16)

Now observe that multiplying the Z1Z2Z3 logical operator by the (−1)bZ1Z2 stabilizer, gives (−1)bZ3
as an equivalent logical operator. To maintain the symplectic basis, we should also multiply the
X2X3 destabilizer by the X1X2X3 logical oeprator to obtain

(−1)bZ1Z2 X1
(−1)aX1X2 Z2Z3

X1X2X3 (−1)bZ3

(4.17)

Doing the same for the X -type logical operator gives

(−1)bZ1Z2 X1

(−1)aX1X2 (−1)bZ2

(−1)aX3 (−1)bZ3

(4.18)

Finally, we apply the Pauli operator X bZa to qubit 3, resulting in the tableau

(−1)bZ1Z2 X1

(−1)aX1X2 (−1)bZ2

X3 Z3

(4.19)

Therefore, the input Pauli operators on qubit 1 have been transferred to qubit 3. The first two
qubits are, unsurprisingly, left in a maximally entangled state determined by a and b. It can be
shown that if the Pauli operators are transferred without any change, then all operators are as well,
meaning the overall action on the input qubit 1, no matter its state, is to transfer it to qubit 3. We
have proven that teleportation works as intended by using the stabilizer formalism.

4.4.4 Gottesman-Knill

Symplectic Gaussian elimination Before launching into how the simulation works in general,
we first formalize the tool we used in the above example, a form of Gaussian elimination adapted to
the symplectic setting at hand. Suppose {(g j , g̃ j)}nj=1 is a symplectic basis for Pn and g ∈ Pn is given.
We can adapt the symplectic basis so that g only anticommutes with one particular generator, as
follows.

Suppose g anticommutes with {g jℓ}
s
ℓ=1 and { g̃ jℓ′ }

t
ℓ′=1. This means that g ∼

∏

ℓ,ℓ′ g̃ jℓ g j′
ℓ
. Let

us change the basis so that g only anticommutes with g j1 . That is, we can construct a new basis
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consisting of pairs (g ′j , g̃ ′j) in which g ′j1 = g j1 and g̃ ′j1 = g. Simply set g ′k = g〈g,gk〉
j1

gk and g̃ ′k =

g〈g, g̃k〉
j1

g̃k for k ̸= j1.
This doesn’t change the commutation structure of the non- j1 pairs, since g1 commutes with all

of those operators. For the same reason, g ′j1 commutes with all the operators in the non- j1 pairs.
By construction, g ′j1 definitely anticommutes with g̃ ′j1 . It remains to check that g̃ ′j1 commutes with
all the operators in non- j1 pairs. This holds because for every gk which does anticommute with
g̃ ′j1 , a factor of g ′j1 is multiplied into the operator to cancel the anticommutation.

Procedure Suppose {(g j , g̃ j)}nj=1 is a symplectic basis for Pn and we would like to simulate the
measurement of some g ∈ Pn under the condition that the input state is stabilized by the g j for
j = 1 to m ≤ n. Thus, the corresponding g̃ j are the associated destabilizers, while gk and g̃k
for k > m are logical operators associated to the stabilizer. The simulation output should give the
measurement result and it should describe the possible post-measurement states, by giving the new
logical operators.

There are three cases we need to consider:

1. g commutes with both the stabilizer S and the logical operators S⊥/S,

2. g commutes with the stabilizer, but anticommutes with some of the logical operators,

3. g anticommutes with some of the stabilizer generators.

In case 1, g can only have stabilizer generators in its decomposition. In case 2 it can have some sta-
bilizer contribution, plus some logical contribution. In case 3 it has some destabilizer contribution,
and possibly some logical operator contribution. Here is the procedure in each case:

1. In this case the measurement result is determined, and the symplectic basis describing the
system need not change under the measurement. (Applying the symplectic Gaussian elimina-
tion procedure above will at most change the set of stabilizer generators and their associated
destabilizers. But since the system is definitely in an eigenstate of the stabilizer group, the
particular generators do not matter.)

The remaining task is to determine the measurement result. One of g and −g is in the
stabilizer, which is to say that either g =

∏

ℓ g jℓ for some collection of stabilizer generators
g jℓ or g = −
∏

ℓ g jℓ . By checking anticommutation with the various destabilizers, we can
determine the set of g jℓ which contribute to g. Finally, we simply check if g =

∏

ℓ g jℓ and
report the measurement result 0 if this equality holds, and report measurement result 1 if
not.

2. In this case the measurement result is indeterminate, one additional operator will be added
to the stabilizer generators, and the logical operators will change. We cannot determine the
probability distribution of the measurement results, since we do not have a full specification
of the input state.

Pick a logical operator pair (gk, g̃k) such that one anticommutes with g and relabel them
if necessary so that g̃k anticommutes with g. Apply the symplectic Gaussian elimination
procedure for g̃k, then replace (gk, g̃k) by ((−1)a g, g̃k) with a ∈ F2, and move this pair to
the list of stabilizer/destabilizer pairs. The parameter a is the measurement result, but we
do not know the probability of outcome 0 or 1.
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3. In this case the measurement result is random, the stabilizer group will change but keep the
same size, and the logical operators may change.

Pick a stabilizer operator pair (gk, g̃k) such that one anticommutes with g and relabel them
if necessary so that g̃k anticommutes with g. Apply the symplectic Gaussian elimination
procedure for g̃k. At most this will multiply operators in the tableau by a stabilizer. Finally,
replace (gk, g̃k) by ((−1)a g, g̃k) with a a random choice of 0 or 1.
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5Optimal decoding of Pauli channels
Here we define two “optimal” decoders for a stabilizer code, for two notions of optimal. Both are
based on the probabilistic model of the noisy channel. One returns the most likely error pattern
given the syndrome and the other the most likely logical operator caused by the noise.

Recall from §3.3 that the task of a decoder is to determine an appropriate correction operator
g ∈ P+n given the output of the stabilizer measurement, the syndrome s. The correction operator
is then applied to the qubits. Decoding is successful if the actual error g ′ ∈ P+n and correction g
are such that their product is in the stabilizer group: g g ′ ∈ S. From the Pauli decomposition, this
condition implies that the state of the qubits is returned to the codespace and there is no logical
error. For a Pauli noise model, specified by a probability function PE so that PE[g ′ ∈ P±n ] is in [0, 1],
syndrome function f (g) = HJw(g), and decoding function r(s) ∈ P±n , the probability of a logical
error after error correction is then

∑

g ′∈P±n
PE[g ′]1[r( f (s))g ′ /∈ S], where 1[] denotes the indicator

function.

5.1 Most likely error

The most straightforward decoder simply looks for the most likely error given the syndrome. Call
this function MLE for “most likely error”. Nominially it is just

MLE(s) := arg max
g∈P+n : f (g)=s

PE[g] . (5.1)

However, it can easily happen that there are multiple errors of largest probability, and then some
method is needed to break ties. So it is perhaps better to speak of an MLE decoder rather than the
MLE decoder. Conceptually the simplest tie breaking method is to just choose randomly, which we
can denote by MLEr .

5.1.1 Minimum-weight decoder

For error models PE which have an i.i.d. structure, the probability of an error is larger the smaller
the weight of the error. Hence in this case MLE looks for errors of minimum weight. Unfortunately,
the general task of minimum-weight decoding is known to be NP-complete, meaning an efficient
general-purpose algorithm (not taking into account the details of the specific code) is exceedingly
unlikely to exist. For small enough codes we can simply brute force search through all possible
error patterns consistent with each syndrome, but this rapidly becomes intractable as the code size
increases. From the Pauli decomposition, for a code on n qubits with m stabilizer generators, the
possible error patterns consistent with a given syndrome are 22n−m in number.

5.1.2 Bounded-distance decoder

Related to the minimum-weight decoder is the bounded-distance decoder (BDD), specified by a dis-
tance d, which looks for a minimum weight error which has weight no larger than t, for t = ⌊ d−1

2 ⌋,
and gives up if such an error is not found. For a code of distance d, the bounded-distance decoder
correctly recovers from all of the correctable errors up to the distance, but not more. The BDD’s
performance is precisely characterized by the distance of the code. Note that by the perfect error-
correcting conditions, if there are two errors of minimum weight, their product will necessarily be
an element of the stabilizer group. Hence all errors of minimum weight for a given syndrome are
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degenerate errors, and so any scheme of breaking ties is as good as any other. We define this de-
coder mainly to point out that a useful code need not have a very high distance, and that the BDD
often has poor performance except at very low noise rates. Figure 5.1 shows the decoding error
probability for the Shor code under BDD, MLE, and the concatenated repetition decoder (CRD)
defined in §1.5.2.
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Figure 5.1: Logical error rate of various decoders for the Shor code subject to depolarizing noise. The
three decoders all have quadratic logical error rate for very small rates of physical noise, indicating
they each successfully recover from all single-qubit errors. Nevertheless, the break-even points of
the decoders differ substantially.

5.2 Most likely logical

Using the decomposition of the Pauli group into stabilizer, destabilizer, and logical generators, the
MLE function in (5.1) can be expressed as

MLE(s) := ξ⋆η(s)τ⋆ for (ξ⋆,τ⋆) = arg max
ξ∈S,τ∈L

PE[ξη(s)τ] , (5.2)

where S is the stabilizer group of the code, L is the group of logical operators, and η(s) is the
destabilizer operator determined by the syndrome. The expression ξ⋆η(s)τ⋆ is therefore an element
of P±n .

Error degeneracy implies that all errors ξη(s)τ⋆ for ξ ∈ S have the same effect on the code.
Thus, it is better to look for the τ leading to the most likely class of errors, not the pair (ξ,τ)
leading to the most likely individual error. The probability of the logical error class is just the sum
over the probabilities for each of the possible stabilizer contributions, which leads to the most likely
logical decoder

MLL(s) := η(s)τ⋆ for τ⋆ = arg max
τ∈L

∑

ξ∈S

PE[ξη(s)τ] . (5.3)

Again, it is necessary to specify how ties are broken to obtain a concrete decoding function.
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Since the logical contribution in a given Pauli error is the only thing relevant to correct recovery,
MLL is the optimal decoder for the given noise model. Note, though, that the noise model used in
the MLL and MLE decoders need not be the same as the noise model of the channel. For instance,
we could make use of a simpler noise model in the decoder than the one we think accurately
describes the channel, in order to reduce the computational complexity of the decoder.

5.3 Role of degeneracy in decoding

5.3.1 Sometimes there is no advantage

The MLL and MLE decoders are usually distinct, but it can happen that they are identical. This
happens for the Shor code under depolarizing noise, for instance; the red MLE curve in Figure 5.1
is in fact the lowest logical error rate possible for any decoder. The equivalence between MLL and
MLE holds in this case even though some syndromes have non-unique minimum weight errors. By
simply finding the minimum weight errors and computing the logical class probabilities for each
syndrome (with the assistance of a computer), it can be verified that whenever there are multiple
minimum-weight errors, the corresponding logical classes all have the same probability. So no
matter how ties are broken for each decoder, their performance is identical.

For example, suppose the syndromes corresponding to Z1Z2 and X4X5X6X7X8X9 are nontrivial.
There are six possible errors of weight two which are consistent with the syndrome: X1Z7, X1Z8,
and X1Z9 on the one hand, and Y1Z4, Y1Z5, and Y1Z6 on the other. All the errors in either of
these triples are equivalent by degeneracy, namely shifting the location of the Z contribution with
the weight-two Z-type stabilizers. The errors in the former triple anticommute with logical Z (i.e.
Z1Z4Z7) and so act as logical X (i.e. X1X2X3) on the codespace. Meanwhile, the errors in the
latter triple act as logical Y on the codespace, since they each anticommute with both logical X
and logical Z . The equivalence classes of errors corresponding to logical X and to logical Y have
identical probability, and so the MLL decoder’s performance is the same as that of the MLE decoder.

5.3.2 Advantage by tie-breaking

We need not look too far to find an example in which MLL and MLE behave differently: Already
for the 3× 3 surface code the two decoders are distinct. This is depicted in Figure 5.2.

In this case one can verify (again by computer) that again there are sometimes multiple possible
errors of minimum weight consistent with the syndrome. It turns out that the possible correction
operations suggested by the MLL probability calculation are always a subset of these, sometimes a
strict subset. Thus, not all minimum-weight errors consistent with the syndrome are equivalent in
terms of decoding performance. Any MLE decoder with a simple method of breaking ties will not
know which one to pick, however. Ties are broken in the MLL and MLE decoders of Figure 5.2 by
choosing the first element in the list of possibilities generated by the particular algorithm.

For example, consider the case that both X and Z plaquettes in the first row are nontrivial. Take
the logical operators to be X X X along the bottom row and Z Z Z along the right column. There are
again six errors of minimum weight which are compatible with the syndrome: Y2X3 and X2Y3, along
with Z2X4, Z3X4, X1Z2, and X1Z3. The latter four commute with both logical operators, while the
first two anticommute with the logical Z operator and therefore act as logical X . Just looking at
the minimum weight errors, the probability for the effect of the error to be logical identity is twice
as large as for it to be logical X , so the decoder decides for the former. (The same conclusion
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Figure 5.2: Logical error rate of various decoders for the 3× 3 surface code subject to depolarizing
noise. The BDD curve is the same as in Figure 5.1. For this code the MLL decoder outperforms the
MLE decoder; both recover from all single-qubit errors of course.

is reached when performing the full calculation, including all possible errors consistent with the
syndrome, not just those which have minimum weight.)

Figure 5.3 shows a different example involving just X -type errors.

⋆
⋆

⋆

⋆

Figure 5.3: Importance of degeneracy in breaking ties between multiple minimum-weight errors.
The four nontrivial Z-type syndromes (white stars) can be explained by bit flip error patterns of
weight 6. Each possible error pattern is a “path” through the qubits from one nontrivial syndrome to
another, or to the boundary. In yellow are 9 different error patterns and in green 12 possible error
patterns. The product of any “yellow” error with a “green” error is a logical X operator, spanning
from the left boundary to the right boundary. Hence yellow and green correspond to different logical
classes. Green is the more likely logical class, at least when considering only the minimum-weight
errors. (This conclusion also holds when considering higher weight errors.)
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5.3.3 Advantage by probability

The most striking example of the difference between MLL and MLE is the case in which the most
likely logical class does not contain an error of minimum weight. To give an example we need only
modify the previous example slightly, using a larger surface code, as depicted in Figure 5.4.

⋆ ⋆

⋆

⋆

⋆

Figure 5.4: Importance of degeneracy over minimum-weight decoding. For the given syndrome
there are two minimum-weight errors, of weight 5, depicted in green. Meanwhile there are 16 error
patterns of weight 6, shown in yellow. The yellow and green errors are in different logical class,
since the product of a yellow error with a green error is a logical X operator. It turns out that the
MLL decoder will decide for yellow when the bit flip error noise rate is above roughly 5%.

5.4 Decoding CSS codes

For CSS codes, an appealing option is to correct the X - and Z-type errors separately and indepen-
dently, using the syndrome from the Z-type checks for the former and the syndrome from the X -type
checks for the latter. The advantage of doing so is that each correction task is simpler, dealing with
only one kind of error. Both MLE and MLL methods are applicable; the MLE task is precisely the
same as for a classical binary linear code and can potentially be handled with classical decoding
methods.

Regardless of which decoding method is used, if the two separate decoders are accurate, then
the overall decoder is accurate. Concretely, suppose pZ is the probability of logical Z-type error
under the given decoder and pX the probability of X -type error. Then by the union bound, the
probability of any logical error is no larger than pX + pZ . If the actual error is entirely of Y -type,
it will appear to be both an X error and a Z error. In this case this bound for the logical error
probability under separate decoding is tight.

For noise with correlated bit and phase flip errors, e.g. depolarization, the performance of sepa-
rate decoding can be enhanced somewhat by decoding separately but sequentially. After decoding
the X -type errors, the resulting correction operation can be used to update the probability model
for phase errors (treating the correction as a stand-in for the actual error). For instance, if the
noise is described by the depolarizing channel with probability p, then given that a bit flip has
occurred, the probability of a phase flip is 1/2, irrespective of p. On the other hand, given that a
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bit flip has not occurred, the probability of a phase flip drops by roughly a factor of 2, from 2p/3 to
p/(3−2p). The output of the bit flip decoder thus informs the phase flip decoder where the phase
flips are more or less likely to be.
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6Code construction
6.1 Concatenation

We encountered the idea of concatenated codes already in the construction of the Shor code. The
broad idea is to take the encoders from two codes Couter and Cinner and run the inner encoder on the
output of the outer encoder. The names are chosen so that the inner code is closer to the channel.
The simplest case is that Cinner encodes a single qubit, and its encoder is applied to each of the
individual qubits in the output of the Couter encoder. This is depicted in Figure 6.1.

outer

inner

inner

inner

Figure 6.1: Schematic depiction of encoding into a concatenated code.

For instance, encoding each of the qubits themselves in the five-qubit code into the five-qubit
code results in a code of size 25 which encodes a single qubit. The figure makes clear that one could
in principle use different codes for each different qubit of the outer code. Even more generally, one
can choose an inner code which encodes k qubits and an outer code whose blocklength is some
multiple of k, so that k-sized blocks of the outer code are each encoded by the inner code.

Figure 6.1 also suggests using concatenation for decoding as well. In the first stage, the inner
codes are decoded to single qubits and then in the second stage these are passed to the outer de-
coder. This is precisely the original decoding scheme we developed for the Shor code. Figure 5.1
shows that concatenated decoding is not necessarily even as accurate as MLE decoding. Nonethe-
less, decoding complexity scales favorably with the code size.

6.2 CSS codes from classical codes

CSS codes are combinations of two classical codes, so it is natural to construct (hopefully) inter-
esting CSS codes from interesting classical codes. The difficulty is the CSS constraint between the
two classical codes. Recall that two classical codes with parity check matrices HX and HZ can be
combined to a CSS code (with HX specifying the X -type stabilizers and HZ the Z-type stabilizers)
if and only if HX HT

Z = 0.

6.2.1 General Shor construction

For any two binary linear codes C1 and C2, concatenating C1 as the inner code to correct bit flips
with C2 as the outer code to correct phase flips results in a CSS code. If H1 is an m1 × n1 parity
check matrix of C1 and H2 an m2×n2 parity check matrix of C2, then the Z-type parity check matrix
of the resulting CSS code is simply

HZ = 1n2
⊗H1 . (6.1)

For the X -type parity check matrix, first define the generator matrix for C1, i.e. an (n1 −m1)× n1
matrix G1 such that G1HT

1 = 0. The rows of the generator matrix, by definition, are codewords of
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C1. Then the X -type parity check matrix is

HX = H2 ⊗ G1 . (6.2)

Observe that the commutation relation HX HT
Z = 0 is satisfied since HX HT

Z = H21n2
⊗G1HT

1 . The
resulting CSS code has n1n2 qubits, n2m1 Z-type stabilizers, and m2(n1 −m1) X -type stabilizers.
Thus there are k1k2 = (n1 −m1)(n2 −m2) encoded qubits.

6.2.2 LDPC codes

Among the most interesting classical codes are low-density parity check (LDPC) codes. As the name
implies, they have parity check matrices with a small number of nonzero entries per row and per
column. That is to say, each bit is involved in only a small number of parity checks (the row weight)
and each check is only a function of a small number of bits (the column weight). LDPC codes are
appealing classically as they encode a large number of bits and still manage to achieve very low
error rates with reasonable decoding complexity. Often one considers a family of LDPC codes of
increasing blocklength and usually column and row weight which is constant in the blocklength. It
is not difficult to construct classical LDPC codes of constant rate and distance scaling in proportion
to the blocklength.

For encoding quantum information, having codes whose stabilizers are all of constant weight
has advantages in the setting of noisy error correction, as we will see later. However, the CSS
constraint makes it somewhat difficult to construct good quantum LDPC codes from good classical
LDPC codes. Suppose that both HX and HZ are to be low density parity check matrices of a CSS
code. But then the fact that HX HT

Z = 0 implies that the rows of HX are codewords of the code
defined by HZ . Since HX has low-weight rows, this implies that the code defined by HZ has low-
weight codewords. Hence, it is not a very good classical code. Put differently, if a quantum LDPC
code has good decoding performance, it is not because the underlying classical LDPC codes have
good performance. Instead, quantum LDPC codes can only have good performance because it is
not necessary to find the exact error, i.e. degeneracy.

We have already met one example of a quantum LDPC code: the surface code. Since it has
parity checks of weight two or four, no matter the size of the code, and each qubit is only involved
in at most four stabilizers, it is an LDPC code.

6.2.3 Hypergraph product codes

Despite the above difficulties, there is one simple construction that yields quantum LDPC codes
with decent performance from classical LDPC codes. For reasons to do with how it was originally
discovered, it is called the hypergraph product construction. In terms of parity check matrices it is
extremely simple. Suppose, as above, H1 and H2 are two classical codes. Then define X -type and
Z-type parity check matrices as the following block matrices:

HX =
�

H1 ⊗ 1n2
1m1
⊗HT

2

�

, (6.3)

HZ =
�

1n1
⊗H2 HT

1 ⊗ 1m2

�

. (6.4)

It can be readily verified that the CSS constraint is satisfied. The number of qubits is n1n2+m1m2
and the number of encoded bits is k1k2 = (n1 −m1)(n2 −m2) as in the Shor construction. It turns
out that the distance of the quantum code is at least the smaller of the distances of two classical
codes. For instance, if the two codes are identical and have constant rate r = k/n and distance d,
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then the resulting quantum code has size n2(1+ (1− r)2), rate r2/(1+ (1− r)2), and distance at
least d.

The simplest example of the hypergraph product is the product of two repetition codes, which
gives the original version of the surface code. (The version we have considered already came
later and is often called the “rotated” surface code.) Following the construction for the length-
3 repetition code gives a code of 13 physical qubits encoding a single logical qubit, depicted in
Figure 6.2.

(a) (b)

Figure 6.2: Graphical depiction of the original surface code. In (a), qubits are located on edges.
Z-type stabilizers involve all qubits around a plaquette, including the open plaquettes at the top and
bottom. Called “rough boundaries”, these are weight-three stabilizers. X -type stabilizers involve all
qubits around a vertex. The weight three X -type stabilizers on the left and right form the “smooth”
boundaries. The logical X operator can be taken to be the X operator acting on all three qubits on
the top, while the logical Z operator can be taken to be the Z operator acting on all three qubits
on the left. Panel (b) shows the same stabilizers in our previous format. The rotation of the two
versions of the surface code relative to each other is immediately apparent.

6.2.4 Reed-Muller and polar codes

A different way to construct a CSS code is to take a reversible encoding circuit composed of CNOT

gates and specify certain inputs as the data qubits, and the remaining inputs as fixed in the |0〉 or
|+〉 state. This construction relies on the fact that CSS codes have encoding circuits of this form.
This fact was shown in §4.3.1, but can also be understood directly by propagating the stabilizer
at the input (namely single-qubit Z and X operators at the locations of |0〉 and |+〉, respectively)
through the encoding circuit. The CNOT gates will leave Z-type operators as Z-type operators, and
the same for X , meaning the stabilizers will be of purely X - or Z-type.

The inputs |0〉 thus specify the Z-type stabilizers of a code CZ and the |+〉 inputs the X -type
stabilizers of a code CX , and these satisfy the CSS condition by construction. The trick is to find an
encoding circuit and a specification of |0〉 and |+〉 inputs which leads to a good quantum code.

One option is to try to ensure that CX and CZ are good classical codes. Then the decoders of
these codes can be put to use correcting bit flips and phase flips. Quantum Reed-Muller codes and
quantum polar codes are examples of this approach. In fact, the encoding circuit in both cases is the
same; the only difference between the two kinds of codes is which inputs are set to |0〉 and which
to |+〉. Either code has a size n= 2m for integer m. The circuit for n= 8, i.e. m= 3 has the form
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The inputs are labelled starting at zero on the left. The encoding circuit for the n = 4 code is
shown in the dashed-line box. Observe that the n = 8 encoding circuit is simply two copies of the
n = 4 circuit connected transversally by CNOT gates. Indeed the n = 4 circuit has this structure as
well, starting from the base case n= 2 where the circuit is a single CNOT gate. Using this recursive
structure defines the encoding circuit for arbitrary m.

The classical Reed-Muller codes choose data inputs and |0〉 inputs according to the Hamming
weight of the binary representation of the input index. In particular, in the (r, m) Reed-Muller
code, all inputs whose binary expansion has weight greater than or equal to m− r are used as data
inputs and the rest set to |0〉. Thus, the (1,3) code uses inputs 3, 5, 6, and 7 (i.e. 0112, 1012,
1102, and 1112) for data, and hence encodes four bits. The (2,3) is larger and fixes only the first
bit, producing a code with a single parity check which includes all n bits. The (0, m) codes are
repetition codes in general, since only the last input is used for data and a bit flip in this input
translates into a joint bit flip of all encoded bits, which the encoded X operator of the repetition
code.

Polar codes make a different choice of data inputs, for reasons that we do not go into here.
There are several variants of how to pick the data inputs precisely, and one that will be useful
to us called the polarization weight method. Consider the function fβ(i) =

∑m
j=1 b j(i)β j , where

i ∈ {0, . . . , 2m − 1}, β ∈ R, and b1(i), b2(i), . . . , bm(i) is the m-bit binary expansion of i. For a
desired code size k and choice of β , the indices with the k largest values of fβ(i) are used as data
inputs. The typical choice of β , for reasons we won’t go into here, is 21/4.

To construct CSS codes from Reed-Muller or polar codes, notice an interesting property of the
encoding circuit:

=

H H

H H

H H

H H

H H

H H

H H

H H
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6.3. Subsystem codes

The Hadamard gates on the right just swap the order of control and target for each gate. Owing to
the form of the original circuit, the circuit between the two sets of Hadamard gates has the same
action as the original, just upside down. Note that the circuit itself is not precisely the upside-down
version of the other, as the ordering of the CNOT gates in the second and third layers is not quite the
same in both cases. However, since these gates (in the individual layers) act on different qubits,
their ordering in the circuit does not affect the action of the circuit. The original circuit specifies
rather directly what happens to Z-basis inputs. But due to the Hadamard gates, we can infer that
the same action is applied to X -basis inputs, just with the qubits in the reverse order.

Now consider fixing some collection of inputs i1, i2, . . . , imz
to each start in the state |0〉 and

some other collection of distinct inputs i′1, i′2, . . . , i′mx
to each start in the state |+〉. For instance,

suppose we pick the former set to be the m− rz indices with lowest binary weight and the latter
to be the m − rx indices with the highest binary weight. As long as m − rz + m − rx ≤ m, i.e.
rx + rz ≥ m then the two sets will not overlap. The former set specifies the (rz , m) Reed-Muller
code for bit flip errors. Meanwhile the above property of the encoding circuit means the latter
specifies the (rx , m) Reed-Muller code for phase flip errors, since upon reversing the order of the
inputs the highest weight indices become lowest weight indices. Together the two Reed-Muller
codes form a CSS code. (Note that if rx + rz = m, then the codespace has dimension 1, so only
encodes a single state.) This construction can be understood more directly from the properties of
parity check matrices of Reed-Muller codes, but this approach also reveals the highly structured
form of the encoding circuit.

The same construction also works for PW polar codes. The reason is that fβ(i)+ fβ(2m−1− i)
is constant for all i (namely

∑

j β
j); if b0, . . . , bm is the binary expansion of i, then the bitwise

complement b̄0, . . . , b̄m is the binary expansion of 2m−1− i (since then their sum is 2m−1, whose
binary expansion is m 1s). Indeed, the Reed-Muller example is just β = 1, where clearly the weight
of an index i and that of its binary complement 2m−1−i add up to m. Therefore, reversing the order
of the inputs takes those with highest weight to those with lowest weight. This gives a quantum
PW polar code.

6.3 Subsystem codes

A subsystem code is essentially a stabilizer code which nominally encodes multiple qubits, say k,
but we only use k′ < k of the logical operators for data. Not encoding into the remainder can have
some uses in simplifying syndrome measurement. We will not delve deeply into subsystem codes
and instead focus on the example of the Bacon-Shor code.

6.3.1 Bacon-Shor codes

The Shor code is actually somewhat related to the surface code. Returning to the Shor code in
Table 6.1, notice the symmetry between the stabilizers / destabilizers and the two logical operators;
evidently we could have weight-two X -type checks and weight-six Z-type checks and essentially
have the same code. That is, it’s not the same code subspace, since the stabilizers are different, but
it’s clear that its logical operators and ability to correct single-qubit errors are both the same.

We can make things even more symmetrical between X and Z as follows. First, think of the
qubits as living on a 3×3 lattice. We can arrange things so that the X stabilizers are pairs of rows.
The Z checks are weight-two operators in a single row. But multiplying them appropriately, we can
construct two weight-six stabilizers that are all Zs in adjacent columns. Thus, the Shor code is a
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6. CODE CONSTRUCTION

1 Z Z I I I I I I I I X X I I I I I I
2 I Z Z I I I I I I X X I I I I I I I
3 I I I Z Z I I I I I I I I X X I I I
4 I I I I Z Z I I I I I I X X I I I I
5 I I I I I I Z Z I I I I I I I I X X
6 I I I I I I I Z Z I I I I I I X X I
7 I I I X X X X X X Z Z Z Z Z Z I I I
8 X X X X X X I I I I I I Z Z Z Z Z Z
9 Z Z Z Z Z Z Z Z Z X X X X X X X X X

Table 6.1: Stabilizers (left), destabilizers (right), and logical operators (bottom) associated with
the Shor code.

kind of combination of two classical repetition codes. Furthermore, since the two X checks in the
rows are sufficient to recover from phase errors, it stands to reason that the two Z checks in the
columns are sufficient to recover from bit errors; no other stabilizers are really needed. Except that
that analysis isn’t quite right, since the weight-two Z checks ensure enough degeneracy of phase
errors so that the two weight-six X checks are sufficient for recovery.

The interesting thing noticed by Bacon is that we don’t need to fix the Z stabilizers for the
degeneracy argument to go through. The weight-six stabilizers are consistent with (i.e. commute
with) both weight-two Z-type checks running horizontally and weight-two X -type checks running
vertically, though these are not consistent with each other. So if we had started with the coding
having weight-two X checks, then clearly the two weight-six Z stabilizers would be sufficient.

Recall that phase error correction is just done by block of three qubits in a row: From the
syndrome we compute which row has a phase error and correct it by applying Z to the first qubit in
the row. Let’s just try the same thing for bit flip errors, but on the columns instead of rows. Suppose
we start with a state encoded in the usual Shor code, and a bit flip afflicts the fifth qubit. This is
noticed by the both of the Z-type stabilizers, so we conclude the error is in the second column and
we apply the correction X2. Overall, the error and correction procedure applies X2X5 to the state.
This commutes with the logical operators, and the weight-six stabilizers are all +1, so in this sense
error correction succeeded.

However, we’re outside the original codespace, since this operator does not commute with all
the weight-two stabilizers; four of them have flipped. We could fix these incorrect stabilizers by
applying the corresponding destabilizers (in this case, that would imply multiplying by X1X3X4X6,
the product of the first four destabilizers). But there’s really no reason to. For one thing, flipping
the signs of the stabilizers results in an equally-good error-correcting code. However, we might
need to know which codespace we’re in to perform the correct decoding procedure. But in this
case the modified decoding procedure is the same in both cases.

In terms of the stabilizer tableau in Table 6.2, what happens is that the error and recovery cause
changes to qubits 5 through 8, i.e. the new encoded qubits that are created by reducing the size
of the stabilizer. But as long as the action is confined to these qubits, it doesn’t affect subsequent
correctability since they are not needed for the decoder. In this case X2X5 is the product of the
X -type operators of qubits five through eight, as well as the second X -type weight-six stabilizer.

These qubits are called “gauge qubits” since we can “fix” the weight-two Z operators to +1
to get the standard Shor code, or we can fix the weight-two X operators to get the X version of
the Shor code, or we can just let them “float”. One aspect that is quite convenient is that we can
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6.3. Subsystem codes

determine the important weight-six stabilizers by measuring all of the weight-two stabilizers of
both types. They do not all commute with each other, but they do allow reconstruction of the
weight-six stabilizers. Measuring the Z type first and then the X type converts the code to X gauge,
while the reverse order converts it to Z gauge. Other intermediate gauges are also possible.

1 Z Z I Z Z I Z Z I I I I I I I I X X
2 I Z Z I Z Z I Z Z I I I I I I X X I
3 I I I X X X X X X Z Z Z Z Z Z I I I
4 X X X X X X I I I I I I Z Z Z Z Z Z
5 Z Z I I I I I I I I X X I I I I X X
6 I Z Z I I I I I I X X I I I I X X I
7 I I I Z Z I I I I I I I I X X I X X
8 I I I I Z Z I I I I I I X X I X X I
9 Z Z Z Z Z Z Z Z Z X X X X X X X X X

Table 6.2: Stabilizer tableau associated with the nine-qubit Bacon-Shor code.

This is a subsystem code, where the quantum information is not stored in a subspace per se, but
rather a subsystem within this subspace. In terms of the overall 9-qubit state space, we have a
decomposition into C c ⊕ (L ⊗ E), where L stands for the logical qubit, E for the extra four qubits,
C the codespace, and C c its complement. For stabilizer codes as here, L is composed of the orig-
inal logical operators, and E are the additional operators which are promoted from the original
stabilizer. C is the subspace picked out by the new (smaller) stabilizer. Together, the operators in
S, the new stabilizer, and E generate the gauge group. As long as the error correcting condition is
fulfilled on L, then correctability is still assured; that is, the environment can learn as much as it
wants about E, but nothing about L. And correctability on just L means we only need to use S for
correction, so E is really irrelevant. It should be mentioned that the error-correcting properties of
stabilizer subsystem codes are a bit more immediate than general subsystem codes, but we won’t
go into those here.

It is not difficult to see that we can extend the Bacon-Shor construction to an arbitrary n×m
lattice, as in the surface code. The stabilizers are products of all Z operators in adjacent columns
and all X operators in adjacent rows. The standard decoder is just repetition coding for each case,
with correction operations applied at a single position in the given column or row, respectively.
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7Decoding by perfect matching
Thus far we have no specific decoder designed for the surface code. Since it is a CSS code, we may
correct X - and Z-type errors separately, using the syndrome from the Z-type checks for the former
and the syndrome from the X -type checks for the latter. The simple structure of these syndromes
enables the problem of finding the minimum-weight X or Z error to be cast as the problem of finding
a minimum-weight perfect matching on a particular graph. Fortunately there is a polynomial-time
algorithm to solve this problem, and therefore we can construct a reasonably-efficient decoder.

The intuition behind the decoder can already be appreciated from Figures 5.3 and 5.4: The
possible error patterns form paths which join the nontrivial syndromes in pairs. Therefore the
decoder simply needs to decide how to pair up the syndromes, and the most immediate approach
is to find the pairing which has the error of minimal weight.

7.1 Tanner graphs

The matching decoder works on a graphical representation of the code, so let us begin by examining
the Tanner graph of a code. The Tanner graph is a bipartite graph representing the parity check
constraints of the code. There are two sets of vertices or nodes in the graph: variable nodes and
check nodes. Each variable node is associated with a position in which a single error can occur, i.e.
a bit or qubit position. Each check node is associated with one of the parity checks of the code. A
given variable node is connected to a given check node if that variable participates in that check.
Figure 7.1 depicts some examples. Note that we can also define Tanner graphs for stabilizer codes,
e.g. the five-qubit code as well, and in that case are invited to consider three different kinds of
edges corresponding to whether X , Y , or Z of a particular qubit participates in a particular check.
However, we will not make much use of this kind of Tanner graph here.

1 2 3 4 5

(a) Repetition code

1 2 3 4 5 6 7

(b) [7,4] Hamming code

Figure 7.1: Examples of Tanner graphs

7.2 Cycle codes and almost cycle codes

7.2.1 Cycle codes and their correction by matching

Now consider a cycle code, a binary linear code that has a parity check matrix such that each column
has precisely two 1s. In terms of the Tanner graph, every variable node has degree two. Columns
correspond to individual bits (or qubits) and rows to individual stabilizers, so an error on a single
bit flips precisely two syndrome values. Further errors will only create new pairs of errors or move
parts of existing pairs around. Hence a valid correction which returns the system to the codespace
must be a collection of individual errors which join the nontrivial syndrome positions in pairs.
Two nontrivial syndrome positions are joined by a “path” of errors, where the ends of the path are
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7. DECODING BY PERFECT MATCHING

responsible for the nontrivial syndrome values themselves, and the errors in the interior join the
two ends with trivial syndromes along the way.

7.2.2 Almost cycle codes

The X and Z parity check matrices associated with the surface code, as well as that of the repetition
code, nearly describe cycle codes. In both cases there are weight-one columns in the check matrices,
i.e. single errors at certain positions which affect only one stabilizer. For both codes these positions
are on the boundaries: Variable nodes of degree one. Weight-one checks complicate the pairing or
matching strategy just described because now there can be an odd number of nontrivial syndrome
values.

However, for any m× n parity check matrix H having weight-one and weight-two columns, we
can construct an (m+ 1)× n check matrix H ′ which describes the same code and has only weight-
two columns. Simply append an additional row to H which is the sum modulo 2 of its rows.
The summation in the weight-two columns will result in zero, leaving only 1s in the weight-one
columns. The resulting H ′ describes the same code as H since the last parity check is not linearly
independent of the rest. To generate the syndrome s′ for H ′ given the syndrome s for H, simply
append the parity of s.

If s has even parity, then the additional entry in s′ is 0. In this case the nontrivial syndromes
in H can be paired without involving the additional check, but pairings are also possible which do
involve the additional check. This can be seen in the green paths of Figure 5.3. The additional
check is connected to every qubit on both the left and right boundaries, and so the green path can
be understood as a pairing of two nontrivial syndromes via the boundary. On the other hand, if s
has odd parity, the additional entry in s′ is 1. Now one of the nontrivial syndromes of H can be
and indeed must be paired with the new syndrome. This is the situation in Figure 5.4, where one
of the nontrivial syndromes must be matched to the boundary.

7.2.3 Matching graphs

Since all variable nodes in a Tanner graph of a cycle code have degree two, we may as well just
represent them as edges between the corresponding check nodes. Call the resulting graph the
matching graph (though syndrome graph might be a better name). It can happen that the additional
check can be connected to a boundary check by multiple edges, i.e. the matrix H ′ can very well
have several identical columns. For the purposes of finding the minimum-weight error, we can
simply drop any linearly dependent columns from H ′. Figure 7.2 depicts the matching graphs for
the repetition code and the Z-type checks of the 5× 5 surface code.

7.3 Matching

7.3.1 Repetition code

We can get some further intution on the matching problem by examining the n-bit repetition code
with parity checks Zi Zi+1 for n = 1, . . . , n− 1. The additional check is essentially the parity check
ZnZ1, whose value is then set to be the parity of the syndrome s. A nontrivial syndrome for Zi Zi+1
means the bits in positions i and i + 1 take different values. Put differently, if Zi Zi+1 and Z j Z j+1
are nontrivial, but all ZkZk+1 for i < k < j are trivial, then all the bits from i + 1 to j have to have
the same value. The question is only whether these two nontrivial syndromes should be paired
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(a) Repetition code of length 8 (b) Z-type checks of the 5× 5 surface code

Figure 7.2: Matching graphs. In the surface code the two gray checks in the lower left and upper
right are to be identified: There is only one extra check of degree 6 due to the boundary qubits.
Extraneous edges have been removed.

together, which corresponds to deciding that the bits from i + 1 to j all take the value 1, or they
should each be matched to other nontrivial syndromes, meaning the bits in this range all take the
value 0. We can think of the nontrivial syndromes as “domain walls” between adjacent bits.

Finding the lowest-weight error pattern is greatly simplified in this case, as there are only two
possible pairings of domain walls. The problem is inherently one-dimensional: either a given
domain wall pairs with the domain wall to its left or to its right (possibly cycling around the code
using the additional check in either case). The two possible pairings are binary complements of
each other. To find the lowest-weight error pattern, we may therefore just check the weight of one
of the solutions. If it is n/2 or less, we take it as the correction, otherwise we take its complement.
Hence the decoding can be performed in O(n) steps.

7.3.2 General cycle codes

Pairing nontrivial syndromes such that their joining error paths have minimal weight is much less
straightforward in the general case. Consider a particular syndrome pattern, say for the 7 × 7
surface code shown below. The black squares represent nontrivial syndrome values.

We now create the path graph to perform the matching. The path graph is the complete graph
whose vertices correspond to nontrivial syndromes in the matching graph. Moreover, the edges
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7. DECODING BY PERFECT MATCHING

of the path graph are labelled by the smallest distance between the associated syndromes in the
matching graph, as given by the number of edges that are traversed. This equates to the number of
qubits which need to be flipped to generate those two nontrivial syndromes. The value of each edge
in the path graph needs to be computed from the matching graph. For general matching graphs
this can be accomplished with the Floyd-Warshall algorithm. The lattice structure of the surface
code enables more direct calculation. There are two cases of paths to consider: paths joining a pair
of nontrivial syndromes which go directly through the “bulk” of the latticework, and those that
go via the boundary. Both can be computed directly from the position information of the pair of
syndromes.

The path graph for the example is then (scaled down, but otherwise in the same orientation)

3

33
4

3

3

Now we have transformed the problem such that the solution is given by finding a minimum-
weight perfect matching. A perfect matching is a pairing of vertices in the path graph. It has
minimum weight if the sum of the values of the edges in the matching is minimal among all match-
ings. The “blossom” algorithm can be employed for this purpose. In the example a minimum
weight perfect matching is to pair diagonally, leading to a value of 6. (Note that it is not unique;
matching the top and bottom edges also gives a weight of 6.)

Given the minimum-weight perfect matching in the path graph, the only thing left to do is
translate this back into a path of errors on the matching graph. In the running example we thus
obtain

⋆

⋆
⋆

⋆

7.3.3 Performance of matching on the surface code

For the 3×3 surface code subjected to depolarizing noise, decoding X and Z errors independently
via matching is almost as accurate as MLE, as depicted in Figure 7.3. For large surface codes,
we can estimate the logical error rate under the matching decoder by randomly sampling errors
according to the error model. Doing so reveals a threshold in the noise rate. For noise rates below
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the threshold, larger and larger codes will have smaller and smaller logical error rates. Above the
threshold the logical error rates get larger and larger. The value of matching decoder threshold is
about 10% for the (rotated) surface code subject to independent bit and phase errors.
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Figure 7.3: Logical error rate of individual X - and Z-type matching decoders versus MLE and MLL
for the 3× 3 surface code subject to depolarizing noise.

Note that the bounded distance decoder has a threshold of zero since it refuses to correct errors
of weight beyond half the distance of the code. For the d×d surface code the distance is d, meaning
only errors of weight roughly

p
n for n = d2 will be corrected. But having a threshold value of p

means being able to decode at least a sizeable fraction of the errors to be expected at this noise rate,
which have weight ≈ np. In this sense, distance is not a very useful indicator of the performance
of a code.
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8Tensor network decoding methods
Tensor networks are an elegant way to represent functions which decompose into sums of products
of simpler functions. Such functions arise in various decoding algorithms, where the tensor net-
work representation suggests approximation methods of calculating these quantities so as to have
efficient but also accurate means of decoding.

8.1 Tensor networks

Consider a function f (x1, . . . , xn) which can be written as a sum of products of functions involving
additional variables y1, . . . , ym, e.g. something of the form

f (x1, x2, x3) =
∑

y1,y2

h1(x1, x2, y1)h2(y1, y2, x3)h3(x2, y2) . (8.1)

For instance, the components of the matrix M which is a product of some matrices A and B is simply
M( j, k) =
∑

ℓ A( j,ℓ)B(ℓ, k).
A tensor network, for our purposes, is a graph which represents this structure. Each vertex cor-

responds to a factor or tensor hi in the decomposition. Here “tensor” has no geometrical meaning,
as it does in general relativity. For us it is just a function or equivalently a collection of function val-
ues for each possible input. Edges and half-edges correspond to variables which are arguments to
the tensors. Edges between two nodes respresent the internal or bound variables y1, . . . , ym of the
summation, while half-edges connected to single nodes correspond to the free variables x1, . . . , xn
which are arguments of f . The tensor network associated with matrix multiplication is therefore
just

A B
ℓj k

Nominally, no free variable can be connected to more than one node and no bound variable
can be connected to more than two nodes. For example, in the choice of f above, the free variable
x2 appears in two factors. This issue can be resolved by including additional internal variables and
δ tensors:

f (x1, x2, x3) =
∑

y1,y2,y3,y4

h1(x1, y4, y1)h2(y1, y2, x3)h3(y3, y2)δ(x2, y3, y4) . (8.2)

The tensor network corresponding to the righthand side of this equation is then

h1

=

h2

h3

x1

x2

x3

y1

y2

y4

y3

Here we denote the δ function by the tensor labelled ‘=’, as this makes clear that all attached edges
must take the same value.
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Suppose now we define the function h′2(y1, x3, y3) =
∑

y2
h2(y1, y2, x3)h3(y3, y2). The tensor

network representation now looks like

h1

=

h′2

x1

x2

x3

y1

y4

y3

We have contracted h2 and h3 to form a new tensor, and as a result the bound variable y2 no longer
appears. We can think of drawing a box around h2 and h3 in the original network; h′2 is essentially
this box.

We will be mostly interested in the case of binary variables. A useful tensor in this context is the
parity tensor, labelled by ‘+’, which is just the indicator function for even parity of its arguments. For
instance, we can represent the indicator function of a binary linear code by interpreting the Tanner
graph as a tensor network. Recall the Tanner graph of the [7,4] Hamming code in Figure 7.1(b).
Regarding the check nodes as parity tensors, the variable nodes as equality tensors, and adding
additional open edges for the variables gives

=

x1

=

x2

=

x3

=

x4

=

x5

=

x6

=

x7

+ + +

Algebraically, this tensor network represents the function δ(x1+ x2+ x4+ x5 = 0)δ(x1+ x3+ x4+
x6 = 0)δ(x2 + x3 + x4 + x7 = 0), which can be written in sum of product form as

f (x1, . . . , x7) =
∑

w,y,z

p(y1, y2, y4, y5)p(z1, y3, z4, y6)p(z2, z3, w4, y7) (8.3)

×δ(x1, y1, z1)δ(x2, y2, z2)δ(x3, y3, z3)δ(x4, y4, z4, w4)

×δ(x5, y5)δ(x6, y6)δ(x7, y7) .

Here p() denotes the parity function. The last three δ functions are trivial, but they maintain the
structure of the Tanner graph.

8.2 Qubitwise decoding

8.2.1 Tensor network representation

The most common approach to decoding classical LDPC codes is to decode bitwise. Instead of
looking for the most likely error pattern given the syndrome, the bitwise decoder looks for the most
likely value of each individual bit of the error pattern. Suppose PE is the joint distribution of the
entire error pattern x1, . . . , xn and P(i)E is the marginal probability P(i)E [x i] =

∑

∼i PE[x1, . . . xn]. The
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bitwise MLE decoder then computes x̂ i = arg max
x∈Fn

2: f (x)=s
P(i)E [x i] for each i and outputs the correction

operation x̂ = x̂1, . . . x̂n. We simply have to hope that x̂ satisfies the syndrome, i.e. f ( x̂) = s,
otherwise we will get a decoding error.

The conditional distribution of x i given the syndrome s is simply
∑

∼i PE[x1, . . . , xn]δ( f (x1, . . . , xn), s),
where f is the function f (x) = H x for H the parity check matrix of the code. For an independent
error model in which PE = P1× P2× · · · × Pn, this expression factorizes even further. We have seen
above how to respresent δ( f (x), 0) as a tensor network, and so all that is needed is to include PE
and shift the value of the syndrome from 0 to an arbirary value s. For instance, the conditional
distribution of x1 for the [7,4] Hamming code example is represented by

=

P1

=

P2

=

P3

=

P4

=

P5

=

P6

=

P7

+

s1

+

s2

+

s3

x1

An i.i.d. error model would have P1 = P2 and so on, but in the tensor network depiction it is clear
that indpendence is the important thing, not that the marginals are all identical.

8.2.2 Belief propagation

Now we need a means of actually computing the two values of the conditional distribution, not just
representing the function itself. Suppose that the Tanner graph were a tree, meaning a graph with
no loops. For a fixed value of the syndrome, we can include the si into their corresponding parity
check tensors, and the resulting tensor network will also be a tree. The equality node connected
to x1 in the example can be considered the root node of the tree. Since there are no loops, there
is only one path from the root to any other node. In particular, the Pi nodes are leaves of the tree,
since they have only one edge. (For a nontrivial code there should be no other leaves; single edge
check nodes are trivial checks which just fix the value of a particular bit.)

The tree structure gives an efficient means of computing the values of the conditional distribu-
tion by recursively contracting the tensor network from the leaves towards the root. That is, for
each neighboring node of the leaf tensors we contract it with its neighboring leaves. Due to the
tree structure this contraction creates a new leaf node, and then we repeat the procedure. Each
such leaf tensor created has a single binary-valued edge going towards the root, and since we start
with Pi tensors which represent probability distributions of individual bits, the leaf tensors also
represent probability distributions of individual bits. These are the “beliefs” about the value of the
edges, and the contraction of the tensor network amounts to “propagation” of these beliefs towards
the root. This is the belief propagation (BP) algorithm. We can regard the probability functions
as “messages” which are “passed” along edges from the leaves to the root, and are combined with
other messages at the nodes. Hence BP is a “message passing” algorithm.

Because the Tanner graph has only Pi tensors, parity or check tensors, and equality tensors,
there are really only two contraction rules one needs to consider. Either leaf tensors (Pi type
tensors) are contracted at an equality node or at a check node. The base case is two leaf tensors, as
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more than two can be contracted successively onto the same node, and check or variable nodes of
degree two can simply be removed from the graph. We are not overly concerned with the precise
form of the rules, but they are

P+(x) =
∑

y,z

P1(y)P2(z)δ(x + y + z, 0) , (8.4)

P=(x) =
∑

y,z

P1(y)P2(z)δ(x , y)δ(x , z) . (8.5)

Note that P= is not a normalized probability distribution, which is as it should be, since we were not
careful with the normalization of the conditional marginal distribution. Nevertheless, we can think
of the edges as carrying probability messages, flowing from the leaves to the root and combining
and check and variable nodes.

Now, as depicted in the example, there are certainly codes for which we cannot find a Tanner
graph which is a tree (the Tanner graph depends on the particular parity checks chosen, so it is
not unique for a given code). Nevertheless, we may still apply the contraction rules, or message
combining rules, and hope for the best. We only need to shift perspective on how BP operates
slightly. First, to simplify matters, we can contract the channel nodes Pj with their neighboring
equality nodes. Second, consider the direction of “flow” of the messages in BP. When estimating
a particular bit in a tree graph, the edges are traversed in only one direction. But the direction
will change depending on the root node. So in general messages are flowing in both directions at
different points in the algorithm. We can set a simple schedule for generating the messages in which
the messages are sent from equality nodes (now combined with their associated channel nodes)
to the check nodes and then the messages are sent back from check nodes to equality nodes. This
is known as the parallel or flooding schedule. In each odd-numbered (even-numbered) round,
for each edge we look at the connected equality (check) node, and then use (8.4) and (8.5) to
generate the message from the messages on other connected edges of the equality (check) node.
To get things started, we set the messages to just come from the channel nodes directly.

In classical LDPC coding, it is possible to construct high-rate codes such that the loops in the
Tanner graph are fairly large. Hence it is locally tree-like, and BP is a reasonable approximation. In
practice BP is a widely-used decoder, and LPDC codes can currently be found in the 5G specification
for mobile communication as well as the Wi-Fi 6 specification for wireless networking. However,
quantum LDPC codes are likely to have short loops, as in the surface code.

BP can in principle be used to decode quantum codes. We have discussed the binary version of
BP above, which is suitable for binary classical codes, but one can also formulate a 4-valued version
to directly handle the case of Pauli errors. Alternately, one may use the binary BP to decode X and
Z errors separately in a CSS code. The difficulty is that typically the BP output does not satisfy the
observed syndrome, so it does not give a useful correction operation.

However, since BP computes the marginal probabilities, at least approximately, these proba-
bilities can be used as inputs to another decoder. An example is matching. In our discussion of
matching we focused on finding the minimum-weight error, and thus implicitly set every edge
weight in the matching graph to 1. We could instead set it so that if an qubit is thought to be more
likely in error, the weight of the edge is smaller. A typical choice is to set the edge weight to log p

1−p
when the probability of error for the associated qubit is p.
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8.2. Qubitwise decoding

8.2.3 Successive cancellation

Another way to generate a tensor network representation of the projection onto the codespace of
a classical code as in (8.3) is to use a tensor network formed from a reversible encoding circuit.
Consider a circuit on n bits composed entirely of CNOT gates. Certain of the inputs to the circuit
carry data to be encoded, and the remaining inputs are to be initialized as 0. If the n× n matrix U
describes the reversible encoding circuit and the last m inputs are the ancilla inputs, then the projec-
tion onto the codespace is simply the function yn = (y0, . . . , yn−1) 7→

∑

x0,...,xk−1
δ(yn, U(xk, 0m)).

The projection onto vectors which have syndrome s can be obtained by replacing 0m with s in this
expression.

Now observe that we can reinterpret the circuit diagram as a tensor network by replacing each
CNOT gate with a parity node at the not operation and an equality node at the check:

u1 = u′1

u2 + u′2

This tensor network captures the action of the CNOT gate, since (u′1, u′2) = (u1, u1 + u2), where
the ui and u′i are all in F2. To obtain the tensor network representation of the projection to a given
syndrome, we simply remove the x1 inputs in the network so that they are summed over. Suppose
that k = 4 and x0, x1, x2, and x3 are in positions 3, 5, 6, and 7 (as in the Reed-Muller code). For
a syndrome s0, s1, s2, s3, the following tensor network is the projection onto the set of vectors yn

which have the syndrome s:

s0 + + + y0

s1 = + + y1

s2 + = + y2

= = = + y3

s3 + + = y4

= = + = y5

= + = = y6

= = = = y7

Just as we did in belief propagation, we can now try to compute the probability of a single vari-
able on the input side using the probability distribution of errors on the righthand side. Given an
estimate for the variables on the left, we can recover the error pattern by propagating their values
through the circuit / tensor network. Some of the variables on the input side are syndromes, of
course, so their values are known. Differently to what we considered in BP, we may compute the
probability of input ui given the values for u0, . . . , ui−1, marginalizing over all ui+1, . . . , un−1. So for
instance, the following tensor network describes the probability of u3 given (u0, u1, u2) = (s0, s1, s2)
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and marginalizing over u4, . . . , u7:

u0 + + + P0

u1 = + + P1

u2 + = + P2

u3 = = + P3

= + + = P4

= = + = P5

= + = = P6

= = = = P7

Here the Pi tensors are the distributions of individual qubit errors, and the ui tensors are delta
functions specifying that the outgoing edge has the value ui . Equality tensors with a single edge
just represent the constant function 1 for all inputs, so that both values of the associated edge are
possible and receive the same weight.

Contraction of the resulting tensor network can be done efficiently by making some simplifica-
tions and choosing a suitable contraction order. First observe that the first two layers in the final
four inputs (lines 4, 5, 6, and 7) just produce four single-edge equality nodes:

= + +

= = +

= + =

= = =

=

=

=

=

=

Next, for the fixed input values we can just propagate their values as far to the right as possible,
through parity tensors if all but one edge is deterministic and equality tensors as long as one edge
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8.3. Approximating MLL decoding of the surface code

is deterministic. These two simplifications produce the following tensor network:

u0+u1 + + P0

u1 + + P1

u2 + = + P2

u3 = = + P3

= P4

= P5

= P6

= P7

It can be verified that the graph is a tree, and therefore we may apply the BP rules (8.4) and (8.5) to
contract the network to find the more likely value of u3. In fact, the calculation for every ui reduces
to a tree. Performing this calculation for every unknown value of ui gives an estimate for un, which
can then be mapped to an estimate for the bit error pattern by the original circuit. Nominally this
sequential procedure would require order n operations for each bit, for an overall complexity of n2.
But by recycling intermediate calculations, the computational cost can be reduced to O(n log n).

Here are all the tensor networks for the n= 8 case:

u0 + + + P0

= + + P1

= + P2

= + P3

= P4

= P5

= P6

= P7

u0 + + + P0

u1 = + + P1

= + P2

= + P3

= P4

= P5

= P6

= P7

u0 + u1 + + P0

u1 + + P1

u2 + = + P2

= = + P3

= P4

= P5

= P6

= P7

u0 + u1 + + P0

u1 + + P1

u2 + = + P2

u3 = = + P3

= P4

= P5

= P6

= P7

∑3
j=0 u j + P0

u1 + u3 + P1

u2 + u3 + P2

u3 + P3

u4 + + = P4

= + = P5

= = P6

= = P7

∑3
j=0 u j + P0

u1 + u3 + P1

u2 + u3 + P2

u3 + P3

u4 + + = P4

u5 = + = P5

= = P6

= = P7

∑3
j=0 u j + P0

u1 + u3 + P1

u2 + u3 + P2

u3 + P3

u4 + u5 + = P4

u5 + = P5

u6 + = = P6

= = = P7

∑3
j=0 u j + P0

u1 + u3 + P1

u2 + u3 + P2

u3 + P3

u4 + u5 + = P4

u5 + = P5

u6 + = = P6

u7 = = = P7

8.3 Approximating MLL decoding of the surface code

The quantity
∑

ξ∈S PE[ξη(s)τ] in (5.3) can be expressed as a tensor network for any stabilizer code.
The idea is that argument to the summation can be written as a product of the tensor (or tensors)
describing PE and tensors describing the Pauli operator ξη(s)τ. When the code is such that the
qubits and stabilizers have a planar layout, as in the surface code, the resulting tensor network can
be approximately contracted by an efficient scheme based on “matrix-product states” (MPS).
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Let us first see how to realize the value of
∑

ξ∈S PE[ξη(s)τ] as a tensor network. We work
in the vector representation of the Pauli operators, and choose a stabilizer tableau with stabilizer
generators given by the stabilizers actually measured in the error-correction procedure, along with
associated destabilizers and logicals. This way, there is a single destabilizer operator for each com-
ponent of the syndrome s. Since we will be multiplying the Pauli operators, which in the vector
representation is addition over F2n

2 , we start with 2n parity tensors to perform the addition. Each
one has an “outgoing” edge and several “incoming edges”. Connected to the parity tensors are
tensors which determine the ξ, η(s), and τ contributions. For each stabilizer generator, we asso-
ciate an equality tensor. It is connected to the incoming edges of the appropriate parity tensors as
determined by the vector representation of the stabilizer. Similarly, for each destabilizer generator
we associate an equality tensor, again connected to the appropriate parity tensors. The destabilizer
tensors have an additional edge whose value is s j for the jth destabilizer. Equality tensors are also
associated to the logical generators and have an external edge to specify the precise logical opera-
tor. Finally, the outgoing edges of the parity tensors are connected to the PE tensors. Let us suppose
that PE is an i.i.d. model for each qubit, but that X and Z errors may be correlated. Therefore P1
has two edges, one for the X component and one for the Z component. It is more convenient to
reorder the parity tensors so that X and Z components of individual qubits are next to each other.
Then we obtain a diagram like the following, for the five-qubit code (using Table 3.2).

+ +

P1

+ +

P2

+ +

P3

+ +

P4

+ +

P5

= =

s1

= =

s2

= =

s3

= =

s4

= =

ℓX ℓZ

Since the syndrome s1, s2, s3, s4 and logical operator, specified by ℓX and ℓZ , are connected to
equality nodes, we can incorporate their values into the corresponding parity tensors directly and
remove the associated edges. This leaves just the edges corresponding to the stabilizer. The tensor
network can be contracted to find the probability of the equivalence class of errors, but there is
no real advantage in doing this calculation on the tensor network over a more direct algebraic
approach.

For the surface code, however, the tensor network approach is advantageous. In particular, it
suggests a certain approximation scheme which seems to work well in practice. Suppose, as just
mentioned, we fix the value of the syndrome and the particular logical operator and then locally
contract the probability tensor Pi with the two associated (now modified) parity tensors. Call the
resulting tensor Q i . For the surface code, the result is the following
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Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
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Q

Q

Q

Q

Q

Q

Q

Q

Q

= =

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

= =

= =

=

=

=

=

Each stabilizer equality node connects to the X or Z parity node of surrounding Q nodes de-
pending on its type, indicated by the background color. The Q tensors are not all identical; each one
contains the contribution of the probability tensor and the specific destabilizer and logical values.

The 2D lattice arrangement allows for the following approximate contraction scheme. Consider
all the tensors below the dotted line in the diagram. These can be contracted together to form a
single tensor with 9 outgoing edges. Suppose this degree-9 tensor, call it T , can be split up into a
1D sequence of 9 tensors like so:

T

T1 T2 T3 T4 T5 T6 T7 T8 T9

⇓

This kind of 1D tensor network is called a “matrix-product state” (MPS, for its use in representing
pure quantum many-body states) or “tensor train”. If we can manage this conversion, then we can
contract the next layer of tensors onto it and repeat the splitting process. The trick is to make the
MPS in such a way that the horizontal edges do not have a very large size. This size is the “bond
dimension” of the MPS.

To create the MPS, we can make use of the singular-value decomposition of matrices. Consider
the leftmost edge in T and the remaining 8 edges on the right. Considering these 8 edges as
defining a compound index, T then becomes a matrix. Applying the singular value decomposition
will split the matrix T into a product of three matrices USV such that S is diagonal and positive. If
we now keep only the D largest entries in S and replace the remainder with zero, we can define T1
from US and the remainder of T from V . Repeating the process on V will then generate the MPS
with fixed bond dimension D.
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Somewhat amazingly, the MPS approximation to the MLL decoder for the surface code is already
extremely good even for D = 4. The resulting decoder has a threshold for independent bit and
phase errors of about 11%. This means that for noise rates above 10% the logical error rate of the
matching decoders is getting worse and worse as the code size increases, whereas the logical error
rate of the MPS tensor network decoder is getting better and better. This is a striking example of
the importance of degeneracy in decoding (though one might well argue that the difference is not
that important in practice).
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9Framework of fault-tolerance
9.1 Setup and basic idea

Up till now we have been considering error correction in the “communication scenario”, where the
noise is just present between sender and receiver, but their own encoding and decoding operations
are presumed to be error-free. This is a good model for how mobile phones communicate with cell
towers, or computers with each other via the internet. But it’s not going to be a good model for
quantum computers, where all operations we can currently perform are actually quite noisy. So we
turn to the question of fault-tolerance: Is it possible to build a reliable computer out of unreliable
parts? And if so, how?

Do-nothing error scaling The goal would be to execute a quantum circuit such that the fidelity
of the actual output with the desired output is 1 − ϵ for some small ϵ. One option is to just use
the noisy gates that we have. If we think of the infidelity as a probability of error and imagine that
each gate fails with some probability p, then in a computation of T operations we’ll need to have
T p ∼ ϵ, i.e. p decreasing with T . This isn’t a terribly rigorous argument, but the point is made
that if we “do nothing” then arbitrarily long computation will require correspondingly small gate
imperfections. This is not really an option, though, as at best we can make these gate imperfections
independent of the size of the computation. It is probably difficult enough to achieve this; after
all imperfections may increase in larger computations due to cross-talk or interactions between
components.

Basic idea of fault-tolerant compilation The alternative is to use error correction, somehow.
Of course now we need to be more careful in how it is implemented, since the implementation
will be noisy. Specifically, our goal is to be able to take a description of a circuit that we would
like to implement and be able to construct a circuit involving error correction that will simulate
the desired circuit even though its own components are noisy. A useful way to phrase this is that
we would like to design a fault-tolerant compiler, the algorithm or recipe for constructing reliable
circuits to implement any desired reference circuit. The basic idea is that we should implement error
correction and all the desired gates of the circuit so that we correct more errors than we create, or at
least just as many. It won’t be possible to reliably correct all errors in a given correction round,
instead we want to keep the number of errors manageable. In particular, none of the elements
in the circuit should cause errors to spread in an uncontrolled manner, else we cannot recover in
subsequent correction rounds.

A word on terminology: We will speak of errors, which afflict the state of the qubits, and faults,
which are the production of errors in a circuit. The reason to keep these distinct is that it’s then
easier to talk about some number of faults creating and spreading some (possibly larger) number
of errors via the circuit.

9.2 Fault-tolerant quantum memory

Here we will focus just on the question of preserving quantum information, not on performing
any particular computation. So the compiler we need is fairly simple: We just a reliable way of
implementing the operations needed for error correction. We will even leave out the question of
how to reliably encode and decode the quantum information. The setup is shown below. The goal
is to preserve the quantum information for a time longer than can be achieved by not encoding.
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ideal encoder EC EC EC EC ideal decoder

9.2.1 Sketch of requirements on error correction

Now we can investigate in more detail what is needed from the individual error-correction step
in order to meet this goal. Suppose, for simplicity, that we would like to use a code which can
correct one error. We need to measure the stabilizers of the code, perform a classical computation
to determine the correction operation, and then apply the correction operation. In repeated rounds
of error correction, if errors occur too frequently, there will be no way to remove errors before more
are created. So suppose we have a procedure for making the stabilizer measurement such that a
single fault in any of its internal gates would lead to an output with some error pattern that can be
corrected by an ideal decoder. No faults in the procedure result in ideal decoding. We will take up
the question of how to design such a procedure in the following chapter.

The important observation is that if there is only one fault in any two subsequent rounds, then
the resulting error pattern can be corrected before another fault causes more errors and ruins any
possibility of recovery. If no faults occur, then everything is ok, of course. If a fault occurs in the
first round, then by assumption the second round will clean up whatever error pattern it created.
If a fault occurs in the second round, then it creates an error that will have to be dealt with in the
following third round.

Let us adopt a simple model in which all gates take the same amount of time, and faults occur
at rate p on individual gates, including the identity gate (i.e. doing nothing). Moreover, assume
also that there are G gates needed in each round of error correction. The overall scheme will
(potentially) fail if there are more than two faults in any subsequent rounds. The probability of this
event is
∑2G

k=2

�2G
k

�

pk(1−p)2G−k = O(G2p2). For T rounds the probability of an unrecoverable event
is not larger than O(T G2p2) by treating each pair independently (and therefore overestimating).
Now suppose we want the overall probability of failure to be ϵ ≈ O(T G2p2). Then with error
correction we can sustain the qubit to this level for a number of rounds T which scales like T ≈
ϵ/G2p2. This is an improvement over the no-encoding case of T ≈ ϵ/p, provided G2p2 ≤ p. Thus,
the lifetime of the qubit can be improved from O(1/p) to O(1/p2), but only for p ≤ 1/G2. If the
correction scheme requires many gates, then there are many places for faults to occur, and so the
breakeven noise rate for error correction is lower.

9.2.2 Detailed conditions

In the above we assumed that the error-correction mechanism, which is sometimes referred to as
a “gadget”, was such that single faults in its execution could be recovered by a subsequent round
of ideal correction. A related condition, suitable for considering multiple faults, is

FTEC An error correction gadget is fault-tolerant to distance d = 2t+1 when the output has error
weight no larger than sint whenever the input has no more than sext errors and no more than
sint faults occur during its execution, for sext + sint ≤ t.

A more common condition found in the literature has two parts: the error-correction correctness
property and the error-correction recovery property.

ECCP Provided s1 + s2 ≤ t, for any input codeword with weight-sext error and sint faults in the
gadget, an ideal decoding of the gadget output gives the same result as ideally decoding its
input.
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ECRP No matter the input, the output of the gadget is within s errors of a codeword, provided the
number of faults s in the gadget is less than t.

We refer to these conditions together as AGP, for Aliferis-Gottesman-Preskill, who formulated them.
It turns out that AGP implies FTEC, but the converse does not hold (except in special cases).

Let us see that FTEC (and therefore AGP) is sufficient for the above argument regarding re-
peated correction to go through. Suppose that no more than t faults occur in any two subsequent
rounds of error correction. Since the input to the first round is error-free, s1 ≤ t faults in the first
round lead to at most s1 errors on the input to the second round. The s2 ≤ t − s1 faults in the
second round then ensure that the input to the third round has only s2 errors. And so on, till the
last round, which will output a state with t errors or fewer. This state will be correctly decoded by
the ideal decoder at the end.

Hence, the procedure will (potentially) fail if there are more than t faults in two subsequent
rounds. Following the probabilistic analysis above, the encoded qubits can be sustained at a logical
error of ϵ for T ≈ ϵ/

� 2G
t+1

�

pt+1 rounds. This will beat the no-encoding strategy provided pt ≤
1/
� 2G

t+1

�

, which can be approximated by p ≤ ( t+1
2G )

(t+1)/t . (So the dependence on G is less severe
for larger t, and there is an additional factor of t + 1, but we can expect that a code with a larger
t requires a gadget with a larger G...)

Both AGP and FTEC are sufficient conditions for a gadget to be fault-tolerant, in the sense
that the above argument will go through. However, both are formulated in terms of the code
distance, which we know from Chapters 5 and 7 is not a good indication of code performance in
the probabilistic setting. We will later see that a simple decoding gadget for the surface code is
sufficient to keep errors from accumulating even though FTEC is not satisfied.

The AGP conditions were formulated to handle the analysis of concatenated codes, specifically
to show that by concatenating distance-3 codes such as the Steane code with itself sufficiently
many times, one can eventually reach any desired logical error rate provided the physical error
rate is below a certain threshold value. The analysis is considerably simplified by making use of
concatenated decoding. Then we can treat the inner encoding, noise, and inner decoding steps as
defining a modified single-qubit noise channel, at which point we can just reuse the result we have
for such channels.

For example, concatenating the Steane code with itself yields a code of 49 qubits. Say that the
logical error rate of the Steane code itself for depolarizing noise channels of rate p is cp2 for some
constant c. Under concatenated decoding we can just examine the outer layer and treat the noise
rate as cp2 (note that the noise model might no longer precisely be the depolarizing channel, but
one can get around that problem). Hence the noise rate after two levels of concatenation should
be ∼ c3p4. The catch in the setting of noisy syndrome extraction is that the error correction at
the inner layer will not necessarily return the quantum state to the codespace. But it needs to get
close enough so that the next layer of error correction has a chance of succeeding. Hence the ECRP
condition.
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10Syndrome extraction gadgets
10.1 Back action

This is one major additional complication for reliable quantum error correction relative to classical
error correction: Classical syndrome extraction cannot directly spread errors from the ancilla into
the data. Consider the following example. Suppose we want to measure the value of the Z1Z2
stabilizer in the Shor code. Nominally, we would do this with the following circuit, involving one
ancilla:

|0〉 s

In the classical case, the ancilla could be subject to a bit flip fault somewhere in the circuit. This
would change the value of s, but not by itself change any of the input data bits. A CNOT gate could
also be faulty, which could cause an error on both the data and the ancilla, but still it is only one
error on the data. Errors on the ancilla cause the syndrome to change, and since this could lead to
an incorrect recovery operation, ancilla errors do spread indirectly to the data block. Something
will anyway have to be done about this, a point we’ll come back to below, so a faulty CNOT gate
causing single errors in both data and ancilla isn’t an additional problem.

All of this holds as well for bit errors in the quantum case, but quantumly we must also consider
phase errors. An unwanted Z on the ancilla will propagate through the CNOT gate and result in a
phase error in the outgoing data. So now there are more ways error correction itself can corrupt
the encoded information!

Problematic faults Let’s examine this particular example more carefully. Note that a phase flip
immediately after the ancilla preparation has no effect, since it’s an eigenstate of Z . And a Z
flip prior to measurement in the Z basis doesn’t change the measurement result. So the circuit is
immune to Z faults in these locations. On the other hand, a Z fault between the two CNOT gates
will result in Z2 on the data block. Moreover, it will be undetected by the measurement. So this
circuit can potentially spread errors from the ancilla to the data.

On the other hand, in this example, a single fault in the ancilla causes at most a single error
in the data, so the errors are not really increasing. But this was the simplest stabilizer we could
possibly measure. Consider the same setup for one of the stabilizers from the Steane code, or just
the X type stabilizers of the Shor code. These have weight four and six, respectively. An ancilla
error in the middle of syndrome extraction then causes a weight two or weight three error. (This is
the worst case since nominally larger weight errors from faults earlier in the circuit are equivalent
to lower weight errors by multiplying by the stabilizer.) We now turn to several methods to work
around this problem and deal with the problem of unreliable measurement results.

10.2 Shor error correction (gadget)

The first correction gadget we’ll look at is the original proposal by Shor. Looking back at the example
of error propagation from the ancilla, the problem was that the single ancilla talks to several qubits
in the data block, opening a route for the error of a single fault to spread to multiple qubits. Shor’s
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idea was to suitably encode the ancilla. It’ll be more convenient to switch the example to measuring
an X -type stabilizer, say on four qubits:

|+〉 H s

This circuit comes from interchanging X and Z everywhere by using Hadamard gates, and can
be confirmed by propagating the X operator associated with the measurement result backwards
through the circuit. In fact, we can measure any Pauli operator we want this way, simply by chang-
ing the target unitary operation. Here we wish to measure X X X X , so the target of the CNOT gate is
the unitary X . If instead we want to measure X ZX Z , we would just switch the target operation on
the second and fourth qubits to be Z instead, i.e. perform a CPHASE gate at those positions instead.

10.2.1 Encode the ancilla with the cat state

The problem in this circuit is that a single X fault on the ancilla after the first two CNOTs can
become a weight-2 X error in the data block. Instead of using a bare ancilla, we can instead use
a cat1 state, the logical |+〉 state of the repetition code: |cat4〉 = |0000〉+ |1111〉. We’ll need the
number of qubits in the cat state to be equal to the weight of the stabilizer we’re trying to measure.
The qubits are interchangeable, so now we can couple the data and ancilla transversally:

|cat4〉

H m1

H m2

H m3

H m4

What we really want to measure at the end is the logical X̄ value, since that’s the analog of what we
would have measured in the bare ancilla case. Moreover, by propagating X̄ prior to measurement
backwards through the circuit and using the fact that the input state is a+1 eigenstate, it is apparent
that this circuit will measure X X X X on the data. Because X̄ = X X X X , we can obtain the desired
measurement result s by computing the parity s = ⊕4

j=1m j of the individual X measurement results.

Remaining problems with the gadget Due to the transversal coupling of data and ancilla, single
X faults in the ancilla can only cause weight-1 X errors on the data. Single Z faults, meanwhile, in
the ancilla remain in the ancilla. Faults in the CNOT gates themselves could cause any kind of error
on the two outgoing qubits, but one of them is in the data block and the other will not interact with
other ancilla qubits before being measured. Moreover, the recovery operation of applying a Pauli

1Schrödinger’s
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operator does not couple qubits, so single faults in the recovery operation just become single qubit
errors.

That’s good, but there are still two problems.

1. What about measurement errors or, equivalently, Z faults on the ancilla? A single Z error
will flip the syndrome value and cause an incorrect recovery operation to be applied, so we
must avoid this.

2. Where do we get the |cat4〉 state and how do we know it does not contain too many errors?
Maybe a single fault in its creation can lead to multiple errors in the cat state, which then
spread to the data.

10.2.2 Creating the cat state

It’s a little bit easier to handle the second problem first. To encode |cat4〉 we can use the following
circuit:

|+〉

|cat4〉
|0〉
|0〉
|0〉

First let us consider which error patterns on the output need to be avoided, and if any of these can
be caused by single faults.

Bit flip errors, no matter their number, will spread to the data block when measuring X type
stabilizers (they will spread as Z type errors when using CPHASE). Due to the cascade nature of
the circuit, a single fault can very well cause errors of weight one, two, three, or four. However,
since |cat4〉 is an eigenstate of X X X X , there is no error of weight four and errors of weight three
are equivalent to weight one. So weight two is the only worry. More specifically, the weight-four
error comes from the first CNOT, producing two flips immediately afterward. But this is equivalent
to a single flip on the control qubit prior to the gate, whose action is trivial on the input |+〉 state.
Hence no weight-four flip error can occur. Weight-three errors come from failure of the second
CNOT, essentially a bit flip on the second qubit after the first CNOT and before the second. But this
is equivalent to two bit flips on the first qubit, one prior to the first CNOT and one afterward (this
can be seen by introducing two bit flips on the first qubit after the first CNOT and using one of them
to propagate the flip on qubit two backwards through the first CNOT). Again the flip on the state
|+〉 has no effect, leaving just an outgoing bit flip on the first qubit.

Meanwhile, it turns out that phase flips are not a worry here. They cannot spread uncontained
through the preparation circuit, so a single fault could cause at most two phase errors. And phase
errors will not propagate into the data block, so the only concern is with their effect on the syndrome
measurement. Then, since a weight-two error will leave the computed syndrome value unchanged,
only single phase flips matter. We will anyway have to deal with erroneous syndromes, so this issue
need not bother us here.

The only fault that can cause two bit flip errors is a single X fault on the third qubit prior to
the final CNOT gate (or just the final CNOT gate itself). Thus the last two qubits would be in error
(equivalently, the first two qubits). To avoid this problem, we can simply check if the parity of, say,
the first and last qubits match. If not, we can discard the state and start over. In particular, we
execute the cat state preparation circuit above and then test its output as follows:
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|0〉

If the measurement outcome is 1, the parity is incorrect, and we have to start over and repeat the
procedure. If the measurement outcome is 0, we keep the cat state. Of course, the verification
circuit could have a fault, and our confidence that the cat state is correct in the latter case could be
misplaced. However, no single fault can lead to a 0 outcome and more than one bit flip error on
the cat state, so everything is ok (not correct, just ok).

Nominally we also need to worry about phase errors propagating from the verification ancilla to
the cat state, but in this case we don’t need to do anything further about it. Only a single phase error
could appear on the cat state, which would then ruin the measurement result, but as mentioned
above we need to deal with untrustworthy syndromes anyway.

10.2.3 Repeating the syndrome measurement

Now we come to this issue of untrustworthy syndromes. We already encountered it in the discussion
of measuring Z1Z2, and it would plague a classical reversible computer as well. The solution is yet
more repetition, in this case of the entire syndrome measurement procedure. By doing so, we can
eventually be confident that we have the correct syndrome.

However, a subtlety arises because there are several syndrome bits to determine. As we cannot
measure the stabilizers simultaneously, since we need to interact with the data qubits, a fault could
creep in after we have measured some of the stabilizers but before we have measured all of them.
In light of this, how should we interpret the syndrome? Part of it was measured before the fault
and part of it after; does it give anything useful?

Let’s examine the simpler case of just correcting phase errors to get some intuition without
dealing with the full problem. Suppose we have improved the quantum hardware to the point that
bit flip errors are not a problem, and we just use the three-bit repetition code in the X basis to
correct single phase errors. This code has stabilizers X1X2 and X2X3, as well as logical operators
X̄ = X1X2X3 and Z̄ = Z1Z2Z3, and we want to use the Shor gadget to measure the syndrome. Our
procedure to ensure reliability of the syndrome is as follows.

1. Measure the full (2 bit) syndrome using bare ancillas.

2. If the syndrome is trivial, apply no recovery and finish.

3. If the syndrome is nontrivial, measure the syndrome again and apply recovery operation
implied by the second syndrome.

Analysis of the repeated syndrome measurement Let us show that this scheme satisfies the
FTEC criterion for t = 1. In the case of no input errors and no faults, the first syndrome result is
trivial, and so the correct recovery of no action is taken. If the input has a single error, then we only
consider the case of fault-free syndrome measurements. The two syndromes now agree, and the
correct recovery will be applied. Finally, we are left with the case of an error-free input and one fault
in the correction procedure. We do not need to consider a fault in the correction operation itself,
since the correction will only be needed if there were a fault earlier in the syndrome extraction step,
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and so there would then be two faults in total. If the syndrome from the first round is nontrivial due
to a fault immediately prior to the syndrome extraction, then it just as well counts as an error on
the input, which we already dealt with. If it occurs on the data after the syndrome extraction, then
it just causes a single outgoing error. Faults that occur between the two steps of a single round are
the reason the gadget has the structure it does. If a phase error afflicts the second qubit after the
X1X2 measurement but before the X2X3 measurement, then the first syndrome is (0, 1). Since this
is nontrivial we measure again and now find a syndrome of (1, 1). So the recovery operation (which
we now assume has no faults) corrects the phase error Z2. Had we accepted the first syndrome
result, the correction would be Z3, at which point the outgoing error would be Z2Z3. Avoiding this
single fault causing two errors necessitates a second round of syndrome measurement.

For larger t, the strategy is to perform syndrome extraction up to (t+1)2 times, stopping when
the same syndrome is observed in t +1 consecutive rounds. The resulting gadget can be shown to
satisfy the AGP conditions (and that in t faults there will be a sequence of t+1 identical syndromes
in (t + 1)2 rounds).

10.2.4 Discussion of the Shor gadget

Altogether we have a rather Rube Goldberg construction, to be sure. It is almost comical how the
gadget construction continually piles on extra patches in order to finally meet the fault tolerant
conditions, and this just to protect against one error! On the other hand, this is sort of a triumph
of the usefulness of error correction. The logic of the construction is almost to just bash our way
through by applying the repetition code whenever we have a problem. For instance, employing the
Shor gadget on the Shor code amounts to five instances of repetition: one for X errors and one for
Z errors in the code itself, one for the cat state itself, one to ensure reliable measurement using the
cat state, and one to ensure reliable cat state preparation.

Although it might seem like all the repetitions will result in a gadget that is sure to fail because it
will encounter more than one fault by the time it’s all done, actually this statement only implies that
the threshold must be very small. We can push the error rate as low as we want by concatenation,
adding more layers to our Rube Goldberg machine, but only if the bare gates, state preparation,
and measurements have error rates below the threshold.

10.3 Steane error correction gadget

For CSS codes we can use a somewhat more straightforward gadget due to Steane. It relies on the
fact that a logical CNOT gate between two blocks of a CSS code can be implemented transversally.
First consider the funny-looking circuit on two qubits.

|+〉 m

Nominally this will just produce a random measurement outcome and won’t do anything at all to
the first qubit: The target of the CNOT is a +1 eigenstate of X , so nothing happens. Note that we
definitely don’t want to start with |−〉. This is equivalent to a Z acting after preparing |+〉, which
then propagates via the CNOT to Z acting on the first qubit.

If we lift this to an encoded qubit (the first) and encoded |+̄〉 ancilla (the second), implementing
a logical CNOT, the above conclusion still holds at the level of the logical qubits. Nothing happens
to the logical value of the data block. However, when the CNOT is implemented transversally, X
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errors on the data propagate to the ancilla. In fact, the errors are just copied onto the ancilla. Then
we can measure the Z type stabilizers of the ancilla to determine the position of X errors on the
data. Moreover, we only need to measure the Z value of each qubit individually, since with this
information we can reconstruct the stabilizers.

Swapping X and Z and turning the CNOT around, we have the circuit to determine Z errors by
measurement of X on the ancilla:

n

n
|0̄〉 H⊗n m⃗

Here the dash n is meant to indidate that the wire represents n qubits. The CNOT is transversal, the
transversal Hadamard is also indicated, and the only symbol that doesn’t quite make sense is the
measurement. In this circuit it indicates individual measurement on the qubits.

Note that a single circuit is sufficient to obtain all of the Z syndromes, unlike the Shor gadget
where each stabilizer necessitates its own circuit. This also simplifies the problem of untrustworthy
syndromes, now there are no half correct and half incorrect syndromes to consider. In fact, the
syndrome measurement does not need to be repeated when using the Steane gadget. A single X
error on the ancilla in Z syndrome extraction will cause the syndrome to diagnose one more error,
and so the correction will only be off by that single error. Similarly, if a CNOT gate fails and produces
an X error in the data and the ancilla, then the error in the data will actually be corrected. If a CNOT

fails and produces a Z error in the data and an X error on the ancilla, then the recovery operation
will create an X error in the data at the same location as the Z error. Hence, the overall effect will
still be a single-qubit error. Note that these considerations apply whether the input is a codeword
or not, and the argument extends to codes correcting t errors as well. For a full discussion, see
Gottesman’s review.

There’s no free lunch, though. For one thing, we need bigger ancillas, as large as the data block
instead of the stabilizer weight. And we still have to verify the ancilla. This is more complicated
than in the Shor gadget, but like there, we use the fact that we’re preparing a known state (instead
of encoding an unknown state). As ever, the trouble is single or small numbers of faults causing
high weight error, which could then lead to the ancilla looking more like |−̄〉 than |+̄〉. Consider
the following circuit for verification of |+̄〉:

n

n

|+̄〉

|+̄〉 H⊗n m⃗

Again we measure each qubit in the second block individually, here in the X basis. From this we
can infer the value of the logical X̄ by using the syndromes to determine errors and subsequently
computing the logical value. If we find X̄ = +1, we accept, otherwise we reject and start over. If a
fault occurs in the ancilla block which causes such a high weight error that |+̄〉 would be corrected
to |−̄〉, then this will be detected in the ancilla-ancilla block. A similar fault in the ancilla-ancilla
block will also cause a rejection, but it won’t damage the data. Continuing this train of thought,
it is apparent that if we prepare three ancillas and use the second two to test the first one, then a
single fault in the first will show up as X̄ = −1 in both the verification ancillas. In this case we can
just apply a logical X̄ to the actual ancilla and continue.
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10.4 Alternatives to ancilla verification

The overhead of ancilla verification is quite large. Most calculations of the number of qubits needed
to execute given quantum algorithms, e.g. Shor’s algorithm, show that most of the time is spent on
error correction and most of the time spent in error correction is spent on ancilla verification. So
it’s useful to think about alternatives. Here I mention two, one of which you’ll examine in more
detail in the problem sets. The broad point of both is to use the spare syndromes that are present in
most coding schemes, i.e. for non-perfect codes. For instance, though unrelated to fault tolerance,
the Shor code can correct some weight two Pauli operators, provided they occur in different rows.
By cleverly modifying a given correction circuit with some catastrophic faults (i.e. which cause too
many errors), the extra syndromes can be used to diagnose the catastrophic faults and correct the
resulting errors.

10.4.1 Ancilla decoding

DiVincenzo and Aliferis observed that by decoding the cat state with a different circuit than used for
preparation, single faults which cause multiple errors can be caught by the measurement.2 Here’s
the whole circuit, for illustration:

X

|+〉
|0〉 H s

|0〉
|0〉

The ancilla is not verified before use, it is just applied directly to the data. But instead of wasting
the ancilla qubits by measuring each in the X basis and computing the logical X̄ value, here it is
decoded back to individual qubits. But not with the same circuit which created the cat state to begin
with. The syndrome value is now contained in the measurement of one qubit, and the other three
give information about multiqubit errors that may have spread to the data block. In our example,
we are worried about weight-two errors on the second two qubits. This problem is addressed by
flipping one of the qubits if the additional outputs of the ancilla decoding circuit are all +1 (note
that there’s an extra NOT gate on the first ancilla qubit relative to a usual cat state encoder). We
could also flip the last two qubits, but the point is now that a single fault can cause at most one
error in the data.

The method can also be adapted to Steane correction.

10.4.2 Flag qubits

An even simpler and more recent scheme is the “flag method” invented by Chao and Reichardt.3

Well, it is simpler to implement, but harder to analyze. Here we go back to the unencoded ancilla
interacting with the data, but we add an additional ancilla to check for the fault which causes the

2See the supplement of arXiv:quant-ph/0607047.
3See arXiv:1705.02329 [quant-ph].
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weight-two error. Originally it was designed for distance-three codes, but has been extended to
arbitrary stabilizer codes. Here’s the circuit:

|+〉 H s

|0〉 f

An X error between the two middle CNOTs will flip the flag qubit (raise the flag, I guess) and
the measurement result f . This can be used to modify the circuits for extracting the remaining
syndromes and subsequent rounds of syndrome extraction such that the error can be uniquely
identified. The analysis is more complicated than ancilla decoding. For one thing, note that the
flag is not only raised if an X fault occurs between the middle CNOTs, but also right before them.
This event causes a weight-one error, so does not need to be addressed. Distinguishing these cases
is done with the remaining syndrome measurements in this cycle of syndrome measurements as
well as subsequent cycles.

10.5 Surface code decoding

We didn’t have time to cover this. It turns out that matching can be used to decode the surface
code when multiple rounds of syndrome extraction are performed with bare ancillas. The resulting
threshold when the noise model is that only qubits or measurement results themselves may flip (so
no back-action from the ancilla to the data) is around 3% for independent bit and phase errors. If
we consider noise in all parts of the syndrome extraction circuit (i.e. including back-action on the
data), the threshold drops to around 0.67%.
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