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Preface
Complementarity is one of the central mysteries of quantum mechanics. First put forth by Bohr [1,
2, 3], complementarity holds that the attributes of a physical system familiar from classical mechanics
do not all simultaneously exist and are not entirely independent of how they are measured. Famously,
if the momentum of a particle is known then its position must be unknown, and vice versa, a fact
encapsulated in Heisenberg’s uncertainty relation ∆x∆p ≥ ħh/2 [4]. Even more dramatic is the
wave-particle duality encountered in Young’s double-slit experiment, which illustrates the important
role of observation. Light passing through the double slit setup produces an interference pattern on
a screen beyond the slits, as would be characteristic of a wave. But a closer examination reveals
that light arrives in particle-like “packets” at the screen, and the interference pattern only arises as a
statistical average of these particle arrival events. This particle picture tempts us to observe which
slit the light went through, which we find destroys the interference pattern! Feynman regarded this
bizarre phenomena as characteristic of all the seemingly-paradoxical quantum behavior, claiming that
the double-slit experiment is “impossible, absolutely impossible to describe classically, [and which] has
in it the heart of quantum mechanics”, and that “in reality, it contains the only mystery” (emphasis
original) [5].

The overarching goal of this thesis is to demonstrate that complementarity is also at the heart
of quantum information theory, that it allows us to make (some) sense of just what information
"quantum information" refers to, and that it is useful in understanding and constructing quantum
information processing protocols. The detailed research results which form the basis of these claims
are to be found in the included papers, and the aim here is to present an overview comprehensible to
a more general audience.1

As we shall see in Chapter 1, quantum information can heuristically be thought of as a kind of
combination of two types of normal “classical” information, specifically, classical information about
the result of measuring one of two complementary observables. Due to the uncertainty principle, we
can expect both pieces of information are not simultaneously realizable, and indeed the uncertainty
principle will play a central quantitative role throughout this work. Particularly relevant will be
the entropic uncertainty relation of [RB09] and its generalization in [BCC+10], which state that
the more that can be known by one party about one observable, the less can be known by another
party about a complementary observable. That complementary observables play an important role
in quantum information theory is not new to this thesis, and Chapter 2 discusses several fundamental
quantum information processing tasks based on their use, such as teleportation and quantum error-
correction. This chapter also provides some relevant formal background for the remainder of this
work and establishes the notation used herein.

Chapter 3 begins the overview of the new results obtained in the included papers. Here we show
that information about complementary observables not only plays an important role, but indeed
a central one, and that possession of both complementary pieces of classical information is strictly
equivalent to the existence of entanglement between the physical system the information pertains
to and the system in which the information is stored. Moreover, the uncertainty principle provides
a dual characterization, saying that entanglement between these two systems exists when the “envi-
ronment”, i.e. any and all other degrees of freedom, has no information about either complementary
observable. Both characterizations can be modified to describe secret keys useful in cryptography
instead of entangled states. Because Chapter 3 gathers and mixes results from several of the included
papers, it is entirely self-contained, whereas subsequent chapters do not go into as much detail.

1The included papers are referenced in alphabetical style, while references to other works are numeric.
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PREFACE

In Chapter 4 we show that this complementary approach is also useful in constructing quan-
tum information processing protocols and understanding why they work. Especially relevant is the
process of entanglement distillation, that is, extracting maximal entanglement from a imperfectly-
entangled bipartite resource system. The entanglement distillation process can be built up from two
instances, one for each of two complementary observables, of a simpler distillation process for clas-
sical information called information reconciliation or data compression with side information. Here
partial classical correlation between two systems is refined into maximal correlation, and reconciling
classical information about two complementary observables. Protocols for entanglement distillation
can then be adapted to a large variety of quantum information processing tasks, such as quantum
communication over noisy channels or distillation of secret keys.

Chapter 5 extends the duality in characterizing entanglement afforded by the uncertainty prin-
ciple to two fundamental information processing tasks, the information reconciliation task of estab-
lishing correlations with the first party on the one hand, and the task of removing all correlations
with the second party on the other. The latter is known as privacy amplification, and it turns out that
the ability to perform one protocol implies the ability to perform the other in certain circumstances.
This duality also implies alternative methods of entanglement distillation, in particular one which
proceeds by destroying all classical correlations with the environment that pertain to two comple-
mentary observables. We shall also see that information reconciliation and privacy amplification can
be combined to enable classical communication over noisy quantum channels.

Finally, Chapter 6 describes the usefulness of this approach to establishing the security of quan-
tum key distribution (QKD). QKD is perhaps the most natural setting in which the uncertainty
principle and corresponding issues of complementarity are immediately relevant, as the goal of this
protocol is to establish a secret key between two spatially-separated parties, a shared piece of classi-
cal information which no one else should know. Since the uncertainty principle can be understood
as a limitation on who can know how much about what sorts of information, we shall see that
complementarity-based arguments form the basis for the security of QKD protocols. These allow
us to increase the security threshold, the maximum amount of tolerable noise, of several protocols
beyond the previously-known values.

The following table summarizes which included papers form the basis for the various sections.
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1Introduction: What is Quantum Information?
At a stroke, Shannon’s landmark 1948 publication A Mathematical Theory of Communication [6]
established the field of information theory, laying out the fundamental lines of inquiry and answering
some of the important basic questions. The fundamental problem, according to Shannon, “is that
of reproducing at one point either exactly or approximately a message selected at another point.”
The different points may be different places, in which case we are interested in transmitting messages
from one party to another, such as in a telephone conversation, or they could be different times,
and the message should be reliably stored, such as on a sheet of paper. The physical systems used to
convey the message carry information, which is measured by the entropy in units of bits, short for
binary digits.1

The fact that abstract information must always be instantiated in some physical system and that
this results in a connection between physics and information theory was stressed by Landauer. He
observed this implies that logically irreversible operations, like erasure of information, are there-
fore physically irreversible and must be driven by a source of energy [8, 9]. This was later used to
resolve the paradox of Maxwell’s Demon in which an intelligent being can apparently violate the
second law by sorting the molecules of a gas into hot (fast) and cold (slow) [10]. Building on Szilárd’s
simplification of the paradox to a one-atom gas occupying either the left or right side of a divided con-
tainer [11], Bennett showed that the work gained by the demon is precisely balanced by the work
needed to reset the demon’s memory in a cyclic process [12]. It should be noted that Szilárd’s sim-
plification of the problem to a gas occupying one of two nearly anticipates the information-theoretic
idea of a bit, also demonstrating the connections between these two fields.

The field of quantum information grew out of this connection by asking the question: What
happens to information processing and information theory in general when the information carriers
are described by quantum mechanics? One immediate implication is the possibility of quantum
superpositions of information states of a bit. Instead of just the usual 0s and 1s, which might be
encoded quantum mechanically as |0〉 and |1〉, we can also have states of the form α |0〉+β |1〉 for
α,β ∈ C and |α|2 + |β|2 = 1. This change in structure requires us to reexamine the entirety of
Shannon’s information theory, rather than being able to only slightly modify the results to account
for quantum effects, as pointed out by Ingarden [13]: “The old theory [Shannon’s theory] cannot
be improved only by inserting into it some quantum formulae.”2

By now, a new, explicitly quantum information theory has been constructed by asking many of
the same questions as before, but answering them with the tools and methods of quantum mechan-
ics; see for instance the textbook of Nielsen and Chuang [14]. It has also been possible to adapt
many of the techniques of usual, classical information theory to the quantum setting. For instance,
Schumacher’s result that quantum information emitted from a source can be compressed at a rate
equal to the von Neumann entropy of the source follows Shannon’s original result quite closely [15].
Nevertheless, in contrast to the classical case, we are still left with the question of what quantum
information is information about.

The core theme of this thesis is that quantum information is in a certain sense a combination of
two pieces of classical information, information about two physical observables which are comple-
mentary in the sense first put forth by Bohr [1, 2, 3] and exemplified by the wave-particle duality

1Interestingly, Vannevar Bush had already used the phrase of “bits of information” in 1936 to describe information
encoded into punchcards [7], though his meaning is different from Shannon’s.

2Ingarden also gives a very lucid description of the historical development of quantum information theory for the
interested reader.
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1. INTRODUCTION: WHAT IS QUANTUM INFORMATION?

in the double-slit experiment [5]. Moreover, this point of view is useful in understanding and con-
structing protocols in quantum information theory. To appreciate this view of quantum information
more clearly, the focus of this chapter, it is useful to first make the notions of classical information
concrete in the following exceedingly simple game, the information game.

1.1 Understanding Classical Information via the Information Game

The information game has two players, Alice and Bob, and begins with Bob placing a coin, either
heads or tails, in a box, and giving the box to Alice. At some point later she asks Bob whether she
will see heads or tails when she opens the box. Bob’s goal is to win the game by correctly matching
Alice’s observation.

Is there a strategy with which Bob can always win the game? Of course. For instance, Bob could
always place the coin heads up in the box and answer “heads” whenever Alice comes asking. He
could also just randomly place the coin heads up or down in the box, as long as he remembers which
it was when Alice asks; this task of remembering is precisely Shannon’s fundamental problem. To
solve it, Bob could just write down “heads” or “tails” on a piece of paper and save it for later. In this
sense, the paper carries information about the coin, in particular about what Alice will observe when
she opens the box. Because there are two equally-likely possibilities, Bob could just as well use one
binary digit, a zero or one, to remember the state of the coin. Therefore the paper carries one bit of
information.

Formally, Bob’s choice of the state of the coin can be represented as a binary-valued random
variable X , taking on the values “heads” and “tails” with whatever probabilities pheads and ptails =
1− pheads he decides. The state of the memory system he uses to remember the state of the coin can
likewise be represented by a random variable, M , and a winning strategy simply has M = X for any
choice of X .

The amount of information stored the memory can be quantified by the Shannon entropy, de-
fined for an arbitrary random variable Y as

H (Y ) =−
∑

y
py log py , (1.1)

using log = log2 to measure in bits, a choice we shall make henceforth. The entropy of a random
variable Y quantifies its uncertainty and is equal to the expected number of binary (yes/no) questions
one would need to ask about Y in order to determine its actual value y [16]. A more concentrated
distribution is less uncertain and makes guessing easier, and therefore has lower entropy, whereas the
uniform distribution has maximum entropy and requires the most questions.

To win the game, the contents of the memory must determine the state of the coin, and thus
contain information equal to the entropy of the coin H (X ). Thus, for the original winning strategy
no information is stored in the memory at all—the memory is not even needed—as the coin always
shows heads. Correspondingly, the entropy of this distribution is zero. In the second strategy, the
memory stores one bit of information, since the coin is placed randomly in the box and H (X ) = 1.
For distributions in between these two limiting cases, we can imagine many playing many rounds
of the game and the entropy gives the ratio of number of questions needed to number of rounds.
For the distribution pheads =

7
8 , ptails =

1
8 , which has entropy H (X ) = 3− 7

8 log2 7 ≈ 0.54, only 54
questions would be needed to determine the state of the coin in 100 rounds of play. In this case each
memory register stores roughly one-half a bit of information.

On the other hand, given the value stored in the memory, the entropy of the coin random vari-
able X is zero for every winning strategy. Formally, we can describe this using the conditional
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1.2. Complementarity in the Information Game

entropy, defined using the probability of X = x conditional on M = m, px|m = px m/pm ,3

H (X |M ) =
∑

m
pm H (X |M = m), for H (X |M = m) =−

∑

x
px|m log px|m . (1.2)

The conditional entropy can also be shown to satisfy H (X |M ) = H (X M ) − H (M ), and we can
interpret it as the uncertainty of X given knowledge of M . Since a winning strategy only requires
M = X , it is easy to work out that H (X |M ) = 0 regardless of Bob’s choice of X , the probability
distribution he uses to decide whether to place the coin heads up or down. If the memory is faulty,
then the stored value will not precisely match the state of the coin. For instance, if there is one
chance in eight of a memory error and the coin was placed randomly in the box, then pheads|heads =

7
8 ,

ptails|heads =
1
8 , and similarly for the probability conditioned on tails. Working out the conditional

entropy, we find H (X |M ) ≈ 0.54, meaning roughly half the information about the coin has been
corrupted!

1.2 Complementarity in the Information Game

What changes if Alice and Bob play the game with the quantum version of coins, qubits, instead of
classical bits? Qubits are any quantum system with two levels, which we denote |0〉 and |1〉, for in-
stance the polarization degree of freedom of a single photon (horizontal versus vertical polarization)
or the angular momentum of a spin- 1

2 particle (angular momentum aligned or antialigned with a
fixed spatial axis). Quantum-mechanical complementarity now comes into play and we can alter the
game to illustrate the various effects concretely. Before doing so, let us discuss more precisely what is
meant by complementarity, adopting the language of the wave-particle duality simplified to a single
photon in a Mach-Zehnder interferometer.

Thinking of light as a particle, we expect to find the photon in one or the other of the two modes.
By placing a photodetector in each arm of the interferometer, we can determine where the photon
is by looking to see which of the photodetectors is triggered. Let us call this the amplitude measure-
ment. Associating the states |0〉 and |1〉 to the two modes, the amplitude measurement corresponds
to a projective measurement in this basis. We may also define the amplitude observable by assigning
values to the two possible outcomes. The usual choice comes from thinking of a qubit as a spin- 1

2 par-
ticle and using the angular momentum, and we define the amplitude observable as Z = |0〉 〈0|−|1〉 〈1|.
That is, a photon in the first mode takes the value +1 and in the second −1.

If we instead think of light as a wave, we expect there to be a certain phase relationship between
the two arms, and in this case the light can interfere either constructively (in phase, +) or destruc-
tively (out of phase, −). To determine which, we allow the two modes to interfere at a beamsplitter
and then check in which mode the photon emerges with a photodetector. Let us call this the phase
measurement. Like the amplitude measurement, the phase measurement is a projective measure-
ment, but in the basis |±〉= 1p

2
(|0〉±|1〉). Again we can define a corresponding observable, the phase

observable, which for later convenience is defined exactly as the amplitude observable, but in the
new basis: X = |+〉 〈+| − |−〉〈−|. In the original basis this works out to be X = |1〉 〈0|+ |0〉 〈1|.

Amplitude and phase are complementary properties precisely as in the double slit setup, in the
sense that if the photon is in a definite mode, then the phase relationship is completely undefined, and
vice versa. This can be immediately seen from the two sets of basis states, as measurement of either

3We follow physicists’ conventions of naming arguments of functions and expressions, so that e.g. pm|x is the proba-
bility of M = m given X = x, not the probability of X = m given M = x.
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1. INTRODUCTION: WHAT IS QUANTUM INFORMATION?

eigenstate of amplitude produces a completely random outcome. At the level of observables, we can
quantify this by an uncertainty relation. The most famous of these is the Heisenberg-Robertson
relation relating the variances of the observables to the expectation of their commutator [4, 17],

∆X∆Z ≥ 1
2

�

�

�〈[X ,Z]〉ψ
�

�

� , (1.3)

where 〈· · · 〉ψ denotes the expectation value evaluated for the quantum state |ψ〉 of the system. In
this case, however, the bound is trivial. Since the operators X and Z anticommute (X Z +ZX = 0),
the righthand side reduces to |〈X Z〉ψ|. Choosing |ψ〉 = |0〉 immediately yields zero, and a simple
calculation shows this conclusion holds for any possible choice of amplitude and phase observables.

Fortunately, there exist uncertainty relations for which the bound is state-independent. In par-
ticular, a version due to Maassen and Uffink is formulated in terms of entropy [18],4

H (X )ψ+H (Z)ψ ≥ log
1

c
. (1.4)

The quantity c is related to the commutativity of the observables, c = max j ,k

�

�

�〈ψ j |φk〉
�

�

�

2
for |ψ j 〉

the eigenvectors of X and |φk〉 those of Z , while the entropies are independently evaluated for the
outcomes of the two observables, respectively, given that the system is originally in the quantum
state ψ. In addition to the state-independent bound, the values of the observable can take play no
role in the measure of uncertainty, only the probabilities of the various values. This makes the
entropy a somewhat more natural measure than the variance. In the present case the two observables
are complementary, meaning c takes on its maximal value, 1 (for observables on a d -level quantum
system cmax = log d ). Thus, the amplitude and phase measurements cannot both be certain, and there
must be at least one bit of total entropy.

Alice and Bob can still play the classical information game with qubits, provided Alice only ever
makes, say, the amplitude measurement. Bob is free to prepare amplitude eigenstates at random,
just as before. In this sense the formalism of quantum information theory encapsulates classical
information theory, as anything we wish to express in the latter can be done by working in a fixed
basis in the former.5

Now suppose we alter the game so that Alice is free to make either an amplitude or a phase
measurement, but she does not tell Bob which. Bob can prepare arbitrary qubit states, but to win the
game he would need to be certain of the outcomes of both possible measurements. According to the
Maassen-Uffink relation, Equation (1.4), this is impossible. There is no quantum state |ψ〉 Bob can
send to Alice such that H (X )ψ and H (Z)ψ are both zero, and therefore he cannot win the game with
certainty. A simple calculation shows that the best chance Bob has to win the game is to send Alice
a state like |ψ〉= cos π8 |0〉+ sin π

8 |1〉, which is “in between” the amplitude and a phase eigenstates |0〉
and |+〉 in that | 〈0|ψ〉 | = | 〈+|ψ〉 |. Using |ψ〉, Bob has a roughly 85% chance ( 1

2 +
1

2
p

2
) of correctly

predicting that outcomes of either measurement is +1.

4Entropic uncertainty relations for position and momentum were first conjectured by Everett [19, 20] and
Hirschmann [21] and proven by Becker [22]. Generalizations to arbitrary observables were made by Bialynicki-Birula
and Mycielski [23] and Deutsch [24]. Kraus [25] first conjectured the stronger form (1.4).

5Here we consider only finite and not continuous alphabets.
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1.3. Entanglement in the Information Game

1.3 Entanglement in the Information Game

What if, after receiving the qubit from Bob, Alice decides on a measurement at random and only
asks for a prediction to this particular measurement? Since Bob does not know in advance which
measurement Alice will perform, it would seem that this does not help. After all, he is still faced with
the impossible task of preparing a state whose amplitude and phase are both predictable. Surprisingly,
however, there does exist a winning strategy! The trick is for Bob to store quantum information about
the system he sends to Alice. Note that in the game as played in the previous section, Bob really only
makes use of classical memory. He may store information such as how he prepared the state for
Alice, but this is effectively a recipe for making the state and there is nothing intrinsically quantum
about such a recipe.

To win this version of the game, Bob should create an entangled state of two qubits A and B ,

|Φ〉AB ≡ 1p
2

�

|0〉A |0〉B + |1〉A |1〉B
�

= 1p
2

�

|+〉A |+〉B + |−〉A |−〉B
�

, (1.5)

and send the A system to Alice. Such entangled states were first by Einstein, Podolsky, and Rosen
(EPR) [26] and later translated into this 2-level system language by Bohm [27]. EPR pointed out
the paradoxical property that identical measurements on the two systems always produce identical
results—the amplitude of A always matches that of B and likewise for phase—even though ampli-
tude and phase for the individual systems cannot both be simultaneously well-defined.6 In a sense,
entangled states display correlations even though there is nothing there to correlate!

However paradoxical, with entanglement Bob can always win the modified game. When Alice
asks him to predict a particular measurement, he can simply consult his quantum memory, system
B , by performing the same measurement Alice will make. Since the results are correlated, B in some
sense contains one bit of classical information about both the amplitude and phase of system A.
However, only one of these can ever be accessed because Bob cannot perform both measurements
simultaneously; being able to do so would run afoul of the uncertainty principle. This peculiar com-
bination of classical information about complementary physical properties is the essence of quantum
information. Demonstrating this more concretely will be the topic of Chapter 3.

At first glance it would seem that this behavior violates the entropic uncertainty relation Equa-
tion (1.4). Now, however, Bob makes use of system B , so we should consider the entropies of the
measurements conditioned on this fact. Thus Equation (1.4) does not apply. Just such a condi-
tional version was conjectured and proven for the particular observables under consideration here
in [RB09] and extended to general observables in [BCC+10].7 It states

H (X A|B)ψ+H (ZA|B)ψ ≥ log
1

c
+H (A|B)ψ, (1.6)

where now we make use of the quantum conditional entropy, defined using the von Neumann en-
tropy (the Shannon entropy of the eigenvalues of the density matrix) as H (A|B)ψ =H (AB)ψ−H (B)ψ.
The entropies H (X A|B)ψ and H (ZA|B)ψ refer to quantum conditional entropies evaluated for the
state after the respective observable of system A has been measured. The interpretation of a classical

6The EPR-Bohm states were actually states of two spin-1/2 systems with total angular momentum zero, so that iden-
tical measurements are always anticorrelated, but the point is the same.

7Uncertainty principles involving conditional entropy were first investigated by Hall [28] and extended to the case
of separate conditional systems by Cerf et al. [29]. Christandl and Winter [30] gave a version for quantum channels
which was the inspiration for the work in [RB09]. A much simpler proof of Equation (1.6) using the relative entropy was
discovered by Coles et al. [31].
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1. INTRODUCTION: WHAT IS QUANTUM INFORMATION?

entropy conditioned on a quantum system is not as clear as entropy conditioned on a classical sys-
tem, but Holevo has shown that it provides a lower bound on the classical conditional entropy of the
stated measurement on system A given the result of the optimal measurement on system B [32, 33].8

Although the additional term on the righthand side might appear to make the bound tighter, the
quantum conditional entropy of A given B can in fact be negative. For example, entangled states such
as |Φ〉 have H (A|B) = −1 since the AB state is pure (whence H (AB) = 0) but the state of B alone is
completely random (whence H (B) = 1). This reflects another strange nature of the EPR state in that
our uncertainty of the whole system AB appears to be less than that of one of its parts. In the present
context, H (A|B) =−1 implies that the righthand side of (1.6) is zero. Thus, the bound is trivial, and
conditioned on the quantum information B , the entropy of X and Z can both be zero.

An alternate and fully equivalent form of Equation (1.6) ensures that, even if Bob makes use of
quantum information in the original version of the game where he has to predict both outcomes, no
winning strategy can exist. It now involves three systems: the system to be measured, A, and two
memory systems B and C ,

H (X A|B)ψ+H (ZA|C )ψ ≥ log
1

c
. (1.7)

In order to make a prediction of both amplitude and phase, Bob would need two physical systems in
which to store this information. Even if he uses systems B and C as quantum memory, Equation (1.7)
ensures that amplitude and phase are still not simultaneously predictable. Put differently, although
Bob can store classical information about both properties in the EPR state, there is no way to separate
the amplitude and phase information without losing some of each in the process.

Note that we were able to define entropy conditioned on a quantum system via the alternate
form of the conditional entropy expression, H (A|B) = H (AB)−H (B). In retrospect, it is extremely
fortunate that this form exists, because even the very notion of conditioning on quantum informa-
tion is itself suspect. After all, the very nature of quantum systems is that their physical properties
are not well-defined, so it is unclear what one should condition on. For instance, one might also like
to define the variance of an observable on system A conditioned on the state of a quantum memory,
system B . But how can the presence of B be incorporated into a variance calculation? We could
stipulate that B is to be measured, calculate the variance of A for each outcome, and take the average,
but this leads to unwieldy expressions. In the case of entropy, the formal structure rescues us and
allows us to meaningfully speak of uncertainty conditioned on quantum information.

8This result was first proven by Forney [34], who did not make the connection to the conditional entropy.
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2Illustrations and Motivations
That complementary observables play an important role in quantum information processing is not
original to this thesis, though we shall see new, more concrete characterizations of quantum infor-
mation in terms of classical information pertaining to complementary observables and uses for these
characterizations in subsequent chapters. In this chapter we recount several protocols in quantum
information theory that anticipated and motivated the work presented herein. Among these are tele-
portation, where a qubit is sort of transmitted by two classical bits, and superdense coding, where
conversely a qubit carries two bits of classical information. An even more concrete prior manifesta-
tion comes from quantum error-correction, which is crucial to the possibility of ever constructing a
working quantum computer, and its use in protocols for entanglement distillation and quantum key
distribution (QKD). This we discuss in more detail, as the structure of error-correcting codes will be
useful in later chapters. But first we turn to teleportation and superdense coding.

2.1 Teleportation and Superdense Coding

Teleportation and superdense coding are two simple quantum information processing protocols
which rather dramatically demonstrate how different quantum information is from classical infor-
mation. They also indicate a connection between quantum information and complementary classi-
cal information. Both involve two parties, a sender Alice and a receiver Bob, who share an EPR pair
as given in Equation (1.5). In superdense coding, Alice would like to transmit classical information
to Bob, but using the quantum channel. One method is for both parties to fix a basis, Alice only
sending amplitude eigenstates |0〉 or |1〉 and Bob only measuring what he receives in the same basis.
This allows them to send one bit of classical information per qubit.

However, they can do better by making use of their shared entanglement, and Alice can send Bob
two classical bits per qubit [35]. The trick is to use the Bell basis,1 a basis of two maximally-entangled
qubit states, defined as follows,

|β j k〉
AB ≡ (X j Z k ⊗1) |Φ〉AB , (2.1)

using the amplitude and phase operators as defined in the previous chapter. For completeness, we
again write them here, in the basis {|0〉 , |1〉},

X =
�

0 1
1 0

�

and Z =
�

1 0
0 −1

�

. (2.2)

To transmit the two bits j and k, first Alice applies X j Z k to her half of the entangled state, A, and
then sends it to Bob over the quantum channel. Since the Bell states form a basis, Bob can measure
the joint system AB in this basis to determine j and k. In this way, one qubit of quantum information
can be made to carry two bits of classical information.

The classical information can heuristically be regarded as one bit of amplitude information and
one bit of phase information in the following manner. In the original scheme to transmit one bit
per qubit using only the amplitude basis, Alice’s actions can be described as modulating an initial
state |0〉 by the operator X j , producing |1〉 if j = 1 and leaving the state as |0〉 otherwise. The same
modulation scheme works in the phase basis using the operator Z k , starting with |+〉. In superdense

1So-named as they figure prominently in the study of whether quantum mechanics permits description as a local
hidden variable theory by John S. Bell [14].
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2. ILLUSTRATIONS AND MOTIVATIONS

coding, Alice apparently performs both and amplitude and a phase modulation, encoding two bits at
once. Due to the entanglement with Bob’s system, these two actions can coexist without interfering
with each other, allowing two bits to be transmitted.

Teleportation is sort of the inverse of superdense coding; now, preshared entanglement enables
Alice to send one qubit to Bob by transmitting two classical bits [36]. Again the trick is to use the
Bell basis. If Alice measures her half of the entangled state and the qubit to be sent in the Bell basis,
she need only forward Bob the measurement results and he will be able to reconstruct the input state.

Formally, we let C be the qubit input, in an arbitrary state |ψ〉C . It is not difficult to verify that
AC 〈β j k |

�

|Φ〉AB |ψ〉C
�

= 1
2 (Z

kX j )B |ψ〉B . This means that after Alice measures her two systems in the

Bell basis, each outcome occurring with probability 1
4 , Bob ends up with the state Z j X k |ψ〉. Thus,

Alice merely has to send Bob the two bits of information j and k, and he can apply X j Z k to recover
the original state |ψ〉 in system B . In this way, the qubit is transmitted by two classical bits, with the
help of preshared entanglement.

We can heuristically think of the two classical bits as being the amplitude and phase of the input
state |ψ〉 for the following reason. One way to perform a Bell state measurement is to first perform
the controlled-NOT (CNOT) operation and then measure each qubit separately in the appropriate
basis. The CNOT gate acts on two qubits, applying X to the second qubit (the target) if the first (the
control) is |1〉 and doing nothing to the target otherwise. It can be thought of as coherently copying
the amplitude basis of the control qubit to the target, in that a superposition state α |0〉+β |1〉 of
the control qubit and a “blank” target state |0〉 become α |00〉+β |11〉. To complete the Bell state
measurement after applying CNOT, one measures the amplitude of the target qubit and the phase
of the control. Therefore, in the teleportation protocol, we can choose the input qubit to be the
control and Alice’s half of the entangled state as the target, and it then appears as if the amplitude
information is first copied to the second qubit and read out, while the phase is read out from the first
qubit, the system itself. Of course, this is not precisely what happens, or else Alice would obtain both
amplitude and phase information of |ψ〉, in violation of Equation (1.7). Nonetheless, teleportation
indicates the important role played by amplitude and phase information.

2.2 Quantum Error-Correction

In the uncertainty game of the previous chapter, we assumed that the quantum memory used by Bob
was noise-free. Clearly this is an unrealistic assumption, and although not particularly relevant for a
gedankenexperiment, it nevertheless raises the question of what can be done to combat noise is real
quantum information processing protocols. The answer, in the quantum case as in the classical case,
is to use error-correcting codes. The fact that quantum error correction exists at all is of tremen-
dous importance both practically and conceptually. On the one hand it shows that construction of
quantum computers is not in principle a hopeless task, and on the other that quantum information
itself is essentially digital (discrete-valued) in nature, despite its outward analog (continuous-valued)
appearance. Even more, the way in which the first quantum error-correcting codes were constructed
is related to the complementarity of quantum information: Arbitrary quantum errors are digitized
into amplitude and phase errors, each of which is then corrected by essentially classical means. Be-
fore delving into the details of how quantum error-correction works, which illustrates the point more
clearly and will be of use in later chapters, we give a brief overview of the issue of analog versus dig-
ital computation and the important role played by error-correction for both classical and quantum
computers.
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2.2. Quantum Error-Correction

Whether classical or quantum, both analog and digital devices require error-correction to control
the effects of noise inescapably present in an actual device. A simple classical error-correction scheme
is simply to repeat the calculation three times and take the majority of the results. However, the
error-correction procedure itself is presumably not perfect and can only be performed to some finite
accuracy in practice. Nonetheless, following an analysis by von Neumann [37], it is possible that the
rate at which errors are decreased by the procedure is greater than that at which they are caused.

For digital computers the finite accuracy of the procedure presents no additional difficulties in
principle because the device anyway only requires finite accuracy; in a discrete encoding we choose
certain continuous parameter ranges of the underlying physical degree of freedom to correspond
to discrete logical values. Thus the nature of the encoding accords very well with the finite accu-
racy of available operations, and errors in the latter transform into errors in the former. Analog
computers, however, require error-correction to arbitrary precision, so the buildup of errors due to
finite-accuracy of operations is ultimately unavoidable. That reliable digital computers can be con-
structed from imperfect components was shown rigorously by Gács [38], though in practice current
devices usually require error-correction only in the storage of information, not its manipulation, due
to the intrinsically low error-rates of semiconductor-based integrated circuits.

Since the quantum state of the quantum computer is determined by the continuous probability
amplitudes appearing in the wavefunction, many of the same difficulties were thought to apply to
quantum computers, an issue pointed out by Peres [39] and stressed by Landauer [40, 41, 42]. Noise-
induced modifications to these amplitudes leads to errors in the computation, just as in the analog
computer, so it would seem that any advantage promised by quantum computation in principle
cannot be achieved in practice. Worse still, even the ability to perform error-correction seems suspect
in the quantum setting, because the information cannot simply be read out to check for errors, as in
the von Neumann repetition scheme, without introducing disturbance [42]. Nonetheless, there was
reason for optimism: Zurek observed that owing to the different phase-space structures involved, the
kind of exponential blow-up of errors that might be expected for a classical continuous computer
would not plague a quantum computer with a discrete spectrum [43].

Happily, the construction of quantum error-correcting codes by Shor [44] and Steane [45] demon-
strates convincingly that quantum information is not analog, but digital.2 Soon thereafter it was
established that, just as with classical digital computers, reliable quantum computers could in princi-
ple be constructed using imperfect components, a fact known as the threshold theorem [47, 48, 49,
50, 51]. Unlike the situation for classical electronic computers, no medium has yet been discovered
or engineered which offers intrinsically low quantum noise rates, though much effort is devoted to
this question and many major experimental achievements have been made. The crux of quantum
error-correction is that although continuous errors in the state of the computer are indeed possible,
they can be digitized without damaging the encoded quantum information. Instead of accessing the
quantum information directly, as one would try in a direct analogue of the repetition scheme, the
measurements needed in error-correction are designed only to provide information about the error,
not the encoded information. In this way the construction very subtly evades the two objections
described above.

2.2.1 The Complementarity of Quantum Error-Correcting Codes

Somewhat amazingly, quantum errors of any type can be corrected if discrete errors of two comple-
mentary types, amplitude and phase, can be corrected [52, 53]. These two errors result from the

2Some would still dispute this. See, e.g. Laughlin [46].
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action of the already-defined X and Z operators, respectively, acting exactly as an unwanted mod-
ulation of the quantum state. Often these errors are referred to as bit flips and phase flips, for the
following reason. One commonly fixes a basis and calls it the amplitude basis, and then for an arbi-
trary qubit state |ψ〉 = α |0〉+β |1〉 an amplitude error resulting from an unwanted X operator just
flips the states |0〉 and |1〉, hence the name bit flip. Similarly, phase flips interchange the states |+〉 and
|−〉, or equivalently, flips the phase of |1〉, taking (α,β) to (α,−β).

Either type of error by itself could be corrected in exactly the way a classical error would be
corrected, through repetition. To correct a single bit flip error classically, we can encode it into three
bits as follows,

0→ 0= 000 1→ 1= 111. (2.3)

These two bitstrings are called codewords, and the overline denotes a logical value of the encoded bit,
as opposed to the values of the individual physical bits. Then, if one error occurs, we can correct it by
examining each string and flipping the one bit which is different from the other two. Equivalently,
the error may be diagnosed by computing the two parities, generally called syndromes, s1 = b1⊕ b3
and s2 = b2⊕b3, where b1, b2, and b3 are the three bit values. The syndromes associated to each error
position are shown in Table 2.1. Note that the bit is encoded in the value of b = b1⊕ b2⊕ b3.

Bitstring pair (0,1) Error Position Syndrome (s1, s2)
(000,111) ; (0,0)
(100,011) 1 (1,0)
(010,101) 2 (0,1)
(001,110) 3 (1,1)

Table 2.1: The three-bit repetition code. The first column gives the bitstrings corresponding to the
encoded logical zero 0 and logical one 1 after a bitflip error whose position is given in the second
column. The third column lists the syndrome information which allows the error position to be
diagnosed.

Seen from a different perspective, the reason this works is that the eight possible three-bit strings
are grouped into four pairs, as in Table 2.1. One pair is given by the codewords themselves, and the
other pairs are the images of the codewords under the three single-bit errors. In each pair one string
corresponds to 0 and the other to 1 as defined by this mapping. The syndromes reveal precisely
which pair is present, but importantly they do not reveal anything about the logical bit value. Error-
correction corresponds to mapping the noisy pair of strings back to the original pair.

To correct qubit bit flip errors we may simply use the same repetition code in the computational
basis. Since the syndrome and correction procedure for a given error are independent of the en-
coded information, superpositions are also maintained by the error-correcting code. Thus, the state
|ψ〉 = α |0〉+β |1〉 is encoded as |ψ〉 = α |000〉+β |111〉, a process which can be implemented as a
unitary transformation on the input and two auxiliary systems, each in some given state we can take
to initially be prepared in the state |0〉. The necessary syndrome information can be generated by
measuring the two stabilizer operators Z1Z = Z ⊗1⊗Z and 1ZZ , which we can write as Z1Z3 and
Z2Z3. Each of these has the same action on the two logical states in each subspace, returning the
values (−1)s1 and (−1)s2 , respectively.

The name stabilizer reflects the fact that the code subspace is stabilized by the two operators, as
it is the simultaneous +1 eigensubspace of both operators. The encoded subspace supports a single
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2.2. Quantum Error-Correction

qubit, and so it must be possible to represent its amplitude and phase operators. One possibility is
given by Z = Z1Z2Z3 and X =X1X2X3. These each commute with the stabilizers, but anticommute
with each other as intended. Note that Z gives the encoded bit, just as in the classical case.

We can also think of the stabilizers and encoded amplitude operator as defining a new complete
set of commuting observables for the set of physical qubits. Such a set fixes a basis in the state space
of the three qubits, and each of the operators is the amplitude operator for a corresponding “virtual”
qubit. Labeling the virtual qubit operators with primes, we can write Z ′1 = Z1Z2, Z ′2 = Z2Z3, and

Z ′3 = Z = Z1Z2Z3. Conjugate to the new amplitude observables are phase observables X ′1 = X2X3,
X ′2 = X1X3, and X ′3 = X = X1X2X3, which are found by ensuring that they anticommute with the
amplitude operators of the same qubit but commute with all other operators. The entire collection
is shown in Table 2.2. The code subspace is then defined by the first two virtual qubits being in the
+1 amplitude state. Bit flip errors change the amplitude of the encoded qubit and at least one of the
virtual qubits, and the stabilizer measurement determining the location of the error translates into
an amplitude measurement of the first two virtual qubits.

Virtual qubit Amplitude Phase
1 ZZ1 1X X
2 1ZZ X X1
3 ZZZ X X X

Table 2.2: Virtual qubits associated with the three-qubit amplitude repetition code. Note that
amplitude and phase anticommute for each qubit, but commute for different qubits.

Discretization is automatically provided by the measurement of the stabilizer operators, which is
anyway necessary for error-correction. Consider an error operator of the form E = e0I + e1X1, with
e0, e1 ∈C, which is a sort of combination bit flip error and no error on the first qubit. It produces a
superposition between two code subspaces,

|ψ′〉= E |ψ〉= e0 |ψ〉+ e1X1 |ψ〉= e0 (α |000〉+β |111〉)+ e1 (α |100〉+β |011〉) . (2.4)

Measurement of the stabilizer operators destroys this superposition, forcing the system to the state of
either one error or no error, but leaves the logical qubit superposition intact. Here the measurement
has two possible syndrome outcomes, either (0,0) or (1,0), with probabilities |e0|2/(|e0|2+ |e1|2) and
|e1|2/(|e0|2 + |e1|2), respectively. Conditioned on these outcomes, the state becomes |ψ〉 or X1 |ψ〉,
respectively, and can therefore be corrected using the syndrome information.

2.2.2 Correcting Both Kinds of Errors

Since phase flips are just bit flips in the basis |±〉, the above analysis immediately applies to this
case upon changing X ↔ Z and working in the new basis. The insight of Shor and Steane was
to realize that a single error of either type can be corrected by appropriately combining these pro-
cedures. Shor’s scheme is conceptually somewhat simpler, and is based on concatenating the two
error-correcting codes. That is, we take the codewords of the phase flip repetition code and replace
each of the three qubits with qubits appropriately encoded in the bit flip repetition code. This pro-
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duces codewords of nine qubits, as follows (here ignoring normalization),

|+〉 −→|+〉= |+++〉= (|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉) (2.5)

|+〉 −→ |e+〉= (|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉), (2.6)

|−〉 −→|−〉= |−−−〉= (|0〉− |1〉)(|0〉− |1〉)(|0〉− |1〉) (2.7)

|−〉 −→ |e−〉= (|0〉− |1〉)(|0〉− |1〉)(|0〉− |1〉). (2.8)

The repetition in the amplitude basis in the second step protects the encoded qubit from bit flip
errors, since a single bit flip can always be detected and corrected by applying the 3-qubit repetition
procedure to each block of three qubits. This corresponds to measuring the Z -parity observables
Z1Z3, Z2Z3, Z4Z6, Z5Z6, Z7Z9, and Z8Z9. Phase flips are slightly more involved, but consider what
happens when a single phase flip error plagues, say, the fourth qubit. This is the first qubit of the
second block, so we can zoom in on this block to determine the effect on the encoded states. Ap-
plying the error operator Z1 to the encoded states we find Z1 |0〉 = Z1 |000〉 = |000〉 = |0〉, while
Z1 |1〉= Z1 |111〉=−|111〉=−|1〉. Thus, the error causes the action

|e+〉→ (|0〉+ |1〉)(|0〉− |1〉)(|0〉+ |1〉) (2.9)

|e−〉→ (|0〉− |1〉)(|0〉+ |1〉)(|0〉− |1〉), (2.10)

which is precisely a phase flip at the “inner” level. We could detect and correct this at the inner level
by measuring the X -parities X1X3 and X2X3. Translating to the outer level of actual qubits, we replace
each of the constituent X operators on the inner level by its encoded X operator on the outer level
and instead measure X1X2X3X7X8X9 and X4X5X6X7X8X9. The outcomes for the damaged states are
+1 and −1 respectively, for both encoded states, implying that to correct the error we merely need
apply Z4.3

The six amplitude parities and two phase parities commute pairwise and stabilize the code sub-
space. As with the repetition code, the error analysis is made simpler by thinking in terms of virtual
qubits, in this case nine, as shown in Table 2.3. Observe that the concatenated structure is reflected
in the operators: three copies of the repetition code in virtual qubits one through six, followed by
the same repetition code on the three blocks. The code subspace is fixed by requiring virtual qubits
one through six to be in the +1 amplitude eigenstate and virtual qubits seven and eight in the +1
phase eigenstate, but this structure makes it clear that we could have defined the code the other way
around.

Using this framework it is easy to see that the Shor code also enables detection and correction of
joint bit and phase errors. A joint bit and phase flip of the fourth qubit, for instance, would reveal
itself by the fourth virtual qubit having the wrong amplitude and the seventh having the wrong phase,
corresponding to −1 eigenvalues of the stabilizers Z4Z6 and X4X5X6X7X8X9. From the structure of
the virtual amplitude and phase operators it is clear that the code can actually detect and correct one
bit and one phase error, irrespective of their locations.

Again error discretization is provided by the stabilizer measurement, and fortunately, being able
to correct just these two types of error is sufficient to correct any conceivable single-site error. Just as
with the repetition code, we can consider the effect of arbitrary errors which are linear combinations
of all the correctable errors. Since the Shor code can correct any single flip of bit and/or phase, errors

3Z5 or Z6 would also work just as well. This flexibility is actually a subtle and important feature of quantum error-
correcting codes we shall return to in Section 6.3.
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Virtual qubit # Amplitude Phase
1 ZZ1111111 1X X 1 1 1 1 1 1

2 1ZZ111111 X X 1 1 1 1 1 1 1

3 111ZZ1111 1 1 1 1X X 1 1 1

4 1111ZZ111 1 1 1X X 1 1 1 1

5 111111ZZ1 1 1 1 1 1 1 1X X
6 1111111ZZ 1 1 1 1 1 1X X 1

7 ZZZZZZ111 1 1 1X X X X X X
8 111ZZZZZZ X X X X X X 1 1 1

9 ZZZZZZZZZ X X X X X X X X X

Table 2.3: Virtual qubits associated with the nine-qubit Shor code. Note that amplitude and phase
anticommute for each qubit, but commute for different qubits.

of the form E = e00I + e10X1 + e01Z1 + e11X1Z1 with e j k ∈ C can also be corrected. But, as can be
readily verified, any operator can be expressed in this way as a complex combination of these four
operators, meaning arbitrary single-site errors can be digitized to amplitude and/or phase errors and
corrected. Despite initial appearances to the contrary, quantum information is therefore in a critical
sense digital.

2.3 Entanglement Distillation

Quantum error-correction quickly found use in constructing protocols for distillation of entangle-
ment, as well as in proving the cryptographic security of quantum key distribution protocols. We
give a brief treatment of these uses here, as they will be generalized in later chapters.

Distilling entanglement refers to transforming imperfect EPR states into approximately perfect
ones. For instance, if Alice sends halves of maximally-entangled states through a noisy quantum
channel to Bob, then the states which emerge will no longer be maximally-entangled. But it may
be possible to repair some fraction of the states by actions undertaken on Alice’s and Bob’s systems
alone, plus classical communication between them to coordinate their actions. To see how this is
done, suppose that Alice and Bob share many copies of the state

ψAB =
∑

j k

p j k |β j k〉 〈β j k |
AB , (2.11)

with p j k ≥ 0 and
∑

j k p j k = 1, which is just a probabilistic mixture of the four Bell states. This state
is produced, for instance, by sending the B half of the state |Φ〉 = |β00〉 through a channel which
applies the operator X j Z k with probability p j k . In principle, Bob can repair the actual state ψAB to
the desired state ΦAB by determining which of these operators was applied and subsequently undoing
it. Thus, the task is reduced to determining the actual sequence of errors, at least for states of this
form.

This sounds like a job for a quantum error-correcting code, even though here Alice is not first
encoding the qubits she sends to Bob. Nevertheless, Alice and Bob can determine the error pattern
by each measuring the stabilizer operators of an error-correcting code. It is simple to show that, just
as in the information game, if Alice and Bob make the same stabilizer measurements on collections
of EPR states, then they should always obtain the same outcomes. To the extent that they obtain
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different outcomes, this indicates an error. For instance, suppose that Alice and Bob divide their
systems into groups of three and use the simple bit-flip repetition code described above. On each
group of three, both Alice and Bob measure the stabilizers Z1Z3 and Z2Z3. Perhaps the simplest way
to work out what outcomes will occur is to note the following relationship,

1⊗ E |Φ〉= ET ⊗1 |Φ〉 , (2.12)

valid for any operator E , where ET is the transpose of the operator when expressed in the amplitude
basis {|0〉 , |1〉}. Now we can calculate the effect of the product of Alice’s and Bob’s stabilizers on the
ideal state. Since ZT = Z and Z2 = 1,

ZA1ZA3ZB1ZB3
�

|Φ〉A1B1 |Φ〉A2B2 |Φ〉A3B3
�

= |Φ〉A1B1 |Φ〉A2B2 |Φ〉A3B3 , (2.13)

which implies that Alice and Bob must indeed obtain identical outcomes for their stabilizer measure-
ments since their product must be+1. The same clearly holds for Z2Z3. If there is one X error in the
state, say in the first position, then we find using the same method

ZA1ZA3ZB1ZB2
�

X B1 |Φ〉A1B1 |Φ〉A2B2 |Φ〉A3B3
�

= ZA1X A1ZA1
�

|Φ〉A1B1 |Φ〉A2B2 |Φ〉A3B3
�

(2.14)

=−X B1 |Φ〉A1B1 |Φ〉A2B2 |Φ〉A3B3 . (2.15)

Now the state is a −1 eigenstate of the product of stabilizers, meaning the product of syndromes is
−1, and hence that Alice and Bob obtain different outcomes for these stabilizer measurements. A
single X error on the first qubit will of course not affect the Z2Z3 measurements. But together the
two stabilizer measurements suffice to locate a single X error in the three pairs, exactly as in the
error-correction scenario.

The story is essentially the same for any quantum error-correcting code, so we may create a
protocol for entanglement distillation as follows, following Bennett et al. [53]. First, Alice and Bob
use a small fraction of their pairs in order to determine the number of each type of error X , Z ,
and X Z , simply by both measuring in the appropriate basis and recording how often they obtained
the same outcome. The bases are just the amplitude basis, the phase basis, and the basis consisting
of the eigenstates 1p

2
(|0〉± i |1〉) of X Z , respectively. Next, given the expected number of errors,

they choose an appropriate error-correcting code, but if no suitable codes exist they must abort the
procedure. If a suitable code does exist, they proceed by measuring the stabilizers to determine, with
high probability, the actual pattern of errors, which can then be corrected by local operations on
Bob’s systems.

This does not quite leave them with the desired states |Φ〉, however, since they have made the
stabilizer measurements. Instead, the |Φ〉 reside in the encoded subspaces specified by the error-
correcting code, their number corresponding to the number of encoded qubits. To recover these
states, they each apply the decoding operation (the inverse of the encoding operation) to their sys-
tems. The above protocol is designed to work for states of the form given in Equation (2.11), but
actually applies to any input state since the stabilizers used in the protocol will automatically digitize
arbitrary errors to amplitude and phase errors.

2.4 Quantum Key Distribution

Quantum key distribution (QKD) provides a means for the two separated parties Alice and Bob to
communicate in private using only public communication channels. The security of the scheme is
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based only on the laws of physics and not the perceived computational difficulty of some task, like
factoring large integers, as commonly used in classical schemes today. Needless to say, the problem
of private communication is ancient, but it was first put on a firm mathematical footing by Shan-
non [54]. There the task is broken into two parts, establishing a secret key between the two parties,
a random string of bits shared by both parties, and then using it to encrypt and decrypt the actual
messages. One can imagine Alice and Bob creating a secret key together at some point in the past
when they could do so secretly, but if they are already separated and can only communicate publicly,
the situation seems hopeless. They could communicate privately if they had a key, but they need to
communicate privately to create the key.

Quantum information offers a way out of this dilemma in the form of entanglement. Returning
to the uncertainty game, recall that Bob can, on demand, predict either the amplitude or phase
measurement on Alice’s system when they share an EPR pair. Moreover, the uncertainty principle
Equation (1.7) implies that any would-be eavesdropper Eve could not predict either measurement
using her system C any better than by just blindly guessing, a property of entanglement known
as monogamy. By measuring each of their systems in identical bases, Alice and Bob can therefore
generate one bit of a secret key from each entangled pair.

They can attempt to create such pairs by using a public quantum channel in the manner described
in the previous subsection: Alice prepares EPR pairs and sends one system of each to Bob. If the chan-
nel is noisy, perhaps due to Eve’s interference, Alice and Bob can simply first run an entanglement
distillation protocol to extract the required high-quality EPR pairs. Even though this requires them
to exchange classical syndrome information over a public channel, it does not help any would-be
eavesdropper as the measurements on the EPR pairs are completely independent of this information,
a fact again insured by the uncertainty principle. The usefulness of entanglement distillation in this
context was first treated by Deutsch et al. [55] and the security of this scheme was first rigorously
proven by Lo and Chau [56].

The protocol will require a large quantum memory in which to store the various systems, as well
as the ability to perform all the necessary stabilizer measurements. We did not worry about the prac-
ticalities of doing so in the previous section, but luckily for QKD all of the required operations can
be reduced to just measuring in either the amplitude or phase basis, and subsequent processing of the
resulting classical data, as shown by Shor and Preskill [57]. The reason this works is that ultimately
we want to distill EPR states but then immediately measure them in some basis to generate the key,
and this gives us some flexibility in how we describe the entire process. By picking the right kind
of error-correction code this flexibility allows us to get rid of essentially all (difficult) operations on
quantum systems apart from measuring them individually and replace them with (easy) operations
on classical data.

The necessary codes are called Calderbank-Shor-Steane (CSS) codes and include the original codes
found by Shor and Steane as mentioned in Section 2.2. Their defining property, as first described by
Calderbank and Shor [58] and Steane [59], is that the stabilizers of the code can be broken into two
groups, those composed of products of X operators and those composed of products of Z operators.
Similarly, the logical amplitude operators only consist of Z -type operators, while the logical phase
operators only consist of X -type operators. The more general formalism of stabilizer codes con-
structed by Gottesman [60] also includes codes whose stabilizers and logical operators are of mixed
type, but importantly, these cannot be used for the present purposes.

Consider the QKD scheme above using a CSS-based entanglement distillation scheme to correct
for noise in the quantum channel. The entanglement distillation part proceeds in two steps, the
first involving measurement of the Z -type stabilizers, which give Alice and Bob information about
the bit errors, and the second involving the X -type stabilizers, which give information about the
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phase errors. Now assume that the key is generated by measuring, in the amplitude basis, each half
of the pairs output by the decoding step of the distillation protocol. This is equivalent to skipping
the decoding step and instead measuring the logical Z operators directly. But in a CSS code these
operators are composed entirely of products of Z operators on the individual qubits, and one can
reconstruct the value of any desired product from the collection of all the individual outcomes.
Knowing Z1, Z2, and Z3 enables us to calculate Z1Z2Z3, for instance.

Thus, Alice and Bob could generate the outcomes of measuring the logical amplitude operators
as well as all the Z -type stabilizers by first measuring each of their respective qubits in the amplitude
basis and then forming the appropriate products of the outcomes. However, the X -type stabilizers
cannot be generated in this way; in fact, all phase information will be destroyed by making amplitude
measurements. The crucial fact is that Alice and Bob do not need the X -type stabilizers at all. Intuitively
this makes sense, as these stabilizers give information about phase errors, but Alice and Bob only
care about amplitude information.

The protocol now proceeds as follows. Alice transmits halves of entangled pairs to Bob, and a
random subset are used to estimate the rate of bit and phase errors in order to choose an appropriate
CSS code, while the rest are immediately measured in the amplitude basis. Just as in the entanglement
distillation protocol, if no suitable code exists because the noise rates are too high, they must abort
the procedure. If one does exist, Alice proceeds by constructing the Z -type stabilizers according to
the chosen code and transmitting them to Bob, who corrects the amplitude errors. They then forget
about the phase stabilizers and each constructs the outcomes of measuring the logical amplitude
operators for use as the secret key.

From the outside there is no way to tell if Alice and Bob have performed the above procedure
or actually measured the X - and Z -type stabilizers directly. Although the phase information has not
been exchanged, correction of the phase errors is nevertheless possible in principle. Therefore, the
procedure inherits the security of the Lo and Chau protocol in which Alice and Bob actually do
create EPR pairs.

In contrast, from Alice and Bob’s point of view, the key is created by two classical information
processing protocols. First, Alice sends Bob the stabilizer information which enables him to correct
his observed amplitude measurements to match hers. This step is referred to as information reconcil-
iation since the goal is to reconcile Bob’s amplitude information with Alice’s. In the next step they
use the logical operators to construct a function of the amplitude data, which serves as the key. Due
to the entanglement-based picture of the protocol, this has the effect of extracting that part of the
amplitude data which is completely uncorrelated with any eavesdropper, and this part of the protocol
is termed privacy amplification. We can think of the amplitude measurements as a sort of raw key
which is then distilled to a truly secret key by running these two protocols in succession.

Remarkably, we can also remove the need for entanglement entirely. Suppose that in the above
protocol Alice immediately measures her halves of the EPR states as she sends the other halves to Bob.
These measurements essentially prepare amplitude and phase basis states in the systems underway to
Bob. For instance, if her amplitude measurement is |0〉, Bob’s system is now in the state |0〉, and
so on. Originally Alice and Bob agree in advance which observable to measure for each qubit, but
suppose instead that they each make a random choice. Half the time they choose the same basis, and
these outputs are “sifted” out by public announcement of the bases and kept for use as the key and
for error estimation.

From the outside there is no way to tell if Alice measures her system after the transmission, so that
she is distributing half of an entangled pair, or before, so that she is randomly preparing amplitude
or phase eigenstates for Bob to measure. Thus, just as the classical key distillation scheme inherits
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security from entanglement distillation, the prepare and measure protocol inherits security from the
EPR based version. In fact, this prepare and measure scheme is the original QKD protocol proposed
by Bennett and Brassard [61] and known as BB84; the connection to the version using entanglement
was noted by Bennett, Brassard, and Mermin [62]. Shor and Preskill prove that the BB84 protocol
is secure using the reduction of entanglement distillation to information reconciliation and privacy
amplification using CSS codes and the reduction of an entanglement-based protocol to a prepare and
measure protocol.
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3Characterizing Quantum Information
In the information game of Chapter 1 we made use of the fact that EPR pairs have the property that
measurements of either amplitude or phase on one subsystem are entirely predictable using the other
subsystem, and we argued that this property is central to the notion of quantum information itself.
Here we make good on this claim by showing the converse is true, amplitude and phase predictability
implies entanglement, as well as providing two other characterizations of entanglement based on
complementarity and showing how these can be extended to characterizations of secret keys.

The present chapter is divided into four sections. The first presents the converse as stated above.
Specifically, following [RB08], we show that if there exist measurements on Bob’s system which
predict Alice’s amplitude and phase measurements with low error probability, then Bob can adapt
these measurements to create a new system forming an approximate EPR pair with Alice’s system.
Essentially this is done by coherently performing both measurements in succession, as depicted in
Figure 3.1.

Our approach was inspired by Koashi’s complementary control scenario [63] in which Bob ei-
ther tries to guess Alice’s amplitude information or somehow help her to prepare a phase eigenstate,
and we remark on the connections below. Furthermore, the entanglement recovery procedure is
useful in several other scenarios, such as approximate quantum error correction and the quantum
information processing protocol known as state merging.

In the second section we give two other sufficient conditions for entanglement recovery using the
uncertainty principle, recounting the results of [Ren11]. Again amplitude and phase information
play the decisive role, but now the conditions involve a third system. In the first of these, entan-
glement is implicitly present in the systems shared by Alice and Bob if the amplitude measurement
is predictable with low error probability using Bob’s system, but high error probability using any
other system. In the second, entanglement is present if both amplitude and phase are unpredictable
in this sense using any other system. These conditions are not as constructive as the first, and instead
rely on a powerful method often used in quantum information theory called decoupling.

The third section modifies a result of [RB09] and details how the three characterizations above
can be formulated in terms of conditional entropy. Finally, by appealing to the uncertainty principle,
we can make a slight modification to the entanglement recovery procedure to instead create private
states, which are the most general quantum-mechanical description of secret keys. Indeed this was
actually the original motivation of [RB08].

3.1 Amplitude and Phase Predictability & Entanglement

Let us now specify the setup under consideration more formally. Our two parties Alice and Bob are
located some distance apart and each have a technologically-advanced laboratory in which they can
manipulate quantum systems. Suppose now that Alice and Bob share a generic bipartite quantum
state ψAB . Without loss of generality this state is the AB subsystem of a pure state |ψ〉ABE for E
the “environment”.1 We can express this pure state in two ways by expanding Alice’s system in the
amplitude or phase basis,

|ψ〉ABE =
1
∑

z=0

p

pz |z〉
A |ϕz〉

BE and |ψ〉ABE =
1
∑

x=0

p
qx |ex〉

A |ϑx〉
BE . (3.1)

1In the context of the pure state |ψ〉ABE , ψAB denotes the marginal state of the AB system.
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Alice

Bob

A

|0〉CZ

|0〉CX

B MZ MX

ψAB

ψCX B

ΦACZ

U BCZ
MZ

U CZ CX
CNOT

U BCX
MX

Figure 3.1: The quantum circuit enabling entanglement recovery from a bipartite state ψAB by Bob,
when he can approximately predict measurement of either conjugate observable X or Z by Alice.
It proceeds in three steps. First, Bob coherently performs the measurement MZ allowing him to
predict Z , storing the result in auxiliary system CZ (unitary U BCZ

MZ
). Next, he coherently performs

the measurementMX allowing him to predict X , storing the result in auxiliary system CX (unitary
U BCX
MX

). Finally, to recover a maximally entangled state in system CZ , he applies a controlled-NOT

gate, with control CZ and target CX (unitary U CZ CX
CNOT ). This procedure also leaves Bob holding the

original input state ψAB in systems CX and B .

Here |z〉 denote amplitude eigenstates according to Z |z〉 = (−1)z |z〉 and similarly |ex〉 denote phase
eigenstates according to X |ex〉= (−1)x |ex〉. The states |ϕz〉

BE and |ϑx〉
BE are normalized pure states,

but otherwise arbitrary; pz and qx are the probabilities that Alice obtains the outcome z and x for
amplitude and phase measurements, respectively.

If Alice makes the amplitude measurement corresponding to the observable Z on her system,
Bob can attempt to match her outcome by performing some generalized measurement on his system.
This measurement is described most generally by a positive operator valued-measure (POVM)MZ ,
which consists of elements positive semidefinite operators Λz such that

∑

z Λz = 1. The probability
that he can correctly guess her outcome is given by

pguess(Z
A|M B

Z )ψ ≡
1
∑

z=0
Tr
��

P A
z ⊗Λ

B
z

�

ψAB
�

=
1
∑

z=0
pzTr

�

ΛB
zϕ

B
z

�

, (3.2)

where Pz is the projector onto the amplitude state |z〉, i.e. Pz = |z〉 〈z |. The subscript on the guessing
probability denotes which state we should use to evaluate it. To predict Alice’s phase measurement,
Bob would use a different POVMMX with POVM elements Γx . His guessing probability is

pguess(X
A|M B

X )ψ ≡
1
∑

x=0
Tr
��

eP A
x ⊗Γ

B
x

�

ψAB
�

=
1
∑

x=0
qxTr

�

ΓB
xϑ

B
x

�

, (3.3)

where now ePx is the projector onto the phase state |ex〉.

3.1.1 Approximate Entanglement Implies Approximate Predictability

Given the EPR state |Φ〉AB , we saw in Chapter 1 that Bob can perfectly predict Alice’s amplitude and
phase measurements. Before moving on to the converse, we can strengthen this to an approximate
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condition, that if Alice and Bob share a good approximation to |Φ〉AB , then the amplitude and phase
measurements are approximately predictable in that Bob’s error probabilities are small. The trick is
to choose the correct notion of “good approximation”. Such approximate conditions are important
in considering practical scenarios, since Bob’s prediction of Alice’s measurement outcome will never
be perfect. For the same reason, they ensure that the idea that predictability of complementary
information is what counts for quantum information is truly a physical statement, not merely a
mathematical curiosity of the theory.

If we want the resulting error probabilities to be small, a natural choice is to demand the trace
distance between the state Alice and Bob actually share,ψAB , and the ideal state ΦAB be less than some
prescribed approximation parameter ε. The trace distance between any two states ρ and σ is defined

as 1
2 ‖ρ−σ‖1, where ‖M‖1 ≡ Tr

p

M †M for any operator M . The reason this is an appropriate
choice stems from the fact that the trace distance cannot increase under quantum operations such
as measurement, and that the guessing probability is directly related to the trace distance of the
measured state. More generally, the trace distance between two states is also related to the maximum
probability that the two states give different outcomes under any possible measurement.2 Thus, for
small trace distance, the two states behave essentially identically under any possible measurement.

Using the trace distance we can show that for approximate EPR pairs amplitude and phase are
approximately predictable. Suppose that 1

2








ψAB −ΦAB









1
≤ ε and imagine both Alice and Bob per-

form the amplitude measurement on their respective systems. If ΦAB were the actual state, the result
would be ΦZAZB

= 1
2

∑

z P A
z ⊗ P B

z , where we use the observable ZA, respectively ZB , to denote that
the state has been measured and to specify which measurement has been made. For ψAB they obtain
ψZAZB

=
∑

z,z ′ pzTr[P B
z ′
ϕB

z ]P
A
z ⊗ P B

z ′
. Computing the trace distance, we find

1
2








ΦZAZB −ψZAZB









1
= 1

2

∑

z,z ′

�

�

�

1
2δz,z ′ − pzTr[P B

z ′
ϕB

z ]
�

�

�








P A
z ⊗ P B

z ′










1
(3.4)

= 1
2

∑

z,z ′

�

�

�

1
2δz,z ′ − pzTr[P B

z ′
ϕB

z ]
�

�

� , (3.5)

which is just the variational distance between the ideal distribution 1
2δz,z ′ and the actual distribution

pzTr[P B
z ′
ϕB

z ]. But the variational distance can also be expressed as follows

1
2

∑

z,z ′

�

�

�

1
2δz,z ′ − pzTr[P B

z ′
ϕB

z ]
�

�

�=max
S

∑

(z,z ′)∈S

�

�

�

1
2δz,z ′ − pzTr[P B

z ′
ϕB

z ]
�

�

� , (3.6)

where S is any subset of the pairs (z, z ′). Choosing S = (z, z ′) for z 6= z ′ gives

1
2








ΦZAZB
−ψZAZB










1
≥
∑

z 6=z ′
pzTr[P B

z ′
ϕB

z ] (3.7)

= 1− pguess(Z
A|ZB )ψ. (3.8)

The latter expression is a slight abuse of notation, using the observable ZB to denote Bob’s measure-
ment. Because the trace distance cannot increase under the measurement, pguess(Z

A|ZB )ψ ≥ 1− ε.
The same conclusion holds for the phase measurement, pguess(X

A|X B )ψ ≥ 1− ε.
2See, e.g. [14] for an excellent introduction to and explication of the basic results in quantum information theory.
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3.1.2 Approximate Amplitude and Phase Predictability Implies Entanglement

Now we can state and prove the converse, that approximate amplitude and phase predictability im-
plies entanglement. We first establish a lemma which will also be used in the subsequent entangle-
ment characterizations.

Lemma 1. Given a state |ψ〉ABE =
∑

z
p

pz |z〉
A |ϕz〉

BE , let |ψ〉CX BE be the identical state with system
CX replacing A, and define |ψZ〉

ACZ BE =
∑

z
p

pz |z〉
A |z〉CZ |ϕz〉

BE . If there exist partial isometries
U B→CZ B

1 and U CZ B→CZ CX B
2 such that

ACZ BE〈ψZ |U
B→CZ B

1 |ψ〉
ABE
≥ 1− ε1, and (3.9)

�

ACZ〈Φ| CX BE〈ψ|
�

U CZ B→CZ CX B
2 |ψZ〉

ACZ BE ≥ 1− ε2, (3.10)

then for U B→CZ CX B =U CZ B→CZ CX B
2 U B→CZ B

1 |ψ〉ABE ,

1
2








|Φ〉ACZ |ψ〉CX BE −U B→CZ CX B |ψ〉ABE









1
≤
p

2ε1+
p

2ε2. (3.11)

Proof. The fidelity F (ψ,φ) = 〈ψ|φ〉 between two pure states gives an upper bound on their trace

distance, 1
2 ‖ψ−φ‖1 ≤

Æ

1− F (ψ,φ)2, so that fidelity greater than 1−ε translates into trace distance
less than

p
2ε. Since the trace distance is invariant under unitaries and partial isometries, the lemma

follows from the triangle inequality.

Theorem 1. If pguess(Z
A|M B

Z )ψ ≥ 1− ε1 and pguess(X
A|M B

Z )ψ ≥ 1− ε2 for some measurementsM B
Z

andM B
X on a state ψAB , then there exists a partial isometry U B→CZ CX B such that

1
2








|Φ〉ACZ |ψ〉CX BE −U B→BCZ CX |ψ〉ABE









1
≤
p

2ε1+
p

2ε2. (3.12)

Proof. We use the measurements to define the two isometries required for Lemma 1. For the first
isometry U B→CZ B

1 we may use the coherent implementation of the measurementM B
Z , which stores

the measurement result in system CZ . Performing the measurement coherently produces the state
U B→CZ B

1 |ψ〉ABE , which without loss of generality takes the form

U B→CZ B
1 |ψ〉ABE =

∑

z,z ′

p

pz |z〉
A |z ′〉CZ

q

ΛB
z ′
|ϕz〉

BE . (3.13)

Now compute the overlap of this state with the state |ψZ〉
ACZ BE =

∑

z
p

pz |z〉
A |z〉CZ |ϕz〉

BE , which
would be the ideal output of the coherent measurement process.

〈ψZ |U
B→CZ B

1 |ψ〉
ABE
=
∑

z
pz 〈ϕz |

q

ΛB
z |ϕz〉

BE (3.14)

≥
∑

z
pz 〈ϕz |Λ

B
z |ϕz〉

BE (3.15)

= pguess(Z
A|M B

Z )ψ, (3.16)

using the fact that
p
Λ≥Λ for 0≤Λ≤ 1. Hence, we have the first condition of Lemma 1.
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For the second, let V B→CX B be the partial isometry which coherently implements the measure-
mentM B

X , storing the result in system CX . Coherently measuring |ψZ〉
ACZ BE gives

V B→CX B |ψZ〉
ACZ BE =

∑

z

p

pz |z〉
A |z〉CZ V B→CX B |ϕz〉

BE (3.17)

= 1p
2

∑

z
|z〉A |z〉CZ V B→CX B

∑

x
(−1)x zpqx |ϑx〉

BE (3.18)

= 1p
2

∑

z
|z〉A |z〉CZ

∑

x,x ′
(−1)x zpqx |ex

′〉
q

ΓB
x ′
|ϑx〉

BE . (3.19)

Here we have made use of the algebraic relationship between the two bases. Ideally the output would
be the state

|ψ′Z〉
ACZ CX BE = 1p

2

∑

z
|z〉A |z〉CZ

∑

x

p
qx (−1)x z |ex〉CX |ϑx〉

BE , (3.20)

and computing the fidelity between the ideal and actual outputs gives

ACZ CX BE〈ψ′Z |V
B→CX B |ψZ〉

ACZ BE = 1
2

∑

z,x,x ′,x ′′

p
qx qx ′′(−1)z(x−x ′′) 〈ex ′′|ex ′〉 〈ϑx ′′ |

q

ΓB
x ′
|ϑx〉

BE (3.21)

=
∑

x
qx 〈ϑx |

q

ΓB
x |ϑx〉

BE (3.22)

≥
∑

x
qx 〈ϑx |Γ

B
x |ϑx〉

BE (3.23)

= pguess(X
A|M B

X )ψ. (3.24)

We may also express |ψ′Z〉
ACZ CX BE as 1p

2

∑

z |z〉
A |z〉CZ (X z )CX |ψ〉CX BE , and therefore applying a

control-NOT W CZ CX
CNOT with CZ as the control and CX as the target to the ideal output gives |Φ〉ACZ |ψ〉CX BE .

Since the fidelity is invariant under partial isometries, the second condition of Lemma 1 holds for
U CZ B→CZ CX B

2 =W CZ CX
CNOT V B→CX B , completing the proof.

3.1.3 Further Uses of the Entanglement Recovery Operation

We originally introduced the environment system E as the purification of the joint state held by Alice
and Bob, but of course we can look at it the other way around; generically Alice and Bob jointly hold
the purification of system E . However, our entanglement recovery operation has done more than
just recover entanglement, as it reveals that when Alice’s amplitude and phase measurements are
predictable by Bob, he implicitly holds the purification of E by himself. This follows because the
recovery operation also produces (a good approximation to) the state |ψ〉CX BE , which is identical to
the initial state except system A is replaced by CX , held by Bob. In the following chapter we shall
use this property to construct protocols for state merging, in which Alice attempts to merge her state
with Bob by using classical or quantum communication.

Theorem 1 may be regarded as giving necessary and sufficient conditions on the existence of
an approximate quantum error-correction scheme: Approximate error correction is possible when
amplitude and phase information can each approximately be recovered. The schemes discussed in
Chapter 2 based on quantum error-correcting codes were perfect in the sense that the input quantum
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state can be perfectly recovered if the error is of the correctable type. Approximate error-correction
sets the more modest goal of only recovering the input approximately.

Entanglement recovery is relevant to this goal because we can always mimic the initial single-
system input to the error-correction problem as half of an EPR pair, the other half of which is then
measured in an appropriate basis. The basis is given by complex conjugating the coefficients of the
original basis, which follows because the EPR state can be written as |Φ〉AB = 1p

2

∑

j |ξ ∗j 〉
A |ξ j 〉

B for

any basis {|ξ j 〉= ξ j 0 |0〉+ξ j 1 |1〉}1j=0, where |ξ ∗j 〉= ξ
∗
j 0 |0〉+ξ

∗
j 1 |1〉. This was precisely the method used

in reducing the QKD scheme based on EPR pairs to one involving only preparation and measurement
of single systems. From this line of reasoning it follows from a result of Schumacher [64] that if
entanglement can be approximately recovered by the scheme, then the approximation parameter
sets a lower bound on the average fidelity with which single systems can be recovered by the same
procedure.

In the preceding analysis, we have assumed that Alice’s system is a qubit, whereas Bob’s system is
arbitrary. But the result may be easily extended to the case that Alice holds a d -level system by using
the more general amplitude and phase operators defined by

X =
d−1
∑

k=0

|k ⊕ 1〉 〈k| and Z =
d−1
∑

k=0

e2πi k/d |k〉 〈k| . (3.25)

Often these are called the Weyl-Heisenberg operators, as they have similar properties to the position
and momentum operators of continuous-variable systems. Here the crucial point is that the algebraic
properties of the amplitude and phase operators used in Theorem 1 hold for higher-dimensional
systems as well. In the sequel, we shall continue to specialize to the qubit case.

3.2 Duality & Decoupling

The uncertainty principle Equation (1.7) establishes a tradeoff in how well Alice’s amplitude mea-
surement can be predicted using system B and how well her phase measurement can be predicted
using system E . In the previous section the sufficient conditions for entanglement were of the for-
mer type, but the tradeoff suggests that we might to be able to find sufficient conditions of the latter
type and focus instead on what information system E does not have, rather than what information
system B does have. Concentrating on lack of information and building protocols by destroying cor-
relations is the essence of the decoupling approach to quantum information processing, which goes
back to work on approximate error-correction by Schumacher and Westmoreland [65] and has found
wide application to constructing information processing protocols such as state merging [66, 67] and
noisy channel coding [68, 69, 70, 71] that we shall encounter in Chapter 4.3

In the decoupling approach one tries to show that Alice’s system is completely uncorrelated with
system E in order to infer that Bob’s system is entangled with Alice’s. Here, however, we shall be able
to show that it suffices for this purpose to ensure that E has no information about Alice’s amplitude
or phase. This reflects our main theme that what really counts in quantum information is classical
information about complementary observables. Part of the appeal of decoupling is that it allows us
to avoid the problem of constructing the isometries needed for Lemma 1. Instead, the isometries are
automatically constructed by appealing to Uhlmann’s theorem on the relationship between fidelity
of mixed states and that of their possible purifications.

3The decoupling approach has also been extended to quantum channels, instead of quantum states as described here,
in [72, 73, 74, 75, 76].
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However, from the uncertainty principle we are only entitled to expect that if ZA is predictable
from B , then X A is unpredictable from E , but not the converse. Were the converse true in general,
we could immediately establish that lack of information in E is sufficient to imply the presence of
entanglement because it would imply the conditions we already have in Lemma 1 and Theorem 1.
Absent the converse, it is not immediately clear that this approach will work.

Note that the converse does hold if it happens the state |ψ〉ABE saturates Equation (1.7), so that
H (ZA|B)ψ+H (X A|E)ψ = 1. Two separate sufficient conditions for equality in the uncertainty prin-
ciple are derived in [RB09], and these take the simple form pguess(X

A|B)ψ = 1 and pguess(Z
A|E)ψ = 1.

Equivalently, each of these conditions implies the complementary form H (X A|B) +H (ZA|E) = 1
is trivially saturated, since either H (X A|B) = 0 and thus H (ZA|E) = 1 or H (ZA|E) = 0 and thus
H (X A|E) = 1. Luckily, it turns out that due to the structure of Lemma 1, either of these two equal-
ity conditions can be satisfied without loss of generality to the entanglement criteria. We shall make
use of both in the two results presented next.

First, we need to formally characterize the unpredictability of measurements on Alice’s system
when making use of the purification system E . The most straightforward approach would be to
say that the associated guessing probabilities are small, even for the optimal measurement. However,
optimal measurements are quite often difficult to specify in quantum information theory. To sidestep
this problem, we may instead use the following quantity,

psecure(Z
A|E)ψ = 1− 1

2





ψZAE − 1
21

A⊗ψE




1, (3.26)

and say that E has no information about ZA when psecure(Z
A|E)ψ is nearly one. Another possibility

would be to phrase matters in terms of the conditional entropy, stating that H (ZA|E) is large. It
turns out that such an entropic condition implies that of Equation (3.26) and we shall return to this
point in the next section.

A bound on psecure(Z
A|E)ψ also implies a bound on the guessing probability, as follows. Suppose

system E is measured with some POVMM E
Z = {Λ

E
z }. The probability distributions of measurement

outcomes on the real and ideal states are pz,z ′ = pzTr[ΛE
z ′
ϕE

z ] and p ′
z,z ′
= 1

2Tr[ΛE
z ′
ϕE], respectively.

For the variational distance we find

1
2

∑

z,z ′
|pz,z ′ − p ′

z,z ′
| ≥ 1

2

∑

z
pz,z − p ′z,z (3.27)

= 1
2

∑

z

�

pzTr[ΛE
z ϕ

E
z ]−

1
2Tr[ΛE

z ϕ
E]
�

(3.28)

= 1
2 pguess(Z

A|M E
Z )ψ−

1
4 , (3.29)

and therefore psecure(Z
A|E)ψ ≥ 1− ε implies pguess(Z

A|M E
Z )ψ ≤

1
2 + 2ε for any measurementM E

Z .
Observe that the quantity psecure also implies the outcome of the ZA measurement is nearly random.
This accounts for the name ‘secure’ since effectively this means Alice can generate a secure secret key
bit by this measurement.

Now we are ready to state the new entanglement conditions. The first says that Alice and Bob
implicitly share entanglement if Alice’s amplitude measurement can be predicted using B but not E .
This is almost the same as saying that Alice and Bob can generate a shared secret key from their state,
a point we return to in Section 3.4.
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3. CHARACTERIZING QUANTUM INFORMATION

Theorem 2. If psecure(Z
A|E)ψ ≥ 1−ε2 and pguess(Z

A|M B
Z )ψ ≥ 1−ε1 for some measurementM B

Z , then
there exists a partial isometry U B→CZ CX B such that

1
2








|Φ〉ACZ |ψ〉CX BE −U B→BCZ CX |ψ〉ABE









1
≤
p

2ε1+
p

2ε2. (3.30)

Proof. From the proof of Theorem 1, the first condition of Lemma 1 is fulfilled for U B→CZ B
1 the

coherent implementation of the measurementM B
Z . For the second condition, consider the implica-

tions of psecure(Z
A|E)ψ ≥ 1−ε2 for the state |ψZ〉

ACZ BE . Since tracing out CZ B from |ψZ〉
ACZ BE gives

the same result as measuring the amplitude ZA of the state |ψ〉ABE , we have

1
2








ψAE
Z −

1
21

A⊗ψE









1
≤ ε2. (3.31)

The trace distance gives a lower bound to the fidelity, so that

F
�

ψAE
Z , 1

21
A⊗ψE

�

≥ 1− ε2. (3.32)

By Uhlmann’s theorem, the fidelity of two mixed states is identical to the largest fidelity of their
possible purifications. Two possible purifications of the two states in question are |ψZ〉

ACZ BE and
|Φ〉ACZ |ψ〉CX BE , and since all other purifications are related by isometries involving the purifying
system, we have

�

ACZ〈Φ| CX BE〈ψ|
�

U CZ B→CZ CX B
2 |ψZ〉

ACZ BE ≥ 1− ε2 (3.33)

for some U CZ B→CZ CX B
2 . This is the sought-after second condition and completes the proof.

Observe that although Theorem 2 calls for psecure(Z
A|E)ψ to be large, we actually apply this

condition to the state |ψZ〉
ACZ BE for which pguess(Z

A|CZ B) = 1. Therefore the uncertainty relation
H (X A|CZ B)ψ +H (ZA|E)ψ = 1 holds, and we are essentially able to trade large psecure(Z

A|E)ψ for
large pguess(X

A|CZ B)ψ as is needed for Lemma 1. Indeed, it follows from the discussion prior to
Lemma 1 that the following is an immediate corollary to Theorem 2. Using the isometry U B→CZ CX B

to define the measurementM B
X = {U

†B→CZ CX B
eP CZ

x U B→CZ CX B}, we have

Corollary 2. If psecure(Z
A|E)ψ ≥ 1− ε and pguess(Z

A|M B
Z )ψ = 1 for some measurement M B

Z , then
there exists a measurementM B

X such that pguess(X
A|M B

X )ψ ≥ 1−
p

2ε.

This is Theorem 4.2(a) of [Ren11]. Note that we have dropped the explicit use of |ψZ〉 by stipulating
that pguess(Z

A|M B
Z )ψ = 1.

Continuing the trend of denying information to E , we might hope that Alice and Bob share
entanglement when the amplitude and phase are unpredictable using E . However, a simple coun-
terexample shows that this cannot be true in general. Define |ψ〉ABE = 1p

2
(|0〉+ i |1〉)A⊗ |ϕ〉BE ; here

Alice’s system is an eigenstate of the observable X Z . Due to the product structure, both ZA and X A

are unpredictable using either E or B . This is to be expected in light of the preceding discussion on the
need to saturate the uncertainty principle. One way to avoid this problem is to require that not only
is the amplitude measurement unpredictable using E , but the phase measurement is unpredictable
using E even assuming E could predict the amplitude. Formally, we require psecure(X

A|CZ E)ψZ
to be

large, which again involves the state |ψZ〉 that saturates the uncertainty principle, though this time
CZ is joined with E , not B .
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Theorem 3. If psecure(X
A|CZ E)ψZ

≥ 1− ε1 and psecure(Z
A|E)ψ ≥ 1− ε2, then there exists a partial

isometry U B→CZ CX B such that

1
2








|Φ〉ACZ |ψ〉CX BE −U B→BCZ CX |ψ〉ABE









1
≤
p

2ε1+
p

2ε2. (3.34)

Proof. From the proof of Theorem 2, the second condition here implies the second condition of
Lemma 1 is satisfied. To show the first, consider the implications of psecure(X

A|CZ E)ψZ
≥ 1− ε1 for

the state |ψZ〉
ACZ BE . We may express the state as follows

|ψZ〉
ACZ BE = 1p

2

∑

x
|ex〉A

∑

z

p

pz (−1)x z |z〉CZ |ϕz〉
BE (3.35)

= 1p
2

∑

x
|ex〉A (Z x )CZ

∑

z

p

pz |z〉
CZ |ϕz〉

BE (3.36)

= 1p
2

∑

x
|ex〉A (Z x )CZ |ψ〉CZ BE . (3.37)

Defining |ηx〉
CZ BE ≡ (Z x )CZ |ψ〉CZ BE and η≡ 1

2

∑

x η
CZ E
x , we have

1− psecure(X
A|CZ E)ψZ

= 1
2










1
2

∑

x
|ex〉 〈ex|A⊗ηCZ E

x − 1
21

A⊗ηCZ E









1
(3.38)

= 1
4

∑

x








ηCZ E
x −ηCZ E










1
. (3.39)

But since the trace distance is invariant under unitary operations, in particular (Z x )CZ ,







η
CZ E
x −ηCZ E










1
=





ηCZ E
x ′
− ηCZ E







1 for all x, x ′. Observe that ηCZ E = ψCZ E
Z

since the random phase flip has the

effect of “measuring” the amplitude of CZ . As |η0〉
CZ BE = |ψ〉CZ BE , we can therefore infer that

1
2





ψCZ E −ψCZ E
Z







1 ≤ ε1, or equivalently 1
2





ψAE −ψAE
Z







1 ≤ ε1. Converting trace distance to fidelity

and applying Uhlmann’s theorem, we find there exists an isometry U B→CZ B
1 such that

ACZ BE〈ψZ |U
B→CZ B

1 |ψ〉ABE ≥ 1− ε1. (3.40)

Thus, the first condition of Lemma 1 is satisfied, completing the proof.

Again, the resulting isometry can be used to define the measurementM B
Z in the following, which

is Theorem 4.2(b) of [Ren11].

Corollary 3. If psecure(X
A|E)ψ ≥ 1− ε and pguess(Z

A|M E
Z )ψ = 1 for some measurement M E

Z , then
there exists a measurementM B

Z such that pguess(Z
A|M B

Z )ψ ≥ 1−
p

2ε.

Figure 3.2 illustrates the contents of Theorems 1, 2, and 3 by indicating which system must have
what kind of information, or lack thereof, in order to infer the presence of entanglement between
Alice and Bob.
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3. CHARACTERIZING QUANTUM INFORMATION

A

B

E

Theorem 1

A

B

E

Theorem 2

A

B

E

Theorem 3

Figure 3.2: Graphical depiction of the contents of Theorems 1, 2, and 3. All three theorems spec-
ify conditions under which Alice and Bob can transform their shared state ψAB into a collection of
EPR pairs using only local operations. Theorem 1 shows this can be done when both the amplitude
and phase of Alice’s system are correlated with Bob’s system in that he could reliably predict either,
depicted by the blue (amplitude) and red (phase) lines joining Alice and Bob. Theorem 2 shows that
amplitude correlation with Bob and uncorrelation with the environment leads to the same conclu-
sion. Finally, Theorem 3 establishes that appropriate uncorrelation of both amplitude and phase
suffices to infer that the Alice-Bob system to be entangled.

3.3 Entropic Characterizations

As advertised after Equation (3.26), another possible formalization of “unpredictability” is using
the conditional entropy: The amplitude measurement outcome ZA is unpredictable using E when
H (ZA|E) is large. Owing to the connection between conditional entropy and the quantity psecure
given by the following lemma, we can establish entropic conditions on entanglement from the results
of the previous section. This was partially investigated in [RB09].

Lemma 2. If H (ZA|E)ψ ≥ 1− ε2, then psecure(Z
A|E)ψ ≥ 1− ε.

Proof. The proof relies on the connection between relative entropy D(ρ||σ) of two states ρ and σ
and trace distance between them, in particular the bound 1

2 ln2 ‖ρ−σ‖
2
1 ≤ D(ρ||σ) [65]. This may

be more conveniently expressed as 1
2 ‖ρ−σ‖1 ≤

p

D(ρ||σ). By direct calculation it is easy to show

D
�

ψAE
Z







1
21

A⊗ψE
�

= 1−H (ZA|E)ψ. (3.41)

Using the bound on H (ZA|E)ψ and the definition of psecure(Z
A|E)ψ completes the proof.

Theorem 4. Given any of the following pairs of conditions,

(1) H (ZA|B)ψ ≤ ε2
1, (2) H (ZA|B)ψ ≤ ε2

1, (3) H (X A|CZ E)ψZ
≥ 1− ε2

1,

H (X A|B)ψ ≤ ε2
2 H (ZA|E)ψ ≥ 1− ε2

2 H (ZA|E)ψ ≥ 1− ε2
2

there exists a partial isometry U B→CZ CX B such that

1
2








|Φ〉ACZ |ψ〉CX BE −U B→BCZ CX |ψ〉ABE









1
≤
p

2ε1+
p

2ε2. (3.42)

Proof. Using Lemma 2 for the last pair, we can apply Theorem 3. But since H (ZA|B)ψ =H (ZA|B)ψZ
,

(1) and (2) each separately imply (3) by the uncertainty principle Equation (1.7).
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3.4. Secret Keys & Private States

That the first pair of entropic conditions implies that Alice and Bob share entanglement is a
variation of a related result found by Christandl and Winter that quantum channels are useful for
transmitting entanglement if they could be used to reliably transmit classical amplitude and phase
information [30]. The fact that the first pair of entropic conditions in Theorem 4 are sufficient for
systems A of arbitrary dimension is actually somewhat surprising, as it is known that just because
the conditional entropy H (ZA|B) is small does not imply that there exists a measurementM B

Z such
that H (ZA|M B

Z ) = H (ZA|B), let alone that the guessing probability pguess(Z
A|M B

Z ) is large. In fact,
Ruskai has shown that Bob’s conditional marginal states must all commute pairwise for the condi-
tional entropy to be achievable [77].

The gap can be simply illustrated by the following example implicitly given by Holevo [78],
in which Bob’s state conditioned on Alice’s amplitude basis measurement is a randomly-selected
amplitude or phase eigenstate,

|ψ〉AB = 1
2

3
∑

t=0
|t 〉A |ϕt 〉

B , (3.43)

for |ϕ0〉 = |0〉, |ϕ1〉 = |1〉, |ϕ2〉 = |+〉, and |ϕ3〉 = |−〉. By direct calculation we find H (ZA|B) = 1,
where now ZA is any non-degenerate observable diagonal in the |z〉 basis. On the other hand, a
derivation by DiVincenzo et al. [79] using the Maassen-Uffink uncertainty relation Equation (1.4)
shows that the optimal measurementM B

Z is such that H (ZA|M B
Z ) =

1
2 . The optimal measurement

can also be found by exploiting the group covariance of Bob’s states and appealing to a theorem of
Davies [80]. Nonetheless, fulfilling both entropy conditions evidently circumvents this issue, as the
necessary measurements are defined by Corollaries 2 and 3.

3.4 Secret Keys & Private States

With a very slight modification, we can extend the results above to give necessary and sufficient con-
ditions on the ability to extract a secret key instead of an EPR pair from the state ψAB . In Section 2.4
we discussed the fact that EPR pairs can be used to create secret keys, but entanglement of this form is
not actually necessary, a fact first observed by Aschauer and Briegel [81]. Instead, bipartite quantum
states which are capable of producing secret keys are called private states and their general form was
established by Horodecki et al. [82]. In this section we show that just like entanglement, knowledge
of complementary observables plays a decisive role in characterizing private states.

Private states have two defining features, as alluded to prior to Theorem 2. First, the key measure-
ments by Alice and Bob clearly must produce identical results. Second, the key should be completely
random and uncorrelated with any third party, i.e. a would-be eavesdropper Eve. Without loss of
generality we can assume that Alice and Bob have two systems each, A, A′ and B , B ′, respectively,
and the key bit is generated by amplitude measurements of A and B . If they start with any other
state having only systems A′ and B ′, they can coherently perform the key generation measurements
and store the result in the amplitude of systems A and B , respectively. Horodecki et al. [82] give the
following characterization of ideal private states, whose proof we include here for completeness.

Theorem 5 (Horodecki et al. [82]). ψAA′BB ′ is a private state iff there exists a twisting operator U AA′B ′

of the form U AA′B ′ =
∑1

z=0 |z〉 〈z |
A⊗V A′B ′

z with Vz unitary such that for some ξ A′B ′ ,

ψAA′BB ′ =U AA′B ′
�

ΦAB ⊗ ξ A′B ′
�

U †AA′B ′ . (3.44)
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Proof. Consider a purification of a private state. By the first requirement, it must have the form

|ψ〉AA′BB ′E = 1p
2

1
∑

z=0
|z, z〉AB |ϕz〉

A′B ′E . (3.45)

The second requirement implies that the states ϕE
z are all identical, so that the key bit z is secret

from any eavesdropper. All possible purifications of a state are related by unitaries on the purifying
system, meaning |ϕz〉

A′B ′E =V A′B ′
z |ϕ0〉

A′B ′E for some unitaries Vz . Using these to define the twisting
operator and letting ξ A′B ′ = ϕA′B ′

0 completes the proof.

Thus, private states are “twisted” versions of entangled states in which the A′B ′ system is trans-
formed in some way conditioned on the value of the key. Since the function of the A′B ′ system is
to block correlations of the key with E , it is called the shield. Here we have defined the twisting
operator as conditioning on Alice’s key system A, but since her key is always equal to Bob’s, the
twisting operator can just as well be conditioned on B . Private states are conceptually distinct from
entangled states because the distributed nature of the A′B ′ system prevents Alice and Bob from un-
doing the twisting operator on a general private state. Indeed, there exist private states from which
no entanglement can be locally extracted [82].

As with entanglement, we are more interested in characterizations of approximate secret keys,
since perfection will be impossible to achieve in practice. The following lemma shows that the above
definition of secret keys can be extended to a sensible approximate version. Here we denote by
ψZAZB E the state ψABE after measurement of the observables ZA and ZB , and we say that an approx-
imate secret key is ε-good when its trace distance to a perfect key is less than ε.

Lemma 3. If pguess(Z
A|ZB )ψ ≥ 1− ε1 and psecure(Z

A|E)ψ ≥ 1− ε2, then ψZAZB E
Z is an (ε1+ ε2)-good

secret key.

Proof. Start with pguess(Z
A|ZB )ψ ≥ 1− ε1. By the triangle inequality we have

1
2










∑

z,z ′
pz z ′P

A
z ⊗ P B

z ′
⊗ϕE

z z ′
−
∑

z,z ′
pz z ′P

A
z ⊗ P B

z ⊗ϕ
E
z z ′










1
= 1

2

∑

z,z ′ 6=z

pz z ′ +
1
2

∑

z







∑

z ′ 6=z

pz z ′ϕ
E
z z ′






1 (3.46)

≤
∑

z,z ′ 6=z

pz z ′ (3.47)

≤ ε1. (3.48)

But the state
∑

z,z ′ pz z ′P
A
z ⊗P B

z ⊗ϕ
E
z z ′

can be thought of as U AB
CNOT

�

∑

z,z ′ pz z ′P
A
z ⊗ P B

0 ⊗ϕ
E
z z ′

�

U †AB
CNOT.

From the second condition it follows, for ϕE =
∑

z z ′ ϕ
E
z z ′

, that

1
2










∑

z,z ′
pz z ′P

A
z ⊗ P B

0 ⊗ϕ
E
z z ′
− 1

21
A⊗ P B

0 ⊗ϕ
E









1
≤ ε1, (3.49)

since the presence of P B
0 doesn’t change the trace distance. Using unitary invariance of the trace

distance and the triangle inequality once more completes the proof.

To give an approximate characterization of private states based on knowledge of complementary
information, we merely need to show that a converse of Corollaries 2 and 3 holds, namely that if
Bob can accurately guess the amplitude of Alice’s system, then the phase is unpredictable using the
purification E . We formalize this in the following lemma, which is Theorem 4.1 of [Ren11].
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Lemma 4. If there exists a measurementM B
Z such that pguess(Z

A|M B
Z )ψ ≥ 1−ε2 for pure state |ψ〉ABE ,

then psecure(X
A|E)ψ ≥ 1−

p
2ε.

Proof. Following the proof of Theorem 1, we know that 〈ψZ |U
B→CZ B
MZ

|ψ〉ABE ≥ 1− ε. Using the

form of |ψZ〉
ACZ BE in Equation (3.37), it follows that E is completely decoupled from the phase

measurement of A, i.e. the post-measurement state is 1
21

A⊗ψE . Since U B→CZ B
MZ

does not involve A

or E , the post-measurement state of AE is the same for |ψ〉ABE as for U B→CZ B
MZ

|ψ〉ABE . Converting

fidelity to trace distance, we find that 1
2










∑

x qx
eP A

x ⊗ϑ
E
x −

1
21

A⊗ψE









1
≤
p

2ε.

Alice

Bob

A

A′

B ′

|0〉CZ

|0〉CX

B

MX
ψAA′BB ′ ψCX A′CZ B ′ ΦAB

U BCX
CNOTU BCZ

CNOT
U CX A′CZ B ′

MX

Figure 3.3: The quantum circuit implementing the (un)twisting operator on the state ψAA′BB ′ , when
Bob can approximately predict Alice’s key (amplitude) measurement of system A and there exists a
measurementMA′BB ′

X approximately predicting her phase measurement. It proceeds in three steps.
First, Bob coherently copies his key (amplitude) to an auxiliary system CZ using a controlled-NOT

gate (unitary U BCZ
CNOT). Next, he coherently performs the measurementMX allowing him to predict

X , storing the result in auxiliary system CX (unitary U CX A′CZ B ′

MX
). Finally, to recover a maximally

entangled state in system B , he applies another controlled-NOT gate, with control B and target CX

(unitary U BCX
CNOT). Observe that the overall action is a controlled operation with Bob’s key as the

control and the shield and auxiliary systems the target, i.e. a twisting operator.

With this lemma the following theorem, first shown in [RB08], is immediate.

Theorem 6. Suppose pguess(Z
A|ZB )ψ ≥ 1 − ε1 and there exists a measurement MA′BB ′

X for which

pguess(X
A|MA′BB ′

X )ψ ≥ 1− ε2. Then ψZAZB E is an (ε1+
p

2ε2)-good secret key.

It is also interesting to see how the untwisting operator can be directly constructed using the
measurementMA′BB ′

X . First write the initial state as |ψ〉AA′BB ′E =
∑

z,z ′
p

pz,z ′ |z〉
A |z ′〉B |ϕz,z ′〉

A′B ′E

consider the action of a CNOT operation from B to an ancilla system CZ prepared in the state |0〉CZ .
This copies the value of z ′ and gives

U BCZ
CNOT |ψ〉

AA′BB ′E =
∑

z,z ′

p

pz,z ′ |z〉
A |z ′〉CZ |z ′〉B |ϕz,z ′〉

A′B ′E . (3.50)
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From the first condition it follows that 〈ψZ |U
BCZ

CNOT |ψ〉
AA′BB ′E ≥ 1− ε1, where

|ψZ〉
ACZ A′BB ′E =

∑

z,z ′

p

pz,z ′ |z〉
A |z〉CZ |z ′〉B |ϕz,z ′〉

A′B ′E . (3.51)

Now make the replacement A′BB ′ → B in this state and apply the latter half of the proof of Theo-
rem 1, from which it follows that

ACZ〈Φ| CX A′BB ′E〈ψ|U CZ CX
CNOT V A′BB ′→CX A′BB ′ |ψZ〉

ACZ A′BB ′E ≥ 1− ε2. (3.52)

The fidelity is unchanged by inserting the identity operator in the form U BCZ
SWAPU †BCZ

SWAP , yielding

AB〈Φ| CX A′CZ B ′E〈ψ|U BCX
CNOTV A′CZ B ′→CX A′CZ B ′U BCZ

SWAP |ψZ〉
ACZ A′BB ′E ≥ 1− ε2. (3.53)

Since USWAPU BCZ
CNOT |ψ〉

AA′BB ′E = U BCZ
CNOT |ψ〉

AA′BB ′E , the same method applied to the first fidelity con-
dition gives

〈ψZ |U
†BCZ

SWAP U BCZ
CNOT |ψ〉

AA′BB ′E ≥ 1− ε1. (3.54)

Lemma 1 now implies that the operator U BCX
CNOTV A′CZ B ′→CX A′CZ B ′U BCZ

CNOT produces a high-fidelity en-
tangled state in systems AB . But owing to its form, this is a twisting operator, as depicted in Fig-
ure 3.3.
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4Processing Quantum Information
Having concretely developed the relationship between quantum information in the form of entangle-
ment and classical information about complementary amplitude and phase observables in Chapter 3,
we may now apply it to the problem of constructing various quantum information processing pro-
tocols and understanding why they work. Being able to do so is the second stated goal of this thesis,
and will be the subject of this and the remaining chapters. This chapter considers the particular tasks
of entanglement distillation, quantum state merging, and secret key distillation in three respective
sections. The complementarity approach to the first and last was developed in detail in [RB08],
while state merging was treated from this approach in [BR09].

Entanglement distillation is one of the fundamental protocols in quantum information process-
ing and can be used as a building block in a variety of other protocols. In particular, one-way proto-
cols for entanglement distillation can be repurposed for use in reliable communication of quantum
information over noisy channels. This allows us to apply our results to that problem and show that
the quantum capacity of a channel can be achieved when the sender uses CSS codes. Meanwhile, the
secret key distillation results imply that the capacity of a quantum channel to send classical informa-
tion privately can likewise be achieved when the sender uses CSS codes.

4.1 Optimal Entanglement Distillation

We begin by returning to the problem of entanglement distillation, introduced in Section 2.3. In
this setting, Alice and Bob share a supply of identical, somewhat-entangled bipartite resource states
which they would like to use to create EPR pairs. An entanglement distillation protocol is a sequence
of local operations they should perform on their respective systems, supplemented by classical com-
munication to coordinate their actions and exchange information. The protocol produces approx-
imate EPR pairs at a given rate r , converting n resource states to n r pairs. For instance, the rate
of the protocol described in Chapter 2 using the Shor 9-qubit code is given by the rate of the error-
correcting code, namely 1/9, since the output was taken from the encoded subspace of the code. The
asymptotically optimal rate is the largest r one can find among protocols for n →∞ such that the
approximation parameter vanishes in this limit.

As we saw in Chapter 3, Alice and Bob implicitly share an entangled state if Alice’s amplitude
and phase measurements are predictable by Bob. But a generic bipartite state does not share this
property; at best Bob has only partial information about either observable. Heuristically, one way
to manufacture entangled states would therefore be to increase Bob’s information about these mea-
surements somehow. And since such information is classical, we may be able to arrange for Alice
to send it over the classical communication channel. In the following we shall develop this heuristic
notion into a concrete protocol. To do so we must first overcome two immediate hurdles. First,
what sort of information can she send which will be sufficient for this purpose? And second, how
do we make sure Alice does not violate the uncertainty principle when sending information about
complementary observables? We take up these two questions in turn.

4.1.1 Information Reconciliation

If we consider either observable alone, the present task is a more general version of the information
reconciliation task mentioned in conjunction with QKD in Section 2.4. If we only care about, say,
amplitude, then we can imagine Alice measures the amplitude of all of her systems, and these out-
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comes are described as a classical random variable. Formally, we can describe the state of all their
systems after the measurement by

ΨZAB =
∑

z
pz |z〉 〈z|

A⊗ϕB
z =

∑

z
P A

z ⊗TrA[P
A
z (ψ

AB )⊗n] (4.1)

using the state |ψ〉ABE =
∑

z pz |z〉
A |ϕz〉

BE and defining pz = pz1
· · · pzn

and ϕz = ϕz1
⊗ · · ·⊗ϕzn

. We
use boldface to denote sequences or strings of indices. For each sequence of outcomes Bob is left with
the quantum state ϕB

z , but generally there is no measurement which will indicate which one he has
with any accuracy.

However, if Alice gives him some extra information about her outcome z, then the set of states
he is attempting to distinguish between gets smaller, and the task gets easier. For instance, if Alice
simply tells him that the sum of the first two outcomes (thought of as binary outcomes) is 0 modulo
2, then he excludes from consideration all the ϕB

z for which this is not true and attempts to distinguish
between the remaining states with a new measurement. Of course, she could just send Bob her entire
measurement record z, but the goal of information reconciliation is for Alice to transmit as few bits
as necessary to enable Bob to reconstruct z with high probability.

It turns out that in the asymptotic limit n → ∞, Alice only needs to send information at rate
H (ZA|B)ψ. This expression accords with the interpretation of conditional entropy as the uncertainty
about ZA given B : Bob is missing this much information about ZA and in the protocol Alice simply
provides it. Importantly, the information in question can be generated by the technique of universal
hashing and Alice does not need to know anything about Bob’s system except the value of H (ZA|B)ψ.
In universal hashing, Alice randomly picks a so-called hash function f from a universal family of hash
functions and sends Bob a description of f along with the output f (z).

First defined by Carter and Wegman [83, 84], universal hashing is meant to mimic certain behav-
ior of random functions: A family of functions is universal when the probability that two different
inputs to a randomly-chosen family member have the same output is the same as if the function had
been chosen at random from all possible functions. This latter probability is simply the inverse of the
number of possible function outputs, so formally we say a setF of functions f : {0,1}n→{0,1}m is
universal when

Pr f [ f (x) = f (y)]≤
1

2m ∀x, y ∈ {0,1}n . (4.2)

Above we illustrated the information Alice might send to Bob by a linear function, and in fact the
set of all linear functions forms a universal family [83, 84]. We shall make extensive use of linear
functions for hashing in the next section.

As shown in [RB08], when the size of the hash is roughly nH (ZA|B)ψ bits, Bob can reliably
predict ZA. More concretely, for each hash value bz = f (z) there exists a measurement M B

Z ;bz
with

elements ΛB
z;bz

such that the guessing probability averaged over bz is nearly one,
∑

z pzTr[ΛB
z;bz
ϕB

z ]≈ 1.
The proof, following ideas from Holevo [85] and Schumacher and Westmoreland [86] in the study of
transmission of classical information over quantum channels, explicitly constructsM BB ′

Z as a variant
of the pretty-good measurement first used by Holevo for pure states [87] and later extended to mixed
states (and so-named) by Hausladen and Wootters [88]. Essentially, Bob’s measurement is given by

Λz;bz ≈ pzϕ
−1/2
bz

ϕzϕ
−1/2
bz

, ϕ
bz =

∑

z: f (z)=bz

pzϕz, (4.3)
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with some small modifications. We can simplify the formalism somewhat by imagining that Bob
stores the hash value in an auxiliary system B ′ and uses the measurementM BB ′

Z with elements ΓBB ′
z =

ΛB
z;bz
⊗ P B ′

bz
, for which pguess(Z

A|M BB ′
Z )≈ 1.

In the case Bob holds classical information, i.e. the states ϕz are all simultaneously diagonaliz-
able, information reconciliation is closely related to the famous Slepian-Wolf problem of coding of
correlated sources [89]. The case of Bob having quantum information was studied and solved in the
present i.i.d. scenario by Winter [90] and Devetak and Winter [91] using random coding techniques.
In Section 5.1.4 we very briefly describe how the result can be generalized to the case of arbitrary
resources.

4.1.2 Reconciling Complementary Information

Having seen that the output of a suitably-sized random hash function enables Bob to reconstruct
the outcome of Alice’s amplitude or phase measurement, we now turn to the problem of how Alice
can generate both pieces of information without violating the uncertainty principle. Calling the
hash function used for the amplitude measurement f and the phase measurement g , Bob separately
requires both f (z) and g (x) so that he can predict the amplitude outcome z and the phase outcome
x. Naively, it seems impossible to generate both f (z) and g (x), since this would apparently require
Alice to measure both the amplitude and phase of her systems.

Crucially, however, the input x (z) is not required to fix the output g (x) ( f (z)). Instead, Alice
need only measure appropriate observables which generate the output directly, and the necessary
observables for f (z) and g (x) can commute. Such a structure is in fact provided by CSS codes. Recall
again the very simple example above, in which Alice transmitted the output of the linear function
z1 ⊕ z2 to Bob. As we saw in Section 2.2.1, this can equally-well be thought of as the outcome
of measuring the operator Z1Z2, since its eigenvalues are (−1)z1⊕z2 . But every linear function is a
sequence of one-bit functions, each of which is just a sum of particular amplitude outcomes zk , so
to each linear function corresponds a sequence of products of amplitude operators. In other words,
every linear function of the amplitude measurement outcome is associated with a collection of Z -type
stabilizers, and similarly for X -type stabilizers and functions of the phase measurement outcomes.

If the two functions f and g are chosen so that the corresponding Z - and X -type stabilizers com-
mute, together they define a CSS code, and Alice can then generate both f (z) and g (x) by measuring
the stabilizers of the code. The commutation condition on the stabilizers can be succinctly expressed
in the following way. For an n-qubit stabilizer, the corresponding linear function can be specified
by the n-dimensional binary F2 vector with entries 1 at position k if zk appears in the sum, and
zero otherwise. For instance, in the 9-qubit Shor code, the stabilizer Z1Z2 corresponds to the vector
(1,1,0,0,0,0,0,0,0) while the stabilizer X1X2X3X7X8X9 corresponds to (1,1,1,0,0,0,1,1,1). In this
representation, two stabilizers commute if the corresponding vectors are orthogonal over F2.

The only requirement on the functions f and g is that they come from universal familiesF and
G of hash functions, respectively. Suppose nZ and nX are the required number of amplitude and
phase type stabilizers, respectively, as determined by the rate requirements of the respective informa-
tion reconciliation tasks. Then it is easy to show that one simple universal family encompassing both
hash functions is the set of (nZ + nX )× n matrices over F2 consisting of pairwise orthogonal rows.
The first nZ rows give the Z -type stabilizers and the remaining nX rows the X -type stabilizers.

Given these stabilizers, it is convenient to think of the code as partitioning Alice’s qubits in
system A into three different sets of virtual qubits, the encoded qubits in subsystem A, the nZ qubits
whose amplitude measurement gives f (z) in bA, and the nX qubits whose phase measurement gives
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g (x) in eA. Then by the properties of the stabilizer operators, bz= f (z) and ex= g (x), where bz denotes
a particular sequence of amplitude measurement outcomes for system bA.

Now we have all the pieces needed to construct an entanglement distillation protocol. Starting
from n copies of the resource state, Alice will measure nZ Z -type stabilizers and nX X -type stabilizers
and communicate the resulting syndromes to Bob. Then, for large enough n, he will be able to
predict Alice’s measurement of encoded amplitude and phase operators using the appropriate pretty-
good measurements, and thus create an approximate EPR state following Theorem 1.

Formally, they begin with the state

|Ψ〉ABE =
∑

z

p

pz |z〉
A |ϕz〉

BE (4.4)

=
∑

z,bz,ez

p

pz |z〉
A |bz〉

bA |ez〉
eA |ϕz〉

BE , (4.5)

where in the second line we use the decomposition of Alice’s system into the three sets of virtual
qubits and consider z to be a function of (z,bz,ez). The number nZ is chosen so that pguess(Z

A|M BB ′
Z )ψ ≈

1, where again B ′ is the system in which Bob stores bz. Since z is a (linear) function of z, this implies
that pguess(Z |M BB ′

Z ) ≈ 1. As much is true for the phase in that given the value of ex stored in B ′′,

there exists a measurementM BB ′′
X for which pguess(X |M BB ′′

Z )ψ ≈ 1. Therefore Bob can recover ap-
proximate EPR pairs by performing these measurements coherently, as shown in Theorem 1. In this
way they can distill n − nX − nZ approximate EPR pairs, provided this quantity is positive. Note
that here we have only utilized communication from Alice to Bob, making this a one-way protocol.
Using back and forth communication Alice and Bob could in principle increase the distillation rate,
as pointed out by Bennett et al. [53] for protocols where both parties use quantum error correction,
as described in Section 2.3.

4.1.3 Constructing an Optimal Protocol

The final question is how small nZ and nX can be made, and here there arises an additional sub-
tlety. From the above discussion, we would expect that nZ ≈ nH (ZA|B)ψ and nX ≈ nH (X A|B)ψ.
However, Alice and Bob can do better. Initially, the purification of their shared state is

|Ψ〉ABE =
∑

z

p

pz |z〉
A |ϕz〉

BE . (4.6)

After receiving the amplitude information, Bob has full information about z, which he could store
in system CZ . Then, for the purposes of predicting Alice’s hypothetical phase measurement, it is as
if they originally shared (a close approximation to) the following state,

|ΨZ〉
ACZ BE =

∑

z

p

pz |z〉
A |z〉CZ |ϕz〉

BE , (4.7)

and this may simplify Bob’s phase-prediction task in general.
One might worry that Alice’s phase measurement is no longer possible even hypothetically, due

to the amplitude stabilizer measurement. However, Bob can still use the conditional marginal states
ϑCZ B

x forpqx |ϑx〉
CZ BE = 1p

2n

∑

z
p

pz(−1)x·z |z〉CZ |ϕz〉
BE = 1p

2n (Z
x)CZ |Ψ〉CZ BE to build the unitary

operator UMX
. This gives him what would have been the phase measurement outcome, and there-

fore the outcome of the encoded phase measurement. The existence of the former has indeed been
destroyed by the amplitude stabilizer measurement, but the latter has not.
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A concrete example in which amplitude information is relevant to phase is provided by the fol-
lowing. Suppose the state Alice and Bob share is a maximally-entangled state ΦAB afflicted only with
errors of the form X Z . Then amplitude Z errors are completely correlated with phase X errors.
Thus, Bob need only know the positions of amplitude errors in order to infer the positions of phase
errors. In other words, H (X A|BCZ )ψ = 0.

Taking the above consideration into account, the rate of entanglement distillation becomes r (ψ) =
1−H (ZA|B)ψ−H (X A|BC )ψZ

, as all the approximation parameters can be taken to arbitrarily small
values by choosing a large enough n. It turns out that r (ψ) = −H (A|B)ψ, which we can see by di-
rect computation. First evaluate the latter entropy H (X A|CZ B)ψZ

, using the form of |ψZ〉 derived in
(3.37). We find

H (X A|C ZB )ψZ
≡H (X ACZ B)ψZ

−H (CZ B)ψZ
(4.8)

=H (X A)ψZ
+H (CZ B |X A)ψZ

−H (CZ B)ψZ
(4.9)

= 1−H (CZ B)ψ−H (CZ B)ψZ
(4.10)

= 1−H (E)ψ−H (AE)ψZ
(4.11)

= 1−H (E)ψ−H (ZAE)ψ. (4.12)

The first step follows from the general relation between conditional and unconditional von Neumann
entropies, while the second follows because the state of CZ BE conditioned on outcome X A = x is
(Z x )CZ |ψ〉CZ BE . As these are all unitarily equivalent, each term H (CZ B |X A = x)ψZ

has the same
value H (CZ B)ψ. In the third step we have used the fact that H (S1) = H (S2) for a bipartite pure state
on systems S1 and S2. The last step follows because ψAE

Z is identical to the result of measuring the
amplitude of A for the initial state ψAE . Hence r (ψ) = H (ZA|E)ψ −H (ZA|B)ψ. But since the BE
system given the measurement outcome ZA= z is pure, H (B |ZA= z)ψ =H (E |ZA= z)ψ. Therefore
H (ZAE)ψ =H (ZAB)ψ and r (ψ) =−H (A|B)ψ =H (A|E)ψ. This rate is sometimes called the hashing
bound.

Two further modifications lead to the optimal entanglement distillation rate. First, Alice is free
to first apply any quantum operationQA to her system before the protocol begins, and this increases
the rate to

D1(ψ) =max
Q

�

−H (A|B)ψQ
�

. (4.13)

Second, the rate can be further improved by regularization. Although we have described the protocol
above for system A a qubit, it works almost precisely the same for any dimension d which is a prime
power.1 Given a stateψAB , we could then imagine consideringΨAB = (ψAB )⊗m to be the fundamental
input to the protocol, and Alice and Bob starting with n copies thereof. The difference is that now
Alice and Bob can ignore the product structure of ΨAB , which leads to the possibly-higher rate

D(ψ) = lim
n→∞

1

n
D1(ψ

⊗n). (4.14)

Devetak and Winter show this rate, the distillable entanglement, is in fact optimal in [92].

1The restriction to prime powers comes from the structure of the stabilizer operators. These require the vector-
representation described in Section 4.1.2 which only exists when the symbols come from a finite field.
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4.1.4 Quantum Noisy Channel Coding

With a small modification, this entanglement distillation protocol can be used for reliable transmis-
sion of quantum information over a noisy channel N . As mentioned in the discussion of approx-
imate error-correction in Section 3.1, we can always mimic the quantum communication task by
sending half of an EPR pair through the channel and measuring the half remaining with Alice in the
appropriate basis. Thus, by deferring the measurement indefinitely, we only need to consider reliably
transmitting halves of EPR states.

Now consider the entanglement distillation protocol applied to ψAB = [idA ⊗N B](θAB ), for
an arbitrary pure state |θ〉AB . The protocol is constructed so that, averaged over all values that the
syndromes could take on, the distilled state closely approximates the ideal of n r EPR pairs. Pick the
syndrome with the best approximation parameter, which is surely better than the average. Since in
the communication scenario Alice can choose the input, she can always do so in a way which ensures
her stabilizer measurement yields precisely this syndrome. Therefore, Alice and Bob could agree on
the syndrome value in advance.

But this defines an encoder and decoder in an error-correction scheme! Alice directly creates the
bipartite state resulting from measuring the code stabilizers on many instances of θAB and obtaining
the specified syndrome. She then sends Bob’s halves through the channel, and he is able to decode
the result by applying the entanglement distillation procedure. Since entanglement can be faithfully
transmitted, so could any particular single-system state.

Applied to single inputs, this implies that reliable quantum communication must be possible over
the channel at rate (here we dispense with the operationQ)

Q1(N ) =max
θ

�

−H (A|B)ψ
�

. (4.15)

Despite its nonstandard appearance, this is equal to a maximization over the coherent information Ic
introduced by Schumacher and Nielsen [93] and more frequently used in this context. To see this,
write |θ〉AB =

∑

k
p

pk |k〉
A |ϑk〉

B for some probabilities pk and normalized states |ϑk〉
B . The action

of the channel on B can be thought of as an isometry U B→BE
N and |ψ〉ABE =

∑

k
p

pk |k〉
A U B→BE
N |ϑk〉

B

is the output. Computing the conditional entropy H (A|B)ψ we find

Q1(N ) =max
θ

�

H (B)ψ−H (R)ψ
�

(4.16)

=max
ϑ
(H (N (ϑ))−H (N ∗(ϑ))) (4.17)

≡max
ϑ

Ic (ϑ,N ), (4.18)

where ϑ =
∑

k pkϑ
B
k

andN ∗ is the channel complementary toN obtained by applying U B→BE
N and

keeping R instead of B . In the first line H (AB)ψ = H (R)ψ since ψ is pure, and maximization over θ
is equivalent to maximization over ϑ in the second line.

Regularization could improve the result, and we have therefore we have constructed a noisy-
channel coding scheme which achieves a rate Q(N ), where

Q(N ) = lim
n→∞

1

n
Q1(N

⊗n). (4.19)

In fact, this is the ultimate capacity of the channel. In a sequence of papers [64, 93, 94, 95], Barnum,
Knill, Nielsen, and Schumacher established Q as an upper bound on the capacity, while Lloyd [96],
Shor [97], and Devetak [98] used random-coding arguments to show that Q can be attained.
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Here we have shown that CSS codes can achieve the capacity, since the resulting code inher-
its this structure from Alice’s use of CSS-type stabilizers in the entanglement distillation proto-
col. Previously, CSS codes were only known to achieve a lower rate, as implicitly shown by Shor
and Preskill [57] and explicitly by Hamada [99]. The more-general stabilizer codes were shown to
achieve the capacity by Hayden et al. [70].

Devetak’s coding scheme has some CSS-like properties in that it essentially consists of an am-
plitude error-correction step followed by a privacy amplification step. From the discussion of the
previous chapter, particularly Lemma 4 but with amplitude and phase trading places, we are tempted
to view the latter step as error correction of a phase observable, and indeed we shall examine this
in more detail in Section 5.2.1, but the amplitude and phase observables implicitly used in [98] are
functions of the coding scheme itself and not identical to the (code-independent) amplitude and phase
as we have used here.

One appealing aspect of the use of CSS structure is the possibility of constructing efficiently
encodable and decodable codes which approach or even achieve the capacity. For classical communi-
cation over classical channels, Forney exhibited such a construction by concatenating random codes
with structured codes known as polynomial or Reed-Solomon codes [100]. Hamada has extended
this to the quantum case in a sequence of papers [101, 102, 103], but only up to the suboptimal rate
mentioned above. It would be interesting to see if the methods presented here can be combined with
those of Hamada to reach the capacity efficiently.

4.2 Optimal State Merging

Since the unitary Bob eventually uses to distill the entangled states also transfers the state of Alice’s
system A to his laboratory, the above protocol can be used for state merging, a process first studied
by Horodecki et al. [66]. Here the goal is to merge Alice’s part ψAB of the joint state ψAB with
Bob’s so that he ends up with ψAB , using as little quantum or classical communication as possible.
Additionally, if we consider the purification |ψ〉ABE , all correlations with the purifying system R
should be transferred to Bob as well. Not only should Bob end up with a good approximation to
ψAB , but together with R the final state should closely approximate |ψ〉ABE .

When ψAR is itself pure, state merging reduces to quantum data compression. Since Bob has no
initial information about Alice’s state, whatever she sends must be sufficient to reconstruct her state
and can be regarded as the compressed version of it. Schumacher has shown that a state ψA can be
compressed at rate no greater than H (A) [15], meaning Alice and Bob will need to use a quantum
channel at this rate.

However, when Bob’s system is correlated with Alice’s, they can take advantage of these corre-
lations to reduce the amount of communication needed. Indeed, if Alice and Bob share the EPR
state |Φ〉AB , then no communication is required at all! This follows because a maximally-entangled
state is not correlated with any third system, and so Bob can simply recreate the state at his end. For
example, applying Theorem 1 to the input state |Φ〉AB yields output |Φ〉AD |Φ〉BC upon application of
the partial isometry U B→BC D .

Moreover, sometimes sending only classical information is sufficient for transferring a quantum
state. This is precisely the case when using the entanglement distillation protocol, which works
for all ψAB such that H (A|B) < 0. That classical communication is sometimes sufficient is some-
what surprising, but with entanglement Alice could teleport her system to Bob using only classical
information, and this is effectively what happens as a byproduct of the entanglement distillation
protocol. By expressly using teleportation, we can also apply the distillation protocol to cases when
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H (A|B)> 0, as described in [66]. For n resource statesψAB Alice and Bob can create nH (A|B)ψ EPR
pairs to go with their n resource states, and the overall conditional entropy of the entire collection of
systems is now roughly zero. Running the entanglement distillation protocol produces no new EPR
pairs, but does transfer Alice’s part of the resource state to Bob.

Horodecki et al. have shown that state merging requires quantum communication at the rate
H (A|B)ψ when this quantity is positive, but only classical communication at rate I (A : E)ψ when
H (A|B)ψ is negative [66, 67]. Using the entanglement distillation procedure above is therefore opti-
mal in the first setting but not always in the second, as the rate of classical communication needed is
(nZ + nX )/n = 1−H (A|E)ψ ≥ I (A : E)ψ.

However, we can make a small alteration to the protocol to make it optimal, as shown in [BR09].
Observe that when H (A)ψ = 1, the procedure is in fact optimal. This suggests that we ought to first
compress system A and then perform entanglement distillation. The difficulty in making this work
is to ensure that the compression step does not interfere with the amplitude and phase information
reconciliation steps. Since compression of quantum systems can be thought of as essentially just
classical compression in the eigenbasis, it simplifies matters to choose the amplitude basis to be the
eigenbasis of Alice’s state ψA.

Formally, the tripartite system ABE starts in the pure state given in Equation (4.6). The compres-
sor projects the system onto a subspace spanned by a set of eigenvectors |z〉 whose total probability
is nearly equal to one, a so-called typical set. Even though the typical set contains almost all of the
probability, it only contains roughly 2nH (Z) of the 2n total eigenvectors. Thus, with probability
nearly one the projection operation succeeds and the subspace needed to support the state drastically
shrinks. Rarely, the projection operation fails, and the state must be written off as a total loss.

When the compressor succeeds, the state can be expressed as

|ψ′〉ABE =
1

N

∑

z∈Typ

p

pz |z〉
A |ϕz〉

BE , (4.20)

where Typ is the typical set and N is the required normalization factor. On the typical subspace we
can order the basis elements lexicographically and define a new amplitude observable Z ′ as in Equa-
tion (3.25), as well as the phase observable corresponding to the shift operator of said basis. After
the compression step, the idea is for Alice and Bob to run the entanglement distillation procedure
for the new observables Z ′ and X ′. However, the distribution of measurement results for these two
operators is no longer i.i.d., and thus the results of information reconciliation we used previously no
longer apply. We have no direct way of knowing how many stabilizers Alice should measure, nor
how Bob should construct his measurement.

This poses no serious problem for the new amplitude observable, since it is essentially the same
as the old one, just missing the non-typical values. Indeed, the information reconciliation protocol
also makes use of typicality in that Bob’s measurement does not bother to look for non-typical z in
the first place. Thus, explicitly rejecting these possibilities in the compression step will only serve
to reduce the error probability for information reconciliation of Z ′. Alice can perform precisely
the same Z -type stabilizer measurements as before, and Bob’s original measurement will accurately
reconstruct Z and therefore Z ′.

However, this sort of argument does not work for the new phase observable X ′. Since X and X ′

are not so simply related, Bob’s knowledge of X generally does not pertain at all to his knowledge of
X ′. Luckily, the extra system CZ which was used to achieve the optimal entanglement distillation rate
comes the rescue. In the entanglement distillation protocol it gave Bob’s marginal states conditioned
on Alice’s phase measurement a group-covariant structure, and it does so in the present scheme as
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well. In turn, this makes it possible to transform the information reconciliation protocol in the
original i.i.d. setting to one appropriate for the new non-i.i.d. setting.

After the amplitude information reconciliation step, phase information reconciliation proceeds
as if Alice and Bob shared the state

|ψ′Z〉
ABE =

1

N

∑

z∈Typ

p

pz |z〉
A |z〉C |ϕz〉

BE . (4.21)

The group covariance arises just as before, due to the “copy” of z in system CZ . The required number
of X ′-stabilizer outcomes must be computed in the construction of the reconciliation protocol, and
it turns out to be nX ′ = H (A)ψZ

+H (CZ B |X A)ψZ
−H (CZ B)ψZ

. Following the calculation in the
previous section, this is just nX ′ = H (A)ψ−H (ZA|E)ψ. For the first term we have used the fact that
H (A)ψZ

= H (ZA)ψ = H (A)ψ since the amplitude basis is the eigenbasis. The communication cost of
the protocol is now nZ + nX ′ =H (A)ψ+H (ZA|B)ψ−H (ZA|E)ψ = I (A : E)ψ.

Since they are working in the typical subspace, Alice and Bob can expect to extract roughly
n log |Typ|−nZ −nX ′ entangled pairs, where |Typ| ≈ 2nH (A) is the size of the typical set. This works
out to an entanglement distillation rate of H (A)ψ− I (A : E)ψ =−H (A|B)ψ, just as before. Therefore,
by adding a compression step and choosing the amplitude basis to be the eigenbasis of Alice’s system,
we have managed to convert the optimal entanglement distillation protocol into an optimal state
merging protocol.

4.3 Secret Key Distillation and Private Communication

Section 3.4 detailed the close connection between private and entangled states, and in this section we
show that the same methods used in Section 4.1 to construct entanglement distillation protocols can
be used to construct protocols for creating a shared secret key from a supply of bipartite quantum
states. Due to the CSS nature of this approach, we really only need to construct a private state
distillation scheme, and it will work for secret key distillation as well. As explained in Section 2.4,
Alice and Bob ultimately only need to ensure that the information about Alice’s hypothetical phase
measurement is somewhere to be found in the systems under their control.

The private state distillation protocol works almost exactly as the entanglement distillation pro-
tocol. Given n copies of the resource state ψAB , Alice is free to decide how to define the prospective
key and first performs a quantum operation QA→AA′ which maps her system A into two systems
AA′. The first is used as the key and the second as a shield. This operation may additionally in-
volve a measurement whose outcome T is publicly transmitted to Bob, and the resulting state is
ψAA′BT
Q =

∑

tQA→AA′
t (ψAB )⊗ |t 〉 〈t |T .

In the second step Alice measures enough amplitude and phase stabilizers on A so that the
amplitude ZA can be reconstructed from system B and the phase X A from the compound system
A′B . The number of stabilizers needed is set by the requirements for information reconciliation of
each task separately, and again the amplitude information may be useful in recovering the phase
information. Therefore the number of stabilizers needed amounts to nZ ≈ nH (ZA|BT )ψQ and

nX ≈ nH (X A|CZ A′BT )ψQ,Z
, where ψACZ A′B

Q,Z
is the state defined by coherently copying the ampli-
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tude in A to system CZ . Alice may choose the optimal operationQ, yielding the distillation rate

K1(ψ) =max
Q

�

1−H (ZA|BT )ψQ −H (X A|CZ A′BB ′T )ψQ,Z

�

(4.22)

=max
Q

�

H (ZA|RT )ψQ −H (ZA|BT )ψQ
�

, (4.23)

where the second line follows by the same calculations which led to Equation (4.12).
Alice need only transmit the amplitude syndromes to Bob since they use the encoded amplitude

Z as the final key. The phase syndromes need not be transmitted, since according to Theorem 6
the mere existence of a phase-predicting measurementMCZ A′BB ′

X ensures the secrecy of the key. This
means the protocol can be immediately converted into a secret-key distillation scheme in which Alice
and Bob make their amplitude measurements first, Alice then transmits the amplitude syndromes,
and finally Alice and Bob compute the final key from the encoded amplitude operator Z . From
the outside, they could have actually run the private state distillation protocol, phase stabilizer mea-
surement and all, and so the secret key distillation protocol inherits security from the private state
distillation protocol.

Regularization can again in principle increase the rate further, and the resulting rate is identical
to the upper bound found by Devetak and Winter [92]. Thus we have constructed a secret key
distillation protocol which achieves the optimal rate

K(ψ) = lim
n→∞

1

n
K1(ψ

⊗n). (4.24)

Given a shared, secret key Alice can transmit secret messages to Bob over a public communication
channel simply by encrypting the message with the key. For absolute security, Shannon showed that
one requires a key exactly as long as the message [54], and the message may be encrypted by simply
computing the exclusive-OR of the key, a scheme known as a one-time pad or Vernam cipher after its
inventor [104].

Therefore Alice and Bob may use the secret key distillation scheme above for private commu-
nication over public channels. As Alice can choose the input to the channel, she may simply select
that input which gives the output with the largest distillable key. Then they proceed with secret key
distillation and the one-time pad. This gives a private communication rate of at least P1(N ) using
K1 above, at least when assisted with public communication. This quantity is sometimes referred to
as the private information and we shall encounter it again in Section 6.3. Once more, regularization
may improve the rate, and the resulting expression P(N ) was shown to be an upper bound in [98].
The the protocol for private communication constructed in this way achieves the capacity. Here we
have not attempted to remove the public communication from Alice to Bob as we did in the case of
quantum communication, but it is also shown in [98] that the private capacity can be achieved even
without such assistance.
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5Duality of Protocols
In Chapter 4 we saw that reconciling Bob’s quantum information in system B with Alice’s amplitude
observable ZA requires her to send Bob extra information about ZA at rate H (ZA|B)ψ. This quantity
trades off with H (X A|E)ψ in the uncertainty principle Equation (1.7), H (ZA|B)ψ+H (X A|E)ψ ≥ 1.
As it happens, H (X A|E)ψ is also the rate at which Alice can perform privacy amplification of X A,
extracting uniformly-distributed bits from X A which are completely uncorrelated with E . Thus, the
less information Alice has to send to Bob about ZA, the more randomness she can extract from X A

unknown to E . There exists a duality between these two protocols due to the uncertainty principle.
The fact that the rates of the two protocols are connected invites us to think that the protocols
themselves may be connected as well—that it may be able to transform one protocol into the other.

Here we show that this is indeed the case, recounting results from [Ren11, RR11] and presenting
some new material. This chapter is divided into four main sections. In the first, we recount how
information reconciliation and privacy amplification protocols based on linear hash functions can be
transformed into each other, following [Ren11]. The duality extends to non-i.i.d. resources where
the notion of asymptotic rates is no longer valid, and we remark that this implies a more general
form of the uncertainty principle in terms of generalized entropies suitable for such unstructured
resources. In the second section, we explore the implications of this duality for constructing entan-
glement distillation protocols, and by extension, the other related protocols discussed in Chapter 4.
This material has not been previously published. The third section is devoted to the result of [RR11]
which shows that coding schemes for communication of either public or private classical information
over noisy channels can be constructed by combining privacy amplification and information recon-
ciliation. Thus, the two dual protocols occupy a very fundamental place in the study of information
theory, as they can be combined to generate a variety of protocols for other tasks.

5.1 Duality of Privacy Amplification and Information Reconciliation

The duality of information reconciliation and privacy amplification protocols both based on linear
universal hashing essentially comes down to complementarity, specifically the fact that amplitude
measurements destroy phase information and vice versa. Roughly speaking, if Alice measures am-
plitude stabilizers to perform information reconciliation of ZA with Bob, this can also be seen as
randomizing the conjugate phase X A stabilizers, as would be useful in privacy amplification. With
Lemma 4 in mind, we expect that if information reconciliation succeeds and Bob can reliably recover
the encoded amplitude Z , then the encoded phase X must be uncorrelated with system E . Mak-
ing this work in reverse is slightly more complicated, and there are two versions, corresponding to
Corollaries 2 and 3.

5.1.1 Privacy Amplification

Before delving into the duality of these protocols, we first describe the process of privacy amplifica-
tion and the known results in more detail. Imagine that Alice has an n-bit classical random variable
X A which is correlated with an external system E in some way. Letting X A be the phase observable,
we can describe this state of affairs as

ΨAE =
∑

x
qx |x〉 〈x|

A⊗ϑE
x . (5.1)
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If the ϑx were identical for all x, then E would have no information about the value of X A. Con-
versely, if the ϑx have disjoint supports, then a measurement of E projecting onto these supports can
determine x without error.

First introduced by Bennett, Brassard, and Robert [105, 106], the goal of privacy amplification

is twofold, to compute some function X
A
= f (X A) of X A which is both uniformly distributed and

independent of E . Keeping only the function output f (x)means that, for a given output x, the state
in E is averaged over all the x for which f (x) = x. The goal is then to average over enough values of x
so that the conditional states ϑx =

∑

x: f (x)=x qxϑ
E
x are identical for all x. Of course, it is unrealistic to

expect such an ideal output, so we settle for psecure(X
A|E)≥ 1−ε. When the state ΨAE is n instances

of a stateψAE pertaining to a single bit in A, the asymptotically-optimal rate at which private random
bits can be extracted is defined by the largest rate achievable in the simultaneous limits n→∞, ε→ 0.

In the case that the states ϑE
x are classical, i.e. simultaneously diagonalizable, Bennett et al. have

shown that universal hashing can be used for privacy amplification [105, 106, 107]. Using random
coding techniques in the i.i.d. setting, Devetak and Winter proved that the rate H (ZA|E)ψ is achiev-
able in the asymptotic limit for quantum ϑE

x [92], while Renner and König show that universal
hashing is also effective against quantum adversaries even for unstructured, non-i.i.d. resources [108].

One drawback of approaches based on universal hashing is the need for a large amount of ran-
domness to select the hash function from the family,Θ(n) seed bits for n input bits. Smaller function
families would naturally be preferable. If we are unconcerned with privacy, the task reduces to ex-
tracting the maximum amount of randomness inherent in the distribution of ZA, and constructing
efficient extractors has been the subject of much research in theoretical computer science (see e.g.
Shaltiel [109] for a review).

In particular, Trevisan’s breakthrough construction showed that essentially all the randomness
may be extracted from the input using extractors with seeds of size O(polylog(n)) [110, 111]. Re-
cently De et al. showed that Trevisan’s construction can be extended to privacy amplification against
quantum adversaries [112].

5.1.2 Privacy Amplification from Information Reconciliation

Now we examine how an information reconciliation protocol using linear functions for universal
hashing can be used for privacy amplification. Use of CSS codes makes this simple. Consider, as
usual, a tripartite pure state |ψ〉ABE . Instead of taking system A to be a qubit, we now assume that it
has dimension 2n for some n. This can done without loss of generality by embedding A into a state
space larger than the support of ψA, and allows us to think of system A as a collection of n qubits.

Suppose that there exists a protocol for information reconciliation of Bob’s information with the
Alice’s amplitude ZA which calls for Alice to compute a linear function of ZA and send it to Bob.
This computation can be thought of as measuring the stabilizers of a CSS code which contains only
Z -type stabilizers. In terms of virtual qubits as described in Section 2.2.1, the entire collection of
qubits can be grouped into two subsets, the encoded qubits and the stabilizer qubits. Denoting the
amplitude values of the encoded qubits by z and those of the stabilizer qubits by bz, we can express
the initial state as (abusing notation slightly)

|ψ〉ABE =
∑

z

p

pz |z〉
A |ϕz〉

BE =
∑

z,bz

p

pz,bz |z〉
A |bz〉

bA |ϕz,bz〉
BE , (5.2)

where A ( bA) denotes the virtual subsystem of the encoded (stabilizer) qubits.
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The information reconciliation protocol assures us that given the value of bz, Bob can determine
the value of z and therefore z. That is, there exists a measurement on bAB which can reliably predict
the amplitude of A with guessing probability greater than 1−ε for some small ε. Then by Lemma 4,
psecure(X

A|E)ψ ≥ 1−
p

2ε. Therefore, to generate a random secret string from the phase observable

X A, Alice can simply compute the encoded phase X .

5.1.3 Information Reconciliation from Privacy Amplification

Showing that a privacy amplification protocol can be repurposed for information reconciliation is
somewhat more involved. Here we encounter the same complications as in Section 3.2: Just because
E has no knowledge of X A does not imply that B can predict ZA. But the same technique used there
of imposing extra conditions so that the uncertainty principle is saturated works here as well. There
are two separate cases to consider.

In the first of these we require pguess(Z
A|E)ψ = 1, meaning we might as well write the state as

|ψ〉ABE =
∑

z

p

pz |z〉
A |z〉E1 |ϕz〉

BE2 , (5.3)

for E = E1E2. This is somewhat more natural for the goal of amplitude information reconciliation,
as it ensures that the AB state describes a classical variable in A and a quantum state in B : ψAB =
∑

z pzP A
z ⊗ϕ

B
z .

Now suppose that there exists an encoded X such that psecure(X
A
|E)ψ ≥ 1− ε. Again using the

encoded and stabilizer qubits for system A, it follows from Corollary 3 that there exists a measure-
mentMZ on bAB which can recover Z with error probability less than

p
2ε. However, Bob does not

have access to bA, and Alice must take care in what information she sends to Bob, lest it leak any in-
formation about the phase to E . Intuitively, however, measuring amplitude stabilizers on bA destroys
any phase information that might be present, so it should be safe to transmit the resulting syndromes
to Bob.

Indeed, the formal nature of the state shared by Alice and Bob makes this clear, since bA is effec-
tively already measured. Tracing out E , we obtain

ψAB =
∑

z,bz

pz,bzP A
z ⊗ P

bA
bz ⊗ϕ

B
z,bz. (5.4)

Due to the classical structure of system bA, we can assume without loss of generality that the measure-
mentM bAB

Z has this structure, too. For let ΛAB
z

be the POVM elements of theM bAB
Z

and consider the

joint probability of obtaining the outcomeM bAB
Z
= z′ and Z = z,

Pr
�

M bAB
Z
= z′,Z = z

�

=
∑

bz

pz,bzTr
�

Λ bAB
z′

P
bA
bz ⊗ϕ

B
z,bz

�

. (5.5)

Clearly the same probability results if we first determine the value of bz and then use a POVM on B
having elements ΠB

z;bz
=Tr[P bA

bz
ΛAB

z
]. But this is precisely how we expected the information reconcili-

ation process to work: after learning bZ , Bob can measure B and recover Z .
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In the second case we require pguess(X
A|B)ψ = 1, so that Bob already has information about the

phase. Should he also learn the amplitude, Alice and Bob would have created an entangled state, so
this scenario is essentially the latter half of an entanglement distillation scheme. In fact, the protocol
of Devetak and Winter in [92] is constructed along these lines. Just as in the previous scenario, if
a privacy amplification protocol can construct an encoded phase X uncorrelated with E , then the
conjugate encoded amplitude Z must be reliably recoverable by measurement on bAB , though now
the implication follows from Corollary 2. However, we cannot use the same argument to show that
measurement of the amplitude of bA is sufficient to enable information reconciliation using system B .

Instead, we can proceed as follows. From the requirement pguess(X
A|B)ψ = 1, the marginal state

of the AE subsystems takes the form ψAE =
∑

x qxP A
x ⊗ ϑ

E
x for some probabilities qx and normal-

ized states ϑE
x . Decomposing Alice’s qubits into virtual encoded and stabilizer qubits, the state is,

in a slight abuse of notation, just ψAE =
∑

x,bx qx,bxP A
x
⊗ P bA

bx
⊗ϑx,bx. Since the bA system is in a phase

eigenstate, measuring its amplitude delivers a completely random outcome and results in precisely
the same state as if bA were traced out. But the encoded phase is chosen by the privacy amplification
protocol so that disposing of the stabilizer qubits leaves a nearly ideal key, and the amplitude mea-
surement of the stabilizer qubits does not change this. Thus, for every measurement result we can
conclude by Corollary 2 that there exists a measurement on B which gives z with high probability.

In both of these situations the desired measurement is only shown to exist, but is not directly
constructed. However, due to a result by Barnum and Knill, this presents no real difficultly, as the
pretty-good measurement has an error probability which is at most a factor of two worse than the

optimal case [95]. Thus, if privacy amplification is possible so that psecure(X
A
|E)ψ ≥ 1− ε, then

using the amplitude stabilizer measurement and the pretty good measurement for Bob’s conditional
marginal states results in information reconciliation protocols with error probability less than 2

p
2ε.

5.1.4 One-Shot Protocols and a Generalized Uncertainty Principle

In the preceding sections we have treated Alice’s system as a collection of n qubits, but it is important
to note that the duality holds for arbitrary resource states, not just i.i.d. states. The i.i.d. setting is
only necessary to define the asymptotically-achievable rates of the various protocols. Recently, a
new framework has been constructed which makes it possible to characterize protocols operating on
arbitrary, structureless resource states in terms of smooth entropies. A proper treatment of smooth
entropies and their calculus is beyond the scope of this thesis, but we remark that they can be thought
of as generalizations of Rényi entropies which are somewhat more familiar in standard information
theory and obey many of the same chain rules as the usual Shannon or von Neumann entropies.
Here we wish to point out that the duality above, in particular the former duality of Section 5.1.3,
implies a new entropic uncertainty principle formulated in terms of smooth entropies.

There are two different smooth entropies, the smooth min-entropy and the smooth max-entropy,
and each comes in both conditional and unconditional varieties. It turns out that the number
`εext(X

A|E)ψ of ε-good random bits one can extract from ZA which are secret from E is character-
ized by the smooth min-entropy, `εext(X

A|E)ψ ≈ H ε
min(Z

A|E)ψ [108, 113, 114, 115]. More precisely,
`εext(X

A|E)ψ equals H ε
min(Z

A|E)ψ up to small deviations involving the smoothing parameter ε. Much
the same holds for information reconciliation, except using the smooth max-entropy. As shown by
the present author and Renner [116], the number of bits Alice needs to send to Bob, generated by
universal hashing, is given by `εrec(Z

A|B)ψ ≈ H ε
max(Z

A|B)ψ. Though it might not appear so, the def-
initions of the smooth entropies are logically distinct from the operational quantities `εext and `εrec.
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5.2. Different Approaches to Entanglement Distillation

It should be noted, however, that the smooth entropies are themselves related to the operational
quantities pguess and psecure, a fact discovered by König et al. [117].

Now consider a quantum state of the form given in Equation (5.2). Information reconciliation of
the amplitude requires that Alice send `εrec(Z

A|B)ψ bits obtained via universal hashing of ZA to Bob.
But this implies Alice can equally-well use the encoded phase to generate random bits uncorrelated
with E . In all she can create n−`εrec(Z

A|B)ψ random bits this way, which must of course be less than
the bound on privacy amplification established by the smooth min-entropy. Similarly, `εrec(Z

A|B)ψ
is bounded by the smooth max-entropy, so we anticipate from this heuristic argument that

H ε
min(X

A|E)ψ+H ε
max(Z

A|E)ψ ? n. (5.6)

Indeed, the full analysis performed in [Ren11] shows that the above expression is correct, up to terms
of order log(1/ε). The state in Equation (5.2) is arbitrary, so this generalized uncertainty principle
holds for conjugate observables and any tripartite quantum state. Recently, Tomamichel and Renner
have found a simple proof which extends the above uncertainty relation to arbitrary observables in
the manner of Equation (1.7) [118].

5.2 Different Approaches to Entanglement Distillation

The entanglement distillation protocol presented in Section 4.1 was built by combining information
reconciliation protocols for both Alice’s amplitude and phase observables. By the duality of informa-
tion reconciliation and privacy amplification, we expect to be able to trade one task for the other, and
base the construction of the protocol on either Theorem 2 or Theorem 3 rather than Theorem 1. In
the following we present these two alternate approaches. It should be stressed that ultimately the al-
ternate approaches followed here yield the same protocol as in Section 4.1, but they have completely
independent justifications.

In the first approach, we may think of the phase information reconciliation in the original proto-
col as amplitude privacy amplification, which makes the goal of entanglement distillation to simulta-
neously give Bob full information about Alice’s amplitude while ensuring that E has none. Formally,
the goal in constructing the protocol is to fulfill the conditions of Theorem 2. Clearly this approach
is quite closely related to secret-key distillation, which has nearly the same goals, and indeed was the
original approach followed by Devetak and Winter [92] for entanglement distillation and Devetak in
establishing the quantum capacity of a quantum channel [98]. Here we construct an entanglement
distillation protocol having the same aims but a somewhat different structure, namely the use of CSS
codes by Alice.

In the second approach, we can give up on Bob altogether and focus entirely on removing am-
plitude and phase correlations from E , with the aim of fulfilling the conditions of Theorem 3. To
our knowledge, this approach is new. It shows that the commonly used quantum decoupling method
can be broken down into two classical decoupling steps, further reinforcing the claim that quantum
information processing can be understood as a combination of classical information processing of
amplitude and phase information. Figure 5.1 depicts the relationship between the three approaches.

5.2.1 Amplitude Information Reconciliation & Privacy Amplification

Although the approach based on Theorem 2 is substantially similar to that pursued in [92], we in-
clude it here for completeness. Again we consider the case in which Alice and Bob share asymptotically-
many copies of a resource stateψAB which may be purified to |ψ〉ABE . We will construct the protocol
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n− nX − nZ

A

nX

eA

nZ

bA

Section 4.1.3

Section 5.2.1

Section 5.2.2

Phase IR Amplitude IR

Amplitude PA Amplitude IR

Amplitude PA Phase PA

Figure 5.1: Breakdown of Alice’s n physical qubits into three subsets of virtual qubits in subsystems
A, bA, and eA and what the different subsets are used for in the various approaches to entanglement
distillation presented here. Theorem 1 is the goal of the construction in Section 4.1.3, where bA is used
to reconcile the amplitude information with Bob and eA the phase information. The construction in
Section 5.2.1 takes Theorem 2 as its goal, and bA is again used for amplitude information reconciliation
with Bob, but eA is used for privacy amplification of the same amplitude information against the
environment. Finally, Theorem 3 is the aim of construction in Section 5.2.2, where bA is used to
decouple Alice’s phase information from the environment and eA her amplitude information.

by choosing two sets of amplitude stabilizers, first a number nZ large enough to enable information
reconciliation with Bob and the second nX to achieve privacy amplification against E . Thinking in
terms of virtual qubits and their associated amplitude and phase operators, let us call the encoded am-
plitude operators Z , of which there are n− nZ − nX , the nZ stabilizers associated with information
reconciliation bZ , and those nX associated with privacy amplification eZ .

To ensure that Bob can reconstruct the original amplitude, and therefore the encoded Z , Alice
measures the bZ stabilizers and sends the resulting syndromes to Bob. This could give additional infor-
mation about Z to E , but if the eZ stabilizers are numerous enough, averaging over their syndromes
destroys whatever information E had about the original amplitude Z . By itself, eZ is independent of
Z , since they belong to different sets of virtual qubits, so Alice can be certain that no information
leaks to E in this process.

We are not ready to apply Theorem 2, however. The shared state at this step in the protocol is

|Ψ′〉A
eABB ′EE ′ =

∑

z,bz,ez

p

pz,bz,ez |z〉
A |ez〉

eA |bz〉B
′
|bz〉E

′
|ϕz,bz,ez〉

BE , (5.7)

where the amplitude of bA has been transferred and copied to new systems B ′ and E ′, which mimics
the classical measurement of bZ and broadcast of the result bz. From information reconciliation there
is a measurementMZ on BB ′ such that pguess(Z |M BB ′

Z
) is close to one, and via the above discussion

of privacy amplification psecure(Z |EE ′) is likewise nearly one. To apply Theorem 2 we still need to
discard eA without changing either of these conditions.

This situation is precisely that of the second case of the previous section, from which it follows
that measuring the phase eX will not decrease Bob’s guessing probability and will also not leak any
information about Z to E . Formally, we can see this by examining the state after the phase stabilizer
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measurement,

|Ψ′′〉ABB ′B ′′EE ′E ′′ =
1

p
2nPA

∑

ex,z,bz,ez

p

pz,bz,ez(−1)ex·ez |z〉A |bz〉B
′
|ex〉B

′′
|bz〉E

′
|ex〉E

′′
|ϕz,bz,ez〉

BE (5.8)

=
1

p
2nPA

∑

ex,z,bz,ez

p

pz,bz,ez |z〉
A |bz〉B

′
(Xez)B

′′
|ex〉B

′′
|bz〉E

′
|ex〉E

′′
|ϕz,bz,ez〉

BE . (5.9)

Because ez only shows up as part of a unitary operator on B ′′, tracing out all of Bob’s systems means
the state in E is averaged over these values, which was precisely the goal of privacy amplification.
Moreover, bz by itself is uncorrelated with z. Thus, in transferring the phase of eA to systems B ′′ and
E ′′, we have pguess(Z |M BB ′B ′′

Z
), psecure(Z |EE ′E ′′) ≈ 1. Hence we can apply Theorem 2 to infer that

Alice and Bob can recover a high-quality entangled state from their systems. By the known results
on information reconciliation and privacy amplification, we can pick nZ ≈ nH (ZA|B)ψ and nX ≈
n− nH (ZA|E)ψ so that the rate achievable by this protocol is H (ZA|E)ψ−H (ZA|B)ψ =−H (A|B)ψ,
the hashing bound.

5.2.2 Privacy Amplification of Both Amplitude and Phase

The method of the previous section can serve as a stepping stone towards a protocol which is based
entirely on decoupling both amplitude and phase from E . All we have to do is turn the amplitude
information reconciliation into privacy amplification of phase. From the discussion prior to The-
orem 3, we know that it will be insufficient to decouple E from X and Z , rather we must aim to
simultaneously decouple E from Z on the one hand, and CZ E from X on the other. Note that in the
latter case the state |ψZ〉

ACZ BE is only a device used in the proof; it does not need to show up in the
protocol directly.

To achieve this simultaneous decoupling, we again begin by specifying two sets of stabilizers, nZ
Z -type stabilizers to decouple the amplitude and nX X -type stabilizers to decouple the phase. As
before, Alice’s n qubits can be grouped into three sets of virtual qubits, the n − nZ − nX encoded
qubits in A, nX qubits in bA, and nZ qubits in eA. If nX and nZ are chosen appropriately, we can be

sure that both psecure(X
A|CZ E)ψZ

and psecure(Z
A
|E)ψ are nearly one. Therefore system A is implicitly

in a maximially-entangled state with the joint system bA eAB , and the remaining task is to classically
transfer bA eA to Bob without violating the privacy conditions.

Following the method of the previous construction, suppose Alice makes amplitude measure-
ments on bA and phase measurements on eA, which she then broadcasts this information publicly.
While E now recieves extra information about the original amplitude and phase, no information
about the encoded amplitude and phase has been leaked for the same reason as in the previous con-
struction. The marginal states in E conditioned on the encoded amplitude (phase) value are still
averaged over enough z (x) values to make them essentially identical.

Formally, the situation is very similar to the previous case as well. In fact, for the observable Z ,
the state of |ψ〉ABE after the measurements described above is precisely that of Equation (5.8), and so
we can immediately conclude that psecure(Z |EE ′E ′′)≈ 1. The state relevant to privacy amplification
of the phase can be expressed as, following Equation (3.37),

|ψZ〉
ACZ BE = 1p

2n

∑

x,bx,ex

|x〉A |bx〉 bA |ex〉 eA (Zx)CZ |ψ〉CZ BE , (5.10)
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and after the measurement it becomes

|Ψ′′Z〉
ABB ′B ′′EE ′E ′′ = 1p

2n+nX

∑

bz,x,bx,ex

(−1)bx·bz |x〉A |bz〉B
′
|bz〉E

′
|ex〉B

′′
|ex〉E

′′
(Zx)CZ |ψ〉CZ BE (5.11)

= 1p
2n+nX

∑

bz,x,bx,ex

|x〉A |bz〉B
′
|bz〉E

′
|ex〉B

′′
|ex〉E

′′
(Zx)C Z (Zex) eCZ |ψ〉CZ BE . (5.12)

Now the phase (−1)bx·bz cancels the similar phase inherent in the operator (Zx)C . Again this enforces
an average over bx for the states in system E , ensuring that they are completely uncorrelated with x and
therefore x. Just as before, ex does not add any additional information about x, so we can conclude
that psecure(X |EE ′E ′′)ψZ

≈ 1 and therefore Theorem 3 is applicable. For nX and nZ we can pick
n− nH (X A|CZ E)ψZ

and n− nH (ZA|E)ψ, respectively, yielding an overall rate of H (X A|CZ E)ψZ
+

H (ZA|E)ψ− 1. This works out to be H (A|E) =−H (A|B), which is the hashing bound once again.

5.3 Classical Channel Coding

In Section 4.1.4 we described how a protocol for entanglement distillation using one-way commu-
nication can be used to reliably send quantum information over a noisy channel, and that protocols
achieving the optimal rate of entanglement distillation lead to optimal channel coding. A similar
result holds for classical information, as demonstrated in [RR11], albeit using information reconcil-
iation and randomness extraction or privacy amplification. This leads not only to a new proof of
Shannon’s original noisy channel coding theorem in the case the channel is classical, but also to one-
shot results for both public and private communication of classical information over noisy quantum
channels. Moreover, using the results of Section 5.1, we can exchange the use of information recon-
ciliation with privacy amplification of a complementary observable, and thereby construct a channel
coding scheme which is entirely based on decoupling-type arguments. That is, we can construct a
means for noisy channel communication not by directly ensuring that the receiver can properly de-
code the transmissions, but rather by ensuring that complementary information does not leak to the
environment.

On a heuristic level, the approach itself is quite similar to that of Section 4.1.4, not just the result.
We can make the same sort of modification to an appropriate information reconciliation protocol
as we did to entanglement distillation in order to create a coding scheme for the channel scenario.
Suppose that Alice can send classical messages z ∈ {0,1} to Bob over a quantum channel such that
he receives the corresponding state ϕz . If they are in possession of an information reconciliation
protocol for the state ψAB = 1

2

∑

z |z〉 〈z |
A⊗ϕB

z , then they can use this to communicate reliably over
the channel. In the information reconciliation scheme Alice would compute a hash function of n
instances of the random variable ZA, and with this information f (z) Bob could determine the actual
z from his state ϕB

z .
In the channel scenario this can be used to specify a code by the set of all possible inputs z

(codewords) which hash to a specified value, say bz. Ordering the elements of this set in some way,
Alice can then map her actual message to the corresponding codeword. This defines an encoder.
Presumably they have chosen an bz for which the information reconciliation decoder has a small
probability of error, and thus Bob can use that decoder to determine z and therefore Alice’s intended
message.

In fact, when the original inputs z are uniformly distributed as above, one can easily show that
not only will Bob have a small average probability of decoding error, but also a low error probability
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for every message. To determine the number of messages Alice can send, it is simplest to consider
the case of linear hash functions, where every output has the same number of preimages, namely
the ratio of input to output size.1 Thus, if information reconciliation requires an m-bit hash for an
n-bit string z, the resulting code can be used to transmit n−m bits, remembering that an n-bit input
corresponds to 2n possible input strings. As we are working in the asymptotic i.i.d. scenario, we
can apply the result mentioned in Section 4.1.1 that information reconciliation is possible at the rate
r =H (ZA|B)ψ, so that m ≈ n r . Therefore Alice can reliably send messages at rate 1−H (ZA|B)ψ.

There is still room for improvement, however, as the Holevo-Schumacher-Westmoreland (HSW)
theorem (the quantum version of Shannon’s noisy channel coding theorem) assures us that rates up
to at least the Holevo quantity χ =maxPZ

I (ZA:B)ψ =maxPZ
H (ZA)ψ−H (ZA|B)ψ are possible [85,

86].2 Clearly something is missing in the above, unless it happens that the optimal distribution is
uniform. We have restricted attention to the uniform distribution for convenience in the proof,
in particular to easily determine the number of messages which can be send with small worst-case
probability of error. If we only cared about average probability of error, any distribution could be
used for the purposes of converting an information reconciliation protocol to a channel code. The
difficulty is then to exploit this freedom without requiring a substantially new proof.

Fortunately, there is a simple way to deal with this problem by making use of the randomness
extractors described in Section 5.1.1, though here the privacy properties will only be relevant to
the case of private channel communication. Alice can use the extractor in reverse as a distribution
shaper to simulate a random variable Z with arbitrary distribution PZ using a uniformly-distributed
random variable U . To do so, Alice chooses an extractor output u at random and then maps it to a
possible preimage z using the conditional distribution PZ |U=u . This requires an additional source of
randomness, as the extractor function is not one-to-one.

When Z is destined to be the input to the communication channel, we can instead think of U as
the input to the “superchannel” composed of the shaper and the original channel. This is depicted
in Figure 5.2, taken from [RR11]. Note that for this step we must rely on the recently-established
one-shot results on information reconciliation, as mentioned in Section 5.1.4, because the joint state
shared by Alice and Bob which describes the input and output is generally not i.i.d. However, in
the one-shot framework all the previous results linking information reconciliation to channel coding
can be applied to the superchannel. Alice encodes messages into the outputs u of the extractor and
then sends these first through the shaper and then through the communication channel to Bob.
Information reconciliation of U with B enables Bob to recover the original message.

Using the smooth entropy results on structureless resources we can determine the (logarithm of
the) raw number of messages Alice can reliably send to Bob, instead of the rate as appropriate to the
i.i.d. setting. The details of the derivation are given in [RR11], and the result is that Alice can reliably
transmit N bits to Bob, for

Nclass ≈max
PZ

�

H ε
min(Z)ψ−H ε

max(Z |B)ψ−O(log 1
ε )
�

. (5.13)

Here ε characterizes the worst-case error probability of the coding scheme, and this expression
agrees with a result found for classical channels found by Renner et al. [119].3 This result applies
to completely arbitrary channels, but when Alice and Bob would like to communicate using n

1The general case can be handled by probabilistic arguments [RR11].
2As with quantum communication and private classical communication over quantum channels, regularization can

increase the rate further. Indeed, as discussed at the end of Chapter 6, regularization is necessary to reach the capacity.
3Wang and Renner have recently derived a one-shot result for classical communication over quantum channels via a

different method [120].
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M Enc′ Shp
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Figure 5.2: Schematic of using randomness extraction and information reconciliation to perform
noisy channel communication. Messages m ∈ M are input to the encoder Enc′ and subsequently
to the shaper Shp, which is a randomness extractor run in reverse. Then they are then transmitted
over the channel N to the receiver, who uses the decoder Dec to construct a guess m′ ∈ M ′ of the
original input. Concatenating the shaper and channel gives a new effective channelN ′, for which an
encoder/decoder pair (Enc′,Dec) can be constructed by repurposing an information reconciliation
scheme that operates on the joint input-output U B of the channel. Ultimately, the shaper can instead
be regarded as part of the encoder Enc, which is formed by concatenating Enc′ and Shp.

uses of a memoryless channel we can appeal to the asymptotic equipartition property (AEP) of the
smooth min- and max-entropies, proven by Tomamichel et al. [121]. Roughly speaking, it states that
H ε

min(Z |B)ψ⊗n ≈ nH (Z |B)ψ and similarly for the max-entropy. We then recover the rate given by
the HSW theorem; for channels with purely classical outputs, i.e. quantum states which all pairwise
commute, we recover Shannon’s noisy channel coding theorem [6].

Besides an appealing modular proof of the noisy channel coding problem based on the simpler
primitives of randomness extraction and information reconciliation, another appeal of this approach
is that by using privacy amplification instead of just randomness extraction for the distribution
shaper, we automatically obtain a construction suitable for private communication of classical in-
formation over a noisy quantum channel. In that case we find that the (logarithm of the) number of
private messages which can be reliably sent is given by

Npriv ≈max
PZ

�

H ε
min(Z |E)ψ−H ε

max(Z |B)ψ−O(log 1
ε )
�

, (5.14)

where system E is the “other half” of the channel output. That is, upon input of z the channel
produces the pure state |ϕz〉

BE shared between Bob and the environment or eavesdropper. As be-
fore, an application of the AEP recovers the rate relevant in the asymptotic i.i.d. setting, namely
maxPZ

�

H (Z |E)ψ−H (Z |B)ψ
�

. This agrees with the findings of Devetak [98] for quantum channels,
and those of Wyner [122], Ahlswede and Csiszar [123], and Maurer and Wolf [124] for classical
channels.

Finally, we note that combining this proof technique with the duality between information rec-
onciliation and privacy amplification it is possible to prove that reliable communication is possible
by ensuring that not too much information leaks to the environment. This decoupling approach was
heretofore unknown to work for channel coding of classical information, and in fact this was the one
major protocol not known to be amenable to a decoupling analysis. The encoding and decoding pro-
cedure is precisely the same as before, using a distribution shaper and information reconciliation to
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create an encoder and decoder. But instead of relying on constructions of information reconciliation
protocols, we use privacy amplification and duality. Thus, the size of the code is fixed by how much
privacy amplification is needed for the observable conjugate to the uniform input U , and is therefore
given by a smooth min-entropy. Using the uncertainty principle for smooth entropies formulated
in [118] we can relate this to the smooth max entropy of U conditioned on B , and obtain again
Equations (5.13) and (5.14).
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6Security of Quantum Key Distribution
Quantum key distribution is one of the major current applications of quantum information pro-
cessing, requiring only minimal ability to coherently manipulate quantum information. Devices
implementing QKD protocols such as BB84 are even currently available commercially. But where
does the security of QKD come from? That is to say, how can we prove that a given protocol is truly
secure and no would-be eavesdropper has any information about the key?

There have been three main approaches to answering this question, each with its own advantages
and disadvantages, which we briefly describe in the first of three sections in this chapter. In the
second section we follow one of these methods, treating QKD as a means for virtual creation of
entanglement as described in Section 4.3, and recount the results of [RG06] showing that it applies
to a wide class of protocols, not just the original BB84 scheme.

From Section 3.4 we know that entanglement is not strictly necessary for generating secret keys,
and that in general private states suffice. In the third section of this chapter we describe how alter-
ations to the BB84 protocol which improve the maximum tolerable error rates can be understood as
part of a virtual private state distillation scheme, and that combining this additional step with similar
enhancements to quantum error-correction lead to still better tolerable error rates. This work was
first reported in [RS07, SRS08, KR08].

6.1 Notions of Security

The first proofs of unconditional security of the BB84 protocol—that is, security of the protocol
under arbitrary attacks on the public quantum channel by the eavesdropper Eve—were given by
Biham et al. [125, 126] and Mayers [127, 128]. Their methods are similar, and essentially rest on
an implicit use of the uncertainty principle to bound Eve’s information about Alice’s key by Bob’s
information about the conjugate basis to the key.1 Biham et al. characterized the security as due to
an information-disturbance tradeoff, the fact that eavesdropper cannot acquire information about
Alice’s signals without disturbing them. Such a tradeoff follows immediately from Equation (1.7),
as to be able to gain information about e.g. the phase without disturbing the amplitude information
would imply a violation of the entropic bound.

At the same time, efforts to base the security of QKD on virtual entanglement distribution as
described in Section 2.4 were underway, culminating in Shor and Preskill’s proof for BB84 shortly
after the two mentioned above. Their proof was a good deal simpler than the earlier versions, and
achieved a higher error threshold, the maximum error rate at which the protocol can still safely
generate secret keys (albeit at vanishingly small rates). The new proof established a threshold of
11%, the previous proofs 7.56%. The simplicity also enabled the method to be extended to other
protocols. Lo [130] established the unconditional security of the six-state protocol proposed by
Bruss [131] which uses the eigenstates of the X Z operator as signals in addition to those of X and
Z . Tamaki, Koashi, and Imoto [132] extended the method to a proof of Bennett’s two-state protocol
(B92) [133], while Gottesman and Lo showed that it could also treat information reconciliation
steps involving two-way communication [134], greatly increasing the error rate tolerable by BB84 to
18.9%. Boileau et al. (including the present author) [135] proved the security of a B92-like protocol
involving three states which was originally proposed by Phoenix et al. [136].

The original approach of Biham et al. and Mayers has its own advantages within the realm of the
BB84 protocol, however, as it is not actually concerned with the details of Bob’s measurement appara-

1Both of their formal statements make use of a related result by Yao [129].
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tus, only Alice’s preparation device. This can be anticipated from the implicit use of the uncertainty
principle: From Equation (1.7) it is clear that to bound Eve’s knowledge of the key it suffices to have a
bound on Bob’s knowledge of the conjugate observable to the key. It is not necessary to have an accu-
rate physical description of how he comes by such knowledge, which greatly extends the practicality
of the proof. Koashi and Preskill combined techniques from both methods to treat the problem of
an uncharacterized source [137] (but characterized detector), and later Koashi gave an even simpler
proof which was the first to quantitatively appeal to the uncertainty principle [138, 139]. Although
the proof itself is constructed via other means, Koashi used the Maassen and Uffink relation, Equa-
tion (1.4), as a guide to determine the size of the secret key. Very recently, Tomamichel et al. [140]
have directly used the smooth entropy uncertainty relation of [118] to give a simple security proof
of BB84 with uncharacterized detectors.

Meanwhile, a third general approach focused on showing that privacy amplification produces se-
cure keys even when the adversary holds quantum instead of classical information. To make use of
privacy amplification one then needs to characterize the quantum states held by the eavesdropper,
or at least give a bound on the size of their overall support. Ben-Or showed that a result from quan-
tum communication complexity implies the efficacy of privacy amplification and that the knowledge
gained by Alice and Bob in the BB84 protocol can be used to bound the effective size of Eve’s sys-
tem [141]. König et al. demonstrated that privacy amplification works against quantum adversaries
generally [142], and Christandl et al. developed this into a generic security proof which replicated
the one-way results above, even improving the threshold for the B92 protocol [143]. Kraus, Gisin,
and Renner [144, 145] extended this to establish that many protocols are not only unconditional
secure, but also safely composable with other cryptographic primitives to create larger cryptographic
schemes which are themselves secure, following composability results by Renner and König [108]
and Ben-Or et al. [146]. Renner provided another method also suitable for two-way protocols in his
thesis [113].

It should be noted that the task of key distribution is considerably more involved than the task
of key distillation as discussed in Section 4.3, and the security issue all the more complex. There
the input state shared by Alice and Bob is known in advance, and moreover it is assumed to consist
of n copies of some state ψ. Neither of these statements hold in general in the present context, for
although Alice sends n quantum systems to Bob, these travel over an insecure communication chan-
nel which could in principle be under the control of the would-be eavesdropper Eve. The difficulty
lies in the fact that the eavesdropper could in principle attack all the signals jointly, what is termed a
coherent attack. If Eve attacked each signal separately, a collective attack, then Alice’s and Bob’s state
would have the aforementioned i.i.d. form, and could be handled by those methods.

Unsurprisingly, then, one widely-used method of handling coherent attacks is to reduce them
in some way to collective attacks. Originally this was done on a more ad hoc basis for particular
protocols, but has been made more systematic by Renner [113, 147], culminating in a very general
statement by Christandl et al. [148]. This states that as long as the key distribution protocol is
unconcerned with the order in which Alice transmits the signals, which can be enforced by arbitrarily
permuting them, then security against collective attacks implies security against coherent attacks.

6.2 Entanglement in Prepare and Measure QKD

Quantum key distribution can be formulated as a virtual entanglement distribution scheme for a
wide class of protocols and the Shor-Preskill approach used to prove the their security. In this section
we briefly sketch out how this can be done, following [RG06] and simplifying some issues in light of
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intervening research advances. The main conceptual difficulty in considering protocols other than
BB84 in the Shor-Preskill framework is that it appears as if the CSS structure of information reconcil-
iation and privacy amplification are directly related to the use of amplitude and phase eigenstates as
the signals and for measurement. However, this is not actually the case, and in fact these two parts of
the protocol have nothing to do with each other. This was already noted in the proofs by Tamaki et
al. [132] and Boileau et al. [135], but [RG06] show how it can be made to work more generally.

First let us settle on the general framework of prepare and measure protocol. A generic protocol
consists of five main stages. First Alice prepares quantum states and transmits them over the insecure
quantum channel to Bob, who measures them; this is the only step in which quantum operations are
actually needed. Second, they transform their classical transmission and measurement records to a
prospective raw key. This step is usually called sifting, after the specific mapping used in BB84, and
usually the transformation is chosen so that the raw key would be a truly secret key if the quantum
channel were noiseless.

As real channels are inevitably noisy, Alice and Bob need to distill a truly shared, secret key from
the raw key. In stage three, parameter estimation, they compare some random subset of the raw key
to determine the likely number of errors. This serves two purposes. In the fourth stage, information
reconciliation, they use the knowledge from parameter estimation to agree on an identical refined
key. Usually this involves Bob reconciling his raw key to Alice’s, hence the name. Finally, they also
use this knowledge to perform privacy amplification and thereby generate the final secure key.

The trick to applying the Shor-Preskill framework more generally is to first formulate the pre-
pare and measure process coherently, i.e. in quantum-mechanical language, and then regard Alice’s
and Bob’s systems in this setting as being composed of two virtual subsystems. One subsystem
(quantumly) records the key value, while the other (quantumly) records the sifting information. The
sifting stage can then be seen as a measurement of the latter subsystems, plus postselection by pub-
lic communication to select appropriately matching sifting outcomes. The virtual key subsystems
remain, and it is their entanglement which is at issue in the Shor-Preskill framework. The amount
of entanglement, and thus secret key, which can be distilled may be estimated by making use of the
symmetries of the signal states and measurement.

We can illustrate this most easily using the BB84 protocol itself and then describe how it can
be made to work more generally. As discussed in Section 2.4, the BB84 protocol can be described
coherently by pretending that Alice first creates EPR pairs and then sends one subsystem of each pair
to Bob. Here, however, it is more appropriate to describe each signal sent by Alice as her preparation
of the state

|ψ0〉=
1
2

∑

j ,k

| j 〉AK |k〉AS |ξ j k〉
B , (6.1)

and transmission of the B subsystem to Bob. The indices j and k specify the eigenvalue and ob-
servable, respectively, of the state |ξ j k〉 transmitted by Alice; k = 0 denotes amplitude Z and k = 1
phase, while the eigenvalue is given by (−1) j . Bob makes a random measurement of the two ob-
servables, which can be described by the isometry U B→BK BS

M = 1p
2

∑

j k | j 〉
BK |k〉BS 〈η j k |

B , where here
|η j k〉= |ξ j k〉 but the distinction will be useful later. For a noiseless channel, his measurement process
results in the state

|ψ1〉
AK AS BK BS = 1p

8

∑

j j ′kk ′
| j 〉AK |k〉AS | j ′〉BK |k ′〉BS 〈η j ′k ′ |ξ j k〉 . (6.2)
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From the form of the inner products 〈η j ′k ′ |ξ j k〉 one can easily work out that if Alice and Bob each
measure their S-labeled subsystems and obtain the same result, the remaining K -labeled systems are
in the state |Φ〉AK BK and thus measurement produces a secret key. This mimics the sifting process of
the actual protocol, as Alice and Bob perform the measurements separately and compare their results
by public discussion. Also crucial is the fact that the overall probability distribution for signals
and measurement outcomes found here is precisely the same as in the prepare and measure scheme.
Thus, this state has the form claimed above: It provides a coherent description of the real protocol in
which Alice and Bob each have key K and sifting S subsystems, and sifting is accomplished by local
measurement of the latter subsystems and postselection.

Noisy channels require the additional steps of parameter estimation, information reconciliation,
and privacy amplification, but change the above picture only slightly. Describing the channel result-
ing from Eve’s attack by its decomposition into Kraus operators, and assuming the attack is collective,
the state |ψ1〉 is altered by the noise to

|ψ′1〉
AK AS BK BS E = 1p

8

∑

j j ′kk ′`

| j 〉AK |k〉AS | j ′〉BK |k ′〉BS |`〉E 〈η j ′k ′ |E`|ξ j k〉 . (6.3)

In the sifting stage, Alice and Bob keep only the cases in which k = k ′ and subsequently discard
the information specifying which value of k they observed. We can model this process as keeping
only the k = k ′ terms in (6.3) and then giving the AS and BS systems to Eve. Alice and Bob keep only
the raw key, and the state becomes (slightly redefining E )

|ψ′2〉
AK BK E ∝

∑

j j ′k`

c k`
j j ′
| j 〉AK | j ′〉BK |k ,`〉E , c k`

j j ′
= 〈η j ′k |E`|ξ j k〉 . (6.4)

Following the Shor-Preskill idea, as generalized in Section 4.3, Alice and Bob can construct the
information reconciliation and privacy amplification protocols necessary to turn the raw key into a
secret key once they are able to estimate pguess(Z

AK |BK )ψ′2 and pguess(X
AK |CZ BK )ψ′2 . A bound on the

former is given directly by parameter estimation, but the latter is not so straightforward. The joint
state of the key systems is determined via the coefficients c k`

j j ′
, creating a connection between the two

guessing probabilities, albeit in general a not at all straightforward one. The structure of the sifting
and of the signals and measurements greatly simplifies the connection, and makes it possible to find
useful bounds on the latter guessing probability as a function of the former. This enables Alice and
Bob to construct the remainder of the protocol to be provably secure.

For BB84, one finds by direct calculation that pguess(Z
AK |ZBK ) = pguess(X

AK |X BK ) regardless of
the value of `. That is, the correlation in the amplitude basis (which gives the key itself) is precisely
the same as the correlation in the phase basis (conjugate to the key). This was to be expected from the
original coherent description of BB84 which explicitly uses EPR pairs from the beginning, since half
the time the key comes from the original amplitude basis, and half the time from the phase basis, so
the correlations ought to be the same. Using this relationship in the formula for the rate of secret key
distillation, Equation (4.22) (ignoring Q and T ), we recover the rate rBB84 = 1− 2h2(δ), for δ the
observed error rate in the raw key and h2(δ) = −δ log2δ − (1−δ) log2(1−δ) the binary entropy,
which leads to the threshold of 11%. Security against general coherent attacks is then ensured by the
result of Christandl et al. [148].

A great advantage of the above approach is the modularity of the security proof. The details of the
signals, measurements, and sifting are logically completely separate from the details of information
reconciliation and privacy amplification. The former enter only into the coefficients c k`

j j ′
, which are
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used to select a CSS code for the latter. This approach is developed in [RG06] as a generalization
of that used by Tamaki et al. [132] and Boileau et al. [135], and it is shown that it applies to a
wide class of protocols, particularly those based on so-called equiangular spherical codes. These are
are constellations of pure states |ξ j 〉 whose pairwise overlaps are all identical, as in the three-state
protocol of Phoenix [136] mentioned above, and were adapted for use in QKD generally by the
author [149, 150, 151]. The other main contribution of [RG06] is the development of a method of
exploiting the symmetries of the sifting scheme and the signal and measurement states to simplify
this task, relying on results from group representation theory.

To see how this works, consider the protocol in which Alice’s signals are four qubit states for
which | 〈ξ j |ξk〉 |2 =

1
3 , as described in [150]. These form a regular tetrahedron in the Bloch-sphere

representation of a qubit, and Bob’s measurement is comprised of appropriately-normalized projec-
tors onto the states |ηk〉 for which 〈ηk |ξk〉= 0, i.e. the inverse tetrahedron in the Bloch-sphere. Due
to symmetry, Bob’s measurement would randomly reveal one state which Alice did not send if the
channel were noiseless, and so the information exchanged by Alice in the sifting stage consists of a
random choice of two states she did not send.

In one-third of cases these two pieces of information specify which state she did send, and Bob
publicly announces that he has successfully decoded the transmission. From this they generate one
secret bit corresponding to which of the two signals Alice did send, given the public exclusion of
two of the initial possibilities. There are 12 possible announcements by Alice, since she must also
specify how the two possible signal states are to be decoded into the raw key, and we may label the
signal states by the combination of sifting announcement and raw key value. In this way each signal
is counted six times, but this presents no difficulty as each is counted the same number of times.
Much the same holds for Bob, and so the state in Equation (6.1) can be used to describe the protocol
coherently.

The remaining task is to use the c k`
j j ′

to bound pguess(X
AK |CZ BK ) in terms of pguess(Z

AK |ZBK ).

By exploiting symmetries of the QKD protocol as in [RG06], we can greatly simplify this task.
Suppose that the sifting step of the protocol is such that there exist unitaries Uk and Vk for which
|ξ j k〉 = Uk |ξ j 0〉 and |η j k〉 = Vk |η j 0〉. Then the c k`

j j ′
become c k`

j j ′
= 〈η j ′0|V

†
k

E`Uk |ξ j 0〉. Now let us

focus on a particular Kraus operator E` by fixing the value of `, but average over the value of k,
which corresponds to Alice and Bob throwing away the information specifying which particular
sifting map they applied. Their shared state given the value of ` has the form

ψAK BK
`

∝
∑

i i ′ j j ′
|i i ′〉 〈 j j ′|AK BK

∑

k

〈ηi ′0|V
†
k

E`Uk |ξi0〉 〈ξ j ′0|U
†

k
E†
`
Vk |η j 0〉 . (6.5)

Examining the form of the matrix elements, we see that the sifting symmetries Uk and Vk create
an effective channel having Kraus operators V †

k
E`Uk . Moreover, the group nature of these operators

enables us to compute the action of the channel by appealing to representation theory. In the particu-
lar case of the tetrahedral protocol, one finds that the effective channel is just a depolarizing channel,
irrespective of the value `. The depolarizing rate can be determined by the noise rate observed in
the parameter estimation phase. Computing the state after the sifting step reveals that Alice and Bob
can describe their shared key state by a Bell-diagonal state ψAK BK =

∑

j k p j k |β j k〉 〈β j k |
AK BK , as in

Equation (2.11), with the p j k satisfying p01 = p11 = 2 p10.
This implies pguess(Z

AK |ZBK ) = δ and pguess(X
AK |X BK ,ZAK = ZBK ) = 1

3 while pguess(X
AK |X BK ,ZAK 6=

ZBK ) = 1−2δ/3(1−δ). The latter guessing probabilities are directly related to pguess(X
AK |CZ B) since

Bob’s knowledge of ZAK stored in CZ can be equivalently thought of as the information as to whether
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or not an amplitude error ZAK 6= ZBK occurred or not. Using these guessing probabilities in Equa-
tion (4.22), we obtain the rate rtetra = 1− h2(δ)− δh2(

1
3 )− (1− δ)h2(2δ/3(1− δ)), which has a

threshold of 11.56%. In [RG06] the method is applied to several other spherical code protocols with
signal and measurement states having Hilbert space dimension three.

6.3 Private States in Quantum Key Distribution

By clever if perhaps unintuitive choice of preprocessing operationsQ in Equations (4.22) and (4.24) the
error thresholds of QKD can be pushed higher than those found by the Shor-Preskill method alone.
Understanding how this can be the case requires interpreting QKD as a virtual means of private
state distillation rather than just entanglement distillation, as first shown in [RS07]. Furthermore,
the private state distillation approach suggests that it would be beneficial to combine two types of
preprocessing operations previously studied, and this was indeed shown to be the case for the BB84
protocol in [SRS08]. Further improvements and an extension of the method to the six-state protocol
were reported in [KR08], and we describe both of these results here.

That private state distillation is actually needed to give a fully quantum-mechanical description
of QKD was necessitated by the work of Kraus, Gisin, and Renner [144, 145]. They established
the seemingly-paradoxical result that the noise threshold of BB84 can be improved if Alice randomly
flips some of her raw key bits before performing the final three steps of the protocol, and they
reported a threshold improvement from 11% to 12.4%. From the viewpoint of QKD as a virtual
scheme for entanglement distillation this additional step would seem to be counterproductive, as
noise inflicted by Alice behaves the same as noise inflicted by Eve. However, we saw in Chapter 3
that entanglement is not actually necessary for secret key creation, private states are. This raises the
question of whether or not one can view the noisy preprocessing step as part of a virtual scheme for
private state distillation, which [RS07] answers in the affirmative.

The crux of understanding such noisy preprocessing in a private state picture is to include the
system Alice uses to impart the noise to her raw key and observe that it functions as a shield sys-
tem. The overhead in the protocol of additional information reconciliation needed due to the noisy
preprocessing is then more than made up for by a reduction in the required amount of privacy
amplification. The particular guessing probabilities found in the previous section imply that the
state of Alice’s and Bob’s raw keys immediately after the sifting stage takes a Bell-diagonal form in
which the probabilities of amplitude and phase error are independent and equal. That is, in the state
ψAK BK =

∑

j k p j k |β j k〉 〈β j k |
AK BK , one has p00 = (1−δ)2, p10 = p01 = δ(1−δ), and p11 = δ

2 for δ
the probability of amplitude (or phase) error.

Now suppose that Alice randomly flips each raw key bit independently with some probability
q . This process may be modelled as a CNOT gate whose control is an ancillary system A′ prepared
by Alice in the state |ϕ〉=

p

1− q |0〉+pq |1〉 and whose target is her raw key AK . The error rate in
Alice’s and Bob’s keys has jumped to δ ′ = δ(1− q) + q(1−δ), but the crucial difference from the
entanglement distillation scenario is that for security it is relevant how well A′ and BK together can
predict X AK , not merely how well BK could alone.

The resulting state of AK A′BK can be used to compute H (X AK |A′B) for use in Equation (4.22);
observe that we do not need to make use of the CZ system here because knowing if there is an
amplitude error tells Bob nothing about the likelihood of a phase error. Using Equation (4.22) and
optimizing over the choice of q we recover the threshold of 12.4%. A similar calculation (now
requiring the use of CZ ) recovers the six-state threshold of 14.1%. Actually, [RS07] follows a different
approach than what we have outlined here, directly constructing the twisting operator, but this can
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be seen as a particular case of the general results on private states and secret key distillation presented
in Sections 3.4 and 4.3.

In his security proof of the six-state protocol, Lo observed [130] that the threshold can be im-
proved from the nominal 12.6% one would find following the Shor-Preskill method to 12.7% by
employing so-called degenerate quantum error-correcting codes first discussed by DiVincenzo, Shor,
and Smolin [152]. This code consists of a concatenation of an amplitude repetition code with a ran-
dom CSS code and in the present context corresponds to a preprocessing operationQ on blocks of
inputs, as in Equation (4.24).

The degeneracy of the code refers to the fact that several different errors can share the same
recovery operation and the syndrome need only reveal which recovery operation is required, a phe-
nomenon which is not possible for classical error-correcting codes. For example, in the amplitude
repetition code of Section 2.2.1, the three possible phase errors acting on single qubits all have the
same effect on the encoded quantum information, namely as a phase flip. Thus, if we concatenate the
repetition code with another code, we need not determine the precise location of a phase error on
the physical qubits. Reducing the number of stabilizers needed to enable correction of phase errors
implies a reduction in the necessary amount of privacy amplification in the context of QKD, and
thus the threshold increases.

Shor’s nine-qubit code described in Section 2.2.2 provides a simple example. There we considered
the effect of a single phase flip error on the fourth qubit and found that it would be detected by
measuring certain stabilizer operators. But it is clear from the argument there that the same result is
obtained for a phase error on either qubit five or six. This is reflected in the fact that associated with
the code are are six amplitude stabilizers and only two phase stabilizers. The former determine the
precise location of an amplitude error, but the latter only fix the location of the phase error up to the
position in the block. This is all that is necessary.

It is possible to combine the noisy preprocessing discussed above with degenerate codes to im-
prove the threshold of BB84 still further, as described in [SRS08]. The original protocol is modified
as follows. After the raw key is created in the sifting phase, Alice performs a noisy preprocess-
ing step in which she independently flips each raw key bit with some probability q . Then she
computes the syndromes of an amplitude repetition code encoding one qubit into m qubits, i.e.
z1⊕ z2, z1⊕ z3, . . . , z1⊕ zm and transmits these publicly to Bob. The first bit of each block she saves
for further use as the key. Bob then computes the syndromes of his block, and attempts to correct
his key bit so that the syndromes match Alice’s, exactly as was done in the entanglement distillation
protocol discussed in Section 2.3. Alice and Bob then repeat this process for many blocks, collecting
one key bit per block. On these refined key bits they then perform information reconciliation and
privacy amplification as needed.

To determine the threshold, for which the main difficulty is, as usual, to determine the amount
of privacy amplification needed, it is simpler to focus on Eve’s states and compute H (AK |ES), where
S denotes the syndrome information and AK the key bit encoded in the repetition code. Again the
symmetries of the problem enable the use of group representation theory to make the calculation
numerically tractable, allowing thresholds for blocklengths in the hundreds to be determined. The
best threshold found in [SRS08] is 12.9%, corresponding to q ≈ 0.32 and m = 400. A more elaborate
analysis is required for the six-state protocol, and this is carried out in [KR08], with the result that
the threshold is at least 14.59%. Additionally, the effects of iterating the entire noisy preprocessing
plus repetition code procedure are investigated therein, and this is found to offer substantial increases
in the key distribution rate of the protocol at high error rates, though the overall threshold is not as
large.
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As mentioned previously, the use of repetition codes is a type of blockwise preprocessing, in
contrast to the noisy preprocessing which is applied to single key bits. As blockwise preprocessing is
more complicated, and the expression for the optimal rate for secret key distillation, Equation (4.24),
essentially impossible to evaluate, the question arises whether blockwise preprocessing, i.e. regular-
ization are truly necessary. Unfortunately, the answer is yes, as observed in [SRS08]. One can show
that the threshold found by noisy preprocessing, 12.4%, is the optimal threshold using single-bit, or
single-letter preprocessing. Since the combination of noisy processing and repetition codes leads to a
higher threshold, regularization must in general be necessary. This result then applies to the private
capacity of a channel as well, since one way to communicate privately is to first generate secret keys
and then encrypt the actual message to be sent.

Thus, neither the secret key distillation rate nor the private capacity are single-letterizeable quan-
tities. This reveals a large distinction between classical and quantum information theory, as single-
letter quantities are usual in the former, reflecting the fact that the random coding arguments of
Shannon are optimal in a wide variety of situations. In quantum information theory this is no longer
true. The degenerate codes found by DiVincenzo, Shor, and Smolin [152] show that the quantum
capacity is also not single-letterizeable, while Hastings has recently established that the classical ca-
pacity of a quantum channel is not single-letterizeable either [153]. Despite the apparent similarities
with classical information theory, a full understanding of quantum information theory will require
the development of tools beyond the usual random coding methods.
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7Summary and Outlook
The preceding six chapters demonstrate that, far from being just an abstract mathematical study, the
study of quantum information theory is quite closely connected to core physical concepts, namely
complementarity and the uncertainty principle. Indeed, although we have presented the topics of
this thesis in a logical order, it was actually research into secret key distillation in [RB08] that led
to the conjecture of the entropic uncertainty principle of Equation (1.7) in [RB09] and its eventual
proof in [BCC+10].

The results described in this thesis spring from trying to make sense of what it means to have
“quantum” information, working within the formalism of quantum theory itself. Using the con-
ditional entropy H (ZA|B)ψ we can describe the information held by B about the amplitude mea-
surement Z on system A, when A and B are jointly in the quantum state ψAB . Having quantum
information then refers to the situation in which B implicitly contains information about two com-
plementary observables X and Z , and the uncertainty principle in the form H (X A|B)+H (ZA|C )≥ 1

c
constrains the extent to which information about both can be simultaneously explicitly realized.
Quantum information processing protocols can then be constructed by mimicking related classical
information processing protocols for the two complementary pieces of classical information, taking
care not to violate the uncertainty principle.

Although complementarity is at the heart of the results presented herein, to complete the proofs
we have also relied heavily on certain algebraic properties both of the observables X and Z as defined
in Equation (3.25) and of the attendant CSS stabilizer codes. In particular, the algebraic properties
of the amplitude and phase observables play important roles in Theorems 1, 3, 4, and 6, while the
algebraic structure of CSS codes is used extensively throughout Chapters 4, 5, and 6. Removing the
algebraic requirement on the observables is precisely the difference between the uncertainty principle
results of [RB09] and [BCC+10], and a major goal of future work is to remove this requirement from
the aforementioned results as well. The situation is akin to difference between the heuristic use of the
uncertainty principle in the early proofs of QKD, where the uncertainty principle provided guidance
for the actual algebraic arguments, and the recently formulated BB84 security proof of Tomamichel et
al. [118, 140] based directly on the uncertainty principle formulated in terms of smooth-entropy.

This goal is likely to be fairly straightforward for the results of Chapter 3, but the use of CSS
codes in the protocols of the subsequent chapters appears much more central to those results. The
difficulty lies in the need to combine classical protocols for complementary observables in such a way
that all the important quantities can actually simultaneously exist, i.e. the corresponding operators
all commute. In the entanglement distillation scheme of Chapter 4 for instance, the use of CSS
codes ensures that the syndrome information needed to establish strong phase correlations does not
interfere with either the amplitude syndromes nor the final encoded amplitude.

Another goal of future work will be to extend all the results beyond the realm of asymptotic i.i.d.
resources and into the one-shot domain of structureless resources briefly described in Section 5.1.4.
Here we have presented optimal protocols in the former scenario, but it is not clear whether this
will be possible in the more general setting. One cause for hope is that the uncertainty principle
already plays a fundamental role in the one-shot setting. Tomamichel et al. [154] have shown that the
smooth min- and max-entropies are not independent: One may be defined in terms of the other using
a purification system. The smooth entropy uncertainty relation then follows from this duality [118].

Finally, a much more ambitious goal is to extend the notion of quantum information as comple-
mentary classical information past the simple two-party communication scenarios studied here. Can
this point of view shed some light into how quantum computers work?
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