

Matrix Element Methods for Higgs phenomenology

Michael Spannowsky

University of Durham

I

Due to absence of signs of new physics

HEP has 'Big Mac' blues, i.e. why nature not like (as natural as) advertised?

Commercial

Reality

Sure, it (Higgs boson) does the job, but...

Improved/Unified way of interpretation of measurements

- interpretation of any measurement model dependent
- interpretation requires communication between different scales as well as theorists and experimentalists

Connecting measurements with UV physics

Kappa EFT Framework		Simplified Models	Full (UV) Model	
 NP models simple rescaling of couplings 	 SM degrees of freedom and symmetries 	 New low-energy degrees of freedom 	 Very complex and often high-dimensional parameter space 	
 No new Lorentz -structures or kinematics 	 New kinematics/ Lorentz structures 	 Subset of states of full models, reflective at scale of measurement 	 Allows to correlate high-scale and low- scale physics 	

Complexity/Flexibility

Seminar

Coupling measurement during Run 1 using kappa-framework:

Higgs coupling fits based on total rates... no dynamics No new Lorentz structures, limited applicability for new physics

Struggle for a unified language (basis) for Higgs EFT

Basis

- Complete
- Inspired by UV physics?

Several available:

Warsaw Basis SILH Basis Primary/Higgs Basis

[1008.4884] [hep-ph/070164] [1405.0181]

Practicality

 Manageable number of operators for fit

Validity

Validity range of EFT set by kinematic of measurement

Precision

- Resummation of large log (RGE improved pert. theory)
- ►Full NLO

Basis and choice of operators to consider

Validity and Relevance of EFT

Results for linearised LO EFT approach

Focus on linear contribution of EFT for theory prediction:

 $\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \mathcal{M}_{d=6}$

$$\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm SM}\mathcal{M}_{d=6}^*\} + \mathcal{O}(1/\Lambda^4)$$

<u>Number of predicted events:</u> $N_{\rm th} = \sigma(H + X) \times BR(H \to YY)$

 $\times \mathcal{L} \times \mathrm{BR}(X, Y \to \mathrm{final \ state})$

[Englert, Kogler, Schulz, MS 1511.05170]

We assume that production and decay factorise to good approximation

9

Each channel has own prod. and decay efficiencies: $N_{\rm ev} = \epsilon_p \epsilon_d N_{\rm th}$

Wilson coefficients can be (over) constraint in many decay and production

processes: <u>Decays:</u> $H \to f\bar{f}$ $H \to \gamma\gamma$ $H \to \gamma Z$ $H \to ZZ^* \quad H \to WW^*$ **<u>Production:</u>** $pp \rightarrow H$ $pp \rightarrow Hj$ $pp \rightarrow Hjj$

Seminar

 $pp \to HV \quad pp \to ttH$

Zurich

signal strength:

36 indep. meas. (300 ifb) 46 indep. meas. (3000 ifb) differential:

88 indep. meas. (300 ifb) 123 indep. meas. (3000 ifb)

Michael Spannowsky

05.06.2018

signal strength measurement

Seminar

-0.05 -0.05 1.05 40 -30 -20 16 20 20 43 -16 and the second the second second -30 -20 -10 0 - 61 0 30 40 0 ς. 1.1.1.1.1.1 1 + 1 + 1standing for the strands of a adar 🖓 ar the second 40.00.00.00.00 10 20 20 40 50 -BH-GE-D4-BY B BY 0.4 0.0 C. 80 11 -39 -22 -19 0 13 Û, 0 20 30 -16 16 20 30 43 green = 300 ifb orange = 3000 ifb

Zurich

differential measurement

Michael Spannowsky

05.06.2018

Interpretation of results

Composite (SILH) Higgs:

One expects $ar{c}_g \sim rac{m_W^2}{16\pi^2} rac{y_t^2}{\Lambda^2}$ with comp. scale $\Lambda \sim g_
ho f$ with $|\bar{c}_q| \lesssim 5 imes 10^{-6}$ we get $\Lambda \gtrsim 2.8$ TeV

indirect probe of new physics scenario using Higgs observables only

Seminar

Global Fit allows to address most fundamental question for highenergy physics:

- Which theory calculations most important?
- Which systematic uncertainties most limiting?
- Where can we improve knowledge most?

Additional weakly-coupled light degree of freedom:

Affects only decay $\Gamma_h = \Gamma_h^{
m SM} + \Gamma_h^{
m D6} + \Gamma_h^{
m inv}$

signal strength measurement

differential measurement

Observations:

15

- I. Methods chosen to communicate important (eff. theory, simp. model, ...)
 - The information extracted depends on the `picture', i.e. hypothesis, we compare with nature
 - The more precise the picture is we have in mind, the more precise will be the answer on the question of interest

- II. Higgs pheno and new physics searches request/benefit from high energies
 - EFT measurements
 - direct searches for new physics

Matrixelement method for jet- and met-rich final states

Seminar

Seminar

- In Matrix Element our physics lacksquareunderstanding encoded
- MEM can improve S/B and S/sqrt(B)

- The more precise our physics picture, the better the discrimination
- MEM can improve S/B and S/sqrt(B)
- MEM provides direct connection between Lagrangian and Data
- Matrix Element Method does not need MC samples as opposed to BDT, NN, ...

"The strange death of theory"

Frankfurter Allgemeine Zeitung 23.01.2017

or is it?

Matrix Element Method vs Multi-variate Analysis (= pQCD = QFT)

- MVA well motivated to extract correlations without existing theory,
 i.e. stock trading or PDF fitting ;-)
- In particle physics we established gauge theories, thus, we have existing theory to predict connection of 'input with output'
- Current pheno approach:

We take first-principle QFT: $\mathcal{L} = \mathcal{L}_{\mathrm{EW}} + \mathcal{L}_{\mathrm{QCD}} + \mathcal{L}_{\mathrm{Higgs}}$

Put it into an event generator to generate pseudo-data

Then a smart physicist or MVA comes up with way to access the Lagrangian we put in in the first place

22

→ Seems like an unnecessary detour...

-		•		
<u>ر</u>	om	in	ar	
\mathbf{J}	ะเบ		αι	

Training MVAs on Monte Carlo

 MVAs will optimise for – according to MC – most sensitive exclusive phase space regions

theory uncertainties difficult to control

- Full event generators are mashup of different parts that are partly tuned, i.e. hard interaction, UE, ISR, hadronisation, ...
- Highly computationally intensive. If you want to template correlations of say 7 particles:
 - Time estimate:

Seminar

7 microjets, each 4-momentum components divided into only 10 bins -> 10²⁸/7! ~ 10²⁴ configurations If MC takes 1 ms per event -> 10¹³ years to have 1 hit per config.

Zurich ²³	Michael Spannowsky	05.06.2018
----------------------	--------------------	------------

Training MVAs on data only

- Less plagued by systematics
- But only possible if objects to reconstruct or events to measure already in data.
 -> oxymoron for discovery of anything new,
 e.g. gluino-tag, axion-tag, pp->HH->4b,...
- Everything done purely on data without theory cross-check has 0 safety margins...

⇒2 TeV excess in ATLAS and CMS might be an example (though I am not saying that anything was done wrongly) see [Goncalves, Krauss, MS '15]

Ideally one would like to use all radiation related to hard process to discriminate signal from background

Applications of Matrix Element Method:

1988	Rec. of events with MET		[Kondo, J.Phys.Soc.Jap. (1988)]		
1998	Anomalous gauge	couplings	[Diehl, Nachtmann Eur. Phys. J. C1 (1998)]		
2005	top quark physics	[Abazov et	al., Nature (2004), DO Collab.]		
		[Abulencia et al., PRD 73 (2005), CDF Collab.]			
		[Abazov et	al., PLB 617 (2005), DO Collab.]		

2010 Automated implementation in MadWeight [Artoisenet et al, JHEP 1012 (2010)]

Plenty of recent applications in Higgs physics:

- $\begin{array}{ll} H \rightarrow \mu^{+}\mu^{-} & [\texttt{Cranmer, Plehn EPJC 51 (2007)} \\ H \rightarrow b\bar{b} & [\texttt{Soper, MS PRD 84 (2011)} \\ H \rightarrow \gamma\gamma & [\texttt{Andersen, Englert, MS PRD 84 (2013)} \\ pp \rightarrow t\bar{t}H & [\texttt{Artoisenet et al. PRL 111 (2013)}] \end{array}$
- $H \rightarrow ZZ^*/WW^*/Z\gamma$ [Campbell et al JHEP 1211 (2012)] [Freitas et al PRD 88 (2013)] [Campbell et al PRD 87 (2013)]

Spin/Parity [Avery, et al. PRD 87 (2013)] [Gao et al. PRD 81 (2010)]

Seminar	Zurich	30	Michael Spannowsky	05.06.2018
---------	--------	----	--------------------	------------

The matrix element method in a nutshell:

Given a theoretical assumption α , attach a weight $P(\mathbf{x}, \alpha)$ to each experimental event **x** quantifying the validity of the theoretical assumption for this event.

$$P(\mathbf{x}, \alpha) = \frac{1}{\sigma} \int d\phi(\mathbf{y}) |M_{\alpha}|^{2}(\mathbf{y}) W(\mathbf{x}, \mathbf{y})$$

- $|M_{\alpha}|^2$ is squared matrix element
- $W(\mathbf{x}, \mathbf{y})$ is the resolution or transfer function
 - $d\phi(\mathbf{y})$ is the parton-level phase-space measure

The value of the weight $P(\mathbf{x}, \alpha)$ is the probability to observe the experimental event **x** in the theoretical frame α

Purpose of the transfer function is to match jets to partons

Probability density function:
$$\int d\mathbf{y} \ W(\mathbf{x}, \mathbf{y}) = 1$$

The form of the transfer function:

resolution in

azimuthal angle

Complex, high-dimensional gaussian distribution! Transfer function introduces new peaks on top of propagators

Ser	nin	ar

Subtleties of the convolution $|M(y)|^2 \times W(y,x)$

- 1) $|M(y)|^2$
 - Can be calculated at different order in pert. series (LO, NLO)
 - Final state multiplicity fixed (exclusive process)
 - Some kinematic configurations induce large logs (need resummation)

2) W(y, x)

- Number of final state objects limited to exclusive process
- Integration very time consuming -> limits final state multiplicity

34

• Transfer function fit dependent (input from experiment)

Two objects that prove to be challenging for MEM (mapping to matrix element)

- Jet-rich final state
 - jet -> parton mapping difficult, i.e. depends on jet definition, detector response
 - many sources of jets at hadron colliders, i.e. particle multiplicity of hard process, not jet multiplicity of event
- MET-rich final state
 - ➡ MET -> particle mapping difficult, i.e. only indirect information about particle

We want to study more objects in final state -> Transfer function limits us. Do we always need it? Transfer functions only important if matrix element varies quickly:

Seminar

We want to study more objects in final state -> Transfer function limits us. Do we always need it? Transfer functions only important if matrix element varies quickly:

Higgs reconstructed, but no transfer function for jets:

After removing transfer function we can improve on precision of matrix element $|M(y)|^2$

Matrix element method at NLO:

[Campbell, Giele, Williams JHEP 1211 (2012)] [Martini, Uwer '15 '17] [Gritsanen et al '16]

boost

Boost along transverse and longitudinal direction such that LO final state multiplicity momenta balance

> Born phase space, but long. boost not unique, need longitud. integration

Calculate virtual for born topology real for jet function

$$\mathcal{P}_{NLO}^{MEM}(\{Q_n\}) = rac{1}{\sigma_{NLO}} \int_{x_{min}}^{x_{max}} dx_1 \mathcal{P}_{NLO}(\Phi_B)$$

$$\eta^{lab,i} = \frac{1}{2} \log \left(\frac{x_a^2 s}{s_{ab}} \frac{s_{ib}}{s_{ai}} \right)$$

Application to H->4l (boost easier to identify)

sensitivity LO vs NLO improvement ~ 10%

Seminar

Zurich

38

Michael Spannowsky

Remove limitation of final state objects on $|M(y)|^2$

Factorization of emissions in soft/collinear limit [Soper, MS PRD 84 (2011)]

and Sudakov factors allow semiclassical approximation of quantum process:

Seminar

Can improve reconstruction for tops and Higgs

make use of many properties of the top for reconstruction (top mass, W mass, EW structure of decay)

However, QCD radiation pattern are left mostly aside.

Radiation off bottom quark down to

angular distribution for radiation

One can be more quantitative...

use emission prob. from [Soper, MS PRD 87]

pT top 500 GeV, pT gluon 20 GeV

Wrapping up all factors gives weight for shower history

$$\chi = \frac{\sum_{ISR/Hard} \left(\sum_{i} \text{ISR}_{i} \times \sum_{j} \text{Signal}_{j} \right)}{\sum_{ISR/Hard} \left(\sum_{i} \text{ISR}_{i} \times \sum_{j} \text{Backg}_{j} \right)}$$

Here $Signal_1 = H_H H_{split} e^{-S_{split}} H_{bbg} e^{-S'_b} e^{-S''_b} e^{-S'_g} H'_{bbg} e^{-S'_b} e^{-S'_g}$

43

Seminar

And many more...

44

And for all backgrounds...

Analogously for the top decay (more involved as top colored)

Conceptional difference compared to Higgs from last year:

- Splitting functions for massive emitter and spectator
- Full matrix element for top decay

$$\chi(\{p,t\}_N) = \frac{P(\{p,t\}_N|\mathbf{S})}{P(\{p,t\}_N|\mathbf{B})} = \frac{\sum_{\text{histories}} H_{ISR} \cdots \sum_{\text{histories}} |\mathcal{M}|^2 H_{\text{top}} e^{-S_{t_1}} H_{tg}^s e^{-S_g} \cdots}{\sum_{\text{histories}} H_{ISR} \cdots \sum_{\text{histories}} H_g^b e^{S_g} H_{ggg} \cdots}$$

45

Seminar

Results by CMS

code available at https://www.ippp.dur.ac.uk/~mspannow/shower-deconstruction.html

First application of Event Deconstruction

[Soper, MS '14]

fully hadronic $Z' \rightarrow tt$

48

Seminar

Seminar

Measuring the Higgs-bottom coupling in VBF

Attempt of cut and count analysis [Mangano, et al '02]

m_H	$115~{\rm GeV}$	$120 { m GeV}$	$140 { m GeV}$	
Signal	1.3×10^3	1.2×10^3	5.2×10^2	
$b\bar{b}jj$	2.4×10^5	2.3×10^5	1.9×10^5	
j _b j _b jj	2.6×10^3	2.3×10^3	1.8×10^3	and a state of the second
$(Z^*/\gamma^* \to b\bar{b})jj$	1.1×10^2	6.6×10^1	1.3×10^1	
$(Z \to b\bar{b})_{\rm res} jj$	6.2×10^2	3.4×10^2	0.5×10^1	
$j_b j \oplus j_b j$	2.9×10^2	3.2×10^2	4.5×10^2	

Table 3: Same as Table 1, with $p_{\rm T}^j > 80$ GeV.

S/B ~ 1/200 Will render channel due to systematic uncertainties insensitive

However, matrix element and shower still discriminative

Zurich

[Englert, Mattelaer, MS `15]

		WBF	GF	bājj	Z_{jj}	3333
(i)	fat jet	48.50	17.32	205109	553.16	$2.23 \cdot 10^{7}$
(ii)	wbf cuts	21.23	4.11	48441.9	127.98	$5.18\cdot 10^6$
(iii)	mercedes star	18.44	2.82	31674.5	84.975	$3.39 \cdot 10^6$
(iv)	fatjet b-tags	4.69	0.578	3800.99	12.57	323.74

Standard cuts are not discriminative enough

 $0.82 < y_b/y_b^{\rm SM} < 1.14$ with 600 ifb

tth: di-lepton vs semileptonic channel

- Analysis with 4 b-jets and std ٠ reconstruction as input to MEM
- Full integration over invisible particles

0.4 signal events (D_S) bg. events (D_B) 0.2di-lepton channel 0 0.2 single-lepton channel 0 0.6 0.8 0.20.4 0 D $D_i = \frac{P(x_i|S)}{P(x_i|S) + P(x_i|B)}$

Projection at 14 TeV

[Artoisenet et al. PRL 111 (2013)]

process	incl. σ	efficiency	$\sigma^{ m rec}$
$t\bar{t}h$, single-lepton	111 fb	0.0485	$5.37 \ \mathrm{fb}$
$t\bar{t}h$, di-lepton	$17.7 \ \mathrm{fb}$	0.0359	0.634 fb
$t\bar{t}$ +jets, single-lepton	256 pb	0.463×10^{-3}	119 fb
$t\bar{t}$ +jets, di-lepton	40.9 pb	0.168×10^{-3}	$6.89 \ \mathrm{fb}$

- Using Matrix Element Method dilepton channel as or more sensitive than single-lepton channel
- However, single-lepton channel uses standard input, boosted region not captured [Plehn, Salam, MS PRL 104 (2009)]

Maximisation vs Integration

 \bullet To speed up the evaluation one can maximise over the phase space volume Φ , rather than integrate

$$w_{\alpha}(x) = \max_{y \in \Phi} \left(|M_{\alpha}|^2(y)W(x,y) \right)$$

Generic method for multiple source of MEM

Example: $pp \rightarrow H \rightarrow W^+W^-$ with $W^+W^- \rightarrow \mu^+\nu_\mu\mu^-\bar{\nu}_\mu$

Seminar

Strong improvement in S/B on top of event selection and purification cuts on visible objects

		10181101	Dackground	0/0	5/ 0
	Basic event selection cuts	327	11451	0.029	3.058
	Assuming perfec	et E_T^{miss}	reconstructi	on	
	Veto $\chi S, B(S, B) = 0$	299	3724	0.080	4.912
limit already	$\log(\chi) > 1$	262	2200	0.119	5.592
better than	$\log(\chi) > 1.5$	118	808	0.146	4.157
ATI AS combined	Assuming a 10%	resuluti	on effect in E	$T^{\rm miss}_T$	
AILAS combined	Veto $w_{S,B}(S,B) = 0$	294	3742	0.079	4.806
7 + 8 TeV data 🥖	ℓ $\log(\chi) > 1$	256	2204	0.116	5.455
	$\log(\chi) > 1.5$	114	811	0.141	4.016
	$g_{H,WW} \in [0.6]$	5, 1.25	$] imes g_{H,WW,K}$	<i>sм</i> а1	+ 95% CL
Seminar	Zurich 57		Michael Spanno	wsky	05.06.2018

Summary

- Matrix Element Method is active field of research
- Current interest in machine-learning is not taking matrix element methods out of the picture! MEM can help to check MVAs
- MEM can be discovery tool

• My personal view:

58

Cure from Big Mac Blues

Summary

- Matrix Element Method is active field of research
- Current interest in machine-learning is not taking matrix element methods out of the picture! MEM can help to check MVAs
- MEM can be discovery tool
- My personal view:

59

Cure from Big Mac Blues

Summary

- Matrix Element Method is active field of research
- Current interest in machine-learning is not taking matrix element methods out of the picture! MEM can help to check MVAs
- MEM can be discovery tool

Cure from Big Mac Blues

• My personal view:

Seminar