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Abstract

Frame theory offers a lens through which to view a large portion of quantum infor-
mation theory, providing an organizational principle to those topics in its purview.
In this thesis, I cut a trail from foundational questions to practical applications, from
the origin of the quantum probability rule to quantum cryptography, by way of a
standard quantum measurement helpful in quantum tomography and representation
of quantum theory. Before embarking, preparations are undertaken by outlining
the relevant aspects of frame theory, particularly the characterization of generalized
orthonormal bases in terms of physical quantum measurements, as well as several
aesthetically appealing families of measurements, each possessing a high degree of
symmetry.

Much more than just elegant, though, these quantum measurements are found to
be useful in many aspects of quantum information theory. I first consider the foun-
dational question of justifying the quantum probability rule, showing that putting
a probability valuation on generalized quantum measurements leads directly to the
Born rule. Moreover, for qubits, the case neglected in the traditional formulation
of Gleason’s theorem, a symmetric three-outcome measurement called the trine is
sufficient to impel the desired form. Keeping with foundational questions, I then
turn to the problem of establishing a symmetric measurement capable of effortlessly
rendering quantum theory in terms of classical probability theory. Numerical re-
sults provide an almost utterly convincing amount of evidence for this, justifying
the subsequent study of its use in quantum tomography and detailed account of the
properties of the reduction to probabilistic terms.

Saving perhaps the most exciting topic for last, I make use of these aesthetic
ensembles in the applied field of quantum cryptography. A large class of streamlined
key distribution protocols may be cut from the cloth of these ensembles, and their
symmetry affords them improved tolerance to eavesdropping over the traditionally-
studied schemes. Because the ability to put quantum key distribution protocols into
practice is essentially right around the corner, I conclude by examining the prospects
for implementing the new protocols in free space and their ability to boost the op-
erating signal intensity, currently a major obstacle in the development of practical
schemes.
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Chapter 1

Introduction

Ranging from the categorization of new complexity classes in theoretical computer

science to fine-tuning scattering potentials of neutral atoms trapped in optical lat-

tices, quantum information theory is by now a vast subject. By steadily amalga-

mating pieces of any field it might find relevant, it has come to count computer

science, physics, mathematics, engineering, as well as philosophy toward its corpus.

Nominally a marriage of information theory and quantum mechanics, quantum infor-

mation theory finds that each informs the other. Not only can quantum mechanics

solve problems suggested by information theory, but concepts in information theory

also aid the understanding of quantum mechanics. Though perhaps originating in

physics, its goals are not strictly those of understanding the nature of physical law

in its own right. Rather, the field is a good deal more applied, typically oriented

around developing useful tools to solve particular problems.

These, then, are the two complementary research thrusts of the field: finding novel

solutions to practical problems while developing concepts and methods to better

characterize modern physical theory. This approach is evident in the early works

of the field, appearing in what would now be regarded as its prehistory, the 1970s.

Among the first problems considered was the paradigmatic one, the transmission of

classical signals by quantum systems. In principle, for a given physical system the
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quantum description includes a wealth of states which a classical description does

not, so that one may hope for an improved ability to communicate signals from point

to point. This enlarged space turns out to be mostly a mirage, generally worthless

for this purpose, as demonstrated by Holevo in 1973 [78]. These additional states are

not all mutually-distinguishable, meaning that information encoded into them cannot

be reliably recovered. Evidently, whatever is meant by “quantum state” has quite

different attributes than “classical state.” Not only does this result tell us something

useful, namely straightforward use of quantum states for communication won’t help,

but also something fundamental, quantum systems don’t always give straightforward

answers to questions the way classical systems do. Improperly-encoded information

is trapped by the quantum system.

These dual lines of investigation persist, despite the unclear border between them.

In the subsequent years, the field’s pioneers discovered more things quantum systems

can and cannot do, how they do them, and why. Related to the aforementioned

problem of distinguishing among a set of quantum states is the fact that quantum

states cannot be cloned, or copied. Of course, copying a classical state is no trouble;

whole industries are devoted to high-quality reproductions of printed material, after

all. More importantly, in any communication scheme the transmitted signals are

invariably amplified at some stage, but this amounts to copying, and so is forbidden

in quantum mechanics. Were quantum states cloneable, they could be distinguished:

even if a given state is hard to distinguish from others in the sense of having low

probability of being done correctly, by creating a huge number of copies eventually

it becomes tenable. Hence indistinguishability and no-cloning come as a pair. The

mathematical reasons forbidding cloning are simple enough, at least in the restricted

case of pure states. Suppose U is a quantum cloning machine, so that feeding in a

given state |ψ〉 and a “blank page” |0〉, i.e. a physical state prepared in a standard

way, results in the output of two copies |ψ〉|ψ〉. Now let |φ〉 be another state for

which the machine U again outputs two copies. What happens if we try to copy the
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superposition of the two |ψ〉 + |φ〉?1 Surely this is a legitimate quantum state, but

now linearity implies that we obtain

U(|ψ〉+ |φ〉)|0〉 = |ψ〉|ψ〉+ |φ〉|φ〉 6= (|ψ〉+ |φ〉)(|ψ〉+ |φ〉), (1.1)

which isn’t at all what we wanted. Since quantum mechanics is a linear theory,

copying of arbitrary states cannot be performed [167]. Poor-quality copies may be

obtained, but this would be akin to placing a sheet of text into a copying machine

and obtaining two versions each of which is somewhat different than the original.

Copying machines today may not be perfect—or even reliable—but at a minimum

we expect them not to alter the original, at least not much. Perhaps more than their

inherent indistinguishability, the fact that quantum states cannot even be copied or

amplified signifies a gigantic departure from classical physics.

Bizarrely, despite the injunction against amplifying quantum states, the infor-

mation contained can be blindly transmitted. Without knowing the input state

it would seem to be impossible to reliably read the information and then send it,

and indeed it is. However, with the help of auxiliary systems having nothing to

with the input, the state can be measured at one point, the results transmitted in

the standard classical fashion, and the state faithfully reconstructed at the other

end. This process is termed teleportation [14] since the quantum state is not bodily

transmitted—the quantum state at the transmitter’s end is destroyed otherwise tele-

portation would imply cloning. Moreover, the transmitted measurement results are

essentially random, making this an almost ridiculous-sounding scheme. The secret,

of course, lies in the non-classical properties of the auxiliary state, termed entangled

by Schrödinger [136]. The output state of the cloning machine in equation 1.1 is

entangled; the quantum state is shared between the two systems in a way which can-

not be described by considering each individually. Due to the usefulness of entangled

states, they are the subject of much current research, which in turn sheds light on

how entanglement signals the departure from classical physics.

1Here we are avoiding issues of normalization.
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Beyond this, quantum systems also exhibit an optimality in the way they con-

vey information through measurement [165, 166]. Considering the restricted case of

linearly-polarized photons, the probability distribution proscribed by quantum me-

chanics conveys more information about the polarization than any other distribution.

That is to say, considering the mutual information between the state of the photon

polarization and the measurement of this quantity as a function of the probability dis-

tribution for the measurement outcome given the polarization, the distribution given

by quantum mechanics maximizes this mutual information. This signals a feature of

fundamental importance, like the minimization of action in classical mechanics, but

now the important quantity is a concept borrowed from information theory, not a

strictly physical quantity. Perhaps like the reduction of classical mechanics to the

principle of least action a similar reduction can be made for quantum mechanics in

terms of information-theoretic quantities.

Quantum systems can also be used for cryptographic purposes, as chapter five

examines in detail, a phenomenon which relies entirely on the odd fact that infor-

mation encoded in quantum states generally cannot even be read without causing

some disturbance to it. This would be akin to picking up a book and finding yourself

reading Don Quixote the first time around, The Theory of the Leisure Class the

second, and the entire collection of Physical Review articles for 1928 the third. Such

peculiar behavior was exploited in the first application of quantum mechanics to real

world problems, the creation of unforgeable bank notes [163].

The most propulsive idea in quantum information theory arose in the 1980s but

did not catch fire until 1994: the quantum computer. An exciting combination of

words if ever there was one, the quantum computer was first imagined by Feynman

at the same time Wheeler contemplated the merits of viewing the universe—and

by extension, physical law—as a computer. Feynman hoped to simulate physical

systems more efficiently [62], while Wheeler’s ideas provided an impetus for viewing

physical problems in information-theoretic terms2 [162]. Happily, a problem which

2“It from bit” as the saying goes.
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the quantum computer could solve faster than a classical computer was found in

1985 [51], but it wasn’t until the development in rapid succession of an algorithm to

very rapidly factor large numbers [142] and an error-correction scheme to ensure the

quantum computer’s signal would not drown in noise of its own making [143, 146]

did researchers at large take notice. A veritable explosion of work followed, from new

algorithmic software fodder such as faster searching of databases [72], speedier solu-

tion of algebraic equations [74], and quicker transversing of graphs using quantum

random walks [35], to fanciful hardware on which to run them, ranging from electro-

magnetically trapped single neutral atoms [85] or ions [73, 164] to superconducting

Josephson-junction circuits.

And this isn’t even the most immediately realizable application of quantum in-

formation theory. A quantum computer capable of performing tasks faster than

available classical computers is likely decades away. For the impatient, quantum

mechanics also offers the ability to improve measurement of classical parameters [36]

(probably a requirement for fruitful functioning of gravitational-wave detectors [31]),

as well as frequency standards [80], lithographic techniques [17], and clock synchro-

nization [38], in addition to the aforementioned cryptographic applications.

It has been remarked that to do research in quantum information theory, one

ought to pick a favorite text on classical information theory [110], open to a chapter,

and translate the contents into quantum-mechanical language [138]. Naturally, if

everyone followed this advice the field would quickly be overrun with books entitled

“Elements of Quantum Information Theory” [42]. But the statement succinctly cap-

tures the fundamental point of research in quantum information—quantum mechan-

ics offers a fresh look at existing problems, and in venturing to adopt this perspective

and solve these problems we are likely to learn a lot besides.

Instead of looking to information theory for guidance, this dissertation draws

heavily on the subject of frame theory for inspiration and structure. Frame theory

doesn’t offer a comprehensive framework for quantum information, but does provide

a detailed tour through a wide-ranging section of it. Several good introductions to
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the field exist, particularly by Casazza [29]. Topics from frame theory are used both

to develop useful tools in quantum information theory, as described in part one, and

to explore new and improved methods of quantum cryptography, the subject of part

two.

First we take a brief look at frame theory in chapter two, amounting to a tiny

fraction of the theory, but just enough for our purposes. At its most general, frame

theory generalizes the notion of an orthogonal basis in a vector space and proceeds to

consider the questions of functional analysis in these terms. For instance, conditions

on frames ensuring their completeness as well as those establishing equivalence to

ordinary bases are well-known. The usefulness of such sets of vectors was elucidated

by their creator, Dennis Gabor, who in 1946 sought a signal decomposition localized

both in time and frequency [66], much like the way a conductor’s score describes a

symphony.

Often two research fields may proceed in isolation, each one developing many

of the same concepts and results without realizing it. Such is the case for frame

theory and quantum information, since upon close inspection, frames are found to

be equivalent to generalized quantum measurements, POVMs. Any vector may be

expressed in terms of the elements of a frame, this being the very definition. That is

to say, for any |ψ〉 we may write |ψ〉 =
∑

k ck(ψ)|φk〉 for some generally non-unique

choice of constants ck. Any frame may be transformed in a canonical sort of way

into an isomorphic frame {|φ̃k〉} for which

∑

k

|φ̃k〉〈φ̃k| = aI, (1.2)

where a > 0 and I represents the identity operator. But now we have a set of positive

operators Ek = |φ̃k〉〈φ̃k|/a which sum to the identity, i.e. a set of operators forming a

POVM. Too, the condition expressing the equivalence of a frame to an orthonormal

basis in a larger vector space is also well-known in quantum information theory as

Neumark’s theorem. Several authors have noticed this and other connections and

attempted to close the gap between the two fields [58, 59]. Hopefully this dissertation
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will also serve to establish the frame-theoretic point of view as useful in quantum

information theory.

Two specialized types of frames are also examined in chapter 2: spherical codes

and spherical t-designs. These are simply sets of vectors arranged in an appealing

fashion, and have typically found application in classical coding theory (the former)

and numerical estimation theory (the latter). We shall import them into a quantum-

mechanical setting in chapter four, and explicitly employ the spherical codes for

cryptographic ends in chapters five and six.

But first, the frame theory perspective is put to the test in chapter three, wherein

the quantum probability rule is shown to follow quite simply from the structure

of generalized measurements. Ostensibly this issue pertains to the foundations of

quantum mechanics, not to applied matters. However, such foundational questions

do bear directly on practical questions, for the very notion of possible measurements

is at stake. Gleason’s theorem [68] establishes that the probabilistic structure of

quantum theory, the Born probability rule, follows from the structure of ordinary

projective measurements, which were already imagined by von Neumann to be the

fundamental elements of the theory [153]. In this formulation, the standard for

quantum mechanics textbooks, a possible quantum measurement corresponds to a set

of orthogonal projection operators Πk such that ΠjΠk = 0 for j 6= k and
∑

k Πk = I.

Gleason’s theorem then determines the probabilistic nature of quantum mechanics

by showing that if a measurement is made, the outcomes must occur with probability

given by the rule pk = Tr[Πkρ], where the density operator ρ is a positive, trace-one

operator on the same space as the Πk. Generally there aren’t any dispersion-free

density operators causing all probabilities to be either one or zero, so given the

nature of measurement, quantum theory is inescapably probabilistic.

Generalized measurements, POVMs, drop the orthogonality requirement and re-

lax the restriction to projection operators. These were seen as an afterthought, a trick

that could be performed by writ from the church of the larger Hilbert space. How-

ever, by necessity Gleason left out our favorite quantum system, the two-level qubit,
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and the focus on projective measurements obscured the very useful role POVMs have

to play. Statements like “position and momentum cannot be simultaneously mea-

sured” are patently absurd; it’s just they cannot be projectively measured together.3

By considering generalized measurements from the outset, it becomes very simple

to follow the trail of implications to the Born rule, as well as net the outstanding

qubit case. This chapter represents original work reported in [33], which was later

discovered to have been proven in [24].

This approach cements the importance of POVMs, which in addition to being

useful, provide an elegant, streamlined, and coherent foundation for quantum theory.

In some sense this only serves to invite the question of why measurements should be

considered fundamental in the first place, and how their structure ought to follow

from more basic principles. This question has been with us since von Neumann, of

course, but with the rest of the theory more or less in place, has taken on ever-more

urgency. The quantum logic program, started by von Neumann and Birkhoff [16]

and continued by Mackey [111, 112], Jauch [84], Piron [124], and many others, sets

itself the task of solving this problem. Today quantum logic has evolved to the study

of effect algebras, the generalization of POVMs (whose elements are termed effects)

in hopes of providing a satisfactory answer to the second half of the aforementioned

question. The first half has, in one form or another, raged since antiquity. A flavor of

the argument is given in the beginning of chapter three, but suffice it to say here that

positing measurements as fundamental seems the best way to reconcile the varying,

if vague, notions of probability, measurement, physical properties, and the observer’s

role in the whole affair.

Chapter three turns to a more concrete application of frame theory: the search

for a suitable frame with which to effortlessly reduce finite-dimensional quantum me-

chanics to more familiar, probabilistic terms. Known by the unwieldy name “sym-

metric, informationally-complete positive operator-valued measure”, SICPOVM for

3Naturally the limiting accuracy of such a joint measurement is set by the uncertainty
principle.
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short, this aesthetically appealing set of operators offers elegant and efficient dis-

tributions and quasidistributions akin to the Glauber-Sudarshan P and Husimi Q

functions of infinite dimensions. The SICPOVM appears in other contexts under

various names, because more than an ordinary frame, it is simultaneously an equian-

gular spherical code and a spherical 2-design. Thus one of the earliest investigations

gave it title “equiangular lines” [104], work continued by many others under various

names [50, 98, 77, 97, 147, 99, 60, 61, 169].

Because these POVMs induce probability distributions which are faithful rep-

resentations of any density operator or indeed any operator they earn the title

“informationally-complete” [125, 22, 137, 46], but the elegance begins with “sym-

metric”. This makes them simple to define, too: a set of n = d 2 normalized vectors

|φk〉 in Cd is equivalent to a SICPOVM when it satisfies

|〈φj|φk〉|2 =
1

d + 1
, ∀ j 6= k . (1.3)

The actual SICPOVM comes about by subnormalizing these vectors so that their

outer products sum to the identity.

Sadly, elegance does not directly translate into provably existent, and the first half

of chapter 4 is devoted to examining the structure in detail before providing analytical

examples in dimensions two, three, and four, and numerical solutions up to dimension

45. This work represents collaboration with Andrew Scott, Kiran Manne, and Robin

Blume-Kohout [129]. Convinced of their existence, the second half of the chapter

elucidates what they can do. Just like their infinite-dimension cousin, there exists

a “P” and a “Q” function based on the SICPOVM, with the major advantage that

transforming from one to the other is trivial. Given any informationally-complete

measurement, P and Q functions can always be found; the Q function is just the

probability distribution of the measurement, while the P function arises when writing

the density operator in terms of the measurement elements, like ρ =
∑

k Pk(ρ)Ek.

Typically the connection between the two representations will involve matrix in-

version, and may be singular in places. However, for the SICPOVM P s and Qs, we’ll



12 Chapter 1. Introduction

find that Pk(ρ) = d(d+1)Qk(ρ)− 1, so effectively the P and Q are the same up to an

overall scale and translation. This makes the SICPOVM appealing as a sort of “stan-

dard quantum measurement”, a future measurement to which any given state could

be subjected. With this, the whole apparatus of quantum theory may be transcribed

into ordinary probability theory by defining measurements and dynamical operators

in terms of their effect on the to be performed standard measurement. What were

measurement operators will now be linear functionals of distributions, and dynami-

cal operators stochastic maps from distributions to distributions. In this new guise

the content of quantum theory remains, limiting the set of allowed distributions,

functionals, and stochastic maps.

Such a prescription applies immediately to tomography, the reconstruction of

quantum states from a large number of measurements. Suppose a physical system

reliably produces a particular quantum state whose identity we would like to verify.

Perhaps we have constructed a device to reliably prepare a spin-1/2 system along

the z axis for use in a quantum magnetometer. Before putting it into production we

should first verify that this is indeed the state prepared. In principle we have access

to an unlimited supply of states, and by using the SICPOVM to measure each one,

we build up a statistical estimate of the Q function. This can be translated back into

a density operator via the P function if we like, but this step is no longer necessary

if we are content to stay in this “SICPOVM representation.”

Tomography applies to the other pieces of quantum mechanics as well: measure-

ments and dynamics. Faced instead with an unknown measurement apparatus, one

simply turns the preceding procedure inside out, feeding in different states corre-

sponding to elements of the SICPOVM one at a time until enough statistics have

been collected to determine the form of the measurement operators. In the service of

determining the dynamics of a quantum system, the procedure is termed quantum

process tomography. To accomplish this task, we simply sandwich the two preceding

procedures together, feeding in SICPOVM quantum states and using the SICPOVM

measurement at the other end.
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Using the SICPOVM for tomography is simple, but not particularly efficient,

and in practice would not be attempted unless no background information about

the item in question were available. But it does provide a conceptually clear way

to think about tomography and an elegant means of representing the objects in

quantum theory.

Chapters two and three of part two represent applications of frame theory to find-

ing mathematical tools useful in quantum information theory. Part three considers

frame theory in the context of quantum cryptography, the most practical application

of quantum information theory thus far. Specifically, chapter four adapts equiangu-

lar spherical codes for use in key distribution protocols, and chapter five examines

the experimental prospects for actual implementation.

Cryptography is a huge subject in and of itself, but a brief self-contained intro-

duction is given in the beginning of chapter four before considering what quantum

mechanics has to offer: security guaranteed by (currently-understood) physical law

not computational difficulty. The goal of cryptography is to encode data in such a

way that only trusted parties can read it. This is achieved by using a shared key

which “locks” and “unlocks” the message, preventing prying eyes from learning it.

The sender uses the key to encode the message at which point it may be securely

broadcast, since only the intended recipient, i.e. another person with the correct

key, can distinguish it from noise. Closely-related, then, is the problem of secure

key distribution. If the sender and receiver do not share a key and are separated by

a large distance preventing them from meeting in private, they cannot even begin

the secure protocol without first establishing the key. This would seem to imply a

catch-22, since because the key needs to be secret, how will they agree on it without

resorting to a secure means of communication? The trick is to realize that estab-

lishing keys securely is not like transmitting messages securely; the key is not data

possessed by the sender which the receiver would like to have. Rather, it is simply a

random string shared between the two parties and unknown to anyone else. Hence

it can be created at each end, rather than being transported from sender to receiver.
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With a working key distribution protocol, the sender and receiver can first es-

tablish the key and then use it to safely encrypt and transmit the actual message.

Typical current protocols for both data encryption and secure key exchange between

remote parties are based on the current computational difficulty of certain mathemat-

ical problems, such as factoring large numbers. These schemes would all be broken

should efficient algorithms be found, and in principle the new quantum factoring

algorithm and others do exactly this.

But what quantum mechanics takes by destroying the security of current cryp-

tographic protocols, it gives in the form of new, unconditionally secure methods.

Using systems described by quantum mechanics, protocols can be created which are

secure in as much as quantum mechanics is correct. That is to say, the security of

such protocols issues from physical law, not the current computational state of the

art. As already mentioned, this behavior relies on the curious feature of quantum

systems that they cannot be measured without being disturbed. In a different guise,

this is the trusty old quantum measurement problem that from one point of view the

state of the system instantaneously “collapses” when it is measured. Such is life in

the quantum world, and by holding our philosophical objections just long enough to

consider the consequences, we can make use of this discomforting state of affairs.

Formally, this feature manifests itself when considering the post-measurement

state. Consider a simple, rank-one projective measurement for the moment, whose

elements are Πk = |ek〉〈ek|. Students of introductory quantum courses know that if

a quantum state |ψ〉 is measured by {Πk}, then the kth outcome will obtain with

probability pk = 〈ψ|Πk|ψ〉. Moreover, the quantum state of the system must now

by given by |ek〉, for an immediate subsequent measurement must certainly yield the

same result.

In the context of communication, this translates into a tradeoff between the

amount of information which can be gathered by a measurement and the disturbance

caused in the process. Suppose the sender encodes a message from a given set into a

quantum system, and transmits it to the receiver. Ideally, the receiver would like to
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distinguish all the possible messages and so arranges a measurement in which each

outcome corresponds to a potential message. Calling the message set {πj, |φj〉}, in

which the jth message is sent with probability πj, and the measurement {Ek}, the

overall probability of error when using a noiseless channel becomes

perr =
∑

j 6=k

πj〈φj|Ek|φj〉 = 1−
∑

k

πk〈φk|Ek|φk〉 (1.4)

Should the encoded messages be non-orthogonal, as for instance would be the case

if the number of possible messages is larger than the dimension of the quantum

system, then the receiver cannot read the message without on average causing some

disturbance to the system. Sometimes an incorrect outcome will obtain, and the

state will collapse to this incorrect message state. Conversely, the only sure way to

extract the message without disturbing the state is for the messages to be encoded

into a set of orthogonal quantum states, for then the corresponding measurement

yields the message sent. The cross-terms for which j 6= k in equation 1.4 can be

made zero by choosing Ek = |φk〉〈φk|. But this is effectively the classical case of

perfectly distinguishable messages, so any quantum departure from it invites the

information/disturbance tradeoff.

Now suppose an eavesdropper intercepts the message before the message signal

reaches the receiver. If in the attempt to decode the message disturbance is intro-

duced, the probability of correctly decoding the message will decrease. For instance,

if the eavesdropper also uses the measurement {Ek} and forwards the state |φk〉 upon

obtaining outcome k, the probability of error becomes

perr =
∑

j 6=k,l

πj〈φj|El|φj〉〈φl|Ek|φl〉 = 1−
∑

k,l

πk〈φk|El|φk〉〈φl|Ek|φl〉 (1.5)

The legitimate parties may utilize this feature to check for the presence of an eaves-

dropper. By publicly comparing a subset of the messages sent with those received,

using a classical broadcast channel, an increased error rate over that indicated by

equation 1.4 will alert them to interference with the quantum channel.

This ability of quantum states to record attempts at copying fits perfectly with

the goal of key distribution. By using quantum states, the sender and receiver can
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create a shared key from strings of single codewords, and then check the error rate to

determine if it is truly secret. Should the error rate be too high to ensure security, the

key creation attempt may be abandoned. When an error rate exists below which the

sender and receiver can be guaranteed that illegitimate parties cannot know enough

of the key to be in any way useful, the protocol exhibits unconditional security.

Equiangular spherical codes (ESCs) are found to be particularly well-suited to

the task of secure key creation. These are sets of n states in Cd with equal overlap

arranged to be as widely-spaced in the vector space as possible, conforming to the

requirement

|〈φj|φk〉|2 =
n− d

d(n− 1)
(1.6)

Such equiangular sets with this overlap only exist when d ≤ n ≤ d2, so the SICPOVM

is the largest possible ESC. In general, key distribution protocols exist with arbitrary

n between these limits, and we shall see that the wide spacing translates well into

eavesdropper sensitivity.

Establishing the unconditional security of a key distribution protocol is a subtle

art, doubly so due to the use of quantum mechanics. In chapter five the beginning

of such an analysis is presented, gradually approached by first studying the relevant

issues and complications in the context of the original proposal for quantum cryp-

tography, put forth by Bennett and Brassard in 1984 [12]. In this scheme, two sets

of polarization states, horizontal/vertical (+) and 45/135 degree diagonal (×) are

used to encode key bits. Both horizontal and 45 degree states may be taken as 0.

for instance, and the others 1. The receiver randomly chooses one of the two sets in

which to measure the incoming signal, and when that choice matches the encoding a

key bit is created. The other cases are simply discarded. The protocol is secure since

through the use of non-orthogonal signal states the legitimate users can infer the

eavesdropper’s disturbance via the observed error rate. From this they may infer the

eavesdropper’s knowledge and discard the key if it is too large. In general, however,

the eavesdropper may perform quantum manipulations to the signals and also store
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whatever results in quantum form. The real difficulty of establishing security lay in

quantifying the eavesdropper’s information when encoded in quantum states.

Instead of attempting a full analysis straight away, the equiangular spherical

code states are assumed to be subjected to the more limited eavesdropping method

described above by equation 1.6. This “intercept/resend” attack has both the ad-

vantage and drawback of being the simplest to consider. It immediately provides a

comparison between ESC protocols and the original scheme, as well as its variants,

but cannot make concrete statements in the most general setting.

In this setting spherical codes are found to offer several advantages over the

more standard protocols which use collections of orthogonal bases. Like the BB84

protocol which uses the two bases + and ×, in arbitrary dimensions many different

bases can be used, giving rise to a plethora of protocols. This is similar to the

choice of n for spherical code protocols, but there are simply more spherical code

sets, so this allows ESC protocols to offer a wider range of possibilities in terms

of key generation speed and noise tolerance. Faster protocols can be used when

noise is low; safer protocols when noise is high. Second, for a given number of

signal states in a fixed dimension, arranging them into a spherical code provides

more noise tolerance, but a lower key generation rate than using bases. Finally,

ESC protocols automatically estimate the channel noise, removing the need for the

legitimate parties to do this manually. The most practical version utilizes two-level

systems, like polarization, for which the details are examined separately. Here there

are two possible equiangular spherical codes, called the trine and tetrahedron after

their shapes in the Bloch-sphere representation. The trine consists of three coplanar

states spaced by 120 degrees, and the tetrahedron the four vertices of that regular

Platonic solid. For these two protocols slightly stronger eavesdropping methods can

be formulated and analyzed, again demonstrating the increased security of equally-

spaced message states.

Qubit-based protocols enjoy the advantage of easy implementation using polar-

ization states of light. With polarizers and waveplates arbitrary superpositions of the
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two orthogonal states are simple to prepare at the transmission end, while polarizing

beamsplitters in conjunction with phase shifters and ordinary beamsplitters suffice

to implement any potential measurement at the receiving end. However, faster pro-

tocols tolerating more eavesdropper interference are to be found among those having

more states in higher dimensions, so chapter six examines the prospects for using

transverse spatial modes of light along with passive linear-optical elements to encode

and decode states of higher-dimensional quantum systems.

Experiments creating, controlling, and measuring transverse modes, particularly

those carrying so-called “orbital” angular momentum4 have recently been performed,

suggesting that cryptographic protocols based on them are not far off. These modes

carry angular momentum in their spiral-shaped wavefront (surfaces of constant phase

resembling fusili) and may be created from ordinary Gaussian-profile laser beams

with simple blazed phase holograms. Superpositions of such states, too, result from

the use of holograms, or may be created by interferometry. At the decoding end, the

angular momentum analog of a polarizing beamsplitter may be realized as a sequence

of interferometers employing phase shifters and Dove prisms to effect transverse

mode rotations. Like the polarizing beamsplitter, this optical network essentially

transcribes the quantum state from a superposition of spatial mode states to one

involving distinct propagation channels. These modes may be manipulated again

using linear optical elements to implement any desired quantum measurement.

Orbital angular momentum modes are not the only available which are suitably

influenced by linear optics, but the use of linear optics is a must for quantum cryp-

tography. Although quantum states may not be blindly copied, the sender should

take care not to send many photons per pulse, since each is effectively a copy of the

signal. When communicating over a lossy channel, an eavesdropper could in principle

hijack the channel, replacing the loss mechanism with a means of splitting off some

of the photons from each signal, with the legitimate parties none the wiser. Though

not very realistic, it is possible, so to ensure unconditional security, this case must

4as opposed to “spin” angular momentum carried by polarization.
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be avoided or dealt with. This requirement mandates a sparing number of photons

per pulse and requisite measurement devices capable of handling such faint signals.

Though daunting, this is just feasible. Already qubit-based quantum cryptography

has been demonstrated experimentally, both in free-space and in optical fibers, and

commercial applications are even available.

Chapter seven gives a summary of the work presented herein before turning to

the consideration of what future work should be undertaken. For the SICPOVM,

clearly one would like to analytically establish its existence. The prima facie sim-

plicity of doing so, contrasted with the actual difficulty points to the possibility of

a fruitful and enlightening proof, work on which is indeed underway [156]. Other

applications of the SICPOVM abound, from the efficiency of state reconstruction to

the characterization of ensembles of quantum states as the most “non-classical” [65].

The unconditional security of ESC-based protocols also presents itself as an obvious

choice for completion as soon as possible, but along with this comes the bigger and

perhaps more interesting question of the optimal ensemble for cryptography, in the

sense of providing the most security. Heuristic arguments can be given as to why

equiangular spherical codes ought to be the optimal ensembles, and numerical results

would immediately indicate if this is likely the be the case. Spherical code protocols

may also help in increasing the number of photons which can be safely sent per pulse,

and the resulting intensity increase has useful practical implications.

These topics and their order reflect my own progression through the field of

quantum information theory, shaped both by interest and coincidence. Being one

part practical and one part foundational, the dichotomy inherent to the field at once

offers a wealth of diverse and interesting research questions and provides a certain

“intellectual-tension” conducive to solving them. When progress on one of these

questions slows, the opposite perspective may be adopted for a fresh look. New

lines of research can be developed in conjunction with scientists in seemingly-distant

fields. That the thesis delivers this material organized around the topic of frame

theory reflects the fact that much of the research carried out could also justifiably be
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considered as part of that field. All of this contributes to the sense that intellectual

curiosity can perhaps never be satisfied, but is certainly never bored.

A thesis can never contain solely original work; the work must always be placed

in the appropriate context and important background information given. To be clear

about what is original, the following table spells it out by section.

Section 2.3 3.1–3 4.1–3 5.4–5 6.4

Collaboration Ref. [129] Ref. [33] Ref. [129] — —



21

Chapter 2

Frame Theory Basics

From a purely mathematical point of view, frames, spherical designs, and spherical

codes are simply appealing sets of vectors in a linear space. Each rightly commands

its own field of study, often closely related to the main application, classical coding

theory. Perhaps unsurprisingly, these structures can be applied to quantum infor-

mation theory as well, and they underlie many of the results presented in this work.

In this chapter, the aim is to develop only the main features of each mathematical

object, paying special attention to the aspects that will be relevant for use later in

the setting of quantum information theory.

Frames are the most general of the three, encompassing the other two, so we

begin with them. Simply put, frames are generalizations of the familiar orthonormal

bases of linear spaces, with the requirements of orthogonality, normalization, and

even linear independence relaxed. Absent these restrictions a frame is an arbitrary

basis that represents arbitrary vectors with a (typically) redundant and non-unique

set of coefficients. The redundancy of the frame representation is advantageous

in questions of signal processing, where frames were first introduced by Gabor in

1946 [66] as a means of signal decomposition into elementary signals localized in time

and frequency. Drawing on this work, in 1952 Duffin and Schaeffer [55] introduced

frames in a Hilbert space for use in the study of nonharmonic Fourier series. The
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field lay dormant, however, until the work of Daubechies, Grossmann, and Meyer in

1986 [47]; currently frame theory is a quite active and rapidly growing field [29].

2.1 Simple Frames

For a finite-dimensional vector space H of dimension d, a collection of n vectors

|φk〉 ∈ H is a frame if there exist constants 0 < a ≤ b < ∞ such that

a〈ξ|ξ〉 ≤
∑

k

|〈φk|ξ〉|2 ≤ b 〈ξ|ξ〉 (2.1)

for all |ξ〉 ∈ H. The constants a and b are called the frame bounds. The lower bound

ensures that a frame spans the space, whence n ≥ d. The upper bound is satisfied

for n < ∞ by using the Cauchy-Schwartz inequality and setting b =
∑n

k=1〈φk|φk〉.
Thus any finite collection of vectors is a frame for its span. If a=b, the frame is said

to be tight, if a = b = 1 normalized, and if upon deletion of an element the collection

ceases to be a frame, it is said to be exact.

We may work with frames more easily by formulating them in terms of operators.

The analysis operator, or frame transform, T : H → `2 decomposes any vector into

the sequence of overlaps with frame elements: T |ψ〉 = {〈φk|ψ〉}. The adjoint is the

synthesis operator, or preframe operator, T † : `2 → H which creates a vector from a

sequence: T †{ak} =
∑

k ak|φk〉. 1 The frame operator is then the positive operator

S : H → H such that S = T †T , i.e.

S =
∑

k

|φk〉〈φk| . (2.2)

Putting the analysis and synthesis operators in the other order TT † yields the Gram

matrix Gj,k = 〈φj|φk〉 of the frame elements. In terms of the frame operator, equa-

tion 2.1 now reads aI ≤ S ≤ bI where I is the identity matrix.

1Note that in mathematical literature the analysis and synthesis operators are defined
in the opposite sense, stemming from the use of the inner product in the conjugate sense.
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In order to express a vector in terms of a frame, one must determine the coef-

ficients, and in general this expansion is not unique. However, the frame operator

immediately yields an expansion in terms of the canonical dual. The elements of the

canonical dual are given by |φ̃k〉 = S−1|φk〉; its frame operator is obviously S−1, and

frame bounds 1/b, 1/a. The reconstruction formula is given by

|ψ〉 = SS−1|ψ〉 =
∑

k

|φk〉〈φ̃k|ψ〉. (2.3)

This method can be difficult because it requires a matrix inversion, though of all

the possible expansion coefficients, those found by using the canonical dual have the

smallest possible `2 norm, as the following theorem shows.

Theorem 1 (Duffin and Schaeffer [55]) Let {|φk〉} be a frame for a Hilbert space

H and |ψ〉 ∈ H. If {bn} is any sequence of scalars satisfying |ψ〉 =
∑

k bk|φk〉 then

∑

k

|bk|2 =
∑

k

|〈φ̃k|ψ〉|2 +
∑

k

|〈φ̃k|ψ〉 − bk|2. (2.4)

The proof is quite simple. Starting from

|ψ〉 =
∑

k

bk|φk〉 =
∑

k

|φk〉〈φ̃k|ψ〉, (2.5)

take the inner product with S−1|ψ〉 to obtain

∑

k

bk〈ψ|φ̃k〉 =
∑

k

|〈φ̃k|ψ〉|2, (2.6)

from which equation 2.4 follows. �

Tight frames, meanwhile, make such expansions simple since S = aI. Associated

to any frame is the canonical tight frame, generated by using the square root of

the inverse of the frame operator: |φk〉 = S−1/2|φk〉. The canonical tight frame is

the normalized tight frame closest to the original in the sense of minimizing the

squared error [58, 59]. We can establish this by a judicious use of the singular value

decomposition. First note that one may think of the columns of the matrix T † as

the expansion coefficients of the |φk〉 in an orthonormal basis |ek〉. Suppose that |φk〉
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is any normalized tight frame with analysis operator F . Then the error quantity we

seek to minimize is given by

∑

k

‖|φk〉 − |φk〉‖2 = Tr[(T − F )(T − F )†], (2.7)

subject to the condition that F †F = I. Consider the singular value decomposition

T † = UΣV † where U, V are unitary operators and Σ is diagonal. We may expand

the trace in the orthonormal basis of U , denoted {|uk〉}, and define |ak〉 = F |uk〉,
an orthonormal basis since 〈aj|ak〉 = 〈uj|F †F |uk〉 = δjk. Note that the singular

value decomposition implies T |uk〉 = σk|vk〉, where {|vk〉} is the orthonormal basis

associated with V and σk the associated singular value. Thus the error may be

written as
∑

k ‖σk|vk〉 − |ak〉‖2 with the minimization over the orthogonal |ak〉. The

solution, of course, is |ak〉 = |vk〉, whence F |uk〉 = |vk〉. Hence F † = (T †T )−1/2T †, or

|φk〉 = S−1/2|φk〉.

In the special case that the frame elements are equal in number to the dimension,

the canonical tight frame will be an orthonormal basis, simply because in order for

d rank-one projectors to sum to the identity operator on d dimensions, they must

be mutually orthogonal. This in turn implies that the frame and its canonical dual

form a biorthogonal system:

δjk = 〈φj|φk〉 = 〈φj|S−1|φk〉 = 〈φj|φ̃k〉. (2.8)

Note that the synthesis operator takes an orthonormal basis of `2 to the frame

in H, though for a finite-element frame in finite dimensions, one needs only a finite

subspace of `2 [11]. We may go in reverse and dilate a frame to an orthonormal basis

in a higher dimensional space as well. A result of Casazza, Han, and Larson shows

that this is equivalent to the notion of a frame.

Theorem 2 (Casazza, Han, and Larson [30]) A set {|φk〉} is a frame for a Hil-

bert space H if and only if there exists a Hilbert space K ⊃ H with an orthonormal

basis {|ek〉} and a (not necessarily orthogonal) projection P : K → H such that
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P |ek〉 = |φk〉 for all k. Further, {|φk〉} is a normalized tight frame if and only if P

is an orthogonal projection.

The portion of the theorem pertaining to tight frames is simple to prove. Begin-

ning with the reverse implication, let {|ek〉} be an orthogonal basis for K and P an

orthogonal projection. Then for any |ψ〉 ∈ P (K) = H,
∑

k

|〈ψ|P |ek〉|2 =
∑

k

|〈ek|P |ψ〉|2 =
∑

k

|〈ek|ψ〉|2 = 〈ψ|ψ〉, (2.9)

so {P |ek〉 = |φk〉} is a normalized tight frame. Conversely, whenever {|φk〉} is a

normalized tight frame, ‖T |ψ〉‖2 = 〈ψ|T †T |ψ〉 = 〈ψ|ψ〉, so that the analysis operator

is an into isometry. Thus we may associate T (H) ⊂ `2 with H itself and set P as

the projection from `2 to T (H). Let {|ek〉 ∈ `2} be an orthonormal basis such that

T †|ek〉 = |φk〉 ∈ H. Then

〈Tψ|Pek〉 = 〈PTψ|ek〉 = 〈Tψ|ek〉 = 〈ψ|T †ek〉 = 〈ψ|φk〉 = 〈Tψ|Tφk〉, (2.10)

for all k and |ψ〉 ∈ H, and therefore any normalized tight frame {|φk〉} ≈ {P |ek〉}.
Of course, all other tight frames can be obtained by an appropriate scaling of the

projection operator P . �

In the language of quantum mechanics, normalized tight frames are POVMs

consisting of rank-one elements, as they are positive operators which decompose the

unit operator. Conversely, since any POVM with arbitrary rank elements can be

decomposed into rank-one elements, all POVMs can be thought of as normalized

tight frames. In this context, theorem 2 is equivalent to Neumark’s theorem which

asserts that any POVM can be realized as an orthogonal projection-valued measure

in a higher dimensional space [122].

Now specialize to the case H = Cd and let Sd ⊂ Cd be the subset consisting of

vectors that have unit norm. Any frame can be rewritten in terms of the correspond-

ing normalized vectors, but tightness is not preserved under this transformation. For

a frame {|φk〉 ∈ Sd}n
k=1 made up of normalized vectors, the quantity

Tr[S2]=
∑

j,k

|〈φj|φk〉|2 (2.11)
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is called the frame potential. Throughout the following, only frames made up of

normalized vectors are considered, although suitable frame potentials can be defined

for frames consisting of vectors of arbitrary norm [155]. A useful theorem due to

Benedetto and Fickus states the following.

Theorem 3 (Benedetto and Fickus [11]) Given any d and n, let {|φk〉 ∈ Sd}n
k=1

be a set of normalized vectors with frame operator S. Then

Tr[S2] ≥ max(n, n2/d ) . (2.12)

Furthermore, the bound is achieved if and only if {|φk〉} consists of orthonormal

vectors, when n ≤ d, or is a tight frame, when n ≥ d.

Proof Denoting the ordered eigenvalues of S by λ1 ≥ λ2 ≥ . . . ≥ λd, we first note

that the number of nonzero eigenvalues is at most q = min{n, d}. Thus we have

Tr[S] = n =

q∑

k=1

λk and Tr[S2] =

q∑

k=1

λ2
k . (2.13)

Minimizing Tr[S2] subject to the constraint Tr[S] = n gives the inequality. Equality

holds if and only if λk = n/q, k = 1, . . . , q, whence S = (n/q)Πq where Πq is the

projector onto the subspace corresponding to nonzero eigenvalues. Thus for n ≤ d,

S is a projector onto an n-dimensional subspace, implying that the vectors |φk〉 are

orthogonal, and if n ≥ d, S = (n/d)I, implying that the set {|φk〉} is a tight frame.

�

2.2 Spherical Codes

Equation 2.12 is called the Welch bound from classical signal processing [160], and

frames meeting this bound are also called Welch bound equality sequences. These

sequences find heavy application in code-division multiple-access (CDMA) systems,
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such as personal wireless communication [147]. Welch established equation 2.12 by

proving that

max
i 6=j

|〈φi|φj〉|2 ≥ min{0, n−d

d(n−1)
}. (2.14)

Working backwards, this follows from theorem 3 by replacing “off-diagonal” terms

in the frame potential by the maximum value.

This bound on the maximum overlap leads directly to the concept of spherical

codes, sets of unit vectors spread widely throughout a given vector space. For current

purposes, a spherical code S(d, n, s) is a set of n unit vectors in Cd such that

max
j 6=k

|〈φj|φk〉|2 ≤ s. (2.15)

Finding the smallest s for a given number of vectors in a given dimension is called

Tammes’s problem, after the Dutch botanist who studied the distribution of pores

on pollen grains [148]. The complementary task of finding the largest n for a given

dimension and maximal overlap s is called the kissing problem [41]. Clearly the

smallest s (i.e. the shortest distance on the sphere) is that given by equation 2.14.

Spherical codes meeting this bound are called, variously, equiangular spherical codes

(ESCs) or optimal Grassmann frames.

The existence of ESCs isn’t known for arbitrary n and d, though some general

statements can be made [129]. They always exist for n = d + 1 (a regular simplex),

but never when n > d 2. Equiangular spherical codes with n = 2d are known to exist

for dimensions d = (pα +1)/2 or d = 2α where p is an odd prime and α is any integer;

those having n = d2 elements are believed to exist in any dimension, as will be seen

in chapter four. For n ≤ d 2, when a Grassman frame exists, it is a spherical code,

but for n > d 2, spherical codes aren’t equiangular.

2.3 Spherical Designs

Instead of looking for interesting arrangements of vectors by minimizing the maximal

overlap of a set of vectors, one might simply minimize the frame potential instead.
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The form of the frame potential itself suggests a generalization to higher orders, so

that we can define the tth-order frame potential as

Vt =
∑

j,k

|〈φj|φk〉|2t. (2.16)

A spherical t-design, a set of unit vectors useful in numerical integration of polynomial

functions on the sphere, always results from minimization of the t-th-order frame

potential. Specifically, a spherical t-design is a set of n normalized vectors {|φk〉 ∈ Sd}
such that the average value of any t-th order polynomial ft(ψ) over the set {|φk〉} is

equal to the average of ft(ψ) over all normalized vectors |ψ〉. Note that if a set is

a t-design, it is also an s-design for all s ≤ t, since an s-th order polynomial is also

a t-th order polynomial. Spherical t-designs were originally developed as subsets of

the real sphere Sd; here the concept is applied to the set Sd. To make the connection

between the averaging property and the frame potential minimization, we begin with

the definition of polynomial functions on Sd.

Let H = Cd, Ht be the t-fold tensor product of such spaces, and St be the

symmetric subspace of Ht, and consider a function ft : H → C defined as

ft(ψ) = 〈Ψt|Ft|Ψt〉 , |Ψt〉 = |ψ〉⊗t , |ψ〉 ∈ H , (2.17)

where the choice of ft is equivalent to a choice of a symmetric operator Ft ∈ B(St).

Such a function is a t-th order polynomial function on H. We can decompose Ft into

a sum of product operators, i.e., Ft =
∑

k

⊗t
j=1 Aj;k; thus any such function can be

decomposed into monomial terms like

〈
Ψt

∣∣∣
t⊗

j=1

Aj

∣∣∣Ψt
〉

=
t∏

j=1

〈ψ|Aj|ψ〉 . (2.18)

Without loss of generality, we can restrict our attention to such monomial functions

and rewrite them as

ft(ψ) =
t∏

j=1

Tr
[
Aj|ψ〉〈ψ|

]
= Tr

[( t⊗
j=1

Aj

)
Π⊗t

ψ

]
, Πψ = |ψ〉〈ψ| . (2.19)
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Since the set {|φk〉} is a t-design if and only if the average of any ft over {|φk〉}
is equal to its average over all |ψ〉 ∈ Sd, we are led to compute the average of an

arbitrary monomial term:

〈ft〉 =

∫
dψ Tr

[( t⊗
j=1

Aj

)
Π⊗t

ψ

]
= Tr

[( t⊗
j=1

Aj

) ∫
dψ Π⊗t

ψ

]
= Tr

[( t⊗
j=1

Aj

)
Kt

]
.

(2.20)

Hence we focus on finding Kt, since it effectively takes the average of ft. A spherical

t-design is then a set of vectors for which

St =
n∑

k=1

|Φt
k〉〈Φt

k| = nKt , |Φt
k〉 = |φk〉⊗t . (2.21)

Note that St is the t-fold tensor-product analog of the frame operator S.

To find the operator Kt, note that Kt has support only on the symmetric subspace

St. Further, because Kt is invariant under any U⊗t for U ∈ SU(d), we conclude

that Kt ∝ Πsym, the projector onto St. (Recall that St is an irreducible invariant

subspace of the group consisting of the operators U⊗t.) Finally, to determine the

constant of proportionality, we consider the average of the trivial function ft(ψ)=1.

Equation 2.20 then becomes Tr[Kt]=1, and since St has dimension
(

t+d−1
d−1

)
, we have

Kt =
t!(d− 1)!

(t + d− 1)!
Πsym . (2.22)

Equation 2.21 now says that the set {|φk〉} is a t-design if and only if the set {|Φt
k〉}

is a tight frame on St, whence we can apply Theorem 3 to obtain the following result.

Theorem 4 A set of normalized vectors {|φk〉 ∈ Sd}n
k=1 with n ≥ (

t+d−1
d−1

)
forms a

spherical t-design if and only if

Tr[S2
t ] =

∑

j,k

|〈φj|φk〉|2t =
n2t! (d−1)!

(t+d−1)!
. (2.23)

Furthermore, this value is the global minimum of Tr[S2
t ].

This theorem yields a very nice characterization of spherical t-designs; however,

it does not establish the minimum number nt of elements required nor guarantee
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existence. The bound on n in the theorem is very loose, arising only from the

dimension of St, but a general method of determining nt can be outlined here, taking

the case t = 2 for which n2 = d2 (see also [97]). Consider again the steps leading to

the definition of the operator Kt. In carrying out the average of the function f2, we

could have written

〈f2〉 = Tr
[
A2

∫
dψ |ψ〉〈ψ|A1|ψ〉〈ψ|

]
= Tr[A2G(A1)], (2.24)

and thus considered the superoperator G : B(Cd) → B(Cd). Here G(UAU †) =

UG(A)U † for any U ∈ SU(d), so by Schur’s lemma, G is some linear combination

of projectors onto the invariant subspaces of U acting on B(Cd). These invariant

subspaces are (i) the (d 2−1)-dimensional subspace of traceless operators and (ii) the

one-dimensional subspace spanned by the identity operator I. Thus we can write

G=aI + bI where I(A)=A and I(A)=Tr[A]I (i.e., I is the identity superoperator,

and I projects onto the identity operator). To find a and b, we first let A1 =A2 =I,

which gives the function f2(ψ)=1, so that equation 2.24 yields d(a + bd)=1. Next

we consider A1 = A2 = |φ〉〈φ|, for which 〈f2〉 =
∫

dψ |〈φ|ψ〉|4 = a + b. We can use

equations 2.20 and 2.22 to show that 〈f2〉=2/d(d + 1); combined with the previous

result, this implies a = b = 1/d(d + 1). Therefore, G has no null subspace, must be

rank-d 2, and cannot be constructed from less than d 2 linearly independent rank-one

superoperators. Similar arguments can be applied to all spherical t-designs. By sim-

ilar rearrangements, we can make several different types of operators K ′
t, and the

rank of each serves as a lower bound on the number of vectors required to comprise

a t-design.

Equiangular spherical codes can also be thought of as arising from the minima of

the frame potential in the following way. Restricting attention to normalized tight

frames (i.e. frames which minimize V1), consider minimizing V2. Let λjk = |〈φj|φk〉|2,
so that from the minimum of V1 we have

∑
j 6=k λjk = V1 − n = n(n − d)/d. Now

∑
j 6=k λ2

jk = V2−n, whence the minimum of V2 over all sets minimizing V1 is bounded

below by making all the λjk the same and given by equation 2.14. When this lower

bound is achieved, i.e V2 = n2(n−2d+d2)/d2(n−1), the result is a Grassman frame.
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Note that for n up to d2 the result of the minimization is an equiangular spherical

code, while for n beyond d2 the result is a spherical 2-design. For n = d2 the result

is both; this will be the subject of inquiry in chapter four.

2.4 Weyl-Heisenberg Frames

One particular frame stands out as especially useful in quantum mechanics as well as

classical coding theory and signal processing theory: the Weyl-Heisenberg or Gabor

frame. So-named because it was the the frame originally introduced by Gabor, it is

based on a projective representation of the Weyl-Heisenberg group. This group has

elements in Rn× Rn× T which are multiplied according to the rule

(q, p, t) · (q′, p′, t′) = (q + q′, p + p′, t + t′ +
1

2
(q · p′ − q′ · p)). (2.25)

Now we can let the projective representation π(·) of this group on L2(R) be

π(q, p, t)φ(x) = EpTqφ(x) = e2πip(x−q)φ(x− q), (2.26)

where Tq is the translation or shift operator and Ep the phase or modulation opera-

tor. A Weyl-Heisenberg frame is constructed from these elements by simply picking

a suitable “window” function φ(x), shift/phase parameters q and p and then forming

the set {φj,k(x) = Ek
pT j

q φ(x)} for j, k ∈ Z. Not all functions nor shift/phase parame-

ters can be used to define legitimate frames (though note that in infinite dimensions

the requirement that the upper frame bound be finite is dropped) and much research

in frame theory is concerned with fully characterizing the set of Gabor frames. In

particular, in order that the set be complete it must be that qp ≤ 1 [48]. For com-

binations of (φ, q, p) which do generate frames, the set is overcomplete when qp < 1

but forms a Riesz basis (i.e. a set isomorphic to an orthonormal basis) when qp = 1.

However, in this latter case a famous result severely restricts the functions which can

be used for WH frames.

Theorem 5 (Balian-Low [8, 107, 48]) If qp = 1 and φ ∈ L2(R) generates a WH-

frame, then either xφ(x) /∈ L2(R) or φ′(x) /∈ L2(R).
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This theorem immediately implies that should qp = 1 then functions suitable for

making WH frames are either not smooth or not rapidly decaying. Gabor himself

used the window function φ0(x) = π−1/4e−x2/2 so, although choosing qp = 1 yields a

complete set, it doesn’t yield a frame. The difficulty stems from the fact that when

qp = 1

inf
ψ∈L2(R)

∑

jk

|〈φjk|ψ〉|2 = 0, (2.27)

meaning that the lower frame bound is zero [7]. Strictly speaking, no function is

orthogonal to the set, though there are functions arbitrarily close to being so. Hence

the eigenvalues of the frame operator are not bounded away from zero, making its

inversion generally impossible. This implies that there is no stable way to reconstruct

arbitrary functions ψ from the sequence {〈φjk|ψ〉}.

In dealing with simple harmonic oscillator in quantum mechanics the construc-

tion of the Weyl-Heisenberg frame as a discrete set of functions is abandoned in

favor of allowing all possible displacements of the window function g, the ground

state wave-function. This makes the set vastly overcomplete, but removes the dif-

ficulty associated with the use of Gaussian window functions, and simplifies many

expressions by allowing integration instead of summation. More importantly, how-

ever, the continuous set of elements provides a phase space description of quantum

dynamics. This is the result of geometric quantization.

Generally, this construction begins with a dynamical symmetry group G of the

quantum system (a simply connected Lie group), and creates the phase space by

considering a unitary irreducible representation Ug acting on H. Fixing a reference

state |φ0〉 implicitly defines an isotropy subgroup H ⊂ G, consisting of all Uh such

that Uh|φ0〉 = eiθ(h)|φ0〉 for some θ ∈ T. Dividing H out of G yields the coset space

G/H = X which is a coarse-graining of the group such that any element g may be

written g = xh. Since the phase of the state is irrelevant, elements of X define the

coherent states via the action of G: |φx〉 = Uxh|φ0〉 for any h ∈ H. By Schur’s lemma

the coherent states satisfy
∫

X
dµ|φx〉〈φx| = I, where µ is the invariant measure on

the group G restricted to X, so that arbitrary states may be represented in terms
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of the coherent states. If coset space forms a homogeneous Kählerian manifold, i.e.

it is locally isomorphic to Cn, then X may be thought of as a phase space. Thus

geometric quantization is the map x → |φx〉〈φx| in this situation. Typically one takes

the highest-weight state of the representation Ug for the coherent state |φ0〉, and the

ground state of the harmonic oscillator is indeed such a state. In this case we recover

from the Weyl-Heisenberg group H3 the “classical” phase space H3/U(1) = C. Given

the annihilation and creation operators a and a† (which together with I make up the

Lie algebra of H3), the coherent states are simply |α〉 = exp(αa†−α∗a)|0〉.

In finite dimensions the situation is much less complicated, since any set of vectors

complete in a finite dimensional vector space forms a frame. Here, the relevant

representations of the Weyl-Heisenberg group are also representations of Zd × Zd,

generated by the operators

V =
∑

k

|k ⊕ 1〉〈k| U =
∑

k

ωk|k〉〈k|, (2.28)

where |k〉 is the kth element of a fixed basis, arithmetic inside the ket symbol is

taken modulo d and ω is the d-th primitive root of unity. Thinking of the basis

vectors |k〉 as the “position” basis, the operator V advances the position by one unit.

Eigenstates of this translation operator are clearly Fourier transforms of the position

basis states, i.e. the momentum basis states. In this basis U advances the momentum

by one unit. Combining position and momentum translations leads to the full set

of group elements, called the displacement operators, and for reasons having to do

with the projective nature of the representation, they are best defined as

Djk = ωjk/2

d−1∑
m=0

ωjm|k ⊕m〉〈m| , (2.29)

Sets of vectors based on the discrete analog of the Weyl-Heisenberg group are com-

plete for any “window vector”; that is, for any normalized |ψ〉 ∈ Sd,

Sψ =
∑

jk

Djk|ψ〉〈ψ|D†
jk = dI , (2.30)

a fact readily checked by direct calculation. Hence the displacement operators applied

to any vector immediately yield a tight frame.
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This definition of the displacement operators implies several useful relationships.

First, checking the group representation property, note that

DjkDlm = ω(jm−kl)/2Dj+l,k+m. (2.31)

Due to the minus sign in the difference of the two exponential terms, these operators

and representations derived from them inherit the symplectic structure of phase

space. Some other nice properties which can be derived by direct calculation:

D†
jk = D−j,−k (2.32)

DjkDlmD†
jk = Djk(Dlm) = ωjm−klDlm (2.33)

FDjkF
† = Dk,−j (2.34)

[Djk, Dlm] = 2i sin

(
jm−kl

d

)
Dj+l,k+m (2.35)

Tr
[
D†

jkDlm

]
= d δjlδkm, (2.36)

where F is the Fourier transform operator.
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Part II

Foundations: Probability and

Representation
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Chapter 3

The Quantum Probability Rule

Frame theory is immediately relevant to quantum mechanics through the identifica-

tion of normalized tight frames with quantum measurements, POVMs. Borrowing

methods from frame theory to find optimal measurements for one problem or an-

other will be a topic of later chapters, but now the focus turns to more foundational

questions: what characterizes the nature of quantum mechanics as a probabilistic

theory? Is the theory to be understood as is classical mechanics, with underlying

physical properties and probability used to encode an observer’s knowledge of these?

Or perhaps as promoting probability itself to an ontological status, in the guise of

the state vector?

Naturally, this is a false dilemma; neither of these choices is satisfactory. Indeed,

one should fall back to a third, more operational, position to avoid the logical abyss

that marks interpretations of quantum mechanics. In this context we’ll find that

from the structure of measurements themselves, the POVMs, follows the probabilistic

structure of quantum theory, the density operator. Sections 3.1 and 3.2 consider the

general case, and section 3.3 specializes to qubits. With this structure in place, it

becomes clear what form dynamics may take, and the rest of the theory falls into

place. In this sense we are reworking the axioms of quantum mechanics to start from a

different point of view. From this vantage point we are allowed to glimpse beyond the
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usual intellectual knot springing from the collision of the poorly-demarcated concepts

probability and measurement. Traditional interpretations of quantum mechanics sail

well at a distance from these two, but here they run aground.

In classical mechanics these two concepts arouse no difficulty: measurements

reveal certain pre-existing properties, and probabilities are a way to keep track of

what is known and how well. One may usefully think of probabilities as simply a

gambler’s aid; asking the gambler for the odds at which he’s willing to bet is akin to

asking how certain he is of a particular outcome. Such is the view when considering

probabilities subjectively or epistemically, as did Bayes, Laplace, and a great many

of the physicists of the 19th century.

Zeal for objective physical theories attempted to place probability itself in the

more objective or ontological realm in the 20th century. Though clearly appealing,

this attempt fails because in the final analysis, no sensible statements can be made

about objective probability. The most famous attempt to do so is to consider prob-

ability of an outcome as identical to its frequency of occurrence in a large ensemble.

This is indicative of how probability is used, and would explain where it comes from.

However, such ensembles don’t actually exist. Imagine the weatherman at his work

examining the set of all tomorrows and counting the number in which it rains. One

might like to instead appeal to the frequency of a hypothetical ensemble. But this

has two problems. First, since the ensemble is hypothetical, on what grounds should

we regard the resultant probability as objective? Second, the statement that prob-

ability is frequency comes from the law of large numbers, which is itself couched in

probabilistic terms. So instead of defining probability by frequency, the opposite is

accomplished.

Having been deprived of this bit of objectivity, quantum mechanics invites us to

cast even more aside, for one cannot make sense of what it predicts by appealing

to “certain pre-existing properties”, or at least not local ones. This is Bell’s famous

result. Considering two separated physical systems and the joint probability distri-

butions of measurements that observers might make on them, he demonstrated that
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quantum mechanics offers some probability distributions which cannot arise from

distributions of locally realistic quantities. Thus we are forced to choose. If we de-

sire a local theory, then we must abandon the idea that there is a real state of affairs

of each of these two subsystems. On the other hand, if we wish to hold on to reality,

we must accept that the states of affairs are correlated in a manner that can’t be

explained locally. In some sense the two particles aren’t distinct at all. Though the

nonlocal path may indeed lead out of this dilemma, it appears from this vantage

point rather to lead deeper into the thicket as it questions the very understanding

of distinct physical systems. Not that the other choice is any more palatable, for no

longer can measurements be said to reveal properties of systems.

Perhaps we should look at quantum mechanics with fresh eyes and consider that

perhaps probability itself is the realistic part of the theory. The idea of using frequen-

cies is still a nonstarter for the same reasons mentioned above. However, quantum

mechanics gives more credence to the notion of propensity, or objective chance. We

might simply think of the state vector of a system as objective, and since it encodes

probabilities for any measurements done, the probabilities are therefore also objec-

tive. Viewing pure states as akin to classical properties naturally leads to considering

convex combinations of them, where the coefficients represent probabilities of the sys-

tem to be in one state or another. This step, however, causes the whole edifice to

unravel. Though convex, the set of all mixed states is not a simplex: there’s no

unique way to consider a given mixed state as a convex combination of pure states.

Thus the propensities and the probabilities are thoroughly mixed, and there’s no

sense in differentiating between them. Probabilities are either entirely objective or

entirely subjective.

We could eschew subjective probabilities by omitting mixed states entirely, basing

the theory and its interpretation solely on pure states. But we must still contend

with the measurement problem. Measurements are repeatable if nothing else, so

if a pure state yields a certain outcome on the first round—but was not destined

to do so with probability one—it must somehow change in order to certainly yield
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that outcome on the second round. One remedy is to consider that measurement

instantly changes the state vector, a process termed “wavefunction collapse”. Now

there are two rules for dynamics, the normal unitary evolution and instantaneous

measurement dynamics. As if this dichotomy weren’t bad enough for a universal

theory, the exact conditions for what constitutes a measurement are vague, so it’s

problematic at best to say which one is happening when.

Collapse interpretations aren’t necessary if we are willing to include the observer,

which we should do anyway for an objective theory. The many-worlds interpreta-

tion provides a scheme for doing this, whereby to say that superposition states are

measured is to say that the observer becomes part of the superposition, with one

term describing each possible outcome. Since the state vector is objective, all these

“branches” are somehow objective, too; we just never directly contact them.1 But

due to the linear structure of the theory, there’s no unique way to express the whole

tree as a sum of branches; the branching process could be written using different

sets of pure states. Hence the act of measuring does not pin down exactly what

was measured, or what outcomes occurred in each branch. This is the analog of the

nonuniqueness of mixed-state decompositions just encountered.

Like so much ether, new concepts which have no purpose other than to explain the

theory are invoked in order to interpret quantum mechanics in the familiar language

of classical mechanics. Neither of the alternatives offered in the opening paragraph

is truly satisfying. By tossing them out and concentrating on a more operational

approach, we may hope to build up the theory in a conceptually clean manner,

so that the appropriate concepts may later be discovered. Such a scheme begins

with measurement directly, positing simply that measurements happen and outcomes

occur, whatever the reason.

To adopt this perspective, imagine that for any experiment, there exist math-

ematical objects which represent the possible outcomes. Likewise, there exists a

1Though if quantum mechanics were even weakly nonlinear, this could be accomplished,
a phenomenon called the “Everett phone.”
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mathematical object the experimenter uses to describe the system under investiga-

tion. The minimal task of any physical theory is to determine what these objects

are and to use them to furnish the probabilities for the various outcomes. Though

the aforementioned problems with measurement and probability do not arise in this

context, a new conceptual question emerges: Why the Hilbert-space description of

quantum measurement outcomes [64, 71, 108]?

Leaving this question aside as too ambitious for the present, start by assuming the

form of measurements as given by classical or quantum theory. In classical physics,

the measurement objects are the points in a phase space, while in quantum physics,

they are traditionally one-dimensional projectors on a Hilbert space. Classically, only

one measurement exists—a full accounting of the phase space. In quantum mechan-

ics, on the other hand, any complete set of one-dimensional orthogonal projectors

suffices.

The description of the system can be given, in classical mechanics, by a phase-

space point. This point is the “true” point—others are “false”—so the outcome of a

measurement can be predicted with certainty. Attempting such a concrete descrip-

tion in quantum mechanics is ruled out by the Kochen-Specker theorem: There is no

way to assign truth and falsity to all the one-dimensional projectors in such a way

that in any measurement there is only one true outcome [96]. At this point in the

development, quantum mechanics becomes an irreducibly probabilistic theory; the

possibility of underlying certainties has been ruled out.

With certainties ruled out, Gleason’s theorem delineates the allowable descrip-

tions of the system, i.e., the form the probabilities can take [68]. Keeping with

the linear structure, every outcome probability is an inner product of the corre-

sponding measurement projector and a density operator for the system. The den-

sity operator—any convex combination of one-dimensional projection operators—

represents the description or “state” of the system. Thus Gleason’s theorem gives a

means to go from the structure of measurements to the structure of states. It im-

mediately implies the Kochen-Specker result, as there are no density operators that



42 Chapter 3. The Quantum Probability Rule

yield probability distributions for all measurements that are valued only on zero and

one.

Neither theorem holds for two-dimensional quantum systems, so-called qubits, as

long as the measurement objects are restricted to being one-dimensional projection

operators. We can include this outstanding case, however, by widening the class of

allowed measurements to include positive-operator-valued measures (POVMs), com-

prised of measurement operators called effects, and in so doing, we also considerably

simplify the derivation. To coherently present these results, the remainder of the

chapter is organized as follows. Section 3.1 describes how measurement outcomes

in quantum mechanics are associated with effects. Section 3.2 shows that given the

structure of effects, the usual quantum-mechanical probability rule follows simply,

even for qubits. Section 3.3 investigates several specific restricted classes of measure-

ments for qubits and what kinds of probability distributions these classes permit.

It should be emphasized from the outset that this is an inherently noncontex-

tual approach, meaning that a shared outcome of two distinct measurements has the

same probability in both contexts. For instance, if an experimenter has the choice

between two measurement devices, both of which contain the same outcome, for the

same input state this same outcome occurs with the identical probability in either

setup. This fact is not a consequence of this approach, but rather an assumption

used in its construction. In this construction a description of the measurement device

and a description of the physical system are composed into a probability for each

possible outcome. In defining measurements by their physical set-ups, this approach

initially pertains to each measurement situation individually. The Hilbert-space for-

malism we are using to describe measurements takes a further step by associating

the same measurement object with outcomes in different measurements. For this

reason, we assume that these outcomes have the same probabilities, this being the

noncontextual assumption. To abandon this assumption at the level of finding al-

lowed probability assignments via Gleason’s theorem would be to ignore, wholly or

partially, the framework provided by the vector-space structure of measurements.
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3.1 Effect Operators

In the typical von Neumann formulation of quantum measurement theory, measure-

ments are described by complete sets of orthogonal projection operators. Here we

consider quantum measurements in their full generality, the so-called POVMs [101,

23]. A POVM is also a complete set of operators resolving the identity operator,

but comprised of positive operators less than the identity. These operators, called

effects, can also be characterized as Hermitian operators having eigenvalues in the

unit interval. The set of effects in d dimensions is denoted by Ed.

That Ed is a convex set is clear. The projection operators of all ranks, including

the zero operator 0 and the identity operator I, form the extreme points of Ed, a fact

demonstrated via the following construction. For a given effect E, order its d eigen-

values (including zero eigenvalues) from smallest to largest, {λ1, . . . , λd}. Associated

with each eigenvalue λj is a one-dimensional projector πj onto the corresponding

eigenvector; these projectors can be chosen to make up a complete, orthonormal set.

Now form the projection operators Πk =
∑d

j=k πj. Clearly Π1 = I and Πd = πd.

These projectors get smaller in rank as the index gets bigger. The effect E can be

written as the following convex combination:

E = λ1Π1 +
d∑

m=2

(λm − λm−1)Πm + (1− λd)0 . (3.1)

The zero operator is included to make the sum of the coefficients unity without

affecting E.

Since every effect can be expanded as a convex combination of projectors, only

projectors can be extreme points of Ed. To show that all the projectors are extreme

points, we need to show that a projector Π cannot be written as a proper convex

combination of other projectors, i.e., cannot be written as Π = aΠ1 + (1 − a)Π2,

where 0 < a < 1 and Π1 6= Π2. To show this, suppose Π could be so written.

For any normalized vector |ψ〉, we have 〈ψ|Π|ψ〉 = a〈ψ|Π1|ψ〉 + (1 − a)〈ψ|Π2|ψ〉.
If |ψ〉 is in the null subspace of Π, i.e., is orthogonal to the support of Π, we have
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〈ψ|Π|ψ〉 = 0, which implies that 〈ψ|Π1|ψ〉 = 〈ψ|Π2|ψ〉 = 0; this shows that the

supports of Π1 and Π2 are contained in the support of Π. If |ψ〉 is in the support of

Π, we have 〈ψ|Π|ψ〉 = 1, which implies that 〈ψ|Π1|ψ〉 = 〈ψ|Π2|ψ〉 = 1; this shows

that the support of Π is contained in the supports of Π1 and Π2. Together these

conclusions imply that Π1 = Π2 = Π, contradicting our assumption of a proper

convex combination for Π. Thus the extreme points of Ed are the projectors of all

ranks, including 0.

Projection operators are a limiting case of effect operators, the latter being a

“fuzzy” or “unsharp” version of the former by convex combination. Similarly, the

von Neumann projective measurements are a limiting case of POVMs.

In two dimensions the set of effects, E2, has an appealing geometric picture.

Beginning with the parameterization of Hermitian operators by the Pauli matrices,

write the general two-dimensional effect as

E = rI + s · σ = rI + sn · σ , (3.2)

where n is a unit vector. The eigenvalues r±||s|| = r±s must lie in the unit interval,

which is equivalent to the conditions 0 ≤ r ≤ 1 and 0 ≤ s ≤ min(r, 1 − r). Since s

characterizes the radius of a sphere, the full set can be pictured in the following way:

Starting with the unit interval for r, associate with each point a ball of radius r for

r ≤ 1/2 and of radius 1−r for r > 1/2. The set of two-dimensional effects is thus the

intersection of two three-dimensional cones (i.e., two cones in four real dimensions)

both having an opening angle of 45◦, one extending up from a vertex at r = s = 0

(E = 0) and the other extending down from a vertex at r = 1, s = 0 (E = I). The

intersection of the boundaries of the two cones, r = s = 1/2, is the surface of the

Bloch sphere, where the effects are one-dimensional projectors. The effects on the

boundary of the lower cone, r = s ≤ 1/2, are multiples of one-dimensional projectors.
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3.2 The Quantum Probability Rule

The task of quantum theory is, minimally, to associate with every measurement

a probability distribution for its outcomes. This is done noncontextually for the

reasons given above. The probability rule is thus a function from the set of effects to

the unit interval, which is normalized on any subset that makes up a POVM. Such a

function is known as a frame function. More precisely, a frame function is a function

f : Ed → [0, 1] that satisfies ∑
Ej∈X

f(Ej) = 1 (3.3)

on any subset X = {Ej ∈ Ed|
∑

j Ej = I}. This section is devoted to proving the

following Gleason-type theorem, which was first proved by Busch [24].

Theorem 6 For every frame function f : Ed → [0, 1], there is a unique unit-trace

positive operator W such that f(E) = (W,E) = Tr(WE).

The operator W is the density operator that gives rise to the frame function proba-

bilities f(E). The proof of this theorem is divided into several parts, each of which

occupies a subsection.

3.2.1 Linearity with Respect to the Nonnegative Rationals

Every frame function is trivially additive, for consider two POVMs, {E1, E2, E3}
and {E1 + E2, E3}. Clearly both are POVMs if either is, and the frame-function

requirement immediately yields

f(E1) + f(E2) = f(E1 + E2) . (3.4)

From this we obtain a homogeneity property for multiplication by rational numbers.

We can break an effect nE into m pieces to form the effect (n/m)E. Using the

additivity property twice, we obtain

mf
( n

m
E

)
= f(nE) = nf(E) =⇒ f

( n

m
E

)
=

n

m
f(E) . (3.5)
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The function f is thus established to be linear in the nonnegative rationals. We can

extend to full linearity by proving continuity. Alternately, adopting the strategy of

Busch [24], we can demonstrate the homogeneity of f , from which linearity follows

immediately. These two arguments are taken up in turn in the next two subsections.

3.2.2 Continuity

Continuity of the frame function can be established via reductio ad absurdum: A

contradiction with the definition of a frame function arises if f is discontinuous.

Recall the definition of continuity for metric spaces: f is continuous at x0 if for

all ε > 0, there exists a δ > 0 such that |f(x) − f(x0)| < ε for all x satisfying

|x − x0| < δ. On the space of operators, we use the Hilbert-Schmidt inner product

(A, B) = Tr(A†B) and the associated norm |A| ≡
√

(A,A).

Consider first continuity at the zero operator(since f(E) = f(E + 0) = f(E) +

f(0), we know that f(0) = 0). If we assume f is discontinuous at the zero operator,

then there exists an ε > 0 such that for all δ > 0, there exists an effect E satisfying

|E| < δ and f(E) ≥ ε. Choose δ = 1/N < ε, where N is an integer, and let E be an

effect satisfying |E| < 1/N and f(E) ≥ ε. Now F = NE satisfies |F | = N |E| < 1,

which implies that F is an effect, since the sum of the squares of its eigenvalues

is less than 1. But we also have from additivity that f(F ) = Nf(E) ≥ Nε > 1,

contradicting the definition of a frame function. Hence f is continuous at the zero

operator.

We can easily translate the continuity at 0 to the entire set of effects. To prove

continuity at an arbitrary effect E0, we need to consider neighboring operators E and

the difference E − E0. Diagonalizing the difference, we can write E − E0 = A− B,

where A is the nonnegative-eigenvalue part of the eigendecomposition and −B is the

negative-eigenvalue part. It is clear that A and B are positive operators satisfying

|A|, |B| ≤ |A − B| = |E − E0|, which implies that A and B are effects (provided

|E − E0| ≤ 1). Applying the frame function to the equation E + B = E0 + A
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yields f(E) − f(E0) = f(A) − f(B) by additivity. Invoking continuity at zero

establishes that for every ε = ε′/2 > 0, there exists a δ > 0 such that |A|, |B| <

δ ⇒ f(A), f(B) < ε′. Thus if |E − E0| = |A − B| < δ, we have |A|, |B| < δ and

|f(E) − f(E0)| = |f(A) − f(B)| ≤ |f(A)| + |f(B)| < 2ε′ = ε. This establishes the

continuity of f on all of Ed, which in turn shows that f is a linear function on Ed.

3.2.3 Homogeneity

An alternative route to linearity is to prove the homogeneity of the frame function.

Following Busch’s proof, first note that the frame function preserves order; i.e., if

E1 < E2 for any pair of measurement operators, then f(E1) ≤ f(E2). This follows

immediately from the definition, for E1 < E2 ⇔ E2 − E1 ≡ E3 > 0, so E3 is an

effect. Writing E2 = E1 + E3, which implies f(E2) = f(E1) + f(E3) by additivity,

we find that f(E1) ≤ f(E2) since f(E3) ≥ 0.

Now the pinching theorem can be used to establish the homogeneity of f . Con-

sider two sequences of rational numbers sharing the same irrational limit α: {qi} is

an increasing sequence and {pi} a decreasing sequence. By order preservation and

linearity in the nonnegative rationals, we have

qif(E) = f(qiE) ≤ f(αE) ≤ f(piE) = pif(E) (3.6)

for all i. The pinching theorem shows that f(αE) = αf(E), establishing that f is a

homogeneous and, hence, linear function.

3.2.4 Linearity and the Inner Product

Since the frame function is linear, it arises from an inner product. To show this, the

definition of f is extended to the entire vector space of operators; then it is a trivial

theorem of linear algebra to recast a linear function on a vector space as an inner

product.
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The frame function is extended in the most straightforward fashion. Let H be an

arbitrary Hermitian operator. Every such operator can be written as the difference of

two positive operators G1 and G2; one way to do so is simply to diagonalize H and to

let G1 be the positive-eigenvalue part and−G2 the negative-eigenvalue part. Further,

for any positive operator G there exists a positive number α such that αE = G for

some effect E. Now define f(H) = f(G1) − f(G2) = α1f(E1) − α2f(E2). Though

the unraveling of H is not unique, the extension is. Suppose H = α1E1 − α2E2 =

α3E3 − α4E4, which implies α1E1 + α4E4 = α2E2 + α3E3. Choose β such that

β ≥ max{αj} so that we have

α1

β
E1 +

α4

β
E4 =

α2

β
E2 +

α3

β
E3 . (3.7)

Since every operator is now in the original domain of f , we can apply the frame

function to find

α1f(E1) + α4f(E4) = α2f(E2) + α3f(E3) . (3.8)

The extension being manifestly linear, we now have a linear function f on the entire

space of Hermitian operators. It can be extended to all operators by complexification.

To rewrite this linear function as an inner product, choose an orthonormal oper-

ator basis {τj}, and write an arbitrary operator as A =
∑

j τj(τj, A). Clearly, then

f(A) =
∑

j f(τj)(τj, A). Now define W as the unique solution of the d 2 equations

f(τj) = (W, τj), so that the frame function is f(A) =
∑

j(W, τj)(τj, A) = (W,A).

The d 2 equations are, of course, nonsingular since {τj} is an orthonormal basis.

The nonnegativity and normalization of the frame function induce the density op-

erator properties of W , i.e., positivity and unit trace. Given an arbitrary normalized

vector |ψ〉, 0 ≤ f(|ψ〉〈ψ|) = 〈ψ|W |ψ〉, showing that W is positive. The condition of

unit trace follows from normalization:

Tr W = (W, I) =
(
W,

∑
j

Ej

)
=

∑
j

(W,Ej) =
∑

j

f(Ej) = 1 . (3.9)

The reader should note that if the extension of linearity to real numbers is omit-

ted (sections 3.2.2 and 3.2.3), the arguments in sections 3.2.1 and 3.2.4 demonstrate
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the quantum probability rule for vector spaces over rational fields. This result has

implications for recent discussions in the literature about the possibility of describ-

ing the finite precision of real-world measurements via vector spaces over complex

numbers with rational parts (see, in particular, references [116, 40, 4, 27]). Without

dwelling on these points, note that this result shows that rational POVMs cannot

be assigned truth values, the only frame functions being those derived from density

operators. The most straightforward approach is to think of POVMs as the preferred

description of finite-precision measurements, and thus that is all that needs to be

said about finite-precision quantum measurements.

3.3 Frame Functions for Qubits

The POVM version of Gleason’s theorem works even for qubits, unlike the original

Gleason theorem, which was based on measurements described by one-dimensional

orthogonal projectors. We now turn our attention specifically to qubits and investi-

gate whether several restricted sets of POVMs enforce the quantum probability rule.

In particular, the quantum probability rule is necessitated by a particular subset of

POVM measurements called trines. Other measurements are studied to shed light

on what kinds of measurements yield the quantum probability rule and why.

3.3.1 General Description of Restricted Sets of POVMs

To start, recall that the two-dimensional effects are parameterized by four real pa-

rameters as in equation 3.2. In any of the restricted sets of measurements considered

in this section, the allowed POVMS are made up of effects that are multiples of

one-dimensional projectors, i.e., r = s ≤ 1/2 and E = r(I +n ·σ), and all the effects

have the same value of r. An allowed POVM is thus specified by a set of unit vectors

that sum to the zero vector; if there are N outcomes in the POVM, then r = 1/N .
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Finally, we assume that the allowed POVMs are rotationally invariant; i.e., they are

obtained by applying all possible 3-dimensional rotations to any particular POVM

in the allowed subset.

With these assumptions, we have the following structure. For POVMs having N

outcomes, the allowed effects have the form

E =
1

N
(I + n · σ) , (3.10)

where n can be any unit vector. Frame functions defined on this set, i.e.,

f
( 1

N
(I + n · σ)

)
≡ F (n) =

∞∑

l=0

l∑

m=−l

clmYlm(n) , (3.11)

are functions on the unit sphere and thus can be expanded in terms of spherical

harmonics. In writing the spherical-harmonic expansion, we are assuming that F is

continuous on the unit sphere. (Please be careful to note that this extra continuity

assumption was not made in the full-fledged Gleason-type theorem of the previous

section.) Properties of the spherical harmonics that we need in the following are the

following: (i) the separation into θ and φ (or nz and nx + iny) dependencies,

Ylm(n) = Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l + m)!
Pm

l (cos θ)eimφ = hlm(nz)(nx + iny)
m ,

(3.12)

where Pm
l (x) is an associated Legendre function and hlm is defined implicitly, and

(ii) the changes under conjugation, reflection, and parity,

Ylm(n) = (−1)mY ∗
l,−m(n) = (−1)l+mYlm(π − θ, φ)

= (−1)mYlm(θ, φ + π) = (−1)lYlm(−n) . (3.13)

Particularly useful is the form of equation 3.12 for m = l: Yll(n) ∝ (nx + iny)
l.

The sought-after quantum rule is

F (n) = Tr(WE) =
1

N
(1 + n ·P) , (3.14)
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where P = Tr(Wσ) is any 3-vector such that ‖P‖ ≤ 1. The quantum rule evidently

contains only l = 0, 1 spherical harmonics, with c00 =
√

4π/N , c10 =
√

4π/3 Pz/N ,

and c1,±1 =
√

2π/3 (∓Px + iPy)/N .

Now let the set of unit vectors {n1, . . . ,nN} specify a “fiducial” POVM; the

completeness property of a POVM implies that these vectors specify a POVM if and

only if

0 =
n∑

j=1

nj . (3.15)

Any other set, {Rnj}, where R is a three-dimensional rotation, is also a POVM. The

frame condition is that

1 =
N∑

j=1

F (Rnj) =
∑

l,m

clm

N∑
j=1

Ylm(Rnj) =
∞∑

l=0

l∑

m,r=−l

clmD(l)∗
mr (R)

N∑
j=1

Ylr(nj) (3.16)

for all rotations R. In writing the last equality, we use

Ylm(Rn) =
l∑

r=−l

Ylr(n)D(l)
rm(R−1) =

l∑

r=−l

Ylr(n)D(l)∗
mr (R) , (3.17)

where D(l)
mr(R) is the irreducible (unitary) matrix representation of the rotation R in

the angular-momentum subspace with angular momentum l.

We can now use the fundamental orthogonality property of the irreducible rep-

resentations of the rotation group [149]:
∫

dµRD(l)∗
mr (R)D(l′)

m′r′(R) =
1

2l + 1
δll′δmm′δrr′ . (3.18)

Here the integration is over the invariant measure dµR of the rotation group. Noting

that D(0)
00 (R) = 1, we can use this orthogonality relation to invert equation 3.16,

obtaining the condition clm

∑N
j=1 Ylr(nj) = δl0 for all l, m, and r. For l = 0 this is a

trivial normalization constraint, satisfied by choosing c00 =
√

4π/N . For l ≥ 1, we

can write the condition in a more illuminating, equivalent form,

clm = 0 for m = −l, . . . , l, or (3.19)

N∑
j=1

Ylr(nj) = 0 for r = −l, . . . , l. (3.20)



52 Chapter 3. The Quantum Probability Rule

These are necessary and sufficient conditions for a frame function F (n).

The frame conditions 3.19 and 3.20 are a potent restriction. They say that if the

lth harmonic is allowed in F (n), then the unit vectors for the fiducial POVM must

satisfy the sum condition 3.20. The choice of fiducial POVM being arbitrary, the sum

condition must be satisfied by the unit vectors for all POVMs in the restricted set

under consideration. This extension from a fiducial POVM to all POVMs is, however,

automatic: If a fiducial POVM satisfies the sum condition 3.20, then the rotation

property 3.17 of spherical harmonics guarantees that the condition is satisfied by all

POVMs in the restricted set.

The sum condition 3.20 is automatically satisfied for l = 1 by virtue of the

completeness condition 3.15. For higher l, if one finds a nonzero value of
∑N

j=1 Ylr(nj)

for just one value of r and just one set of POVM vectors {nj}, then the lth harmonic

must be absent from frame functions. On the other hand, if the sum condition 3.20

is satisfied for a fiducial POVM, then F (n) can contain the lth harmonic. The

expansion coefficients clm cannot be chosen arbitrarily, of course, since F (n) must be

real and nonnegative. Making F (n) real is trivial—simply choose cl,−m = (−1)mc∗lm—

but delineating the region of coefficients that gives rise to nonnegative functions is

generally quite a difficult task. Nonetheless, we can conclude that the lth harmonic

is allowed whenever the sum condition is met, for the following reason. Because the

spherical harmonics are bounded functions, sufficiently small expansion coefficients

clm can be combined with c00 =
√

4π/N without making F negative.

The spherical harmonic Ylr(n) can be regarded as the rth component of a rank-

l spherical tensor formed from n; it is a linear combination of the components of

the rank-l symmetric trace-free Cartesian tensor formed from n. The vanishing of
∑N

j=1 Ylr(nj) simply says that the sum of these tensors over all the unit vectors in

a POVM vanishes. Harmonics l = 1 and l = 2 illustrate what is going on. The

l = 1 spherical-tensor components Y1r(n) are linear combinations of the Cartesian

components of n and thus always sum to zero over the unit vectors in a POVM as a

consequence of the constraint 3.15. The l = 2 spherical-tensor components Y2r(n) are
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linear combinations of Cartesian components of the symmetric trace-free two-tensor

nknl − 1
3
δkl. Thus

∑N
j=1 Y2r(nj) = 0 if and only if

N∑
j=1

(nj)k(nj)l =
N

3
δkl ; (3.21)

i.e., the sum of the projectors onto the 3-vectors nj is proportional to the three-

dimensional identity operator.

We can make another general statement. If the allowed POVMs are made up of

pairs of (subnormalized) orthogonal projectors—i.e., −n is in the set of unit vectors

if n is—then the parity property of the spherical harmonics implies that all odd

harmonics are allowed in the frame function. This, of course, is the reason that

Gleason’s theorem does not hold for qubits if the allowed measurements are restricted

to orthogonal projectors.

We turn now to applying the sum condition 3.20 to particular sets of POVMs.

3.3.2 Restricted Sets of POVMs

Trine measurements

Consider first the trine measurements, three-outcome measurements described by

three unit vectors equally spaced in a plane, which thereby sum to zero. We consider

the sum
∑3

j=1 Yll(nj) for the particular trine

n1 = ex , n2,3 = −1

2
ex ±

√
3

2
ez . (3.22)

Using Yll(n) ∝ (nx + iny)
l, we find that the sum is proportional to 1 + (−1)l/2l−1.

This being nonzero for all l except l = 1, we conclude that a frame function has no

harmonics higher than l = 1. To establish the precise form of the quantum rule,

we must require that the frame function be real and nonnegative. Having ruled out

all but harmonics l = 0, 1, we can write the general form as F (n) = (1 + n · P)/N ,
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where P is a 3-vector required to be real by the reality of F (n). The nonnegativity

of F (n) then requires that ‖P‖ ≤ 1, leaving us with the standard quantum rule.

Tetrahedral Measurements

Now consider the tetrahedral measurements, four-outcome measurements whose unit

vectors point to the vertices of a tetrahedron. Tetrahedral measurements are im-

portant as the two-dimensional example of a symmetric informationally complete

POVM, as will be seen in the following chapter.

Since the vertices of a tetrahedron satisfy
4∑

j=1

(nj)k(nj)l =
4

3
δkl , (3.23)

we can conclude immediately, as discussed above, that
∑4

j=1 Y2r(nj) = 0 for all r

and all tetrahedra. This means that a frame function for a tetrahedral measurement

can contain l = 2 harmonics and thus does not necessarily follow from the quantum

probability rule.

To investigate the possibility of higher harmonics, consider the particular tetra-

hedron

n1 = ex , n2 = −1

3
ex − 2

√
2

3
ez , n3,4 = −1

3
ex +

√
2

3
ez ±

√
2

3
ey . (3.24)

For this tetrahedron the sum
∑4

j=1 Yll(nj) is proportional to

1+

(
−1

3

)l

+

(
−1

3
+ i

√
2

3

)l

+

(
−1

3
− i

√
2

3

)l

= 1+
(−1)l + 2(

√
7)l cos lα

3l
, (3.25)

where eiα = −1/
√

7 + i
√

6/7. It is not hard to verify that this quantity is nonzero

for all l 6= 1, 2, 5 (cos 2α = −5/7 and cos 5α = −121/49
√

7), implying that a frame

function cannot have any harmonics other than l = 0, 1, 2, 5.

To show that a frame function can have l = 5 harmonics, rotate the tetrahe-

dron 3.24 by −90◦ about the y axis, obtaining

n1 = ez , n2 = −1

3
ez +

2
√

2

3
ex , n3,4 = −1

3
ez −

√
2

3
ex ±

√
2

3
ey . (3.26)
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It is easy to see that for this tetrahedron,
∑4

j=1 Ylr(nj) vanishes when r is not a

multiple of 3. For r = 0 this sum is proportional to
∑4

j=1 Pl((nj)z) = 1+3Pl(−1/3),

and for r = 3n 6= 0, it is proportional to
∑4

j=2 P 3n
l ((nj)z) = 3P 3n

l (−1/3). For l = 5, it

is easy to check that P5(−1/3) = −1/3 and P 3
5 (−1/3) = 0, so the sum condition 3.20

holds for l = 5, and a frame function can contain l = 5 harmonics.

Other Measurements

We now apply our technique to other measurements with nice symmetry properties:

the five platonic solids, planar polygons of any degree, and the uniform POVM.

Easiest is the case of the uniform POVM, i.e., a measurement whose outcomes

include every direction on the Bloch sphere. There being only one POVM in the

restricted set, the frame conditions reduce to the requirement that F (n) be a real,

nonnegative function that integrates to unity on the sphere. In terms of a spherical

harmonic expansion, this fixes c00 = 1/
√

4π, while the other coefficients are only

restricted so as to provide real, nonnegative function values.

Continuing in reverse order, consider the case when the allowed unit vectors lie in

a plane, forming a regular polygon with N vertices. For a POVM with unit vectors

lying in the x-y plane, it is easy to see that
∑N

j=1 Ylr(nj) is zero unless r is a multiple

of N ; when r = nN , the sum is proportional to P nN
l (0), which is zero (nonzero) if

l + nN is odd (even). As a consequence, the allowed harmonics for N even are l = 0

and all odd harmonics, and the allowed harmonics for N odd are l = 0 and the odd

harmonics such that l ≤ N − 2. Notice that the trine is the only regular polygon

that gives the quantum probability rule.

The vertices of each of the five platonic solids yield a symmetric set of unit

vectors for constructing restricted sets of POVMs. For all five, the projectors onto

the unit vectors sum to a multiple of the 3-dimensional identity operator, implying

that l = 2 harmonics are allowed; moreover, for all but the tetrahedron, the unit

vectors come in antipodal pairs, meaning that all odd harmonics are allowed. For
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Platonic solid Allowed harmonics
tetrahedron 0, 1, 2, 5
octahedron 0, 2, & odds
cube 0, 2, & odds
dodecahedron 0, 2, 4, 8, 14, & odds
icosahedron 0, 2, 4, 8, 14, & odds

Table 3.1: Allowed spherical harmonics in the frame functions for POVMs based on
the platonic solids.

the octahedron, by considering the sum
∑

j Yll(nj) over the six unit vectors that

point along the x and −x axes and into the four quadrants in the y-z plane, one

finds that all even harmonics except l = 0, 2 are ruled out. Similarly, for the cube,

this same sum over the tetrahedron 3.24 and its antipodal points rules out all even

harmonics except l = 0, 2. For the dodecahedron and icosahedron, additional even

harmonics are allowed, and numerical investigation using Mathematica shows these

to be l = 4, 8, 14. The results for the platonic solids are summarized in Table 3.3.2.

Gleason’s theorem reveals that from this “measurement first” point of view, the

quantum probability rule is implicit in the structure of measurements themselves.

Use of generalized measurements greatly simplifies the proof of Gleason’s theorem,

extends its applicability, and reduces the conceptual overhead of quantum theory.

Attention is thereby refocused to the tougher task of justifying the form of quantum

measurements [64, 71, 108].

Investigating particular measurements and their allowable probability distribu-

tions complements the investigation of Kochen-Specker colorable sets [28]. Consid-

ering particular sets of POVMs allows us to explore the range of probability dis-

tributions that lie between the quantum probability rule and Kochen-Specker truth

assignments.

This work naturally leads to the question of whether POVMs ought to be consid-

ered, in some sense, more fundamental than standard projection-valued measures.
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The reason for thinking so is not just the simplicity of proofs. Foremost is the notion

of “fuzziness” that effects capture, a notion essential for practical purposes. Secondly,

in thinking of quantum mechanics operationally, nothing singles out projection mea-

surements for fundamental status. Physically implementing them is no more or less

difficult in most circumstances than projective-valued measurements. What’s more,

while it’s true that effects themselves are convex combinations of projection oper-

ators, POVMs needn’t be convex combinations of projection-valued measures [45].

Finally, POVMs are useful measurements as we’ll see in the following chapters, as

can be seen in the wider field of quantum information as a whole [120]. All these

reasons point toward a fundamental role.
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Chapter 4

Standard Quantum Measurements

In the previous chapter, frames provided a method of describing the primitive concept

of measurement in quantum mechanics and led to a simple method of determining

the form of probability distributions quantum mechanics provides. In addition to

describing measurements, frames are also suited to describing the quantum states

which follow from them. Using tight frames to represent quantum states means rep-

resenting states by measurements, which in turn casts quantum states as probability

distributions over, or quasiprobability distributions in terms of, such measurements.

For systems described by an infinite-dimensional Hilbert space, such as a har-

monic oscillator or a quantum field, such a construction, based on the standard co-

herent states, is quite well known. Summarizing the main features of representations

based on this construction will allow us to compare with the new results that follow.

Following chapter two, let |0〉 be the vacuum state and D(α) = exp(αa†−α∗a) the

displacement operator, so that the coherent states are simply |α〉 = D(α)|0〉. They

form an overcomplete set for the underlying vector spaceH, and their outer products

form a complete set for the vector space of bounded operators on it, B(H). Since the

coherent states are operator-complete, they are in principle suitable for representing

arbitrary operators. However, in practice, such representations are highly singular

for almost all operators except mixtures of coherent states.
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Following chapter two, the Weyl-Heisenberg system offers four interrelated rep-

resentations of any operator: the characteristic function, the Wigner function, and

the P and Q functions. The first two are based on the group itself, while the latter

two issue from the coherent states. The displacement operators can be shown to

form an overcomplete basis, and the characteristic function of A ∈ B(H) is simply

the representation of A in this basis. The Wigner function, meanwhile, is its Fourier

transform:

χ(α) = Tr[D†(α)A] A =
1

π2

∫
d2α χ(α)D(α) (4.1)

W (α) =
1

π2

∫
d2β eβ∗α−βα∗χ(β) A =

1

π2

∫
d2α W (α)∆(α) . (4.2)

The operator ∆(α) is defined by displacing the parity operator Π:

∆(α) = D(α)ΠD†(α) . (4.3)

This reconstruction formula from the Wigner function can be verified by first revert-

ing to the characteristic function and then using the definition of the displacement

operators.

The dual P and Q representations involve the coherent states themselves. While

the P function expresses an operator in terms of the basis of coherent states, the Q

function uses the coherent states to determine the expansion coefficients

A =

∫
dµ(α)PA(α)|α〉〈α| (4.4)

QA(α) = 〈α|A|α〉 . (4.5)

The Q and Wigner functions can be obtained from the P function by simple

Gaussian convolutions

W (α) =
2

π

∫
d2βP (β) exp[−2|β−α|2] , (4.6)

Q(α) =
1

π

∫
d2βP (β) exp[−|β−α|2] , (4.7)

the only difference being the width of the Gaussian used. Reversing direction and

determining P in terms of Q, for instance, is generally more difficult, because the

convolution is with a divergent Gaussian [157].
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The coherent states in infinite dimensions have a wealth of structure and sym-

metry which has only been touched on here. Much of this can be replicated in finite

dimensions, and this has become a well-traveled path of inquiry. One fork in this path

considers coherent states arising from various Lie groups, and is certainly a study of

its own. Another fork considers the discrete Weyl-Heisenberg frames, and we shall

stick to this path. Here one particular, as yet unstudied WH frame stands above the

rest for its symmetry and simplicity: a symmetric, informationally-complete POVM,

or SICPOVM for short. Informationally-complete measurements are those whose

statistics uniquely determine the state being measured [125, 22, 137, 46]. However,

the SICPOVM is much more besides. Simultaneously a WH frame, an equiangular

spherical code, and a spherical 2-design, this ensemble is a collision of the elegant

properties of the various frames, designs, and codes introduced in chapter 2. Such a

measurement is not only elegant from a representation-theory point of view, but also

useful. In quantum information theory the SICPOVM is relevant to quantum state

tomography [32], quantum cryptography [65], and to foundational studies [64] where

it would make for a particularly interesting “standard quantum measurement”. The

main question is whether or not it exists in any given dimension. We shall take up

this problem for the next three sections, delving into the symmetry of the SICPOVM

in section 4.1, then finding anlaytic and numerical solutions in sections 4.2 and 4.3.

Then we can turn to a more detailed examination of the P and Q representation

possibilities presented by the SICPOVM (section 4.4) and tomographic uses (sec-

tion 4.5). The SICPOVM also provides a method to render quantum mechanics in

the language of classical probabiliy theory, as shown in section 4.6.

The SICPOVM problem has been studied in a different context, first by Lemmes

and Seidel [104] looking for a set of equiangular lines in Cd, and subsequently by

many others [50, 98, 77, 97, 147, 99, 60, 61, 169], but no general result is known.

However, extensive numerical analysis, performed by the author and collaborators

and including all dimensions up to 45, provides strong evidence that these coherent

states exist in all dimensions.
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Before tackling the existential problem, let us consider its precise definition. We

may specify the SICPOVM solely by its symmetry condition, as its remaining prop-

erties follow. A SICPOVM P is a set of n = d 2 normalized vectors |φk〉 in Cd

satisfying

|〈φj|φk〉|2 =
1

d + 1
, ∀ j 6= k . (4.8)

More precisely, the elements of P are the subnormalized projectors |φk〉〈φk|/d =

Πk/d = Ek, which have pairwise Hilbert-Schmidt inner product (Ej, Ek) = Tr[E†
jEk]

= 1/d 2(d + 1) for j 6= k.

The frame potential V1 of such a collection of vectors is manifestly equal to

n/d = d, so P is indeed a POVM. For P to be informationally complete, the d 2

operators Πk = |φk〉〈φk| must be linearly independent so that they span the space of

operators. The linear independence follows from considering the rank of their Gram

matrix (Πj, Πk) = Tr[Π†
jΠk]= (dδjk + 1)/(d + 1), which being circulant (each row is

a cyclic shift of the previous row), has eigenvalues given by the Fourier transform of

one of the rows. A simple calculation reveals that due to the combination of constant

term and Kronecker delta, the eigenvalues are exactly the same as the values in any

row. Since no eigenvalues are zero, the Gram matrix has full rank, the projection

operators Πk are linearly independent, and P is informationally complete.

The SICPOVM is also a 2-design, since it has enough elements and the global

minimum of the V2 potential is achieved. This fact also suffices to establish that P
is informationally-complete, since the 2-design condition is essentially an operator-

completeness condition.

We can now state our conjecture.

Conjecture 1 For any dimension d ∈ N, let {|k〉}d−1
k=0 be an orthonormal basis for

Cd, and define

ω = exp(2πi/d) , Djk = ωjk/2

d−1∑
m=0

ωjm|k ⊕m〉〈m| , (4.9)
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where ⊕ denotes addition modulo d. Then there exists a normalized |φ〉 ∈ Cd such

that the set {Djk|φ〉}d
j,k=1 is a SICPOVM P.

Analytic solutions are known for d = 2, 3, 8 [97], and to this list d = 4 is added.

Additionally, computer calculations reveal numerical solutions (with an accuracy

better than 1 part in 108) in dimensions up to 45. Not all known SICPOVM examples

have the precise group covariance described in the conjecture, so at this point it is

appropriate to loosen the restraints slightly from the original goal of finding a Weyl-

Heisenberg SICPOVM and consider the group covariant case generally. Thereafter

the analytic and numerical results may be more easily formulated.

4.1 Group Covariance

To say that the SICPOVM P is group covariant is to say that there exists a group

G with a d-dimensional projective unitary representation {Ug} such that (i) P is

invariant under any Ug, i.e., for any |φj〉 ∈ P and any Ug, Ug|φj〉 ∈ P (up to a phase),

and (ii) {Ug} acts transitively on P , i.e., for any |φj〉, |φk〉 ∈ P , there exists Ug such

that Ug|φj〉 = |φk〉 (also up to a phase). Assuming group covariance simplifies the

search for SICPOVMs. We simply search for a fiducial vector such that P = {Ug|φ〉}
is a SICPOVM (note that the transitivity property implies that the order of G must

be at least d 2). To do this, we use groups such that {Ug|φ〉} is a tight frame for

any normalized vector |φ〉, and then we search for a particular vector |φ〉 such that

|〈φ|Ug|φ〉|2 =1/(d + 1) for all g 6= e. All other inner products are then guaranteed to

have this value due to the group action.

We suspect the case of group covariance to be general for the following reason.

Consider the map α : Sd → B(Cd) that takes a normalized vector to the correspond-

ing projector, i.e., α(|φj〉)= |φj〉〈φj|. Now consider the operators

σj =

√
d

d− 1

(
|φj〉〈φj| − I

d

)
. (4.10)
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Being both traceless and Hermitian, these operators lie in a subspace of B(Cd) that

is isomorphic to Rd2−1; indeed, since (σj, σj) = 1, they all lie on the unit sphere

in Rd 2−1. This sphere is a generalization of the Bloch sphere for two-dimensional

systems, the difference being that for d > 2, not all operators on the (d2−2)-sphere

are images of vectors in Sd under the map α. From the SICPOVM condition 4.8,

one finds immediately that

(σj, σk) = − 1

d 2−1
∀ j 6= k . (4.11)

This is the condition for the d 2 operators {σj} to form a regular simplex in Rd 2−1,

whose automorphism group is the permutation group Sd2 . Given this result, some

group covariance seems natural. One is tempted to think that from here it is a

simple matter to establish the existence of the set P . This is not the case, however,

as working in the operator space obscures the very difficult task of determining

when a given operator is the image of some element of Sd under the map α. In the

same vein, most of the elements of the permutation group cannot be represented in

this framework as unitary transformations of Cd; thus, while we know that any G

satisfying the conditions above must be a subgroup of Sd2 , it is not obvious which

subgroups are candidates.

The outstanding choice for G is, of course, the group Zd × Zd. The group’s

immediate usefulness here stems from the fact that, for any normalized |ψ〉 ∈ Sd,

Sψ =
∑

jk

Djk|ψ〉〈ψ|D†
jk = dI , (4.12)

which we met in equation 2.30.

This property of producing a tight frame for any input state is quite general. The

following argument is adapted from Proposition 3 of [161]. Any set of d 2 orthogonal

unitary operators Tj, thus satisfying Tr[T †
j Tk]=dδjk, is a complete set for expanding

operators in B(Cd); the unitary operators {Djk} are one example of operators that

satisfy this orthogonality condition. It is a simple matter to turn the completeness

relation into
∑

k TkCT †
k = d Tr[C]I for any operator C. Simply consider the inner
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product of two arbitrary operators A and B. The completeness relation means that

(A,B) =
1

d

∑

k

(A, Tk)(Tk, B) . (4.13)

Setting A = |φ1〉〈φ2| and B = |ψ1〉〈ψ2| (which we can do without loss of generality

because such outer products span B(Cd)), we find

〈φ1|ψ1〉〈ψ2|φ2〉 =
1

d

∑

k

〈φ1|Tk|φ2〉〈ψ2|T †
k |ψ1〉 , (4.14)

from which it follows that
∑

k Tk|φ2〉〈ψ2|T †
k = d 〈ψ2|φ2〉, whence the result follows.

Thus the property of producing a tight frame regardless of the fiducial |φ0〉 is

common to all groups of size d 2 whose representation operators are a complete,

orthogonal set. Such groups were introduced by Knill in connection with quantum

error-correcting codes and are called “nice error bases” or unitary error bases [94,

95]. Klappenecker and Rötteler have kindly detailed all such nice error bases up to

dimension 10, so we can apply them to the problem at hand [91, 92, 93]. Only the

nice error bases associated with the group Zd × Zd exist in every dimension, thus

accounting for our focus on this group.

By considering the generalized problem of groups generating higher spherical t-

designs, our problem makes contact with the deep subject of the relationship between

frames, designs, and groups [75].

4.2 Analytic SICPOVMs

Now we concentrate specifically on using the group Zd×Zd. Fixing the representation

operators Djk of this group, we can determine the set of fiducial vectors that under

the group action make a SICPOVM. From this we can determine also the number

of distinct SICPOVMs generated by our fixed representation. In three dimensions

there are an uncountably infinite number of such covariant SICPOVMs, but in two
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dimensions there are just two, and in four, 16. We write the fiducial state as

|φ〉 =
∑

k

rke
iθk |k〉 , (4.15)

where we can, of course, immediately choose θ0 = 0.

4.2.1 d = 2

The two solutions, represented as column vectors in the standard basis, are




1√
6




√
3 +

√
3

eiπ/4
√

3−√3


 ,

1√
6


 −

√
3−√3

eiπ/4
√

3 +
√

3






 . (4.16)

These have a simple interpretation on the Bloch sphere, where the nontrivial group

operators are simply rotations by π about the x, y, and z axes, respectively. Then

the Bloch vectors of the two fiducial states are ±(1, 1, 1)/
√

3, and the two SICPOVM

states thus formed are regular tetrahedra, each one related to the other by inversion

of the Bloch vectors.

4.2.2 d=3

For r0 satisfying 1/
√

2 < r0 <
√

2/3, define

r±(r0) =
1

2
r0 ± 1

2

√
2− 3r2

0 . (4.17)

Hence 0 < r− ≤ 1/
√

6 ≤ r+ < 1/
√

2 < r0 ≤
√

2/3. The complete set of fiducial

states, represented as column vectors in the standard basis, is then







r0

r+eiθ1

r−eiθ2


 ,


 plus all vectors formed

by permuting of elements




∣∣∣∣ θ1, θ2 ∈
{π

3
, π,

5π

3

}




⋃







1/
√

2

eiθ1/
√

2

0


 ,


 plus all vectors formed

by permuting of elements




∣∣∣∣ 0 ≤ θ1 < 2π





. (4.18)



4.3. Numerical SICPOVMs 67

4.2.3 d = 4

Now let

r0 =
1− 1/

√
5

2
√

2−√2
, r1 = (

√
2− 1)r0 , r± =

1

2

√
1 + 1/

√
5±

√
1/5 + 1/

√
5 ,

(4.19)

along with

a = arccos
2√

5 +
√

5
, b = arcsin

2√
5

, (4.20)

and define the set

Ω ≡
{(

(−1)m(a/2 + b/4) + π(m + 2n + 7j + 1)/4 , π(2k + 1)/2 ,

(−1)m(−a/2 + b/4) + π(m + 2n + 3j + 4k + 1)/4
)

∣∣∣∣ j, k, m = 0, 1 and n = 0, . . . , 3

}
. (4.21)

The complete set of fiducial states, represented as column vectors in the standard

basis, is now








r0

r+eiθ+

r1e
iθ1

r−eiθ−




,




r0

r−eiθ−

r1e
iθ1

r+eiθ+




,


 plus all vectors formed

by cycling of elements




∣∣∣∣ (θ+, θ1, θ−) ∈ Ω





.(4.22)

4.3 Numerical SICPOVMs

Because analytic solutions to the SICPOVM condition equation 4.8 are so few, our

conjectures are based almost entirely on numerical evidence (even the d = 4 solution

was originally inspired by close examination of numerical solutions). To find numer-

ical instances of P , we simply minimize the second frame potential Tr[S2
2 ] over sets

of d 2 normalized vectors generated by a representation of Zd×Zd from a vector |φ〉.
It is also possible to vary independently the d 2 elements of P , but this is much less
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efficient; taking advantage of the group-covariance conjecture permits us to search a

space of O(d) complex parameters instead of O(d 3) complex parameters.

The quantity that we minimize,
∑

j,k |〈φ|Djk|φ〉|4, is proportional to the frame

potential because of the group covariance. Since it is a quartic function of |φ〉, we

have to use numerical methods to minimize it, using either Mathematica (simpler)

or C++ (much faster). The method used is an adaptive conjugate gradient method;

this has the advantage of converging with exponential rapidity to a local minimum,

but the disadvantage of being insensitive to global conditions. As a result, the most

time-intensive portion of the computation by far is identifying one of the global

minima among the many local minima.

Once the correct minimum is located, we quickly obtain P such that equation 4.8

is satisfied to an accuracy of 10−8. The sole exception to this rule is d = 3 (where

an exact analytic solution is known): in d = 3 there exists a continuously infinite

family of solutions, and this degeneracy makes numerical solution difficult. For every

dimension between d = 5 and d = 45, however, we have found Zd × Zd-covariant

solutions to within machine precision [130].

Additionally, in small dimensions, one can attempt an exhaustive search for all

possible Zd × Zd-covariant SICPOVMs, by simply running the minimization many

times with differing presumptive fiducial states, tabulating all the while the distinct

SICPOVM fiducial states found. Table 4.3 lists the results for the number of distinct

SICPOVMs.

Finally, we have tested some of the other nice error bases tabulated by Klappe-

necker and Rötteler. These are also easy handled, and although not all groups were

tested, at least four groups were found to generate SICPOVM sets. In the notation

of the library of small groups used by GAP3, GAP4, and MAGMA, these groups are

G(36,11), G(36,14), G(64,8), and G(81,9). Each of these solutions has an accuracy

of 10−15 in the individual vector inner products. Perhaps surprisingly, many of the

tabulated groups do not seem to yield group-covariant SICPOVMs.
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d #(SICPOVMs)
2 2
3 ∞
4 16
5 80
6 96
7 336

Table 4.1: Number of SICPOVM sets generated by a fixed representation of the
group Zd × Zd in dimensions two through seven. The infinity in dimension three is
uncountable.

A rigorous proof of existence of SICPOVMs in all finite dimensions seems tanta-

lizingly close, yet remains somehow distant. Although the numerical evidence makes

very clear the relevance of the group Zd × Zd, this is not definitively established.

Given the apparent importance of Zd × Zd, it would seem to be just a short step

to some general form for an operator whose eigenvectors could be a fiducial state,

but a proof by this method has not been forthcoming. For instance, in three di-

mensions the Fourier transform operator has an eigenvector that is a fiducial state

(the one associated with the eigenvalue i), but this does not hold in general. In five

dimensions a fiducial vector can be found among the degenerate eigenvectors of a

particular Z3 subgroup of the normalizer of Zd × Zd in SU(d), but there is no such

subgroup at all in the normalizer for dimension seven. The group-theoretic structure

of SICPOVMs is exceedingly rich, however, and ongoing efforts to understand the full

automorphism group of a SICPOVM might yield insights into operators that yield

fiducial states. Perhaps by here establishing the framework and providing motivating

numerical results, a proof might yet be found.

4.4 SICPOVM Representations

Regardless of whether their existence can be proved rigorously, SICPOVMs appear

to exist in many dimensions, so we are justified in examining their properties. The
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next chapter deals with quantum cryptography in detail so here we confine ourselves

to questions of representation theory and quantum state tomography.

Using the SICPOVMs we can create an analog of the coherent states and the P

and Q representations that follow. For the P representation we expand a given state

in terms of the SICPOVM states, whereas the Q function is the set of coefficients

formed using the states, like so:

ρ =
∑

jk

Pjk(ρ)|φjk〉〈φjk| , (4.23)

Qjk(ρ) = 〈φjk|ρ |φjk〉/d . (4.24)

The Q function is normalized such that it forms a probability distribution. As in the

continuous, infinite-dimensional version, the P and Q are dual representations as we

may find a set of operators Rjk such that

ρ =
∑

jk

Qjk(ρ)Rjk , (4.25)

Pjk(ρ) = Tr[Rjkρ] . (4.26)

Such a dual system of representations can, in principle, be constructed using any set

of operator-complete quantum states, pure or mixed. However, the SICPOVM offers

an exceedingly simple connection between the two halves of the dual representations.

To see this, we will first determine Rjk, by using equation 4.25 in equation 4.24 or

similarly for the P function. Then we find

〈φjk|Rlm|φjk〉 = d δjlδkm . (4.27)

Since the |φjk〉 are operator-complete, these equations determine the Rjk. Simply

guessing that Rjk = a|φjk〉〈φjk| + bI, the constants a and b are determined by the

previous equation to be such that

Rjk = (d+1)|φjk〉〈φjk| − I . (4.28)

This immediately implies an essentially trivial relationship between the Q and P

functions. Using this form of Rjk in equation 4.26 we have

Pjk(ρ) = (d+1)〈φjk|ρ|φjk〉 − 1 = d(d+1)Qjk(ρ)− 1. (4.29)
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Thus the P function is simply a shifted and rescaled version of the Q function, a

much simplified version of the Gaussian convolution relation in infinite dimensions.

Practically any operator can be used in conjunction with the displacement op-

erators to create a set of “coherent states”, to stretch the term. For some operator

H define the set of displaced versions as Hjk = DjkHD†
jk. For H to generate a

linearly-independent set of operators, we must ensure that the Gram matrix has full

rank, as we did with the SICPOVM. Owing to the structure of the displacement

operators the Gram matrix is block-circulant with circulant blocks, each of size d.

Two Fourier transforms suffice to bring it into diagonal form, so that the eigenvalues

may be expressed as

λjk ∝ 1

d

∑

lm

ωjm−klTr[DlmHD†
lmH], (4.30)

where again ω = exp[2πi/d]. From the explicit form of the Djk we can calculate that

1

d

d−1∑
s,t=0

ωjt−ksDstDlmD†
st = d δjlδkmDlm. (4.31)

Now writing H in terms of the characteristic function the eigenvalue equation be-

comes

λjk ∝ 1

d

∑

lmst

ωjm−klTr[DlmD†
stD

†
lmH]Tr[H†Dst] (4.32)

∝ |Tr[D†
jkH]|2. (4.33)

Thus to ensure full rank it is enough to demand that H not be orthogonal to any of

the displacement operators, i.e., that when expanded in terms of the displacement

operators, there be no zero terms.

If we pick H to be a positive-semidefinite operator with non-zero trace, we can

emulate the Q and P functions by defining

QH
jk(ρ) = Tr[Hjkρ]/dTr[H] (4.34)

ρ =
∑

jk

PH
jk (ρ)Hjk (4.35)
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This definition ensures that the set {DjkHD†
jk/Tr[H]} forms a POVM, so that the

Q function is again a probability distribution and P a quasi-distribution. The Gram

matrix and its inverse provide the means to go between the two, since we may simply

form the Q function according to equation 4.34 from the form of the state given in

equation 4.35. In this way we obtain

QH
jk(ρ) =

∑

lm

Tr[HjkHlm]

d Tr[H]
PH

lm(ρ). (4.36)

Defining a matrix Mjk;lm = Tr[HjkHlm]/d Tr[H] we may express the relationship as

Q(ρ) = MP (ρ) P (ρ) = M−1Q(ρ). (4.37)

The point of this derivation is to show that in general the connection between Q

and P can be complicated to compute due to the inverse of M. On the other hand,

this connection is trivial for the SICPOVM coherent states, a fact which will be

important when considering quantum state tomography.

4.4.1 Wigner Functions

It is also possible to link the P and Q functions to the displacement operators and a

Wigner function, though not with the elegance found in infinite dimensions. Fourier

transforms of the displacement operators create Hermitian operators suitable for use

in the Wigner function, but only in odd dimensions are these operators complete. For

even dimensions it has been long known that the finite-dimensional Wigner function

must be extended to four times as many values to ensure completeness. While using

the Fourier transform in odd dimensions results in a complete set of operators, in fact

an orthonormal operator basis, the parity operator is not among them. Generally it

is impossible to import all of the nice features from the infinite-dimensional case due

to the nature of the projective representation. In what follows, only odd dimensions

will be considered, for only there do such issues not cloud the connection between

the various representations.



4.4. SICPOVM Representations 73

For convenience, when working in odd dimensions, we may reset the range of the

indices (j, k) of the displacement operator to run from −n = (1−d)/2 to n, so that

they are located symmetrically about zero. All the properties of the displacement

operator developed in chapter 1 remain intact. Then we can define the Wigner

function by starting with the parity operator and displacing it about

Π =
n∑

k=−n

|−k〉〈k|, (4.38)

∆jk = DjkΠD†
jk =

∑
m

ω−2jm|k−m〉〈k+m|. (4.39)

Though Hermitian, these operators aren’t positive, having eigenvalues ±1, (d + 1)/2

positive and the remainder negative. They are, however, orthogonal:

Tr[∆jk∆lm] = Tr[DjkΠD†
jkDlmΠD†

lm] = Tr[∆l−j,m−kΠ] = d δjlδkm. (4.40)

Arbitrary operators may be easily expressed in terms of the “point operators” ∆jk,

yielding the Wigner function

Wjk(ρ) = Tr[∆jkρ]/d ρ =
∑

jk

Wjk∆jk. (4.41)

Note that unlike the P and Q representations, the Wigner function is self-dual since

the operators ∆jk both generate the coefficients and form the expansion basis. Apart

from this, the salient feature of the Wigner function is that although it is a quasi-

distribution, its marginals are proper probability distributions. Summing over the

first index in ∆jk, we obtain

∑
j

∆jk =
∑
jm

ω−2jm|k−m〉〈k+m| = d|k〉〈k|, (4.42)

proportional to the projection onto the position state k. To sum on the second index,

first note that the parity operator is invariant under Fourier transform: Π = FΠF †.

Then we may proceed, finding

∑

k

∆jk =
∑

k

DjkΠD†
jk =

∑

k

FF †DjkFF †ΠFF †D†
jkFF † (4.43)

=
∑

k

FD−k,jΠD†
−k,jF

† =
∑

k

F∆−k,jF
† = dF |j〉〈j|F †, (4.44)
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the rescaled projector onto the momentum state j. In terms of the Wigner function,

then,
∑

j

Wjk(ρ) = 〈qk|ρ|qk〉
∑

k

Wjk(ρ) = 〈pj|ρ|pj〉. (4.45)

Here |qk〉 is the state |k〉 defined earlier. Since confusion can arise between the

position and momentum bases, q serves to label position and p momentum.

In odd dimensions the Wigner function point operators exhibit an interesting

connection to a version of SICPOVM. As the parity operator has trace equal to unity,

only its non-positivity stops it from being a POVM. (Note that in even dimensions

the parity operator is traceless, so the following construction would not work at all.)

This is easy to fix, however, since it has only two distinct eigenvalues. The point

operators can be “boosted” to a POVM, simply by combining the parity operator

or its negative with enough identity operator to make the negative eigenvalues zero.

Clearly this can be done in two different ways:

Ejk =
I + ∆jk

d(d+1)
Fjk =

I −∆jk

d(d− 1)
. (4.46)

The first is rank (d + 1)/2 and the second (d− 1)/2. The interesting bit now is that

both Ejk and Fjk form higher-rank SICPOVMs, for the inner products of elements

obey

Tr[EjkElm] =
d + 2

d2(d + 1)2
Tr[FjkFlm] =

d− 2

d2(d− 1)2
(j, k) 6= (l,m). (4.47)

These two higher-rank SICPOVMs can be used to construct representations in just

the same way as the standard SICPOVM.

4.5 Tomography

Tomography with the SICPOVM is quite simple, and works for quantum states as

well as measurements and processes. This ability follows from the completeness of

the SICPOVM states, so there is no doubt of its efficacy in principle. Here, however,
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we elucidate the precise method by which tomography is performed, starting with

quantum state tomography.

Imagine an experimenter can repeatedly perform quantum state preparation and

wishes to check that the quantum state prepared is indeed the state desired. In this

case, quantum state tomography is called for. Quantum states are not observable

themselves, so there is no measurement the experimenter can perform on a single

system whose outcomes label the possible states; state tomography is inherently

statistical. Instead, the experimenter can perform a tomographically-complete or

informationally-complete measurement (sets of measurements can be amalgamated

into a single POVM) on many iterations of the same state from whose statistics the

state can be inferred.

An informationally-complete measurement was said to be one comprised of ele-

ments spanning the space of operators. In the previous section we examined how

to represent any given operator in terms of such a set, but that the set made up

a measurement was incidental. Here it is the salient feature, for by repeated mea-

surement a good guess can be made of the underlying probability distribution of

outcomes, and this in turn uniquely specifies the quantum state. In terms of the

various representations, the statistics of the measurement realize the Q function.

The great advantage of the SICPOVM should now be apparent: converting the

measurement statistics into the form of the state itself is trivial. After much data

has been collected, this can be arranged into the Q function which can then simply

be converted into the P function, yielding the state itself in the next step. Thus we

may write the inferred state in terms of the frequencies of the various outcomes as

ρ∗(fjk) =
∑

jk

[d(d+1)fjk − 1]|φjk〉〈φjk|, (4.48)

where the asterisk denotes the state obtained from measurement results. For more

general “coherent states” as described in the previous section, two difficulties arise in

converting the measured data into quantum state form. First, if an eigenvalue of the

Gram matrix is near zero, its inverse will obviously be very large. If the data approx-
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imate the corresponding eigenvector, the variance will be amplified relative to other

possible sets of data, meaning that the measurement will be far more sensitive to

fluctuations in the corresponding regions of the operator space. State reconstruction

becomes unstable in such regions. The SICPOVM avoids this problem as there are

no such strong singularities. In contrast, the SICPOVM is afflicted with the second

problem, as are all measurements: varying sensitivity of the data itself. Even with

a stable state reconstruction algorithm, every measurement has an inbuilt variable

sensitivity of the data due to the arrangement of the measurement operators. For

instance if the measured state is near one of the SICPOVM states then the variance

will be low, as this outcome will be more likely. Similarly for states which are or-

thogonal to a particular SICPOVM state. However, in between these two regions the

variance of the data increases and the measurement is less sensitive in these regions.

The high symmetry of the SICPOVM prevents wild swings in this variance, but in

general one could crowd all the measurement operators near one “corner” of the

operator space, spreading them just widely enough to span the space and thereby

lowering the average sensitivity.

The SICPOVM states can also be enlisted to verify the correct functioning of

a quantum measurement. In this problem the experimenter constructs a device

corresponding to a particular POVM and wishes to check that it is indeed the desired

measurement. Essentially this is the dual of the previous problem. By preparing

and measuring the SICPOVM states repeatedly the experimenter collects statistics

on each outcome given the various inputs. Let f i
jk be the frequency of outcome Ei

given the input ρjk. By collecting enough data it will be true that

f i
jk ≈ pi|jk = Tr[Eiρjk] = dQjk(Ei). (4.49)

Then it is a simple matter to convert this to the P function and obtain for the form

of the ith outcome operator

Ei =
∑

jk

[(d+1)f i
jk − 1]ρjk. (4.50)
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Note that the form has changed slightly from the case of state tomography because

the sum over j, k is no longer the sum over all values in a probability distribution.

Finally, quantum dynamics can be investigated, a method called quantum process

tomography. As is the case with all tomographic methods, this scheme of process

tomography is only warranted when little is known about the process. Otherwise

other, more efficient, processes may be used. In general, this inefficiency precludes

a quantum computer from being very effective at simulating other physical systems

and providing a method to determine the dynamical rules. It is another matter

altogether as to whether the quantum computer will be widely useful if we wish

to simulate a physical system for the purposes of extracting a particular dynamical

parameter.

Let us name the dynamical process G such that ρ′ = G(ρ). If we think of G as

a sort of black box, we may input SICPOVM states and perform the SICPOVM

measurement at the output. Thus we would collect frequency statistics of the form

fjk;lm = Tr[ρjkG(ρlm)]/d. We can also use the SICPOVM as a basis in which to

represent the action of the process. Using the Rjk is simpler, yielding

G(ρ) =
∑

jklm

Gjk;lmRjkTr[ρRlm]. (4.51)

Now the statistics may be used directly to find that

Gjk;lm = fjk;lm/d. (4.52)

4.6 Quantum Theory as a Probability Theory

Putting all three pieces together, we may place quantum mechanics in a purely

classical probabilistic framework, eschewing the operator representation. The most

convenient method begins by promoting the quantum state to the Q function. Then,

just as measurement probabilities may be obtained as a linear function on the quan-

tum state, we may convert the measurement operators into linear functions of the Q
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function. We’ll need the P function so that

pi = Tr[ρEi] =
∑

jklm

Tr[Pjk(Ei)Qlm(ρ)ρjkRlm] = d
∑

jk

Pjk(Ei)Qjk(ρ). (4.53)

Now quantum states and measurement are each elements of a real-valued vector

space of dimension d2. The analog of quantum states are probability distributions,

though not all distributions correspond to quantum states.

In this framework quantum dynamical maps become stochastic maps on the set

of allowed distributions. Given a particular map G, the associated stochastic map

has the form

G → Gjk;lm = Tr[ρjkG(Rlm)]/d, (4.54)

which ensures that

ρ′ = G(ρ) ⇒ Qjk(ρ
′) =

∑

lm

Gjk;lmQlm(ρ). (4.55)

These three pieces — quantum states, measurements, and dynamics — are the essen-

tial features of the theory, and with the aid of the SICPOVM we can work in a real

space in which quantum states correspond to probability distributions if we desire.

The probabilities are distributions over a future measurement using the SICPOVM,

rather than distributions over physical variables as is the case in classical mechanics.

Such a presentation in a purely probabilistic framework blurs the line between quan-

tum mechanics and probability theory, as intended, for quantum mechanics is quite

rightly a modified version of classical probability theory in which the underlying

quantities are non-commutative.

4.7 The de Finetti Theorem

There is a somewhat thorny issue of principle lurking in the background of the

tomographic program. Strictly speaking, if the quantum state is thought to be akin

to a probability distribution, it is nonsensical to consider an “unknown” quantum
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state. Probability distributions and quantum states alike are assigned by observers

on the basis of facts already known and are thus never themselves unknown. For

example, if nothing or virtually nothing is known about a given physical system, an

observer will want to describe it by a highly mixed state. Little will be known about

various properties of the system—its energy, its spin or momentum, etc.—yet the

state itself is perfectly well-known.

However, probabilities of probabilities are used all the time, and fortunatly the

SICPOVM can help put this concept on a firm foundational footing in the quantum

case. For now, take the canonical example, determining if a coin is unbiased or not.

Initially nothing is known about the bias of the coin, so the sensible distribution of

the bias is uniform. As the coin is tossed and results accumulated, our probability

distribution changes according to Bayes’ rule. When n heads have been observed

in N trials, the probability distribution of heads on the next toss will have mean

value (n + 1)/(N + 2). This is Laplace’s rule of succession. All along we’ve used

the probability of the bias of the coin, but the bias of the coin is itself a probability.

This is nonsense logically even if it works well in practice.

Fortunately there is a solution to this dilemma, first outlined by de Finetti. Cer-

tainly the experimenter would not object if we point out that the many measurements

performed are invariant under permutation. That is, the order of the measurements

doesn’t matter. If we imagine that the experimenter could prepare arbitrarily many

instances of the system, the combined quantum state of any number of instances is

called exchangeable. We should consider this global system and its quantum state

rather than the individual systems since the exchangeability is one fact that we

know about the setup. However, as de Finetti first showed for classical probability

distributions, an exchangeable distribution can be thought of as a distribution over

independent and identically-distributed single-trial probability distributions: a prob-

ability of probabilities. That is, suppose pN(x1, x2, . . . , xN) is the joint distribution of

N runs of the experiment, and p1(xj) is a single-trial distribution. Then de Finetti’s

theorem asserts that whenever pN is exchangeable, there exists a generating function
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P (p1) > 0 such that

pN(x1, x2, . . . , xN) =

∫
dp1P (p1)

N∏
j=1

p1(xj) (4.56)

1 =

∫
dp1P (p1) (4.57)

Since the generating function is normalized and positive, we may think of it as the

probability of the single-trial probability p1, a convenient fiction. Thus this concept

is rehabilitated in an operational sense.

For quantum systems the theorem is entirely analogous. Let ρN be an exchange-

able quantum state of N systems, a set of systems invariant under permutations and

which could have involved in principle any number N of systems. Then there exists

a positive, normalized generating function P (ρ) on single-system density operators

ρ such that

ρN =

∫
dρP (ρ) ρ⊗ ρ⊗ · · · ⊗ ρ =

∫
dρP (ρ) ρ⊗N . (4.58)

Again we may interpret P (ρ) as the probability of the state ρ. Now it is again clear

how tomography works logically. Each run of the experiment yields an outcome which

updates the generating function via Bayes’ rule. With enough data the generating

function will become sufficiently peaked as to indicate a particular quantum state.

If we take the classical de Finetti theorem as given, the SICPOVM immediately

allows us to prove the quantum version by simply reducing it to the classical case [32].

First, “measure” ρN with N copies of the SICPOVM. This produces a probability

distribution pN , which is exchangeable if ρN was. Next, apply the de Finetti theorem

to convert this distribution into a convex combination of i.i.d. single-system prob-

abilities. The last step is to back-track to the operator setting, achieved by noting

that pN is essentially a multipartite Q function which can be converted into a den-

sity operator via the P function. This example shows the power the SICPOVM has

in rendering quantum mechanics in probabilistic terms: theorems from probability

theory can often be directed imported to the quantum setting.

In this chapter we have explored the structure of SICPOVMs to find numerical
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examples and seen that they are not only elegant, but useful. Such an ensemble

bridges the gap between quantum mechanics and probability theory, showing just

how similar the two are. More importantly, however, doing so exposes the differences,

and by making them more plain, perhaps a deeper understanding of why they are

different will come to light.
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Applications: Quantum
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Chapter 5

Cryptography Old and New

Several tools based on frames have been added to the quantum information theory

toolbox in the previous two chapters. Now we shall focus attention on using these

tools to solve practical problems which originate outside the field, specifically those

stemming from cryptography. Frames, in particular equiangular spherical codes, are

well-suited to this task, though this use differs somewhat from their original use as

classical error-correcting codes. In the setting of classical coding, all ESC codewords

are perfectly distinguishable in principle and their wide spacing ensures that they

are more impervious to noise and less likely to be incorrectly decoded. As quantum

states, however, the codewords are not so readily distinguishable. This difficulty can

be made an asset, as their indistinguishability translates into an ability to detect

tampering through the inevitable noise that tampering generates. Such tamper-

evidence is naturally useful in transmitting messages which can’t be easily read by

anyone but the intended recipient.

This chapter examines spherical code quantum key distribution according to the

following trajectory. First, a background of classical cryptography is given, ranging

from ancient uses to modern developments. The possibility of using quantum me-

chanics for new, unbeatable schemes is introduced by examining the first quantum

key distribution scheme, called BB84 after its inventors Bennett and Brassard, in
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section 5.2. General schemes are considered in section 5.3, before taking up the case

of spherical codes in section 5.4. Spherical code schemes offer several advantages

over protocols using collections of orthogonal bases, in particular a wider range of

protocols, higher eavesdropping tolerance, and a streamlined key creation process.

Finally, with an eye toward practical implementation, section 5.5 considers qubit-

based protocols.

5.1 Background: Classical Cryptography

Cryptography is an ancient subject: the oldest known encrypted text is an inscrip-

tion carved on the tomb of Khumhotep II in 1900 BCE, using unusual hieroglyphic

symbols as a partial substitution code. By the sixteenth century BCE Assyrian

merchants used flat stones carved with symbols for identification, a use of digital

signatures. Steganography, the practice of hiding data, was also in widespread use,

for instance by carving a message in a piece of wood used as a wax plate. Wax

melted over the message obscured it until later removed. In the fifth century BCE

Spartans used a staff of wood called the scytale (rhymes with Italy) to encrypt mili-

tary messages. A strip of parchment was wrapped around the staff and the message

written down the length. The circumference of the staff was, in effect, a secret key,

for without knowing the correct circumference the message was difficult to read [89].

Along with methods of creating cryptographic systems came methods of breaking

them, cryptanalysis. As early as 300 BCE the arthasastra, an Indian manual on

the methods of statecraft, discussed the importance and methods of cryptanalysis.

Abu Yahmadi discussed the plaintext attack method of breaking codes in the first

book devoted to the subject, written around 800 CE. Yahmadi solved a Byzantine

cryptographic puzzle written in Greek by guessing at the form of the beginning

of the text. Shortly thereafter in the 9th century the ‘philosopher of the Arabs’ al-

Kindi wrote a treatise entitled A Manuscript on Deciphering Cryptographic Messages,

detailing the use of frequency analysis to decipher messages [6]. By examining the
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Figure 5.1: Schematic diagram showing encryption and decryption with a shared
private key.

average frequency of letters used in a language one may look for correspondingly

frequent symbols in the encrypted message. The British automated these and other

plaintext attack methods and used them over a millennium later to break the German

Enigma code during World War II.

With the modern advent of the field of information theory, cryptographic methods

could be rigorously analyzed. Formally, the goal is to take a plaintext message m

and produce an encrypted version, called the ciphertext c, so that only chosen parties

may invert the process and read the message. This is accomplished using a secret

key k to produce c from m by way of the encryption algorithm Ek: c = Ek(m) and to

decrypt by way of the decryption algorithm Dk. Whoever has the key may decrypt

the ciphertext, but without it the message isn’t easily readable. The strategy is to

give each of the chosen parties the key and keep it from everyone else. Figure 5.1

depicts this setup. To be certain of security against attack, cryptographic protocols

follow Kerckhoffs’ principle [90] that security reside entirely in the key.1 This way,

should the encryption and decryption algorithms be known to illegitimate parties,

security will survive.

In 1949 Shannon proved that the only unconditionally secure cryptographic code

uses a secret key which is as long as the message [141]. A secure cryptosystem creates

1In modern parlance this is the argument against “security through obscurity.”
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a ciphertext that reveals nothing of the plaintext, so that the probability of the

plaintext equals the probability of the plaintext given the ciphertext, p(m) = p(m|c).
Similarly, since possession of c and k leads deterministically to m, the uncertainty of

the distribution of messages m cannot be less than that of the possible keys, given a

particular ciphertext. Shannon formalized this statement, proving

H(K) ≥ H(M), (5.1)

where K is the random variable corresponding to the possible keys, M the possible

messages. Since we can compress all the messages m down to a fraction H(M) by

Shannon’s noiseless channel coding theorem, and similarly for the keys k, this implies

the key cannot be shorter than the message.

Invented in 1917, the eponymous Vernam cipher is by the Shannon criterion the

optimal, unconditionally secure method of data encryption [154]. Vernam created a

machine capable of generating a pseudo-random string called a one-time pad for use

as a secret key. The message is first converted to binary, say, and added to the secret

key. To decode, one simply needs to subtract the key from the encrypted message,

recovering immediately the actual, plaintext message. As long as the key is only

used once, the encrypted message is essentially unbreakable, as it only indicates the

length of the message. Hence the name “one-time pad”.

The one-time pad is unwieldy, however, as it requires long keys. This presents

a difficulty to separated parties who wish to exchange many messages. Either they

must meet at some point and establish new keys, carry all the keys they will ever

need from their only encounter, or have some method of creating new keys at a

distance. Absent a private means of communicating, creating keys at a distance

seems to imply a catch-22. In order to agree on a secret key over a public channel,

encryption should be used, but this requires the key needed in the first place.

To get around this problem of key distribution, in 1976 Diffie, Hellman, and

Merkle developed a method of key distribution based on “one-way” functions, func-

tions easy to implement but difficult to invert [54]. Before examining their protocol,
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consider the following insecure scheme, which demonstrates the principle of public

key distribution. Two parties wishing to establish a key—traditionally named Alice

and Bob—may do so by each starting with a copy of a public random string γ. Alice

adds a privately generated random string α to her copy, as does Bob for his copy.

Then they exchange their strings α+γ and β+γ publicly and again add their private

strings. Now they are in possession of the same string α+β+γ which may be used as

a key. The protocol is obviously not secure since an eavesdropper, Eve, may simply

subtract the known random string γ from the publicly exchanged copies to obtain

α and β, and thus the key. But if the addition operations were instead commuting

one-way functions, it would be difficult for Eve to do this, leaving Alice and Bob

with a secure key.

Such one-way functions abound in number theory. For instance, suppose that

Alice and Bob agree on numbers g and p such that p is prime and g generates all

integers up to p−1 under exponentiation modulo p (g is primitive with respect to

p). Then the pair is analogous to the public random string γ, for Alice and Bob

may each choose a random number, Alice a and Bob b, compute α = ga mod p and

β = gb mod p, and exchange α and β. Now if Alice computes βa mod p and Bob

αb mod p, they’re each guaranteed to have gab mod p. Eve, however, can’t simply

compute this value from α, β, g, and p since determining the discrete logarithms a

and b is difficult. This is the Diffie-Hellman key exchange protocol.

Public key exchange protocols solve one problem but create another: authenti-

cation. Alice and Bob need to be certain they are communicating with each other,

lest one inadvertently share a secret key with Eve and then broadcast the cipher-

text. This would seem to destroy all hopes for key exchange, but the problem of

message authentication is not as daunting as key exchange, since secrecy is no longer

the goal. Still, it should be clear that each party must know something unique and

unforgeable about the other party for identification purposes. A shared secret key

accomplishes this task, and, importantly, for authentication purposes the key needn’t

be terribly long. Using a key-dependent one-way hash function Alice and Bob can
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“sign” their messages with the shared key. A hash function of a long string is a

shorter “fingerprint” of the string such that small changes to the input string gener-

ate largely different hashes [135]. This feature, combined with the one-way and the

key-dependence aspects, prohibits Eve from forging the signature.

Note that inverting the one-way function in Diffie-Hellman key exchange is re-

ferred to as “difficult”, but not “impossible”. Precisely for this reason the protocol

is not unconditionally secure, as there is no absolute guarantee that Eve does not

know how to invert the function. In practice, though, no efficient method of finding

discrete logarithms is known. The best known method, the number field sieve, re-

quires a running time superpolynomial in the prime p, roughly O(exp[n
1/3
p (ln np)

2/3])

steps where np is the number of bits in the binary expansion of p.

Computational security concerns aside, Diffie-Hellman suffers one other draw-

back: the requirement of two-way communication between the parties. Such inter-

action may not always be feasible. To solve this remaining problem, Diffie, Hellman,

and Merkle invented public-key cryptography which uses different keys for encryption

and decryption, obviating the problem of key exchange. The encryption key is made

public, while the decryption key is kept secret. Anyone wishing to encrypt data such

that only the holder of the decryption key may decrypt it is free to do so at his or

her leisure. The simultaneous ease of decryption for legitimate users and difficulty

presented to the eavesdropper relies on a “trapdoor one-way” function which is one-

way without knowing the secret trapdoor, but two-way otherwise. Here, encryption

using the public key is simple, but the decryption phase is difficult without knowing

the private key, the secret trapdoor.

The premier example of a public key cryptosystem is the RSA system, invented

in 1977 by Rivest, Shamir, and Adleman [131]. RSA again uses modular exponenti-

ation as the one-way function, but instead of performing operations modulo a prime

number, n is the product of two large primes. Knowledge of the prime factors is

the secret trapdoor. To see how this works, let Alice choose large primes p and q.

She then makes public n = pq and some number e, the public key, which is rel-
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atively prime to (p−1)(q−1). Bob uses the function E(m) = c = me mod n to

encipher the message m. To decipher, Alice computes d, the private key, such that

d = e−1 mod (p−1)(q−1), in other words ed = 1 mod (p−1)(q−1). Then Alice

recovers m with the function D(c) = cd mod n, since

D(E(m)) = med mod n = mk(p−1)(q−1)+1 mod n = m. (5.2)

The last step follows from Euler’s totient theorem, which states that for a relatively

prime to n, aφ(n) mod n = 1. Here φ(n) is the totient function, the number of numbers

less than n relatively prime to n; for prime p, φ(p) = p−1.

RSA is as difficult to crack as the Diffie-Hellman key exchange, for the best known

attack requires factoring n, and the algorithm for doing so is again the number field

sieve. However, since the public key is likely to be used many times, it is vulnerable

to attack, akin to reusing a one-time pad. In practice one may simply combine

RSA with a one-time pad by generating a random key, encrypting it with the public

key of the intended recipient, and sending it on its way. Now reusing the public

key is less insecure, as it is only used to encrypt random strings. This is the basis

for many internet security protocols, including the secure sockets layer (SSL) used

in secure hypertext transfer protocol (https) transactions [139] and the secure shell

(SSH) remote terminal [83].

Quantum mechanics has the possibility to completely change this security land-

scape. No known efficient classical algorithm exists for factoring or finding discrete

logarithms, but the quantum information theory toolbox does contain an efficient

factoring tool for use on a quantum computer. Invented by Shor in 1994 [142], this

algorithm requires only O(n3) steps to factor an n-bit number, rendering public-key

cryptosystems based on the difficulty of factoring and finding discrete logarithms

useless. Not all such cryptosystems are based on these problems, though the ma-

jority and most widely-used are; the McEliece protocol for instance uses the ease of

encoding but difficulty of decoding a general linear error-correcting code to provide

a one-way function.
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The Shor algorithm does require a quantum computer, which may be more dif-

ficult to realize than an efficient classical factoring algorithm, so for the moment

public-key cryptography is practically secure. However, the damage is done in prin-

ciple. Fortunately, just as the tool for breaking widely-used cryptographic protocols

exists in the toolbox, so does the fix: quantum cryptography. Quantum key distri-

bution is the main application of quantum cryptography, a marriage of the Vernam

cipher with quantum communication, uniting the unconditional security of the for-

mer with a key-exchange ability provided by the latter. In this sense, quantum key

distribution is a key exchange protocol, or more properly a key expansion protocol,

since it too requires authentication.

The advantage gained by using quantum systems is the ability to detect tamper-

ing and prevent copying, as first realized by Wiesner in the early 1970s [163]. His

ideas for unforgeable bank notes, called quantum money, were unfortunately not fol-

lowed up until 1984 when Charles Bennett and Gilles Brassard adapted them to key

distribution [12]. Their scheme, known as BB84, is worth examining in detail before

pressing forward with the main focus of this chapter, quantum key distribution based

on equiangular spherical codes.

5.2 The BB84 Protocol

The BB84 protocol is designed to solve exactly the same problems that Diffie-Hellman

key exchange solves, only in an unconditionally-secure fashion. Our two separated

parties, Alice and Bob, wish to agree on a secret key through public communication

channels. We assume that the eavesdropper Eve, meanwhile, can monitor all classical

and quantum communication, as well as perform unlimited (quantum) computation

in order to break the scheme. Alice and Bob already share a short key which provides

the means to authenticate messages from each other, preventing Eve from “spoofing”

messages from either party. However, this key is too short to encrypt data they wish
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to share but keep secret. If they can successfully use the public channels to create a

longer key, then they can securely send the actual message.

Key creation is accomplished in the following manner. The public communication

channels they each have access to are photon-transmitting channels, perhaps free-

space or a fiber optic cable. For now we’ll think of the channels as noiseless. Focusing

on the polarization modes of the photons, Alice and Bob agree publicly on two bases

to use and an encoding scheme within each one. Traditionally they choose the

horizontal/vertical basis (+) and the 45/135 degree linear polarization basis (×),

agreeing that vertical or 45-degree corresponds to 0 and the others to 1. In the spin-

1/2 language we may describe this as using the σx or σz bases, with spin up in either

basis corresponding to 0 and down to 1, which we will do from now on. To make

matters concrete, we are letting vertical polarization correspond to spin up along z

and 45 degrees to spin up along x. Alice randomly chooses a binary string α and an

encoding string ε, each of the same length N . She then encodes α into a sequence

of photon polarization states, using the encoding string to determine the basis used,

0 corresponding to z and 1 to x, say. For instance if the string α were 010011 and

the encoding string 100110, Alice would prepare the state |↑x〉|↓z〉|↑z〉|↑x〉|↓x〉|↓z〉.

Upon receipt of the state, Bob randomly picks a decoding string ξ and measures

the polarizations in the corresponding bases. Naturally, ξ doesn’t perfectly coincide

with ε, but they agree on average half the time. When Bob measures in the same basis

Alice used to prepare the signal, he obtains the bit she encoded. If not, he obtains

either outcome with equal chance, since the measurement of a spin-z eigenstate along

x is random and vice versa. In all, the measurement process leaves Bob with a string

β. Following the example above, if the decoding string were 101000, then the string

β would be any of the strings 01???1, where ? denotes a random bit. This is

depicted in figure 5.2. To remove the random outcomes, Bob then announces the

bases he used to measure, i.e. the string ξ, and Alice replies with the encoding string

ε. Whenever these strings disagree, they discard the corresponding bit from their

strings α and β, a process called sifting. A simple way to perform sifting in this case
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Figure 5.2: The BB84 protocol example given in the text. The first line corresponds
to Alice’s encoding into polarization states, and the second to Bob’s choice of mea-
surement. The third line gives the resulting key string, in which half of the values
are discarded due different choices of encoding and decoding bases.

is to add the strings ξ and ε modulo 2 and keep only the bits corresponding to 0.

For a noiseless channel, sifting leaves them each with a copy of the key κ, a random

subset of the randomly-generated string α.

If Eve listens to their basis announcement messages, she knows only the encoding

and decoding strings. Since these have nothing to do with the key κ, she learns

nothing from the public communication, and Alice and Bob may safely encrypt their

data. The quantum channel Alice uses to transmit the photons to Bob is also public,

so Eve may try her luck listening to the quantum channel as well. However, in

listening to the quantum channel, she will introduce noise, which Alice and Bob will

be able to detect by comparing a portion of their (now slightly different) key strings

κa and κb. The more information Eve wishes to gain from the photons, the more

disturbance she will incur, all due to the fact that Alice encoded her string α into

two different bases. The error rate enables Alice and Bob to infer how much Eve

knows about their key, at which point they may use error-correction and a procedure

called privacy amplification to create a shortened key, which has no errors and about

which Eve is ignorant. Both procedures will be considered in more detail later in
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the chapter; the important point is that they are made possible by this information-

disturbance tradeoff, the sine qua non of quantum key distribution.

To see this tradeoff in action, we may consider a specific model of eavesdropping

which Eve might use: the intercept/resend attack. Here Eve simply intercepts the

photons individually, measures them in some fashion, and prepares a new photon

depending on the measurement result, which she forwards to Bob. One obvious

choice for Eve’s measurement is to randomly select either the x or z basis, note the

result, and resend the corresponding state to Bob. If she happens to guess the basis

correctly, she’ll be able to copy the result without any disturbance, but if she guesses

incorrectly, she’ll learn nothing and cause maximal disturbance to the polarization

state in the process.

The joint probability of Alice’s encoding, Eve’s attack, and Bob’s measurement

may be written

p(j, k; l, m; s, t) =
1

16
|〈φjk|φlm〉|2|〈φlm|φst〉|2

=
1

64
[δjl(2δkm − 1) + 1][δsl(2δtm − 1) + 1], (5.3)

where the (j, k) indices correspond to Alice, (l, m) to Eve, and (s, t) to Bob, while

the state |φlm〉 stands for an encoded bit m in basis l. The basis announcements

allow Alice and Bob to select the elements of the distribution for which j =s, so the

(renormalized) distribution for the sifted strings is simply

p(s, k; l, m; s, t) =
1

32
[δsl(4δkmδtm − 1) + 1]. (5.4)

The indices k and t now refer directly to Alice and Bob’s key bits, a and b, so we may

use these labels, reserving j, k, l, m, n, s, t to state labels. Eve’s information includes

both basis and element information, so in keeping with this naming scheme, formally

e = (l, m). This shall always be the naming convention, since Alice and Bob generate

a raw string which requires processing into a putative key string. Note that due to

the symmetric nature of the attack, the resulting distribution is also symmetric, and
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we can express everything in terms of the error probability

ε = pa6=b =
∑

s,l,m,a 6=b

p(s, a; l, m; s, b) = 1/4. (5.5)

Suppose that Eve only performs the intercept/resend attack a fraction η of the

time. Were η zero, in each sifted step the probability for a 6= b would be zero.

At the other extreme, η = 1 implies an error rate of 1/4, in accordance with the

above calculation, as half the interceptions cause no error, and of the half that do

alter the polarization state, Bob still has an even chance of obtaining the correct

result. In between, the error rate increases linearly with η, so it is given generally by

p(a 6= b) = η/4. By sacrificing some of the created key, Alice and Bob can determine

the error rate and thus the value of η.

The intercept rate also determines how much information Eve has about the key;

if she intercepts every signal, she learns half of Alice’s string, since half the time she

guesses correctly. This is equal to her knowledge of Bob’s string by the symmetry of

the distribution. Writing expressions in terms of the error rate ε = η/4, we end up

with the following relations on the mutual information shared by the various parties:

I(A :B) = 1 + ε log ε + (1−ε) log(1−ε) = 1−H2(ε) (5.6)

I(A :E) = I(B :E) = 2ε, (5.7)

where 0 ≤ ε ≤ 1/4. In the first equation we’ve implicitly defined the binary entropy

function H2.

The error rate determines the amount of information Eve has about the key, so

sacrificing a few key bits to determine the error rate allows Alice and Bob to get on

with correcting these errors and performing privacy amplification to create a truly

secret key. Error-correction is made possible with a classical error-correcting code Γ.

Given the error rate, Alice and Bob choose a suitable code which can correct these

errors. Alice then selects a random codeword γ from Γ and sends κa +γ to Bob. His

key string κb may be written κb = κa + δ, where δ is a string having a fraction ε of

1s. Bob subtracts Alice’s message from his key string, leaving him with γ + δ, which
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he corrects to obtain the codeword γ. By Shannon’s noisy channel coding theorem,

there are (asymptotically) reliably 2NI(A:B) choices for the codeword γ, where N is

the length of the key string, so this procedure yields Alice and Bob the same string

κ′ of length I(A :B)N .

Next privacy amplification steps in to create a shortened string κ shared by Alice

and Bob of which Eve is completely ignorant. One method is based on computing

the parity of a large enough number of bits so that Eve won’t know the result. If

Eve knew roughly half the bits, for instance, Alice and Bob could agree simply to

divide κ into two random substrings and use the parity, or exclusive-or, of the two

as a key. Basically, Eve will only know one bit of each pair used in the XOR, so she

won’t have any information about the result.

Eve’s information does not always come in the form of knowledge of a certain

subset of bits. Perhaps instead she learns the parity of N/2 pairs of bits. Then

parity checks aren’t a good method of privacy amplification. Generally, Eve will

have a joint probability p(κ′, e) of the key κ′ and measurement results denoted here

by e. She can crack the cryptosystem if the conditional distribution of key given

measurement, p(κ′|e), is peaked enough such that she can try all the highly probable

keys in a short amount of time. Now consider the average probability of picking

the same key twice, pc =
∑

κ′,e p(e)p(κ′|e)2, called the average collision probability.

Given the amount of information t ≈ I(A :E)N Eve has about κ′, Bennett, Brassard,

Crépeau, and Maurer [15] show that Alice and Bob can pick a security parameter s

such that whenever − log pc ≥ N − t, they can distill a key κ with length N − t− s

such that Eve’s information about κ is less than 2−s/ ln 2.

The analysis of error-correction and privacy amplification can become quite com-

plicated. Rather than delving into these details to determine the secret key gen-

eration rate and the associated secure error rates, we may instead appeal to the

following bounds on the optimal key rate R:

I(A :B)−min{I(A :E), I(B :E)} ≤ R ≤ min
E→E

I(A :B|E). (5.8)
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The quantity in the upper bound, called the intrinsic information, is the mutual

information shared by Alice and Bob given Eve, where Eve is allowed to process

her measurement outcomes in any way so as to minimize this quantity [115]. More

intuitive is the lower bound, which holds in the case of one-way communication [43].

If Alice and Bob share more information than either does with Eve, the party with

the least in common with Eve may initiate an error-correction and privacy am-

plification procedure as outlined above. To progress beyond this lower bound, a

procedure known as advantage distillation must be used, though this is of limited

efficiency [114]. Note that in the absence of eavesdropping, both bounds equate to

I(A :B), the classical capacity of the channel.

We may immediately apply the lower bound, having already calculated the rel-

evant quantities. From this we obtain that for zero error, the key rate is 1/2, as

expected, while the maximum tolerable bit error rate assuming the intercept/resend

attack , obtained as the solution of 2ε = 1 − H2(ε), is roughly 17.1%. Stronger at-

tacks glean more information for the same level of disturbance, so this can only be

an upper bound on the maximum secure error rate given the one-way protocol used

here.

5.3 Generalized Key Distribution Protocols

The preceding discussion of the BB84 protocol only included the most basic attack,

and so can only be considered as a first step toward a proof of unconditional security.

But it does establish the basic elements of many quantum key distribution protocols,

as follows. Alice and Bob publicly agree on a set of quantum states to be used for

encoding and a measurement to be used for decoding. By repeated use of this scheme

over the quantum channel, they each generate raw strings, requiring processing into a

secret key. In general the generated strings may be only weakly correlated because the

original classical signal was encoded into a set of noncommuting quantum states, from

which not all the input information may be reliably extracted. In the second step, the
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Figure 5.3: Schematic depiction of generalized quantum key distribution. Alice
wishes to establish a key with Bob using the insecure quantum channel (bottom)
and authenticated classical broadcast channel (top). First she sends quantum sig-
nals to Bob, who measures them in a predetermined fashion. Eve can tamper with
the signals, shown as the phase delay of the sinusoidal (quantum) signal. After es-
tablishing a putative key, shown at bottom for each party, Alice and Bob try to
distill a shorter sequence of which Eve is ignorant by communicating on the classical
channel. The main difficulty of proving the security of such protocols is determining
what Eve knows about the putative key from the noise in the quantum channel.

classical broadcast channel is used to increase the mutual information between the

strings, through exchange of information about the quantum states sent and received.

In BB84 this stage corresponds to sifting the strings with the basis information. Next

Alice and Bob must estimate the error-rate by making use of the statistics they have

accumulated thus far in the protocol. In BB84 they announce a portion of the sifted

key, though key sacrifice is not necessary in equiangular spherical code protocols, as

we shall see later. Finally come the error-correction and privacy amplification steps

as described in the previous section. Error-correction in this step differs from the

second step, which may also be thought of as error-correction, because in this step

there is no explicit reference to the quantum signals. Thus, the public communication

at this phase gives Eve only information about their classical strings. The generalized

scheme is shown in figure 5.3.

This crucial difference between the error-correction in steps two and four is the

reason that proving the security of a quantum key distribution protocol is difficult. In
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the course of eavesdropping, Eve acquires quantum information about the eventual

key, and it is not immediately obvious how much more Eve can do with this and

what forms of privacy amplification will be required to combat it. When faced with

cracking the BB84 protocol, Eve could for instance attempt to clone the signal,

and then wait for the basis information before measuring her copy. Naturally her

copy will be of low quality, due to the no-cloning theorem, and introduce noise to the

signal, due to the information-disturbance tradeoff. Such features make it difficult to

reduce the problem to a situation in which the rate bounds in equation 5.8 apply. To

establish unconditional security of any given protocol, we must look for the strongest

attack, i.e. the one with the lowest key rate. In practice, however, this is quite

complicated at the outset, so the analysis builds up to this case through a series

of ever-stronger attacks. Several such attacks have been considered for the BB84

protocol, confined to the requirement that Eve tackle each signal individually [57,

109, 63].

Other promising avenues of handling Eve’s quantum information have been re-

cently developed. The first method begins by recasting the protocol in a fully coher-

ent fashion, and using the properties of entanglement to create a key. In this version,

described by Ekert in 1991 [56], Alice prepares the bipartite Bell state (|↑↑〉+|↓↓〉)/√2

in the z basis and sends one half to Bob. The key is created when each measures

in this basis as this will generate an identical random string for each party. Such a

bipartite state is entangled, as it cannot be thought of as the convex combination

of locally-defined, or product, states such as | ↑↑〉. For pure states we may measure

the entanglement by the von Neumann entropy of either subsystem. Thus for a pure

product state, each subsystem state is pure and has entropy zero, meaning the en-

tanglement is also zero. For the Bell state prepared by Alice, each subsystem state

is maximally-mixed, an incoherent superposition of spin up and down. Such a state

has entropy unity, meaning the entanglement is also unity, the maximum value it

can take on in two two-dimensional systems.

The important property of entanglement here is that it cannot be shared: the



5.3. Generalized Key Distribution Protocols 101

more entangled systems A and B are, the less either could be with a third system

C. In particular, should systems A and B be maximally entangled, then system C

is completely uncorrelated with either. To see this, let A and B be described by the

Bell state above. To have an overall pure state of ABC in which the AB subsystem

is also pure, it must be that ρABC = ρAB ⊗ ρC . Hence if Alice and Bob generate

a key from a shared entangled state, they can be certain that Eve knows nothing

about it. Conversely, entanglement is in some sense required for key distribution, for

the condition that Alice and Bob end up with shared information that can be made

into a secret key is akin to sharing an entangled state [44].

The BB84 protocol may be adapted to this method; after preparing the requi-

site state, Alice randomly rotates the second system to the x basis with probability

1/2 [13]. Bob proceeds as usual, randomly choosing a basis and making the corre-

sponding measurement. In this fashion we may convert “prepare & measure” schemes

into coherent form. If the quantum channel is noisy, Alice and Bob may use quan-

tum error correction to faithfully transmit the states. Now the problem of Eve’s

optimal attack is dealt with automatically: the overall coherent protocol can be seen

as implementing quantum error-correction and quantum privacy amplification [52],

ensuring that Eve will not know anything about the final key. Understanding the

precise relationship between the coherent and incoherent versions is a subject of

ongoing research; see for instance [67, 1, 53, 21]

Both of these steps require a greater level of coherent control than does prepara-

tion and measurement of isolated systems, and so are more demanding—really this

scheme is an entirely different protocol. Remarkably, however, the coherent protocol

complete with quantum error-correction can be converted back into a prepare and

measure scheme, at least for BB84 and similar protocols [144]. Such a construction

allows the maximum secure error rate to be estimated by considering “virtual quan-

tum privacy amplification”, i.e. considering the stronger coherent version without

actually altering the physical implementation of the protocol. For the BB84 protocol
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using one-way communication, the maximum secure error rate is proven to be 11%

using these methods.

Very recent advances in classical privacy amplification allow us to return to the

prepare and measure formalism and confront the problem head-on. Ostensibly pri-

vacy amplification combats Eve’s classical information about Alice and Bob’s key,

and the contortions of considering coherent schemes, using quantum privacy am-

plification, and returning to the incoherent protocol work around this limitation.

However, classical privacy amplification may be modified to include the case that

Eve gains quantum information, and it turns out that doing so yields her only a

negligible advantage over classical information [100]. This immediately implies a

simplification of security proofs; for one-way communication the secret key rate is

provably

R = I(A :B)−max
ρAB

S(ρAB), (5.9)

where the maximization of the von Neumann entropy is taken over all bipartite

density operators ρAB consistent with the measurement outcomes resulting in the

strings described by the random variables A and B [37]. Although simple looking,

this method hides a complication that the rate expression is also valid when condi-

tioning A and B and the density operator ρAB on further random variables—anything

we care to define. Thus, in principle, one must maximize over all possible conditional

expressions.

For generic quantum key distribution protocols, we thus have our choice of

roughly three methods of analyzing privacy amplification: brute force, quantum

error-correction methods, and the recently improved direct quantum privacy ampli-

fication. Other methods exist, but they are much more complicated and beyond the

scope of this work. Surely the last of these is the most straightforward and simplest,

yet because it is so recent, its full implications have not been studied as of this writ-

ing. We’ll mainly focus on brute force methods, on the assumption that the analysis

of the intercept/resend attack and its variants is indicative of the general trend.
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5.4 Equiangular Spherical Code Protocols

The use of equiangular spherical codes offers several advantages over “traditional”

protocols, which, like BB84, use sets of bases as the signal and measurement ensem-

bles. First, ESCs offer a modest improvement in security on the one hand (again

for the intercept/resend attack), and an increased key generation rate on the other,

though typically not both simultaneously. Second, we can do away with sacrificing

key bits to estimate the error rate and instead rely on the success probability of the

protocol itself to furnish this information. This simplifies the protocol considerably

and allows for that much more key generation.

To analyze the use of spherical codes, we begin by recounting the security sit-

uation for the more oft-studied protocols, which encode using mutually-unbiased

bases. Using this point of reference clarifies the analysis for ESC protocols and more

plainly highlights their advantages. When characterizing any one protocol, the key

error rate is customarily employed as the relevant parameter and the key generation

rate expressed as a function of it. This is sensible because Alice and Bob can easily

determine the key rate in practice. To properly compare the protocols, though, we

should convert the key error rate of each to an actual noise rate of the quantum

channel, which we may take as the depolarizing channel. This standardizes Eve’s

interference across different protocols, each of which has a different sensitivity of the

key error rate to channel noise rate. The actual, physical noise rate of the channel

is the universal quantity, so it makes for an appropriate comparison.

The discussion thus far has been somewhat framed from Eve’s point of view

by concentrating on which eavesdropping methods she could use and the security

implications for Alice and Bob. Thinking in terms of the noise rate shifts the focus

to Alice and Bob’s point of view. The noise rate is the only relevant quantity to them,

for it is what they confront in practice. For a given noise rate they would like to know

if their protocol is secure; considering a specific eavesdropping method is a means

to attribute a certain amount of information to Eve. Hence, again, unconditional
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security at a given noise rate is established by demonstrating the security of the

protocol to any attack. Here we make the further assumption that the channel is a

depolarization channel, which determines the noise model facing Alice and Bob. Then

the intercept/resend attack steps in to establish how much information corresponds

to a given depolarization rate. The depolarizing channel is a simple yet realistic

channel, respecting the symmetry of the eavesdropping attacks typically considered.

It takes an input state ρ to output state ρ′ = (1−q)ρ + q I/d, depolarizing (mixing)

it completely with some probability q. In the following both perspectives are used,

though they are complementary sides of the same issue.

5.4.1 Mutually-Unbiased Bases

The original protocol of BB84 exploits an appealing feature of the x and z bases

of a spin-1/2 particle: each is unbiased to the other. This notion may be extended

to higher dimensions d by defining two bases to be unbiased whenever the squared

overlap of an element from one basis with an element from another is uniformly 1/d.

Again employing the notation |φjk〉 for states in such a collection of bases, where j

labels the basis and k the state within that basis, we have

|〈φjk|φlm〉|2 =





1 j = l, k = m

0 j = l, k 6= m

1/d j 6= l

(5.10)

A collection of bases such that all pairs are unbiased is called a set of mutually

unbiased bases, and it is known that no more that nmub = d + 1 such bases can

exist in d dimensions, though this full set is only known to exist in prime or prime-

power dimensions. In other dimensions it seems likely that only three unbiased bases

exist [169]. Two being prime, in C2 three unbiased bases exist; quite obviously we

may append the y basis to the x and z bases we have been using. Key distribution

using all three bases is termed the six-state protocol. In terms of photon polarization

this corresponds to using the bases of horizontal/vertical (+) linear polarization,
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right/left circular polarization (��), and 45/135 degree (×) linear polarization. Key

distribution protocols may be simply constructed using any number of unbiased

bases, in a manner completely analogous to the BB84 protocol. Both more bases

and higher dimensions lead to improved security [18, 34].

The one-way key generation rate based on the lower bound is simple to determine.

We have the ingredients necessary in the analog of equations 5.3 and 5.4. First,

assume that Alice chooses signals with equal probability,2 and she and Bob employ

the sifting postselection. When Eve intercepts a signal, she measures in the wrong

basis with the probability (nmub − 1)/nmub. In this case she forwards Bob a state

which generates a completely random outcome since it is an element of an unbiased

basis. Should she measure in the correct basis, she forwards Alice’s signal unchanged

to Bob. Thus the total probability of error in Bob’s key string is the product of the

probability for Eve to intercept, to measure in the wrong basis, and for Bob to get

the wrong outcome. Symbolically,

pa6=b = η

(
nmub − 1

nmub

)(
d− 1

d

)
= ε. (5.11)

Recall that subscripts a, b, e are used to refer to the key letters of the corresponding

parties, while the j, k, l,m, s, t to signal states and measurements. The information

Alice and Bob share in their key strings is then simply

I(A :B) = log d + (1− ε) log[1− ε] + ε log

[
ε

d− 1

]
. (5.12)

In the case of a noiseless channel, a moment’s thought reveals that this expression

reduces to log d.

Eve, for her part, gets no information when she doesn’t intercept the signal, nor if

she measures in the wrong basis. Otherwise, she gains the maximum amount, log d.

In all, this yields her an amount of information given by

I(A :E) = I(B :E) =
η

nmub

log d =
ε

nmub − 1

(
d

d− 1

)
log d. (5.13)

2Note that this need not be the case, and in fact faster key rates can be achieved at the
same level of security by using asymmetric signal probabilities [105].
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The value of ε for which these two information expressions are equal is the error

rate at which the protocol becomes insecure, which must then be converted into

an equivalent depolarizing rate. For the unbiased bases this conversion is quite

simple: a depolarized signal causes an error in a fraction (d− 1)/d of samples, so the

depolarizing rate corresponding to error rate ε is q = ε d/(d−1).

5.4.2 Equiangular Spherical Codes

Turning attention, finally, to the equiangular spherical code protocols, suppose Alice

and Bob publicly agree on a ESC with n elements in d dimensions (d ≤ n ≤ d2).

Alice then selects states randomly and transmits them to Bob, who uses the same

ESC as a measurement. The symmetric nature of the spherical codes translates into

the following probability distribution when transmitting on a noiseless channel:

p(a, b) =
d

n2
|〈φa|φb〉|2 =





d/n2 a = b

(n−d)/n2(n−1) a 6= b
(5.14)

In this case we can dispense with the labels j, k . . . and proceed to a, b, e since the

meaning is clear. Alice and Bob’s key letters will agree with probability d/n. Then

classical error correction may be used to yield a shorter string, identical for the the

two parties with high probability. Labeling the spherical code states 0 to n−1, Bob’s

string β is simply Alice’s string α plus a string δ having a fraction (n−d)/n of non-

zero elements. From this point they proceed exactly as in section 5.2, usingclassical

error correction to yield with high probability a shorter string, identical for the two

parties.

This protocol is not particularly robust, however, and Alice and Bob can do better

by announcing some of the signals not received. Upon receipt of each signal, Bob

publicly broadcasts m randomly-chosen outcomes he did not obtain. If Alice’s signal

is among these, she publicly announces this fact and they throw the signal away and

proceed to the next. This occurs with probability m/(n− 1) as Bob could send any

of
(

n−1
m

)
outcomes and

(
n−2
m−1

)
of these contain Alice’s signal. For those which pass
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the test, Alice and Bob relabel the remaining states in order from 0 to n−m−1 and

follow the error-correcting procedure. The protocol itself succeeds with probability

psucceed =
n(n−1)−m(n−d)

n(n−1)
=

s

n(n−1)
, (5.15)

where we have implicitly defined the constant s. The joint distribution of Alice and

Bob’s key letters, given that the protocol succeeds, becomes

p(a, b) =
1

s
×





d(n−1) a = b

(n−d)(n−m−1) a 6= b
. (5.16)

In the bargain they gain improved security. The whole protocol will tolerate

more noise since much of it will be discarded. This will become more apparent when

considering the intercept/resend attack; for now, we find the following expression for

the key rate using an n-word equiangular spherical code in d dimensions excluding

m outcomes:

R = log[n−m] +
d(n−1)

s
log[d(n−1)] +

(
1− d(n−1)

s

)
log[n−d]− log s. (5.17)

Removing errors in this fashion improves the key rate, up to a point. By sacrificing

all but one outcome not obtained—leaving two possibilities for the key letter—Bob

reduces the possibility of error, but also reduces the number out possible key letters,

which also affects the key rate. For a small number of omitted non-outcomes, the

change in number of letters isn’t drastic, and the error cleanup helps matters. The

value of m which yields the highest key rate is found by locally maximizing I(A :B) by

setting the derivative to zero. To simplify the expression, let ` = log[d(n−1)/(n−d)],

whence we obtain

mmax = max

{
0,

n(n−1) (n(d−1)− d(n−d)`)

(n−d) (n(d−1)− d(n−1)`)

}
. (5.18)

The maximum is included to take care of those values of n and d for which m = 0

yields the largest key value, but which doesn’t have a zero derivative.

Now for the intercept/resend eavesdropping analysis. As in the case of unbiased

bases, suppose Eve intercepts a fraction η of signals. She measures these using
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the same equiangular spherical code as does Bob, resending him the output of this

process. Eve simply assumes that her outcome corresponds to Alice’s signal, unless

it is excluded by Bob’s announcement. In this case she may still guess, retaining

the information that she was forced to do so. The increased security of the protocol

stems from Bob forcing Eve to abandon her outcome in this manner.

By delineating the various cases, as shown in figure 5.4, it is uncomplicated to

arrive at the relevant probabilities for the case of full interception, η = 1. However,

the breakdown in the figure gives us only the raw case, which we must renormalize

to omit the cases in which the protocol fails. This complicates matters as we cannot

simply mix this distribution with the η = 0 case because this renormalization itself

varies with η. Otherwise, the situation is linear. Therefore with an explicit expression

for the probability of protocol success, we can fix the normalization and then linearly

interpolate between the two cases. The success rate of the protocol itself can be found

simply by mixing the cases, and depends on η as in the following expression. Letting

t = s(n− 1)− ηm(n− d)(d− 1), the success rate is

psucceed = t/n(n−1)2. (5.19)

Before proceeding to the key letter probabilities, note that this is already a major

departure from the unbiased bases protocols. They don’t share this feature of a

success rate varying with the noise rate: should Bob measure in the same basis Alice

prepared the state, the protocol succeeds, regardless of the noise. The probability

of the protocol succeding is clearly 1/nmub. In contrast, for equiangular spherical

codes the protocol succeeds with higher probability when Bob receives a state which

is close to Alice’s original signal. Coupled with Alice’s random signal selection and

the wide spacing of signal states, no matter what form the noise takes, its rate affects

the protocol success rate. The noisier the channel, the likelier the protocol is to fail.

This feature makes the overall protocol much simpler as Alice and Bob no longer

need to sacrifice key bits to estimate the error rate. Together with the ability to vary

the number m of outcomes to exclude, Alice and Bob can adapt the protocol to the

channel noise on the fly without varying any of the hardware setup. This works on a
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Figure 5.4: Tallying the possibilities in the ESC protocol using n states in d dimen-
sions and discarding m outcomes. Beginning on the left with Alice’s state, probabil-
ities label the arrows to the various cases. Lower-case letters stand for signal states
or outcomes, while upper case stand for the key letters. The total probability of each
case is shown to the right.
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block by block basis, where the blocks of signals are chosen to be long enough such

that the error rate can be reliably estimated from the success rate. For the initial

block, Bob conservatively chooses m based on what he thinks the channel error is

likely to be. After running the protocol through the block, he estimates the error

rate and alters m to suit. He need not confer with Alice to do so, since they don’t

need to compute the putative key and compare parts of it to determine the error

rate. Because altering m does not involve the hardware, it makes sense to think of

ESC protocols as defined by n and d, each one including all the possible choices of

m. The protocol runs fastest when m = 0 and most securely when m = n− 2.

Now we return to finding the joint key letter probability distributions, employing

the modified mixing procedure described above. Alice and Bob’s joint distribution

is characterized solely by the agreement probability

pa=b = (n−1)[d(n−1)−q(n−d)(d−1)]/t = 1− ε. (5.20)

The mutual information shared by Alice and Bob then follows immediately:

I(A :B) = log[n−m]− ε log[n−m−1]−H2(ε). (5.21)

Since Alice and Bob use the same ESC ensemble, Eve’s joint probability with Alice

is the same as with Bob. In order to account for the cases in which Eve measures

the signal but this outcome is later excluded by the protocol, we may append an

event to her probability distribution, denoted by ?. Now she has n − m + 1 total

outcomes, and the ? outcome functions as a guess as to the key letter in the cases

it occurs. We didn’t need to deal with this directly for unbiased bases since there

it was a simpler matter to go directly to the mutual information, counting only the

cases in which she need not guess.

The joint probability of such an exclusion and the particular signal j is plainly

the same for all j, and together with the probability of agreement between Alice and

Eve, these quantities fully describe the overall distribution:

pa=e = qd(n−1)s/nt, (5.22)
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p? = 1− qs2/nt. (5.23)

From these we find immediately the entropies

H(A) = log[n−m], (5.24)

H(E) = −p? log[p?]− (1−p?) log

[
1−p?
n−m

]
, (5.25)

H(AE) = −pa=e log

[
pa=e

n−m

]
− p? log[p?]

−(1−p?−pa=e) log

[
1−p?−pa=e

(n−m)(n−m−1)

]
. (5.26)

which together make the mutual information

I(A :E) = pa=e log [pa=e]− (1−p?) log

[
1−p?
n−m

]
+ (1−pa=e−p?) log

[
1−pa=e−p?

n−m−1

]
.

(5.27)

Thus far all quantities are expressed in terms of the key error rate; the final step is

to convert this error rate into the depolarization rate. This task is best accomplished

by finding an expression for the key error rate in terms of the depolarization rate

and then solving for the latter in terms of the former. Supposing Bob receives the

state ρa when Alice sends the signal |φa〉〈φa|, first note that the raw probability of

agreement is given by

pa=b =
d

n2

∑
a

〈φa|ρa|φa〉 =
d

n

(
1− q +

q

d

)
. (5.28)

Meanwhile, the protocol fails with probability

pfail =
m

n− 1
(1− pa=b) , (5.29)

so the error probability in the processed key string is simply 1−pa=b/(1−pfail). With

a little algebraic manipulation we can massage this expression into

q =
s

m(d−1)
− n(n−1)(n−m−1)

m(d−1)(n−1−m(1−ε))
. (5.30)

Finally, we are in possession of all the ingredients needed to find the maximum

tolerable noise rate. First we find the intercept rate η for which I(A : B) = I(A : E),

then convert it to the error rate ε = 1 − pa=b, and lastly the equivalent noise rate

using this expression.
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5.4.3 Comparison

Though easily adaptable and more efficient at estimating the noise rate, ESC pro-

tocols will not be of much use if they are only secure in a narrow range of param-

eters. Generically, the key generation rate decreases monotonically with noise rate,

as shown in figure 5.5. Each protocol can be characterized by a pair of quantities:

the noiseless key generation rate and the maximum tolerable noise rate. As we stan-

dardized the security analysis by referring everything to the depolarization channel,

we must also standardize the absolute key rate by including the success rate of the

protocol. The former is log[d ]/nmub for unbiased bases and given by the product of

equations 5.17 and 5.15 for spherical code protocols. For the latter we may again

appeal to the one-way communication lower bound.
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q

0.5

1

1.5

2

2.5

3
R ESC Key Rate vs Noise Rate, d=11
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q

0.25

0.5

0.75

1

1.25

1.5

1.75
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Figure 5.5: Key rate R versus depolarization noise rate q for various ESC and MUB
protocols in d = 11 dimensions. Key rate generically decreases monotonically with
noise rate, so each protocol may be characterized by the horizontal and vertical
intercepts.

Neither of the maximum secure noise rate quantities for MUB nor ESC protocols

lend themselves to analytic expressions, so we resort to numerical investigation using

Mathematica. We’ve already established how the spherical codes are able to estimate

the error rate from the success rate and that this translates into a simple scheme for

adapting to varying channel noise. The numerical results paint the rest of the picture:

how the key generation rates and maximum secure noise rates compare. Two main
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conclusions follow. First, spherical codes provide both increased noise tolerance and

key generation rates for fixed dimension d. Second, for fixed dimension and number

of signals, spherical codes provide more security but lower key rates than their basic

cousins.

Broadly speaking, one may demand security or speed, but not both simulta-

neously. Examining the key generation rate in a fixed dimension d, there are more

possible ESC ensembles to choose from, and in particular protocols for which n < 2d,

the minimum number for unbiased bases. Since each protocol employs a number of

signals greater than the dimension of the quantum states used to encode them, the

more signals used, the lower the key generation rate. Therefore, consider the ver-

sions of each protocol which employ the fewest number of signals. A minimum of

two unbiased bases must be used, while the spherical codes employ a minimum of

d+1 signals. In the latter case, this translates into a key generation rate of log[d ]/2,

while the latter amounts to (d−1) log[d ]/(d + 1). Already in three dimensions the

two are equal and for any higher dimension the spherical codes enjoy a speed advan-

tage. Figure 5.6 shows this maximum key rate for each protocol, normalized to the

capacity of the channel, log[d ]. Asymptotically the key generation rate for n = αd

spherical code signals behaves roughly like log[d ]/α, so for any number n < 2d the

key generation rate is similar or higher to that of two unbiased bases.

The speed/security tradeoff is already apparent, however, as d + 1 signals are

not too different from an orthogonal basis which itself provides no defense against

copying by Eve. In a given dimension, however, the ESC protocols may employ up

to d2 signals, and by announcing all but two of the outcomes not obtained, Bob aims

for maximum security. Similarly, MUB protocols are most secure when using the full

complement of d + 1 bases. In this case, numerical results reveal the spherical code

protocols already tolerate more noise in just four dimensions. Figure 5.7 shows the

maximum tolerable noise rate as a function of dimension.

Thus in a particular dimension ESC protocols may be found which are faster

or more secure than their MUB counterparts. Alice and Bob simply have more
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Figure 5.6: Maximum possible key generation rate versus dimension for the two
ensembles, normalized to the classical capacity of the channel. Two unbiased bases
is the minimum, optimal number where speed is concerned, corresponding to half
the capacity no matter the dimension. The spherical codes may employ d+1 states,
which offer little security, but asymptotically approach the maximum capacity.
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Figure 5.7: The maximum tolerable depolarizing rate versus dimension for the two
protocols. Using the full complement of d + 1 unbiased bases and d2 spherical code
states achieves the maximum security, with the ESC protocol excluding all but two
possibilities. Both asymptotically tolerate total depolarization, but the spherical
codes offer more security for any finite dimension four or greater.

choices when using spherical codes, but they cannot have it both ways in a particular
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protocol, i.e. for a particular choice of n and d. Comparing the two protocols at fixed

dimension and fixed number of signal states, we’ll find the spherical codes offer more

security but lower key rates. Figure 5.8 shows the tradeoff between speed (horizontal

axis) and security (vertical) when using n = 2d signal states in each protocol, for

dimensions two through 100. The unbiased bases are faster, but tolerate less noise

than the spherical codes.
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Figure 5.8: Maximum depolarizing rate versus maximum key generation rate when
using n = 2d signal states in either protocol. Unbiased bases are faster, but tolerate
less noise; the three connecting lines for dimensions two, 10, and 100 link correspond-
ing protocols.

Suppose, though, that the noise rate of the channel is low. In this case Alice and

Bob would prefer to use as few signal states as possible. Note that using two unbiased

bases in two dimensions provides security up to noise rates of roughly q = 0.34, so

should Alice and Bob independently estimate the channel noise to be, say, q = 0.25,

even the BB84 protocol would be overkill. Instead, by using a number of spherical

codes roughly 4/3 of dimension, the security of the resulting protocol can be ensured

and higher key generation rates achieved. Comparing the key generation rates on the

noiseless channel, the two unbiased bases again yield log[d ]/2 bits per signal, while

the n = 4d/3 ESC protocol achieves a rate of log[d ]− log[4d−3]/4, asymptotically

3 log[d ]/4, an improvement of 50%. Figure 5.9 shows the exact behavior.
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Figure 5.9: For low noise, say q = 0.25, ESC protocols with roughly 4d/3 elements
provide sufficient security and offer higher key generation rates. In contrast, to
maintain security, at least two unbiased bases must be used, though these are better
suited to higher noise rates.

These findings do not indicate a preference of one type of quantum key distri-

bution protocol over another in all cases. Ultimately equiangular spherical codes

complement the use of unbiased bases. In the abstract they are both faster and more

robust for fixed dimension, due primarily to the wider range of options. In practice,

however, a protocol by protocol comparison fixing both n and d is more appropriate.

In cases of fixed n and d where more noise tolerance is required, or in cases of low

noise, equiangular spherical codes are to be preferred.

Returning to the concept of the frame potential, we can find a general reason

why we should have expected ESC protocols would offer the most security. In the

intercept/resend cryptographic context, the suitably-rescaled V2 frame potential can

be interpreted as the marginal probability of agreement between Alice and Bob, given

that Eve intercepts each signal:

pa=b =
d

n2

∑
|〈φj|φk〉|4 =

d2

n3
V2. (5.31)

This holds no matter what the ensemble used by Alice, provided it forms a POVM

which Bob may use at his end. Thus the prefactor comes from the product of the prior
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probability of the signal, 1/n, and the normalization associated with the POVM,

d/n, once each for Bob and Eve. Meanwhile, by the same token, the agreement

probability over a noiseless channel is simply d/n. The difference in the agreement

probabilities may be taken as a measure of the disturbance to the signals caused by

the eavesdropping. Since V2 ≤ V1 by inspection, the difference

Ds =
d

n

(
1− d

n2
V2

)
(5.32)

is positive and the maximum obtains whenever V2 is minimal. Given the assumption

that V1 is already minimized, the greatest disturbance therefore occurs in the ensem-

bles which are spherical codes (for n ≤ d2) or spherical 2-designs (for n ≥ d2). This

sensitivity to eavesdropping translates into increased noise tolerance, since Alice and

Bob may be more certain what knowledge Eve has of the key.

One caveat should be mentioned. This analysis is well-suited to a symmetric

protocol, one for which the resulting joint probability between Alice and Bob can be

characterized solely by the probability of agreement. This need not hold generally;

instead the pair may end up with an essentially arbitrary distribution. In this case

they might use a generalized version of the disturbance measure

D =

(∑

a,b

(pab − pe
ab)

2

)1/2

(5.33)

in which discrepancies in any signal/outcome pair are taken into account. Here pab is

the joint probability absent noise, and pe
ab given full signal interception. The earlier

measure now provides a lower bound on the generalized disturbance measure. We

may write this in a simpler form as the Frobenius norm of the matrix Mab having

elements pab−pe
ab, that is D2 = Tr[MMT ]. Then the desired result follows according

to

D2 =
∑

k

σk(MMT )

≥
∑

k

σk(M)σk(M
T )
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≥ 1

r(M)

(∑

k

σk(M)

)2

≥ 1

r(M)
Tr[M ]2

=
1

r(M)
D2

s , (5.34)

where σk(M) are the singular values and r(M) the rank. The first line follows by

definition, the second from a well-known inequality [79], the third from the fact that
∑n

k x2
k ≤ (

∑n
k xk)

2/n for all real xk, and the fourth from the triangle inequality of

the trace norm. Intuitively we might expect the spherical codes to have high noise

tolerance because by having the greatest lower bound on the disturbance D they are

very sensitive to the eavesdropper’s presence.

Of course, this isn’t the end of the story, as most of the preceding analysis involved

the simplest attack, intercept/resend. The speed advantage enjoyed at low noise rates

is certain to be valid, as this does not depend much on the attack, but we must be

concerned with the maximum noise rate estimates. Clearly these must be revised

downward upon considering stronger attacks. The crucial question is the following:

will the two protocols require the same revision, or will the spherical codes become

comparatively better or worse than the intercept/resend attack indicates?

To give a flavor of the analysis which awaits us in solving this problem, we may

consider the next two rungs on the ladder toward unconditional security. First,

keeping within the framework in which Eve handles signals one at a time, instead

of simply intercepting them, she may choose to weakly clone them. This unitary

operation attempts to make two copies of an arbitrary input state, each having a

different fidelity with the input state. Naturally, both copies cannot be of perfect

fidelity, and Eve may select the quality of each copy within this overall requirement.

The unitary quantum cloning machine (UQCM) is known to be the optimal attack

against nmub = d+1 bases when monitoring each signal separately [18], and a related

cloning attack is thought optimal for two bases [34].

Beyond this attack a more coherent approach in the manner of Preskill and Shor
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may be appropriate. The first step is to translate the bare protocol into coherent

form. For BB84, this is easily done by preparing the maximally-entangled state and

randomly applying a rotation to switch bases, a procedure that works for general pro-

tocols using mutually-unbiased bases. The target bipartite state for Alice to begin

with is simply |Ψ〉 = (1/
√

d)
∑

k |k〉|k〉. Spherical code protocols, too, can be easily

made coherent in this fashion. For a ESC set with states |φk〉, consider the conjugate

set consisting of elements |φ∗k〉, obtained from the original by conjugation in the stan-

dard basis. A maximally-entangled state may be written |Ψ〉 = (
√

d/n)
∑

k |φk〉|φ∗k〉,
ensuring that the two protocols do start on the same footing. This fact is easily

established by forming the density operator from the state vector and taking the

partial trace over the second system to obtain the description of the first system

alone, as follows.

ρAB =
d

n2

∑

jk

|φj〉〈φk| ⊗ |φ∗j〉〈φ∗k|

⇓
ρA =

d

n2

∑

jk

〈φj|φk〉 |φj〉〈φk|. (5.35)

The expression for ρA shows that it has no kernel since the ESC states span the

vector space. If we can show that ρ2
A = ρ1/d, then we know that ρA = I/d. Squaring

the operator is simple enough, so

ρ2
A =

d2

n4

∑

jklm

〈φj|φk〉〈φk|φl〉〈φl|φm〉|φj〉〈φm|. (5.36)

We can sum over the k and then l indices, using the fact that
∑

k |φk〉〈φk| = (n/d)I,

to obtain the desired result. The complex conjugate is simply used to interchange

the order of the inner product: 〈φ∗j |φ∗k〉 → 〈φk|φj〉. Note that with ESC protocols,

though, Alice need not apply any further action to the signal subsystem, since a

simple transmission of it and measurement of her own half suffices to realize the

prepare and measure setup.

These two steps are beyond the scope of this work, but by focusing on a particular
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case, we can make progress beyond the simple intercept/resend attack toward the

goal of provable unconditional security.

5.5 Two Qubit Protocols

The outstanding choice for quantum key would certainly be the qubit case, for it lends

itself more readily to practical implementation by encoding into photon polarization

states as with the original BB84 protocol. Reviewing figures 5.6 and 5.7 one finds

that spherical code protocols for qubits perform quite poorly, being both slower and

less resistant to noise. This arises from the poor choice of measurement ensemble

on Bob’s part. By choosing the same set of codewords as Alice he simplifies the

process of key creation since their goal is simply to agree on the identity of the

transmitted and received states, but decreases the amount of classical information

that can be sent through the quantum channel. Intuition leads us to believe that if

more information can be transmitted, one can find a way to ensure the secrecy of at

least a part of that information.

Such is indeed the case for qubits, and may be so in higher dimensions as well.

Two equiangular spherical codes exist for qubits, the trine and tetrahedron ensem-

bles. For the trine it is known that if Bob makes each state in his measurement en-

semble orthogonal to the corresponding state of Alice’s signal ensemble, the classical

capacity of the resulting channel is maximized [133], and a similar result is conjec-

tured for the tetrahedron [49]. In higher dimensions, to take a numerically-generated

example, six equiangular states in three dimensions have a nominal capacity of 0.424

bits when both parties use the same ensemble. This increases by roughly 50% to

about 0.638 bits if Bob picks a suitable version of Alice’s signal ensemble, in which

each element is unitarily transformed with the same unitary operator. This exam-

ple was generated by locally-minimizing the frame potential until an ESC signal set

was found. Bob’s measurement ensemble was then found by optimizing over all en-
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sembles unitarily-equivalent to the original. Both operations were performed using

MathematicaTM.

Increased capacity is no doubt useful, but the difficulty lies in converting the

signal record and measurement outcomes into highly-correlated key strings. Take

the trine for instance. Since Bob’s ensemble is the inverse of Alice’s in the sense

of the Bloch sphere, upon obtaining a particular measurement result, Bob can only

be certain that Alice did not send the corresponding antipodal signal. He remains

completely uninformed as to the other two possibilities. The same applies when using

the tetrahedron, except Bob is completely uninformed about the three possibilites

not ruled out by his measurement outcome, and the numerical example of six states

in three dimensions is still more complicated.

Again the trick is for Bob to reveal outcomes not obtained, proceeding by elim-

ination. Such a method was applied to the trine ensemble by Phoenix, et al. [123].

For a given outcome, Bob already knows one signal Alice didn’t send, and conversely,

given the transmitted signal, Alice may already eliminate one outcome Bob might

receive. Starting from this little bit of knowledge about what the other doesn’t have,

they may proceed by publicly announcing further results not obtained or signals not

sent and eventually exclude enough possibilities to agree on a bit. The shared (anti-)

correlation between signal and outcome allows them to remain one step ahead of an

eavesdropper Eve, ensuring that unless she tampers with the quantum signal, she

knows nothing of the created key.

Unlike the previously-studied protocols, in which Alice’s choice of signal or Bob’s

outcome determined the key letter, for the trine and tetrahedron it is only the relation

between Alice’s signal and Bob’s outcome that determines the key bit. In the trine

protocol Alice’s choice of signal narrows Bob’s possible outcomes to the two lying

60 degrees on either side. Each is equally likely, and they publicly agree beforehand

that the one clockwise from Alice’s signal corresponds to 1 and the other 0. Alice

hopes to determine which is the case when Bob announces one outcome that he

didn’t receive. For any given outcome, he chooses randomly between the other two
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and publicly announces it. Half the time he announces he did not receive an outcome

which Alice already knows to be impossible. This tells Alice nothing new, and she

announces that the protocol failed. In the other half of cases, Alice learns Bob’s

outcome and announces success.

Upon hearing his message was a success, Bob can determine the signal Alice sent.

For any outcome Bob receives, he immediately knows one signal Alice couldn’t have

sent, and the message that his announcement was successful indicates to him that

she also didn’t send the signal orthogonal to his message. Had she sent that signal,

she would have announced failure; thus between his measurement outcome and the

success message, Bob learns the identity of Alice’s signal. Each knowing the relative

position of signal and outcome, they can each generate the same requisite bit.

Mathematically, we might consider the protocol as follows. Suppose we label

the signal states and measurement outcomes clockwise from one to three such that

Bob’s j outcome is orthogonal to Alice’s jth signal. When she sends signal j, Bob

necessarily obtains k = j+1 or k = j+2. Then he announces that he didn’t receive

some l 6=k. If l=j, Alice announces failure. Otherwise each party knows the identity

of j, k, and l, and they compute the key bit as (1−εjkl)/2. Figure 5.10 shows the

case that they agree on a 1.

Though Eve may listen to the messages on the classical channel, she won’t have

any knowledge of the bit value, for all she knows is one outcome Bob didn’t receive

and the corresponding antipodal state that Alice didn’t send. Of the two remaining

equally-likely alternatives, one corresponds to a 0 and the other a 1. Hence the

protocol establishes one fully secret bit half the time, analogous to the BB84 protocol.

The strategy for the tetrahedron is entirely similar, except that Bob must now

reveal two outcomes he didn’t receive. As depicted in figure 5.11, Alice uses four

tetrahedral states in the Bloch-sphere picture, and as before Bob uses the inverse of

Alice’s tetrahedron for measurement. Alice sends signal j and Bob receives k 6= j.

He then randomly chooses two outcomes l and m he didn’t receive and announces
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Figure 5.10: Bloch-sphere representation of the trine-based protocol by which Alice
and Bob create a secret key bit, shown here creating a 1. Alice’s three possible
signal states are shown in black and Bob’s measurement outcomes in dotted lines;
antipodal points are orthogonal. Without loss of generality we may assume that
Alice sends the state j = 1. The antipodal point is the impossible outcome for Bob;
here he obtains the outcome k = 3. Of the two outcomes he did not get, he picks
one at random and announces this to Alice. Here he announces the outcome l = 2,
and Alice infers the value of k. Had Bob announced the other outcome, the protocol
would fail, as this doesn’t tell Alice anything she doesn’t already know. Here she
announces that she is satisfied with Bob’s message, and Bob infers the value of j,
since Alice’s signal could not have been l. Now they compute the bit (1−εjkl)/2 = 1.
The announcement only reveals l, so the bit is completely secret.

them. One-third of the time this is successful, in that l 6= j and m 6= j. This allows

Alice to infer k, and her message of satisfaction allows Bob to infer j, just as for

the trine. They then each compute the bit (1 + εjklm)/2. Note that in this case the

order of Bob’s messages effectively determines the key bit, so he should take care to

ensure that they are sent in a random order each time.

Again they stay one step ahead of Eve as she listens to the messages, as she

can only narrow Alice’s signal down to two possibilities. Given the order of Bob’s

messages, one of these corresponds to 0 and the other to 1, so Eve is ignorant of

the bit’s identity. Using the tetrahedron allows Alice and Bob to establish one fully

secret bit one third of the time, analogous to the six-state protocol.
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Figure 5.11: Unfolded view of the Bloch-sphere tetrahedron states. Vertices of tri-
angles correspond to Bob’s outcomes, their centers Alice’s signals; all three vertices
of the large triangle represent the same point antipodal to its center. Suppose Alice
sends signal j; Bob necessarily receives k 6= j. Here we suppose j = 1 and k = 2.
Bob then announces two outcomes he didn’t obtain, here shown as l = 3 and m = 4.
Had either message equaled j, which happens 2/3 of the time, Alice announces fail-
ure. Otherwise, as here, she accepts. Thus Alice determines k, and Bob finds out j.
They compute the bit (1 + εjklm)/2 = 1. The announcement reveals only l and m,
so the bit is secret.

In the two protocols, the dual arrangement of signals and measurements allows

Alice and Bob to proceed by elimination to establish a putative key. To establish

security of the protocols we again start with the standard intercept/resend attack and

then proceed on to a “gentler” version of the same. Just as before, we’re assuming

that Eve simply intercepts a fraction η of the signals, measures them, and sends a

new state on to Bob. The first task is then to determine R as a function of η and

then to relate η to the statistics compiled in the course of the protocol. As always,

we should compare the protocols in terms of the maximum secure noise rate they

would actually witness experimentally, but we shall see that for the four protocols

under consideration here the noise rate is simply twice the bit error rate.

For either ESC protocol, Eve’s best attack is to use both Alice’s and Bob’s trines

for measurement, half the time pretending to be Alice and the other half Bob. This

holds for the tetrahedron as well and is due to the minimum in the lower bound

of equation 5.8. By pretending to be Alice, Eve can guess Bob’s result fairly well,
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but Alice’s less so: I(B : E) is large but I(A : E) small. By pretending to be Bob,

the situation is reversed, with the mutual information quantities changing roles. By

mixing the two strategies, Eve increases the minimum knowledge she has about either

party’s bit string. In [123] the scheme in which Eve pretends to be Bob is noted to

be the measurement maximizing her mutual information with Alice; however as the

analysis stops there and doesn’t proceed to consider the rate bounds, it’s insufficient

as a cryptographic analysis.

To determine the mutual information quantities as functions of η, it suffices to

consider first the case in which Eve intercepts every signal and uses Alice’s ensemble

for measurement. With these quantities in hand, we can mix Eve’s strategies appro-

priately and then include her probability of interception. We begin with the trine.

Given a signal state from Alice, there are two cases to consider. Either Eve measures

and gets the same state, which happens with probability 2/3, or she obtains one

of the other two results, with probability 1/6 for each. Whatever her outcome, she

passes the corresponding state along to Bob and guesses that it was the state sent by

Alice, unless the subsequent exchange of classical messages eliminates this possibility,

at which point she reserves judgment.

Suppose her outcome corresponds to Alice’s signal, and thus no disturbance is

caused. Naturally, Alice and Bob go on to establish a bit half the time, a bit whose

value Eve now knows. On the other hand, should her outcome not coincide with

Alice’s signal, there are two further possibilities. Half the time Bob obtains a re-

sult consistent with Alice’s signal, and a further half the time the protocol succeeds.

However, for this round to succeed, the required messages will eliminate Eve’s out-

come as Alice’s signal, thus forcing Eve to abandon her guess. In the other case,

Bob’s result is orthogonal to Alice’s signal, and from here the pair are guaranteed

to think the procedure was a success, but also guaranteed to compute different bit

values. Eve’s guess at the bit value corresponds to Bob’s in this case. Figure 5.12

lays out this train of thought.

Putting all this together, one obtains that the protocol succeeds with probability
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Figure 5.12: Thinking through the various cases when Eve measures the intercepted
signals using Alice’s ensemble. The variables a, b, and e correspond to signals or
measurement outcomes for Alice, Bob, and Eve, while A, B, and E refer to key bit
values.

7/12. Of the key bits created, Bob agrees with Alice with probability 5/7, while Eve

agrees with overall probability 4/7, only guessing at all with probability 5/7. Eve

and Bob agree on their bit values with probability 5/7. These numbers are obtained

by considering the raw probabilities of agreement and renormalizing by 12/7. Should

Eve instead measure the signals using Bob’s trine ensemble, her agreement probabili-

ties with Alice and Bob are swapped. Mixing the two eavesdropping strategies yields

her an agreement probability of 9/14, an error probability of 1/14, and a no-guess

probability 2/7. To interpolate between the endpoints of no action and full intercep-

tion, note that to condition on the cases of successful bit creation, the probability of

bit agreement must be renormalized by the probability of success. This probability

depends linearly on η: psuccess = (6 + η)/12. All probabilities must therefore contain

6 + η in the denominator, whence we may derive the form of the probabilities that

Bob’s and Eve’s bit values correspond to Alice’s:

pa=b =
6− η

6 + η
pa=e =

9η

2(6 + η)
. (5.37)

Eve’s probability to not guess at all is 2(3− 2η)/(6 + η).
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By determining the probability of error in Alice’s and Bob’s bit strings as a

function of η, we may compare to other protocols. For the trine, errors occur in the

key string with probability 2η/(6 + η). Using the expressions in equation 5.37 in the

rate bound, one obtains that R = 0 corresponds to a maximum tolerable error rate of

20.4%. This compares favorably with the BB84 protocol’s maximum tolerable error

of 17.1% [57].

Analysis of the tetrahedron protocol proceeds similarly by examining the various

cases. In this case, when η = 1 the failure rate of the protocol drops to 5/9, while

Alice and Bob agree with probability 5/8, Eve has probability 7/16 of knowing Alice’s

or Bob’s bit value, and she reserves judgment half the time. As the success rate of the

protocol increases with η as (3+η)/9, we may determine the form of the probabilities

using the same method to be

pa=b =
6− η

2(3 + η)
pa=e =

7η

4(3 + η)
, (5.38)

while the error rate in the key string is 3η/2(3 + η) and Eve’s probability of not

guessing is (3−η)/(3+η). Again using these probabilities in the rate bound yields a

maximum error rate of 26.7%. Like before, this compares favorably to the maximum

tolerable error rate in the six-state protocol of 22.7%.

Key error rates in all protocols under consideration translate directly into noise

rates by the same factor, so the bit error rate itself provides an appropriate means

of comparison, as we now show. Again considering the quantum channel to be a

depolarizing channel instead of that arising from Eve’s interactions, first take the

case of unbiased bases. If the state Bob receives is maximally-mixed, every outcome

has the same probability to occur. In the cases the protocol succeeds, Bob therefore

has a 50% chance of error. As much is true for the spherical code protocols, too. If

Bob has a uniform probability of any outcome, then the one orthogonal to Alice’s

signal generates an error, and always causes the protocol to succeed. The remaining

n − 1 outcomes lead to identical bits for Alice and Bob, but only succeed with

probability 1/(n − 1). Hence in total, Bob again has a 50% chance of error. It

should not be surprising that the same holds for both protocols, since if the signal
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state is totally depolarized then it carries no information and the two key strings will

have zero mutual information. To obtain noise rates from bit error rates for these

protocols, we simply multiply by two.

Eve’s attack could be gentler, however. In the version of the attack already con-

sidered, the measurement POVM consists of subnormalized projectors onto the code

states in addition to an element proportional to the identity operator, corresponding

to the case in which Eve doesn’t intercept the signal. Instead of this incoherent

mixture of measurement and no measurement, Eve might “coherently” mix the two

by forming a set in which each effect operator is a linear combination of the iden-

tity operators and the same projectors; that is, we would change the POVM in the

following way.

{
η
d

n
Π0, . . . , η

d

n
Πn−1, (1− η)I

}
→

{
η
d

n
Πk +

1− η

n
I

}
. (5.39)

Both measurements have the same outcome statistics; the crucial difference is that

the dynamics associated with the new POVM can be different than the original.

Using the square root of each measurement operator for the dynamics, the new mea-

surement yields Eve more information for the same amount of disturbance. Mathe-

matically, what once was a straight-forward wavefunction collapse onto the measured

state now becomes a slightly more complicated transition

ρ →
√

Ekρ
√

Ek

Tr[Ekρ]
Ek = η

d

n
Πk +

1− η

n
I. (5.40)

For the BB84 protocol, this attack was determined to be optimal when Eve doesn’t

wait to hear in which basis the signal was prepared [109].

As with the general spherical code protocols, we must take care in this gentler

attack to properly translate Eve’s measurement into her protocol for guessing the key

bit. In particular, she should again reserve judgment in case the classical messages

exclude her measurement outcome. This is easily accomplished by letting the com-

puter do the bookkeeping, and to this end Mathematica was again enlisted. Since

Eve causes less disturbance for the same information gain, the maximum tolerable
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BB84 Trine Six-state Tetrahedron
Normal IR 17.1 20.4 22.7 26.7
Gentle IR 15.3 16.6 21.0 22.6

Table 5.1: Maximum tolerable bit error rates for the four qubit-based protocols
under consideration for the two versions of the intercept/resend attack. Doubling
the figures yields the maximum tolerable noise rate, defined as probability of total
depolarization in a uniform channel.

error decreases: the trine tolerates 16.6%, as opposed to 15.3% for its cousin BB84.

The tetrahedron remains the most robust, tolerating a maximum error rate of 22.6%,

as compared to 21.0% for the six-state protocol. These figures along with those cor-

responding to the normal intercept/resend attack are summarized in table 5.5.

Though the gap has narrowed between the ESC and MUB protocols, there’s good

reason to think that the spherical codes will remain more robust in the face of increas-

ing eavesdropping. Suppose for a moment that Eve is granted the “super-quantum”

power to make a perfect copy of an arbitrary quantum state, but she is still bound

by the structure of quantum measurements. Now she can crack any protocol using

unbiased bases by simply copying each signal state, and measuring it in the basis

announced on the classical channel. When faced with the trine or tetrahedron pro-

tocol, Eve cannot obtain perfect information about the key in this manner. Now the

classical messages narrow the set among which Eve must discriminate, but unfor-

tunately for her, these remaining possibilities are not orthogonal. Hence returning

to the situation in which Eve can only make low-quality copies, the protocol offers

a tiny amount of “residual secrecy” which Alice and Bob may exploit. Apart from

the noise introduced in trying to copy the state, Eve must also deal with the nonde-

terministic state discrimination difficulty. This may play an important role in more

worrisome eavesdropping attacks on channels which contain loss, as we’ll see in the

next chapter.

The qubit protocols inherit the ability to determine the error rate from the success

rate, though now as the channel becomes noisier and Bob’s outcome becomes less
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correlated to Alice’s signal, the success rate increases. Of course, not all of this

increase provides useful key: most of it leads to errors. But Eve cannot substitute

signals solely for the purpose of modifying the success rate, as her signals won’t be

correlated with Alice’s and will therefore also lead to an increase in the success rate.

Hence Alice and Bob are safe in using the success rate to estimate the error rate.

In this chapter we’ve seen how quantum mechanics has the potential to both

ruin and rescue cryptography as well as the role spherical codes can play. Uncon-

ditional security remains to be established, but by studying the intercept/resend

attack we have outlined the main features: a streamlined protocol which automat-

ically estimates channel noise, a wider range of speed and robustness, as well as a

complementary security/speed tradeoff for fixed resources. No mention has yet been

made of the practicalities of implementing such schemes, a topic taken up in the next

chapter.
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Chapter 6

Experimental Realizations

The previous chapter outlined how equiangular spherical codes may be used for

quantum cryptography, as well as their strengths and weaknesses, at least in theory.

Now we turn to the question of putting these ensembles into practice. The contents

of this chapter also bear on all parts of the thesis, for it serves to examine both the

details of what it means operationally to “prepare” and “measure” a quantum state

and how one determines if it is done properly.

Spherical codes, designs, and frames can be realized in many physical systems,

but here we focus on electromagnetic field modes since Alice and Bob invariably

resort to them in any quantum communication setting. Easily produced and ma-

nipulated, electromagnetic modes retain quantum coherence over long times and

distances, making them ideal for key distribution in which the parties are assumed

to be separated by a large distance. Further, passive linear optics, together with

photodetection, provides all the required tools for manipulating isolated quantum

systems of a fixed dimension: state preparation, unitary transformations, and mea-

surement. Though working with two-level systems based on polarization states is

by far the easiest and already enjoys widespread use, systems with higher dimension

may be created using the transverse spatial modes of the laser field, techniques which

are still in their infancy. Quantum states so encoded may be transferred or “written”
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into a superposition of various directional modes by using polarizing beam splitters

and their spatial-mode analog for higher-dimensional systems. Passive linear optical

elements such as beamsplitters and phase shifters then take over, allowing the imple-

mentation of any desired unitary transformation of the state. Ancillary states may

be introduced by adding vacuum modes. Finally, measurement may be performed

by ordinary photodetection.

In this context, working with spherical codes turns out to be no more difficult

than with unbiased bases; indeed really any fixed-size ensemble in a fixed dimension

requires roughly the same resources: real estate for the required modes. This resource

demand is the reason why one should compare key distribution protocols in these

terms, as was done in the previous chapter.

Beginning first by detailing how linear optics implements arbitrary unitary oper-

ations, we then consider the qubit case and the setups necessary for state preparation

and measurement in section 6.2. From there we proceed to analogously to examine

higher dimensional systems in section 6.3 before finally remarking on practical limita-

tions of such realizations, especially the need for single-photon pulses and associated

high-efficiency optical networks in section 6.4.

6.1 Linear Optics

Directional modes of the electromagnetic field provide a means of expressing an

arbitrary quantum state. Each mode is described by a creation operator a†k, which

acts to create an excitation in the mode propagating in direction k. Ostensibly these

modes are plane waves extending over all space, though we intend them here to be

states emitted from a conventional laser. The spatial dependence of these beam

modes are correctly described by making use of the paraxial approximation, whose

details we examine later when considering transverse spatial mode encoding. For the

moment it is sufficient to describe the mode by both the direction k and a point x
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through which it passes. In doing so, we are implicitly assuming that the spatial

description of each mode is irrelevant and is confined to a small region transverse

to the direction of propagation, i.e. a “laser beam”. Even this is usually more than

sufficient, and it will be simplest to label the modes just by a number, 1 . . . d as it

will be clear from the context what each mode describes.

By restricting the excitations in all modes to a contain just a single photon,

each individual mode becomes a basis state in the space Cd. Now passive linear

optical elements may be used to implement arbitrary quantum operations in the

one-photon sector. Only beamsplitters and phase shifters are required, though in

principle elements which alter the polarization or the transverse spatial mode are

also allowed. Since the linear elements do not alter the number of photons, we

may describe their effects by their action on the creation and annihilation operators.

Consider a single photon in the mode k, described by a†k|0〉. An element involving d

modes may then be described by a unitary matrix Ujk, which acts according to the

following rule:

Ua†k|0〉 = Ua†kU
†|0〉 =

d∑
j=1

Ujka
†
k|0〉, (6.1)

where U is the associated operator in the space of quantum electromagnetic fields.

A phase shifter simply imparts a phase to the propagation of the mode, and may

be represented by Pk(φ) = exp[iφ] when acting on mode k. A beamsplitter simply

mixes two modes with a particular strength, parameterized by an angle θ. When

acting on modes j and k, it may be represented as

Bjk(θ) =


 cos θ i sin θ

i sin θ cos θ


 , (6.2)

where the output modes are ordered such that the first input mode is reflected to the

right and the second to the left, relative to their propagation directions. The intensity

transmissivity and reflectivity are cos2 θ and sin2 θ. Between the two elements we

may implement any d× d unitary we desire, simply by breaking it into a sequence of

operations acting on only one or two modes at a time. Such an array is termed an
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optical multiport by Reck et al., who first developed the method [127]. To break down

an arbitrary operator, we proceed by a diagonalization process similar to Gaussian

elimination. Step one is to find a sequence of beamsplitters Bd,d−1Bd,d−2 . . . Bd,1

(generally interspersed with phase shifters) such that UBd,d−1Bd,d−2 . . . Bd,1 is block-

diagonal, consisting of a (d−1) × (d−1) unitary matrix in modes 1, . . . , d − 1 and

a diagonal entry exp[iα] in the dth mode. Proceeding recursively through each

dimension builds up a sequence of beamsplitter unitaries (interspersed with phase

shifters) which is the inverse of the matrix U . For d modes, then,
(

d
2

)
beamsplitters

and phase shifters each will generally be required. Figure 6.1 shows the case of three

modes.

As an aside, although in principle such a multiport could be used for quantum

computation, scaling limitations prevent this from being practical. Again, d modes

are required for simulating a d-dimensional system with linear optical elements, and

for useful computations, d would be huge. One main advantage of quantum compu-

tation is that two-level physical systems, e.g. spin states of ions or neutral atoms,

can be used to build up a huge Hilbert space, and the number of atoms, say, would

only be roughly the logarithm of the dimension.

The optical multiport realizes unitary operations on a set of modes, but these

modes are not practical for transporting quantum states from point to point. Con-

tinuing to encode information spatially, one would either require a set of d optical

fibers or need to establish the modes as separate channels in free space. Both are

impractical, and as we shall see, wasteful. By using short-duration pulses, temporal

modes can be hewn from a single spatial channel, but decoding the resulting (coher-

ent!) pulse train back to separate spatial channels requires fast, efficient, and reliable

switching, which is not currently available. Instead, the quantum state can be en-

coded into a single mode, using degrees of freedom beyond simply the direction of

propagation. In particular, the transverse field mode can be so utilized for arbitrary

dimensions, but for two-level systems the method is more straightforward, since the

two orthogonal polarization states of the field can be used.
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Figure 6.1: A generic optical multiport for three modes, input on the right, and out-
put on top. Three beamsplitters and three phase shifters are required to implement
a generic 3× 3 unitary operator.

6.2 Polarization Qubits

Polarization-state preparation is trivial for Alice: ordinary polarizers and waveplates

suffice to create states as desired. To make one of a set of states on demand, Alice

could simply use a set of polarizers, as well as shutters to activate the desired one in

any given instance. Figure 6.2 Measurement at Bob’s end utilizes the methods just

developed in the previous section. First the polarization state is converted to a mode

state by means of a polarizing beam splitter and waveplate, after which point the

polarization need not be referred to again. The polarizing beamsplitter first entangles

the polarization and mode states, taking the input state |ψin〉 = (α|l〉+ β|↔〉)|0〉 to

the output state |ψout〉 = α|l〉|0〉+β|↔〉|1〉. With a suitable waveplate in one of the

output beams we may rotate that polarization to match the other, thereby completely

erasing the polarization information. In what follows we’ll assume that this is the

case and absorb into the polarizing beamsplitter element this further mode-dependent

polarization rotation. Then in the diagrams to follow, the polarizing beamsplitter’s

effect on the state can be written (α| l〉 + β| ↔〉)|0〉 → (α|0〉 + β|1〉)| l〉. Generic
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Figure 6.2: An optical network Alice might use to make the trine states. A polarized
beam is input at the upper left and distributed by the beamsplitters to the different
paths. By adjusting the wave plates appropriately, Alice may create any trine state
she desires simply by opening the corresponding shutter. Note that no matter which
state is created, it travels through the same number of beamsplitters, so that the
input beam is attenuated the same for each state. To ensure a single-photon output,
Alice adjusts the input intensity appropriately. This scheme doesn’t require changing
any optical elements except the shutter to prepare the state.

quantum measurements may be implemented by finding a Neumark extension and

rotating the initial mode basis into the appropriate measurement basis. The process

is completed by using photodetectors on the output modes to finally register an

outcome. In chapter two, the Neumark extension was shown to be another name for

frame dilation, and generall the situation is as follows.

Suppose {Ej = rj|φj〉〈φj|}n
j=1 is a POVM to be implemented, where rj takes care

of the normalization. Including the unpopulated auxiliary modes, write the input

state as

|ψin〉 = (α|l〉+ β|↔〉)|0〉+
n−1∑

k=1

γk|l〉|k〉 ,

where all the γk = 0 initially. After transcribing the polarization state into channel
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mode states, the state becomes

|ψ′in〉 = (α|0〉+ β|1〉+
n−1∑

k=2

γk|k〉)|l〉 ,

so that we can now omit reference to the polarization. The entire linear optical

transformation in the optical network is given by a unitary U , transforming the

input state to the output

U |ψ′in〉 =
∑

j

|j〉〈j|U |ψ′in〉 .

To measure the desired POVM, we must find U such that |〈j|UP |ψ′in〉|2 = rj|〈φj|ψ〉|2,
where |ψ〉 = α|0〉+ β|1〉 is the initial polarization state (now in the mode basis) and

P projects onto the |0〉, |1〉 subspace. This leads immediately to

〈j|UP |ψ′in〉 =
√

rje
iµj〈φj|ψ′in〉 ,

where µa is an arbitrary phase that could be absorbed into the POVM states. This

works just in case

Uj0 = 〈j|U |0〉 =
√

rje
iµj〈φj|0〉 and Uj1 = 〈j|U |1〉 =

√
rje

iµj〈φj|1〉 .

Apart from the normalizing factor and the phase, the first two elements in row j of

the unitary transformation—i.e., the amplitudes to go from |0〉 and 1〉 to |j〉—are

the complex conjugates of the amplitudes of the states |φj〉 comprising the POVM.

To see this procedure in action, consider the trine measurement, which may be

achieved using only two beamsplitters. If the trine states are given by

|φ1〉 = |0〉 (6.3)

|φ2〉 = −1

2
|0〉+

√
3

2
|1〉 (6.4)

|φ3〉 = − i

2
|0〉 − i

√
3

2
|1〉, (6.5)

then a 2:1 (transmission/reflection) and 1:1 pair of beamsplitters suffice to realize the

Neumark extension, as shown in figure 6.3. The associated unitary matrix describing
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Figure 6.3: Passive linear optical implementation of the trine measurement. The
polarizing beam splitter “writes” the quantum state onto modes one and two. Mode
three, in the vacuum state, enters the first beamsplitter at the upper right. The two
beamsplitters, 2:1 and 1:1 in transmission to reflection intensity, transform the mode
basis to the Neumark-extended trine basis, and qubit polarization states input on
the lower right are thus measured by the trine via the photodetectors.

the two beamsplitters may be written

Utrine =

√
2

3




1 0 i/
√

2

−1/2
√

3/2 i/
√

2

i/2 i
√

3/2 1/
√

2


 . (6.6)

Note that the first two elements of each row are the trine states themselves, renor-

malized to
√

2/3, so that the input mode states are indeed suitably transformed.

The trine measurement is less involved than making the measurement of two

conjugate bases as in the BB84 protocol. Figure 6.4 shows how this measurement

can be realized with three 50:50 beamsplitters.

Fortunately the tetrahedron measurement is also simple to perform, requiring

only four beamsplitters, as shown in figure 6.5. This corresponds to the measurement
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Figure 6.4: The BB84 measurement. The polarizing beam splitter “writes” the
quantum state onto modes one and four. Modes two and three enter in the vacuum
state. All beamsplitters are 50:50, resulting in a measurement of the two conjugate
bases.

of the following tetrahedron states:

|φ1〉 = |0〉, (6.7)

|φ2〉 = − 1√
3
|0〉+

√
2

3
|1〉, (6.8)

|φ3〉 = − 1√
3
|0〉+ e−i 2π

3

√
2

3
|1〉, (6.9)

|φ4〉 = − i√
3
|0〉+ e−i 5π

6

√
2

3
|1〉. (6.10)

Such inelegant-looking states are the result of simplifying the number of beamsplitters

and phase shifters required.

In the measurement schemes presented up till now, we eschew the use of elements

which reference the polarization directly after the initial polarizing beamsplitter and

waveplate, but sometimes retaining polarization information in the optical network

makes the measurement more compact. In this picture BB84 becomes slightly sim-



140 Chapter 6. Experimental Realizations

���
���
���
��� 1:1

1:1 2:1 1:1
4

2 13

Figure 6.5: The tetrahedron measurement. The polarizing beam splitter writes the
quantum state onto modes one and three. Modes two and four, both in the vacuum
state, enter along the dotted lines.

pler, and the measurement of the three unbiased bases vastly more so. To measure

the combination of horizontal/vertical (+) and diagonal (×) polarization bases, it

suffices to use an ordinary 50:50 beamsplitter, two polarizing beamsplitters, and one

waveplate. A polarizing beamsplitter by itself effectively measures in the basis corre-

sponding to its orientation. Thus to make the measurement consisting of both bases,

halve the input among the two possibilities with an ordinary beamsplitter. The

waveplate is inserted in one output to transform the resulting measurement from

+ to ×, and the polarizing beamsplitters finish the task. With one more ordinary

beamsplitter, polarizing beamsplitter, and waveplate we may realize the measure-

ment of three unbiased bases, and so on. Now the first beamsplitter is 2:1 and the

second 1:1, but otherwise the scheme is perfectly analogous. Without making use

of the polarization states in the various modes, i.e. without using waveplates, this

measurement could require up to 15 beamsplitters and phase shifters each, instead
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of the seven optical elements used here. The trine and tetrahedron measurements

have also been performed in this context, with rms errors in the observed statistical

distributions of a few percent for each [39].

6.3 Higher-Dimensional Systems

To encode quantum states of higher dimension into a field mode, something beyond

simple polarization must be used. For this purpose we may turn to the spatial

field mode transverse to the direction of propagation. In this context we’re thinking

mainly in terms of free-space cryptography, rather than via optical fibers, which

tend to offer only very noisy multi-mode channels. A proper description of the

available modes is given by the paraxial approximation. Consider a monochromatic

electric field propagating in the z direction described by the expression E(x, t) =

E(x) exp[i(kz−ωt)]. Let the spatial envelope be given by the function E(x) =

ET (x)ê + EL(x)ẑ, where ê is the polarization vector, and ET and EL are transverse

and longitudinal components, respectively. If the transverse portion of the function

varies slowly with respect to the wavenumber k in the z direction, i.e. ∂ET /∂z � k,

then the wave equation may be simplified to the paraxial wave equation

∇2
T ET + 2ik

∂ET

∂z
= 0. (6.11)

Here ∇2
T is the two-dimensional Laplace operator pertaining to the transverse direc-

tions x and y. This equation looks strikingly similar to the Schrödinger equation,

and in fact in a proper treatment of field quantization, one obtains transverse mode

wavefunctions obeying this equation.

As such, there are a variety of useful solutions of the paraxial wave equation, but

two are more often-used than the rest: Hermite-Gaussian and Laguerre-Gaussian

modes. The former are simply products of eigenstates of the one-dimensional har-

monic oscillator, i.e. solutions found by separating variables in the Cartesian coordi-

nate system, while the latter are solutions in cylindrical coordinates. The Hermite-
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Gaussian beam HGmn is given by

Emn =
CH

mn

w(z)
exp

[
−ik

x2+y2

2R(z)

]
exp[−i(kz−ψG

mn)]

×Hm

(
x
√

2

w(z)

)
Hn

(
y
√

2

w(z)

)
exp

[
−x2+y2

w(z)2

]
. (6.12)

Here k is the wavenumber 2π/λ, one of a host of constants, functions, and beam pa-

rameters contained in this expression. First, Hm is a Hermite polynomial of order m,

defined by Hm(u) = (−1)meu2 dm

dum e−u2
. Out front is the normalization constant CH

mn,

defined by CH
mn = (2/2n+mn!m!π)1/2. The remaining functions are beam parameters,

starting with the width w(z), defined in terms of the nominal width, or beam waist,

w0 as w(z) = w0

√
1 + (λz/πw2

0)
2 for wavelength λ. The function R(z) is the wave-

front’s radius of curvature at position z, determined by R(z) = z(1 + (πw2
0/λz)2).

Finally, ψG
mn is the so-called Guoy phase, given by ψG

mn = (m+n+1) arctan(λz/πw2
0).

The numbers n and m determine the number of nodes in the x and y directions, as

shown in the intensity profiles in Figure 6.6.

Meanwhile, the Laguerre-Gaussian beam LGpl is written in cylindrical coordinates

(r, φ) as

Epl = (−1)p
CL

pl

w(z)
exp

[
− ikr2

2R(z)

]
exp[−i(kz−ψG

pl)]

× exp[−ilφ]

[
r
√

2

w(z)

]|l|
L|l|p

(
2r2

w(z)2

)
exp

[
− r2

w(z)2

]
. (6.13)

Now the normalization constant becomes CL
lp =

√
2(p)!

/√
π(|l|+ p)! while the Guoy

phase is ψG
pl = (2p+ |l|+1) arctan(λz/πw2

0). The Lp
| l|(u) are the associated Laguerre

polynomials. The radial index p ∈ Z determines the number of radial nodes p + 1

and the angular index l ∈ N the angular nodes.

The phase of the field does not depend on the transverse spatial coordinates for

Hermite-Gaussian beams, except so as to show a spherical wavefront of curvature

R(z) at position z. Laguerre-Gaussian modes, on the other hand, exhibit a screw-like

wavefront due to the “winding” phase dependence on φ and the associated singular-

ity at the origin. Such a wavefront is shown in figure 6.7. Interestingly, this spiraling
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Figure 6.6: Intensity plots of the first few Hermite-Gaussian modes. Note the in-
creasing area footprint with increasing mode number.

wavefront carries angular momentum, playing the role of orbital angular momentum

complementing the intrinsic “spin” of the angular momentum carried by the polar-

ization [3]. A photon in an LGpl mode carries angular momentum l~, as verified in

experiment [76].

Before describing how to prepare and measure such states, we return to the point

alluded to at the beginning of section 6.2, the wastefulness of using many distinct

spatial channels compared to using distinct spatial modes of a single beam [158].

To communicate a d-level quantum state using distinct beams, d beam are required.

The fundamental LG00 =HG00 Gaussian beam is best for this purpose, since it has

the most compact profile for a given waist w0. By packing the beams in a hexagonal

or square fashion we can fit them all into an area of roughly 4w2
0d while avoiding

crosstalk between channels. In contrast, the effective size of an LG or HG mode is

proportional to the square-root of its order [145]. Hence the first d modes fit into
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Figure 6.7: Screw-like wavefront of Laguerre-Gaussian modes. The phase singularity
at the origin implies zero intensity on the beam axis.

a square of area approximately 4w2
0

√
d, a major improvement. Put differently, if

the area A supports d distinct channels, then it could instead support d2 transverse

spatial modes. Both methods rely on an increased spatial area, but the transverse

modes utilize this area more efficiently [117].

6.3.1 State Preparation

Now we turn to state preparation. In contrast to encoding two-level quantum states

in polarization states, creation of arbitrary spatial mode states is not so easy in

practice, though simple-enough in principle. Physically creating specific states can

be accomplished in a variety of ways. For instance, Hermite-Gaussian modes may

be created by introducing thin wires into the laser cavity corresponding to node

positions, and astigmatic optics can convert a HGmn mode into an LGpl Laguerre-

Gaussian mode with l = |m−n| and p = min(l, m) [10]. These basis states could
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then be combined into arbitrary superpositions with an interferometer, though one

would be required for each state Alice wished to make on demand.

In principle, all that is required to change one mode state into another is the

ability to affect the phase of the transverse field at every point. By rephasing an

incoming beam in just the right fashion it can be transformed into any other mode

state. If we label the input beam by Er exp[iφ(x, y)], then a phase transformation

takes it to Er exp[iφ(x, y)] exp[if(x, y)], where f(x, y) is the phase modulation func-

tion. Trivially, and immediately, this scheme affects the phase φ(x, y) of the beam,

but to affect the distribution of intensity Er, the appropriate rephasing f(x, y) must

be chosen such that the beam subsequently propogates with the desired intensity

pattern.

For a one-step solution suitable for state-prepratation we may turn to computer-

generated holograms [9, 5, 152, 128]. In principle, an amplitude transmission holo-

gram can transform a given input state into an arbitrary desired output state by

recording the intensity interference pattern I(x, y) between the two. Suppose the in-

put beam (the reference beam) is described by Er exp[ikr ·x] and the desired output

(the object) by Eo exp[iko ·x], where the functions Er and Eo contain the transverse

phase and amplitude profile of the corresponding beams. Without loss of generality

we take kr = kẑ, and superimposing the beams at the hologram (z = 0) then gives

the intensity/transmission function I(x, y) = |Er + Eo exp[iko · xT ]|2. Here xT is

perpendicular to the direction of propagation, z. Illuminating the hologram with the

reference beam alone transforms it according to the rule

I(x, y)Ere
ikz =

(|Er|2 + |Eo|2
)
Ere

ikz + E2
rE

∗
oe

i(2kẑ−ko)·x + |Er|2Eoe
iko·x. (6.14)

If the input beam is taken to be a plane wave such that Er is a real constant, then

the third term is the the quantity of interest, representing the desired output beam.

The first term is simply a continuation of the reference beam, amplitude-modulated

by the intensity profile of the object, while the second is the conjugate image. The

desired phase interference pattern may be determined by computer and from this a

hologram generated simply by recording on holographic film. Figure 6.8 shows the
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Figure 6.8: Setup for producing desired transverse states with a transmission holo-
gram. Given the input (reference) beam and the “object” beam, the desired output,
the phase pattern may be computed and transferred to holographic film. When il-
luminated with the input beam, the desired output emerges from the corresponding
location on the other side of the hologram. Due to diffraction effects, other states
are also created in various diffraction orders, but Alice may simply ignore these and
select the desired mode. On the right is shown the (negative of the) interference
pattern of an on-axis Gaussian beam and an LG0,1 mode 30 degrees off-axis. This
pattern may be recorded to holographic film in order to transform a Gaussian beam
into a LG0,1 beam, as well as superpositions of such states. The diffractive nature of
the hologram is readily apparent.

interference pattern of an on-axis Gaussian beam and an LG0,1 mode at 30 degrees

off-axis.

Amplitude transmission holograms suffer from unavoidable diffraction effects in-

herent in their nature. For instance, the hologram shown is more or less a diffraction

grating, plus a fork dislocation at the center. In contrast, a blazed grating is theo-

retically capable of 100% transmission efficiency in the desired diffraction order. To

improve efficiency, a blazed phase hologram may be used instead of the amplitude

hologram, returning to the abstract method outlined at the beginning of the section.

For the case depicted in figure 6.8, we may simplify matters by considering the in-

terference pattern of a plane wave and one with winding phase as in figure 6.7. The

former is described by Er exp[i(kxx+kzz)], propagating off the hologram axis at angle

arctan(kz/kx), and the latter by Eo exp[ilφ] exp[ikz]. The resulting interference pat-

tern becomes I = E2
r +E2

o +2EoEr cos(kxx− lφ). Neglecting the constant terms, the
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Figure 6.9: Hologram patterns for converting Gaussian beams into p = 0, l = ±1
LG modes. The intensity pattern for an amplitude transmission hologram is shown
on the left and that for a blazed phase transmission hologram on the right. In the
latter the grayscale level indicates the effective thickness of the hologram, so that it
can be seen to correspond to a blazed diffraction grating, plus a fork dislocation.

bare (amplitude) hologram pattern is simply I = cos(kxx− lφ), shown in figure 6.9

with l = 1. To realize this as a phase transmission hologram, i.e. one with transmis-

sion function T (r, φ) = exp[if(r, φ)], we simply use the argument kxx− lφ mod 2π to

generate the amplitude hologram as before, and then bleach the film. This transfers

the amplitude information into phase information by altering the index of refraction

at each point. The hologram modulates the incident plane wave by this phase factor,

producing Er exp[i(kxx + kzz) exp[−iδ(kxx − lφ)], where δ is the magnitude of the

phase modulation. Should δ = 1, 100% of the incident beam would be modulated

into the desired output. The blazed pattern is shown in figure 6.9.

Blazed phase holograms concentrate output intensity into the desired order, but

the absorption and diffraction effects cannot be completely eliminated. This doesn’t

bother Alice, however, as she may adjust the input intensity and select the appropri-

ate outgoing mode as required. In practice such computer-generated holograms have

been used to create Laguerre-Gaussian states as well as superpositions of them [113],

achieving roughly 14% efficiency in the desired output mode.
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6.3.2 Measurement

In analogy with the qubit polarization-state case, Bob requires the equivalent of a

polarizing beamsplitter and waveplate for the transverse modes. Once he has split

the incoming state into various spatial channels by basis state, the “waveplate” is

used to erase the transverse mode state. Then he may use an optical multiport to

coax the quantum state into being measured by his desired POVM. In principle, the

analog of a waveplate may be accomplished using a phase mask as described at the

beginning of section 6.3.1. Bob could also make use of holograms, as does Alice, but

high-efficiency devices must be fabricated in some other fashion. He doesn’t have

the luxury of increasing the input intensity; every signal absorbed by the hologram

slows down the protocol. In any case, we’ll simply consider whatever method is

used in practice as part of the mode sorter. Fortunately, high-efficiency methods to

accomplish the sorting have recently been developed. One method, used to sort states

based on their angular momentum, uses Dove prisms and phase shifters in the arms

of a Mach-Zender interferometer [102, 158, 103]. Another method sorts HG modes

by using fractional Fourier transformers in the interferometer arms, a scheme which

may also be used to sort LG modes based on the radial index [168, 159]. Since both

the production and sorting of p = 0 LG modes is simplest, we’ll consider the problem

mainly from this perspective. Moreover, sorting of angular momentum states in this

fashion has been carried out experimentally. Afterwards we shall comment on the

similarities between this and the HG mode sorting method.

A Dove prism, which has a trapezoidal shape in the propagation direction, simply

reflects the input image along the axis perpendicular to the top and bottom faces.

Two prisms oriented relative to one another by an angle θ/2 effect a rotation by

θ, and by placing these together in one arm of an interferometer, the rotated and

unrotated images can be made to interfere with each other. Due to the phase profile

of LG modes, rotation by θ shifts the phase by an amount lθ, so the LGpl modes are

eigenstates of the rotation operator Rθ satisfying Rθ[e
ilφ] = eil(φ+θ). Thus by adjust-

ing the path lengths of the two arms, modes with particular l values can be made
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Figure 6.10: Illustration of a Dove prism and its use in a Mach-Zender interferometer
setup to sort angular momentum modes. In the upper arm the beam acquires an
l-dependent phase shift lθ from the two Dove prisms, while a phase shifter imparts a
fixed phase irrespective of mode number. For θ = π, modes with even l can be made
to exit to the right and modes with odd l to the bottom.

to exit in certain directions after the beams recombine at the final beamsplitter, as

shown in figure 6.10. Suppose for instance that the induced relative phase difference

in the two arms is lπ, accomplished with the two prisms oriented 90 degrees relative

to one another. In this case modes with even l are unchanged but those having

odd values of l are 180 degrees out of phase. Then recombining the beams at a

beamsplitter causes even values to exit in one direction and odd values the other.

By cascading several interferometers one can immediately sort superpositions of

modes in which l is a power of two, with the nth stage employing a rotation angle

θ = π/2n. After the first stage l = 1 is output while the remainder go to the second

stage. There l for which l mod 4 = 0 continue to the next stage as l = 2 is output,

and so on, i.e. sorting in the manner of the Fourier transform. To construct a general

sorting scheme, an ordinary phase shifter may be introduced into the interferometer.

Using an overall phase shift of −kπ/2n with the same rotations as before, modes with

l mod 2n = k can be sorted into groups having l mod 2n+1 = k and l mod 2n+1 = k+2n.

Suppose we want to sort the lowest seven angular momentum states, that is |l| ≤ 3.

In the first step we separate odd from even using θ = π. We then direct the even
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Figure 6.11: Mode sorter for the lowest seven angular momentum states, i.e. |l| ≤ 3.
The first phase refers to the l-dependent rotation and the second the global phase.

states 0,±2 into a second interferometer set to θ = π/2. One output will be l = 0,

while the remaining two go into a third interferometer set to θ = π/4 plus a phase

shift of −π/2, which separates +2 from −2. Meanwhile the odd l modes are sorted

as follows. First, they are input into a system with θ = π/2 and phase shift −π/2,

which sends −1, 3 out one port and −3, 1 out the other. To sort the former pair, set

θ = π/4 with a global phase shift of −3π/4, and to sort the latter change the phase

shift to −π/4. This is shown schematically in figure 6.11. Since all optical elements

in the mode sorter are in principle high efficiency, Bob can combine the mode sorter

and an optical multiport to implement any quantum measurement with efficiency

limited primarily by the photodetectors.

Hermite-Gaussian beams may be sorted in essentially the same fashion, for the

fractional Fourier transform affects HG modes the way the image rotation affects

LG modes, though one may in addition act on x and y separately. Hermite func-

tions are eigenstates of fractional Fourier transform operator Fθ (which in quantum-

mechanical language, is just the time-development operator for a harmonic oscilla-
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tor), as it acts in accordance with the rule Fθ[Hm(x)] = exp[imθ]Hm(x). Xue et

al. [168] suggest an immediate method of sorting HG modes using a sequence of

graded-index (GRIN) rods with quadratic profile n(x) = n0−n2x
2 [106]. The length

of these rods controls the parameter θ, which is analogous to the rotation angle when

using Dove prisms to sort angular momentum states. We can then employ the same

method to sort the spatial modes as for angular momentum states.

6.4 Practical Limitations

Alice and Bob would like to use high-efficiency measurement schemes, because if

Alice sends more than one photon per signal, she is effectively handing Eve that

many copies with which to break the protocol. This photon number splitting attack

would not pose a problem but for omnipresent losses in any electromagnetic channel.

To be on the safe side, Alice and Bob must assume that losses are due to Eve

redirecting some of the sent photons, so sending more than one photon per signal is

hazardous. In the standard protocols, unbiased bases offer zero protection against

this attack, since knowledge of the basis allows Eve to determine the key letter with

certainty.

Modifications have been proposed to combat this problem, which of course lower

the attainable key rate [2, 134]. Use of spherical codes may offer a slight edge in

combating this problem, as none of the states are orthogonal to begin with, and

thus the classical messages never provide a deterministic procedure for learning the

key letter. Returning to the comment at the end of subsection 5.4.3, ESC protocols

may permit a slightly higher signal intensity to be safely used due to this “residual”

security.

To see how this works, consider the trine protocol implemented over a lossy but

otherwise noiseless channel. Eve learns one signal that Alice did not send from the

classical channel in every successful round. Having narrowed the choices, she must
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Figure 6.12: A diagram of the discrimination problem facing Eve. Communication
over the classical channel has eliminated the vertical state from the possible signals
sent by Alice, leaving the two black arrows labeled ‘A.’ Consequently, the optimal
measurement Eve can make to determine which of the remaining two was actually
sent is shown by the dashed arrows pointing to E0 and E1. Since the signal states are
not orthogonal, there is a probability of (2−√3)/4 ≈ 0.067 of incorrectly identifying
the state.

decide among the remaining two, which have overlap 1/4. The optimal measurement

for doing this is simply a projection measurement along the perpendicular to the

bisector of the two states, i.e. in the Bloch-sphere representation each outcome is

30 degrees from the corresponding trine state so as to be back-to-back, as shown in

figure 6.12. Because the channel is otherwise noiseless, Bob’s and Alice’s key bits

agree every time the protocol is successful, but Eve has a roughly 6.7% chance of

error when measuring one copy of her own. This seemingly-small probability of error

actually translates into only ≈ 0.65 bits of information, meaning the other ≈ 0.35

remain secret. In this manner Alice and Bob can give one copy to Eve and still

expect to create a truly secret bit from about every three successful rounds of the

protocol. For the tetrahedron the numbers are slightly better since the states have

greater overlap, i.e. they are less orthogonal. Now one copy of the signal allows

Eve to guess the key bit with error probability ≈ 9.2%. Again she makes the same

orthogonal measurement perpendicular to the bisector of the states. The secret key

rate given that Eve has one copy of her own then becomes ≈ 0.44. If Eve has three
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copies and takes the majority of three independent measurements, she reduces the

error rate to ≈ 2.4%. But this still leaves Alice and Bob with a key rate of ≈ 0.16.

In practice, Alice is likely to use strongly attenuated coherent states, which have a

Poisson distribution in photon number. To suppress the probability of a multiphoton

signal to one percent, for instance, Alice should attenuate the coherent state to have

an average of just under 0.15 photons per pulse. The use of such faint pulses is

responsible for most of the practical difficulties in implementing a truly quantum

key distribution cryptographic system, since only very high-efficiency elements may

be used in order to obtain a useful key generation rate.

By using the spherical code protocols, one copy of the signal may be granted to

Eve in order to trade a lower key generation rate per successfully-received signal for

a higher actual transmission rate. In order to restrict the probability of a three-or-

more photon signal to one percent, Alice may safely send an average of just under

0.45 photons per pulse, a three-fold increase in intensity for a 56% cutback in key

generation rate.

Other means of obtaining higher intensities are the subject of much current re-

search, such as reliably sending only one photon per pulse to begin with. Such a

single-photon source may be one half of an entangled two-photon source, such as

those resulting from parametric down-conversion. This phenomenon occasionally

provides a pair of entangled photons when a laser is incident on a type-I nonlinear

crystal. Normally one imagines creating polarization-entangled states in this fashion,

though recent experiments have demonstrated that the orbital angular momentum

states of the photons are also entangled [113, 151]. Conventional state preparation

may now be dispensed with in favor of measurement by exploiting the simple formu-

lation of a maximally-entangled state in terms of either unbiased bases or spherical

codes found at the end of section 5.4.3. However, in any scenario, low yields as-

sociated with small photon number coupled inevitable channel loss in the channel

severely limit the speed of quantum cryptographic protocols and the distance over

which they can be securely carried out.
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Despite these difficulties, several experiments have made use of the relative sim-

plicity of creating, manipulating, transmitting, and measuring electromagnetic modes

and demonstrated the feasibility of quantum cryptography, both in fiber and free-

space [121, 82, 25, 81]. Two commercial applications are even available for the

security-conscious user with a hefty bankroll, both based on fiber-optic implementa-

tions. For free-space implementations, such as rekeying of satellites, the straightfor-

ward use of higher-dimensional protocols via encoding into transverse spatial modes

make higher efficiency and security protocols within reach. The ability to rekey

satellites on demand from the ground would prevent unauthorized use, as has been

witnessed on commercial satellites in the past [26], as well as costly space shuttle

missions to manually rekey sensitive military satellites [119].
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Chapter 7

Conclusion

7.1 Summary

From the foundations of quantum mechanics to the practicalities of ground-based

rekeying of satellites, frame theory has helped see us through a wide-ranging terrain

of topics. Though perhaps appearing as a gallimaufry of various research questions,

the selection of topics here tends from foundational, theoretical questions toward

practical, useful applications, without nearly running the gamut of different types of

theoretical research a person can do in quantum information theory.

Fundamentally, frame theory and quantum mechanics are tightly interwoven as

they make use of the same mathematical structures, so it is sensible to begin with an

overview of frame theory as it applies to quantum information theory. In this thesis

we’ve mainly considered questions involving properties of collections of measurement

operators or quantum states—What probability distributions are possible? How

can we represent quantum states? How can suitable collections of states enable

cryptography? Frame theory, then, is perfectly suited to this purpose, as it too

asks questions of sets of vectors in a very general setting. Chapter two provided

the necessary background for our purposes, detailing among other things, how to

transform an arbitrary collection of vectors into a measurement by the canonical
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dual, and the relationship between various elegant sets of vectors to minima of simple

functions of the vectors, the frame potentials.

With the background firmly in hand, part one turns to foundational questions of

importance to physics. Chapter three starts by laying out a coherent way to interpret

quantum mechanics before moving to investigating how the quantum probability

rule follows from the structure of measurements. The most sensible way to think of

quantum mechanics may in the end be to posit that measurements simply happen and

work from there. Otherwise we invite the measurement problem and a host of other

paradoxes based on the conceptual collision between probability and measurement

in a physical theory without underlying properties, like quantum mechanics. This

point of view shares much with the Copenhagen interpretation1, but is primarily an

operational approach, eschewing concepts which make no difference in the laboratory.

Taking measurements as the fundamental building blocks of the theory only works

if the rest follows without too much further input, which is indeed the case. By uti-

lizing quantum measurements in their most general form, POVMs, the probability

rule follows immediately. From there dynamical rules are only a short step away,

and the foundations of the theory are set. Generally, all possible POVMs should

be considered, but for qubits even just the trine measurement suffices to imply the

Born rule. Such a successful application of generalized measurements should serve

to cement their foundational status. Additionally, chapter six demonstrates that

actually implementing POVMs is no more or less daunting than projective measure-

ments, which should overcome any lingering doubts stemming from adherence to the

axioms as originally formulated by von Neumann.

Having determined that probabilities in quantum mechanics come encoded in

the form of a density operator, chapter four sets out to build up a representation

of finite-dimensional quantum theory purely in terms of measurement probabilities.

The ideal measurement candidate on which to base the construction is the most

1Summed up neatly by Lawrence Bragg as “Everything in the future is a wave, every-
thing in the past is a particle.”
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symmetric measurement available, the SICPOVM. In the terms of frame theory,

the set of vectors associated with the SICPOVM is simultaneously an equiangular

spherical code, a spherical 2-design, and a discrete version of a Weyl-Heisenberg

frame. This rich structure accounts for its simple properties and usefulness to this

problem, but unfortunately does not lead so easily to an existence proof. Instead, the

first half of chapter four details the relevant structure before presenting numerical

results showing existence in dimensions up to 45.

Satisfied, at least provisionally, that the SICPOVM does always exist, the second

half of the chapter develops an elegant formulation of quantum mechanics—density

operators, measurements, and dynamics—explicitly in terms of it. Quantum states

are replaced with the analog of the Husimi Q function, i.e. the probability distribu-

tion when measuring the SICPOVM. Measurements are represented by the analog

of the Glauber-Sudarshan P function, while quantum operations become stochastic

maps on the Q function. This formalism provides a means to work with quantum

mechanics in terms familiar from classical probability theory. However, the mathe-

matical difficulties inherent to the theory carry over to the new representation. In

particular, the condition demarcating the density operators from all operators is

quite complicated and difficult to deal with. In the new representation things are no

different: just as not all operators are density operators, not all probability distribu-

tions are Q functions. The new representation does not offer any immediate help in

clearly describing the boundary.

Study of the SICPOVM bridges the gap between the foundational topics of part

two and the practical applications of part three, because not only does it offer ap-

pealing representations for quantum mechanics, but it is also useful for quantum

cryptography. Chapter five provides a concise background of cryptography and cryp-

tographic methods before explaining what quantum mechanics has to offer. Cryptog-

raphy itself is charged the nominal task of encoding messages so that they cannot be

read by unintended parties. This involves using another string, the key, to transform

the message into something unintelligible. Using the key again recovers the message,
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so in practice the real difficulty lay in ensuring each intended party has a copy of

the key. This is not an easy task when the parties are separated by a large distance.

Now the peculiar (even offensive) features of quantum mechanics come to our aid to

provide a means of key distribution whose security is grounded in physical law, not

on the apparent computational difficulty of certain tasks as it is currently.

If quantum mechanics offers security in key distribution protocols, spherical codes

offer more of it, as the second half of chapter five examined in detail. The workhorse

of these schemes is the phenomenon that measuring a quantum state to determine its

identity invariably perturbs it. This allows Alice and Bob to establish a putative key

in almost any way they like using quantum signals, and then simply check if it has

been compromised. If it has, they simply throw the key away and begin again when

circumstances change. To investigate how much eavesdropper interference can be

sustained before Alice and Bob must abandon their efforts, analysis of spherical code

protocols was performed in the context of the intercept/resend attack, and direct

comparison with more traditionally studied schemes was made. This simple attack

lays out the general features of the spherical code protocols, which are important to

understand before mounting a full-scale attempt to prove unconditional security. At

the outset, it’s not apparent that spherical code protocols will be at all useful, so

going straight for the ultimate answer of unconditional security against all attacks is

not immediately warranted. For the intercept/resend method of eavesdropping, the

ability of a set of quantum states (which can be assembled into a POVM for use by

Bob) to record tampering was found to be related to the minimum of the t = 2 frame

potential. This explains the numerical results showing that the available ESC proto-

cols in a given dimension, and the SICPOVM in particular, offer more security, more

resistance to eavesdropping. These protocols trade speed of key creation to achieve

higher security, as was evident when comparing protocols having a fixed number of

elements, again in a given dimension. Besides these two direct comparisons, two fur-

ther observations should be made of the versatility of ESC protocols. First, spherical

codes offer a greater variety of protocols, so that although they trade speed for se-
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curity in any one instance, there may be faster ESC protocols providing just enough

security for the particular implementation in question. Should the apparent noise

level in the communication channel used by Alice and Bob be low, there’s really

no reason to use a protocol which resists eavesdropping associated with very much

larger error rates; in a particular use the goal is of course to create the required keys

as fast as possible. Second, the ESC protocols are capable of automatically estimat-

ing the error rate of the channel, saving a step for Alice and Bob and making the

possibility of autocompensating protocols easier to realize. If, unlike in the previous

point, noise levels in the channel fluctuate over time, Alice and Bob might instead

desire a protocol which automatically compensates for this, particularly one which

does not involve changes to the physical hardware used.

To take a step toward establishing their unconditional security, the end of chap-

ter five examines the concrete case of the two qubit-based protocols, the trine and

tetrahedron. By a slight modification to the general ESC protocols, these two were

demonstrated to be just as fast as their two cousin protocols, BB84 and six-state, but

offer the same advantage of automatic noise estimation as before. Stronger eaves-

dropping attacks could be considered in this case, and the results were the same, if

less dramatic.

The use of spherical codes represents a conceptual step away from the tradi-

tionally studied protocols which provide Alice and Bob the opportunity to deter-

ministically create key letters in each step. When Bob measures in the basis Alice

used to prepare the state, he is certain to obtain the identical value if the channel

is noiseless. In contrast, even using a noiseless channel, the raw strings of signals

and outcomes generated by ESC protocols contain discrepancies which are proba-

bilistically removed using classical error-correction. The exceptions are the trine and

tetrahedron protocols, for which suitable measurements “dual” to Alice’s signal en-

semble can be be used by Bob. Placing the reliability of the protocol in the hands of

the data processing instead of the signal set reflects the same spirit Shannon intro-

duced into the problem of reliable communication: establishing some, but not total,
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correlation is typically sufficient if not optimal for classical communication. The trick

in applying this idea to cryptography is to find a signal set which offers something in

return for the decrease in key rate. Spherical codes, due to their appealing structure,

were in retrospect perhaps an obvious candidate.

Finally, chapter six tackles the question of how the higher-dimensional proto-

cols can be implemented, be they ESC or MUB based. Since Alice and Bob must

communicate over in principle large distances, methods of encoding quantum states

into electromagnetic modes are investigated. To lay the groundwork, polarization-

based encoding is first examined, as this method is straightforward and already in

widespread use. Each photon may be thought of as a qubit using this scheme, and

arbitrary quantum states are simple to prepare with polarizers and waveplates. Ar-

bitrary measurements are also easy to realize by first transcribing the polarization

state into various spatial channels with a polarizing beamsplitter and waveplate.

From there, ordinary beamsplitters and phase shifters suffice along with photodetec-

tion suffice to realize any measurement Bob wishes to perform. These three building

blocks, state preparation, transformation into spatial modes, and subsequent process-

ing and detection, are then applied to the question of encoding higher-dimensional

systems into transverse spatial field modes. For state preparation Alice may resort

to holography, even though it is of low efficiency. Processing and detection by beam-

splitters, phase shifters, and photodetectors again applies, once the superposition

states Alice has created can be broken down into components traveling in different

spatial channels. The tricky part, then, is the analog of the polarizing beamsplit-

ter/waveplate combination. Due to the phase profiles of the transverse mode states

under consideration, mode sorting is possible using interferometric techniques. An

analog of the polarizing beamsplitter can be realized which sorts the incoming beam

into it various constituents, suitable for further processing and measurement. A

transverse-mode waveplate can be realized using holograms, though this suffers from

low efficiency.

In its last section, chapter six examines the practical issues surrounding quantum
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cryptography. Foremost is the interdiction against using high-intensity pulses, lest

Alice simply give away many copies of the state she intends for Bob. The methods

developed for higher-dimensional encoding fit into this scheme, as Bob’s measure-

ment device consists of high-efficiency elements, at least in principle. On the state

preparation side, Alice need not worry about using high-efficiency elements since she

is required to strongly attenuate the beam anyway. Physical means may be able to

boost the signal intensity, such as reliably sending one photon per pulse, but here

again spherical codes offer a “software” advantage. Considering the qubit case, the

nonorthogonality of all the signal states makes it impossible for Eve to unambigu-

ously determine the key bit even when in possession of several copies.

7.2 Topics for Future Work

Having concluded our tour through only a tiny section of quantum information, the

question naturally turns to future applications of this work. Good science is that

which not only provides answers but asks new questions, and this work will hopefully

prove no different. Topics deserving further inquiry abound; some are rather obvious

extensions of results reported here, and some are applications of the tools developed

herein to other problems.

Clearly one would like to place the existence of SICPOVMs on firm ground. An

existence proof would likely reveal something mathematically interesting, for it has

not been established by straightforward means, as detailed in chapter four. Because

the SICPOVM is apparently strongly related to the displacement operators, and

these operators find wide application in quantum information theory, such a proof

may also have direct relevance to the field. Finally, in the face of considerable

numerical evidence, it is mathematically unjust not to establish analytically what is

clearly true.

Studying the SICPOVM is also worthwhile because it is useful, and not just for
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quantum cryptography. Along with the question of what measurements are suitable

for state tomography comes the problem of finding an optimal one, a measurement

which determines the state with as efficiently as possible. It is known that for qubits,

the uniform POVM extracts the most information about the state’s identity per

measurement, so it is the fastest possible means to determine an unknown quantum

state [86, 87]. But in addition to being wildly impractical, it is also incredibly waste-

ful. For each outcome we would need to store the associated spherical coordinate

to high precision. The entropy of the generated data will be gigantic in compari-

son with the minuscule amount of information extracted. Very well, only speed was

demanded. If instead we wish to determine the state without requiring a massive

data storage capacity, the SICPOVM seems to be the logical choice. Having the

fewest number of outcomes possible, we simply need to keep track of how often each

outcome occurs, vastly reducing our data storage requirements. But is this indeed

the case? This question is likely not too difficult to answer. Much more difficult, but

more rewarding would be to look for an “information-maximization” principle akin

to that mentioned in the introduction for linear polarization. Using the SICPOVM

in a particular dimension to again determine an unknown quantum state, can it be

established that the quantum probability rule maximizes the information gain in this

process?

Naturally, quantum key distribution provides ample opportunities for future

work. Foremost is proving the unconditional security of the spherical code pro-

tocols, starting with the qubits as a concrete case. Now that the intercept/resend

analysis has shown the usefulness of ESC protocols, the newly-developed methods

of establishing privacy amplification should be of help. If such a direct appeal is

not forthcoming with results, a more limited step can be taken by examining the

various cloning protocols which have been studied in the context of unbiased basis

protocols. These were determined to be optimal attacks when only eavesdropping

on signals one at a time. Such a result is of great practical utility, because demand-

ing unconditional security is an example of over-engineering for two reasons. First,
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in practice quantum key distribution only forms a part of a larger cryptosystem,

which itself is not unconditionally secure. Second, assuming that Eve can perform

arbitrary interactions on arbitrary numbers of signal states is hopelessly unrealistic.

Ultimately it is of theoretical interest that quantum key distribution systems exhibit

security against all possible eavesdropping attacks consistent with physical law, but

these are not all likely to be the attacks in practice. Restricting attention to the

cases in which Eve only interrogates signals one at a time is far more realistic, be-

cause nothing like reliable quantum memory currently exists. Coupled with the first

point it’s unrealistic to assume that an eavesdropper with a fully-functional quantum

computer would choose to attack the cryptosystem at its strongest point. Returning

to the theoretical perspective, such a gradual building-up of eavesdropping methods

is how the analysis of BB84 proceeded historically, so it’s not a bad idea to travel

this proven path.

Within the context of the intercept/resend attack, the security optimality of

spherical code protocols could be examined. The argument given in chapter five

relating to the frame potential is only heuristic as it does not establish the maximum

tolerable noise rate, but rather shows that eavesdropping on the spherical codes

is easily detected. Numerical investigation should suffice to establish quickly how

the ESC protocols stand in relation to random protocols. Additionally, with the

tools of frame theory, the restrictions on investigating signal sets which also form

POVMs can be relaxed. Arbitrary vectors can be collected for the signal set, and

Bob assigned the associated canonical tight frame for measurement. Finding the

optimal ensemble, be it an equiangular spherical code or not, is certainly of interest,

since although quantum mechanics offers the possibility of secure key distribution,

it isn’t limitless.

Related to the optimal ensemble problem is determining how these prepare and

measure schemes stand in relation to protocols making full use of quantum coher-

ence and entanglement. Normally one considers key distribution protocols which

have as little to do with quantum mechanics as possible. This makes them easy
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to implement, but one wonders how much is sacrificed. In principle, quantum key

distribution is quite straightforward—distribute halves of entangled states, concen-

trate the entanglement into a fewer number of systems if it was corrupted, and then

simply measure each part to establish the key. Since entanglement cannot be shared,

truly secret keys follow from measurements of entangled particles. Concentrating the

entanglement, a process known as entanglement distillation, is the difficult part. In

general this is a massively multi-particle process, and is therefore extremely difficult

to implement. Prepare and measure schemes, in contrast, are as simple to implement

as possible, focusing on one system at a time and doing the key distillation classi-

cally. But how much is really lost in the conversion of this process into something

easier to implement? We’ve restricted attention to the lower bound of the key rate

bounds, the one achieved using one-way communication. With two-way communica-

tion between parties longer keys can be cut from the same raw strings, but so far a

large gap exists between this rate and that which could be achieved using entangle-

ment distillation [70]. Will this gap necessarily persist in the face of improved key

distribution protocols, or can everything that can be achieved using fully quantum

protocols also be done with simpler, stripped-down protocols? Though the answer

to this question is of practical value in determining how much effort should be put

into realizing more coherent protocols, it also bears on the fundamental issues of

how we conceive of the information processing tasks. If the prepare and measure

schemes are sufficient, then quantum information processing is conceptually similar

to classical information processing, albeit in a context with more than a few peculiar

features. On the other hand, if such schemes are insufficient to realize the full se-

crecy capacity of quantum mechanics, then something inescapably different is taking

place. Though performing similar tasks, the quantum information processing cannot

be accounted for by adding the quantum features to classical information processing

tasks. This question mirrors the debate on the computer science side of quantum

information theory about what gives a quantum computer its apparent power over

classical computation, another practical question with foundational implications.
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Returning to the remarks at the end of chapter six, determining the ability of

spherical code protocols and others like them to resist number splitting attacks de-

serves attention. In this instance a purely practical consideration motivates this

problem, but as with most research topics in quantum information theory, again a

foundational connection can be made. Now the issue is resistance to copying, not

just the ability to bear witness to it. The qubit spherical code protocols accomplish

this by combining their inherent indistinguishability with a structure that allows Al-

ice and Bob to create key bits deterministically with some probability. Since Eve has

less than unit probability of correctly copying the state and guessing the key letter,

Alice and Bob can simply give her a copy and proceed anyway. This phenomenon

is subtler than the use of the information/disturbance tradeoff to provide security

against single signal interference, since now it is the combination of the ensemble

and classical communication protocol which makes the scheme possible. Practically,

resistance to number splitting would be of enormous utility in extending the range

over which quantum key distribution can be performed. Current commercial appli-

cations quote a maximum distance of 100km in ideal circumstances, a distance which

could conceivably be doubled by suitable encoding.

Finally, note that key distribution protocols make up only one aspect of quantum

cryptography. The information/disturbance tradeoff can also be used to improve

actual encryption schemes by making the strings hard for Eve to even read, let

alone crack [69]. The prohibition against recycling one-time pads stems from the

assumption that Eve has access to the ciphertext once it is transmitted, but if she

cannot even read it, Alice and Bob can confidently reuse the key for the next message.

By combining a classical one-time pad encryption system with an “eavesdropper-

detecting” quantum code, Alice and Bob can establish how much of the message Eve

was able to read, and thus how much of the key may safely be recycled. Spherical

codes may again find application in such schemes.
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[92] A. Klappenecker and M. Rötteler. “ Unitary error bases: Constructions, equiv-
alence, and applications,” Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, Proceedings, vol. 2643, pp. 139–149, 2003.

[93] A. Klappenecker and M. Rötteler, “Catalogue of Nice Error Bases,” http://

faculty.cs.tamu.edu/klappi/ueb/ueb.html.

[94] E. Knill, “Non-binary Unitary Error Bases and Quantum Codes,” LANL report
LAUR-96-2717; quant-ph/9608048.



176 References

[95] E. Knill, “Group Representations, Error Bases and Quantum Codes,” LANL
report LAUR-96-2807; quant-ph/9608049.

[96] S. Kochen and E. P. Specker, Journal of Mathematics and Mechanics, vol. 17,
pp. 59, 1967.

[97] A. Koldobsky and H. König, “Aspects of the Isometric Theory of Banach
Spaces,” in Handbook of the Geometry of Banach Spaces, Vol. 1, edited by
W. B. Johnson and J. Lindenstrauss, pp. 899–939. North Holland, Dordrecht,
2001.

[98] H. König and N. Tomczak-Jaegermann, “Norms of Minimal Projections,”
math.fa/9211211.

[99] H. König, “Cubature Formulas on Spheres,” 2003. Available online at
http://analysis.math.uni-kiel.de/koenig/preprints.html.

[100] R. König, U. Maurer, and R. Renner, “On the Power of Quantum Memory,”
quant-ph/0305154.

[101] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum
Theory. Springer-Verlag, Berlin, 1983.

[102] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial,
“Measuring the Orbital Angular Momentum of a Single Photon,” Physical
Review Letters, vol. 88(25), no. 257901, 2002.

[103] J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and
M. J. Padgett, “Interferometric Methods to Measure Orbital and Spin, or
the Total Angular Momentum of a Single Photon,” Physical Review Letters,
vol. 92(1), no. 013601, 2004.

[104] P. W. H. Lemmens and J. J. Seidel, “Equiangular Lines,” Journal of Algebra,
vol. 24, pp. 494–512, 1973.

[105] H.-K. Lo, H. F. Chau, and M. Ardehali, “Quantum Key Distribution Scheme
and Proof of its Unconditional Security”, quant/ph-0011056.

[106] A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Transformations
in Optics”, in Progess in Optics, Vol. 38, E. Wolf, editor, pp. 263. Pergamon,
London, 1998.

[107] F. Low, “Complete Sets of Wave Packets”, in: A Passion for Physics—Essays
in Honor of Geoffrey Chew, pp. 17–22. World Scientific, Singapore, 1985.

[108] G. Ludwig, Foundations of Quantum Mechanics Springer-Verlag, Berlin, 1983.



References 177

[109] N. Lütkenhaus, “Security Against Eavesdropping in Quantum Cryptography,”
Physical Review A, vol. 54(1), pp. 97–111, 1996.

[110] D. J. C. Mackay, Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridge, 2003.

[111] G. Mackey, “Quantum Mechanics and Hilbert Space”, American Mathematical
Monthly, vol. 64, pp. 45–57, 1957.

[112] G. Mackey, The Mathematical Foundations of Quantum Mechanics. Benjamin,
New York, 1963.

[113] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital
Angular Momentum States of Photons,” Nature, vol. 412(6844), pp. 313–6,
2001.

[114] U. Maurer, “Secret Key Agreement by Public Discussion From Common Infor-
mation,” IEEE Transactions on Information Theory, vol. 39(3), pp. 733–42,
1993.

[115] U. Maurer and S. Wolf, “Unconditionally Secure Key Agreement and the In-
trinsic Conditional Information,” IEEE Transactions on Information Theory,
vol. 45(2), pp. 499–514, 1999.

[116] D. A. Meyer, “Finite Precision Measurement Nullifies the Kochen-Specker The-
orem,” Physical Review Letters, vol. 83(19), pp. 3751–4, 1999.

[117] D. A. Miller, “Spatial Channels for Communicating with Waves Between Vol-
umes,” Optics Letters, vol. 23(21), pp. 1645–7, 1998.

[118] G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the Angu-
lar Momentum of Light: Preparation of Photons in Multidimensional Vector
States of Angular Momentum,” Physical Review Letters, vol. 88(1), no. 13601,
2002.

[119] W. Munro, private communication, 2004.

[120] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 2000.

[121] J. E. Nordholt, R. J. Hughes, G. L. Morgan et al., Present and future free-space
quantum key distribution, in Free-Space Laser Communication Technologies
XIV, Proceedings of SPIE Vol. 4635, pp. 116–26, SPIE, Bellingham, WA, 2002.

[122] A. Peres, Quantum Theory: Concepts and Methods. Kluwer Academic Pub-
lishers, Dordrecht, 1993.



178 References

[123] S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-State Quantum Cryp-
tography,” Journal of Modern Optics, vol. 47(2), pp. 507–16, 2000.

[124] C. Piron, Foundations of Quantum Physics. W. A. Benjamin, Reading, MA,
1976.

[125] E. Prugovec̆ki, “Information-Theoretical Aspects of Quantum Measurement”,
International Journal of Theoretical Physics, vol. 16, pp. 321–31, 1977.

[126] R. Raussendorf, D. E. Browne, and H.-J. Briegel, “The One-Way Quantum
Computer—A Non-Network Model of Quantum Computation,” Journal of
Modern Optics, vol. 49(8), pp. 1299–1306, 2002.

[127] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental Realiza-
tion of Any Discrete Unitary Operator,” Physical Review Letters, vol. 73(1),
pp. 58–61, 1994.

[128] X.-F. Ren, G.-P. Guo, B. Yu, J. Li, G.-C. Guo, “Orbital Angular Momentum
of the Down Converted Photons,” quant-ph/0309044

[129] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric
Informationally Complete Quantum Measurements,” Journal of Mathematical
Physics, vol. 45(6), pp. 1–10, 2004.

[130] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,
“Numerical SICPOVM Solutions,”
http://info.phys.unm.edu/papers/reports/sicpovm.html

[131] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems,” Communications of the ACM,
vol. 21(2), pp. 120–6, 1978.

[132] H. Sasada and M. Okamoto, “Transverse-Mode Beam Splitter of a Light Beam
and its Application to Quantum Cryptography,” Physical Review A, vol. 68(1),
no. 012323, 2003.

[133] M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, and O. Hirota, “Accessible
Information and Optimal Strategies for Real Symmetrical Quantum Sources,”
Physical Review A, vol. 59(5), pp. 3325–35, 1999.
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