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Matrix Element Methods  
for  

Higgs phenomenology



Effective
Symmetry

top partners top partners

Naturalness

SUSY, CW, …

MeasurementsLeptons
Jets

widthMET Photonsmass
interference

boost

Theory

⇢X,Y =
E[(X � E[X])(Y � E[Y ])]

�x�y
(193)

gggh(mh) > gggh,SM (194)

� > �SM (195)

µ ⇠ 1 (196)

Le↵ =
X

CiOi (197)

14

fermionic scalar

simplified models simplified models
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Due to absence of signs of new physics
HEP has ‘Big Mac’ blues, 


i.e. why nature not like (as natural as) advertised?

Sure, it (Higgs boson) does the job, but…

Commercial Reality
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EFT

‣ interpretation of any measurement 
model dependent

‣ interpretation requires communication 
between different scales 
as well as theorists and experimentalists

 Improved/Unified way of interpretation of measurements

Connecting measurements with UV physics
Kappa


Framework
Simplified 

Models

Full (UV) 

Model

Complexity/Flexibility

‣ NP models simple 
rescaling of couplings

‣ No new Lorentz 
-structures or 
kinematics

‣ SM degrees of 
freedom and 
symmetries

‣ New kinematics/
Lorentz structures

‣ New low-energy 
degrees of 
freedom 

‣ Subset of states of 
full models, reflective 
at scale of 
measurement

‣ Very complex and often 
high-dimensional 
parameter space

‣ Allows to correlate 
high-scale and low-
scale physics

Standard Model

BSM 
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Coupling measurement during Run 1 using kappa-framework:

Higgs coupling fits based on total rates… no dynamics

No new Lorentz structures, limited applicability for new physics 

⇢X,Y =
E[(X � E[X])(Y � E[Y ])]

�x�y
(193)

gggh(mh) > gggh,SM (194)

bb̄bb̄ (195)

i =
gi

gi,SM
(196)

14

kappa is ratio of couplings:

physics
so-called

⇢X,Y =
E[(X � E[X])(Y � E[Y ])]

�x�y
(193)

gggh(mh) > gggh,SM (194)

bb̄bb̄ (195)

i =
gi

gi,SM
(196)

�(gp)⇥ BR(gd) (197)

14

• try to over-constrain couplings basis 

• Higgs width of particular importance
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Struggle for a unified language (basis) for Higgs EFT

Basis

Precision

Practicality 

Validity

‣Complete
‣ Inspired by UV physics?

‣Manageable number of 
operators for fit

‣ Validity range of EFT set by kinematic of measurement

‣Resummation of large log (RGE improved pert. theory)

‣Full NLO

Several available:
Warsaw Basis [1008.4884]

SILH Basis
Primary/Higgs Basis

[hep-ph/070164]
[1405.0181]

hello bonjour hola

bon giorno

shalom

hej
ni hao

 6Seminar                  Zurich      Michael Spannowsky            05.06.2018                  



Flavor diagonal still complex:

Agnostic operator basis highly complex:

2499 non-redundant parameters at dim-6

Basis and choice of operators to consider

59 operators

• Focus on operators with Higgs 
involvement (new kid on the block)

constrained by LEP at permille level

• Focus on operators that are 
probed predominantly at LHC

Choose SILH basis:

here 

[Peskin, Takeuchi ’91]

pp ! Hjj (208)

pp ! HV (209)

pp ! ttH (210)

cT ⇠ T (211)

cB + cW ⇠ S (212)

15

pp ! Hjj (208)

pp ! HV (209)

pp ! ttH (210)

cT ⇠ T (211)

cB + cW ⇠ S (212)

15

and 

[Giudice, Grojean, Pomarol, Rattazzi ’07]
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g
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P
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Limit from 
measurement Unconstrained  

by measurement

NP models 
constrained

EFT not valid

FIG. 1: New Physics interpretation of constraint on new op-
erators C(ΛNP)⟨ÔNP⟩ ∼ (gNP/ΛNP)

2 (black line). The red
vertical line indicates the validity cut-off of the effective the-
ory. Only the parameter space captured the by green-shaded
area is constrained using the effective theory approach.

est new particle mass, but if this mass scale is resolved
by the LHC, the only theoretically correct way to con-
strain models is to include the full model dependence on
the propagating degrees of freedom. While the numer-
ical effects can be small depending on the model, their
full inclusion is well possible given the state-of-the-art of
current Monte Carlo event generators.

IV. DIJETS AND CONTACT INTERACTIONS
AT THE LHC

Let us come back to the contact interaction model in-
troduced in Sec. II. To make our discussion transparent,
we use these results for all contributing quark flavour-
changing partonic subprocesses (and neglect the factor
GF /

√
2 in the operator definitions). We define the new

physics scale and the resulting EFT at (i) ΛNP = 14 TeV,
outside the kinematic LHC coverage of the run 2 start-
up energy

√
s = 13 TeV and (ii) at the maximum energy

of a low statistics phase during run 2 following Sec. III
in a toy MC analysis. To take into account the opera-
tor mixing and to reflect the energy dependence of the
Wilson coefficients when probed at different centre-of-
mass energies

√
ŝ, we can solve the RGE resulting from

Eqs. (8) and (10) and evaluate the effective Lagrangian at
a specific energy scale on an event-by-event basis. Setting
the correct scale at which we evaluate {Ci(µ)} involves
some freedom, similar to choosing an appropriate scale,
at which we evaluate the running of αs in SM-like sim-
ulations of hadron collider processes. In this particular
case we choose µ =

√
ŝ, which is also chosen to be the

relevant scale for parton densities and the running of the
strong coupling.
In Fig. 2 we display the differential impact of taking

into account the RGE-improved separation of ΛNP =
14 TeV from the scale at which the effective Lagrangian
is probed as a function of the jets’ transverse momentum
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SM pp → jj,
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FIG. 2: Transverse momentum distribution of dijet events at
the LHC with

√
s = 13 TeV. We show the SM and two scenar-

ios including the effective operators of Sec. II. Scenario 1 (2)
refers to a choice of the Wilson coefficient of C1 = C2 = 10.
“fixed” refers to the non-RGE improved distributions and
“RGE” refers to distributions obtained by fixing the effective
Lagrangian at Λ = 14 TeV and using the RGEs to consis-
tently resum QCD effects to the measurement scale

√
ŝ. The

ratio panel gives the differential impact of including the RGE
running, displaying the ratio of “fixed” and “RGE”.

pT,j .¶

Generally the absolute effects dominated over the RGE
improved event simulation as becomes obvious from the
logarithmic plot in Fig. 2. The induced relative difference
turns out to be of order O(10%) in this particular exam-
ple. Depending on the size of the data sample and the
systematic uncertainty this could in principle be the level
at which the LHC will be able to probe jet distributions
at large luminosities during run 2.
Obviously, for our choice of ΛNP, the impact of RGE

effects are not very large and will not account for the
dominant uncertainties on non-standard interactions at
the beginning of run 2 (see Refs. [24, 25] for a discus-
sion of systematic uncertainties of jet measurements at
the LHC). Given the 10% relative impact of a theoreti-
cally clean separation of new physics and measurement
scale as demonstrated in Fig. 2, we can turn the argu-

¶These results have been obtained with a modified version of MadE-
vent/MadGraph v5 [21], inputting a Ufo [22] model file generated
with FeynRules [23]. We select jets in |ηj | ≤ 2.5 using the Monte
Carlo’s default settings. The toy model could be thought of in
terms of an already constrained very massive W ′ boson. We have
checked that an analogous Z′ model leads to similar results.

Validity and Relevance of EFT

⇢X,Y =
E[(X � E[X])(Y � E[Y ])]

�x�y
(193)

gggh(mh) > gggh,SM (194)

bb̄bb̄ (195)

pT,H . 2mt (196)

2mt . pT,H . 2mNP (197)

2mNP . pT,H (198)

H ! ⌧+⌧� (199)

H ! WW ⇤ (200)

H ! ZZ⇤ (201)

L = LSM +
X

i

g2i
⇤2
NP

Oi (202)

14

Lagrangian dim-6:

shape sets limit on Wilson 
coefficient (black line)

EFT used to set limits on UV models from non-observation of new physics

Endpoint of kinematic distribution 
sets lower cut-off for NP (red line)

Any UV (weakly coupled) 
models left?

[Englert, MS 1408.5147]
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Results for linearised LO EFT approach

2

narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 42, 43])

LSILH =
c̄H
2v2

@µ
�
H†H

�
@µ

�
H†H

�
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
�

c̄6�

v2
�
H†H

�3

+
⇣ c̄u,iyu,i

v2
H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 44])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [45]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-

fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [46], which we have
cross checked and introduced in [47]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [48] that inter-

faces FeynArts, FormCalc, and LoopTools [49, 50]
using a model file output by FeynRules [51–53] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|
2 = |MSM|

2 + 2Re{MSMM
⇤
d=6

}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|
2 is typically not an issue and the parameters c2i

are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 44])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [45]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-

fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [46], which we have
cross checked and introduced in [47]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [48] that inter-

faces FeynArts, FormCalc, and LoopTools [49, 50]
using a model file output by FeynRules [51–53] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|
2 = |MSM|

2 + 2Re{MSMM
⇤
d=6

}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|
2 is typically not an issue and the parameters c2i

are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.

Focus on linear contribution 
of EFT for theory prediction:

Wilson coefficients can be (over) constraint in many decay and production 
processes:

Decays:

Production:
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We assume that production and decay factorise to good approximation

4

and the luminosity L of the particular analysis:

Nth = �(H +X)⇥ BR(H ! Y Y )

⇥ L⇥ BR(X,Y ! final state) (7)

This number is then multiplied by the e�ciency to mea-
sure the production channel ✏p and the e�ciency to mea-
sure the decay products ✏d, to obtain the measured num-
ber of events

Nev = ✏p✏dNth. (8)

For the e�ciency to reconstruct a specific final state, we
rely on experimental results from run 1, where avail-
able. The e�ciencies used are ✏p,tt̄h = 0.10 [68–71],
✏p,ZH = 0.12, ✏p,WH = 0.04, ✏p,VBF = 0.30 [4, 72–74].
We assume a value of ✏p,H+j = 0.5 [75] (see also [76])
where no experimental results targeting this production
mode are available so far. In order to simplify the as-
sumptions and the background estimates, we consider
only leptonic channels for the V H and tt̄H production
modes. Here only final states with electrons and muons
are used. These are however allowed to originate from
⌧ -decays. In case of the gluon fusion production mode,
analyses targeting di↵erent final states have di↵erent re-
construction e�ciencies. We use the following e�ciencies
for the process pp ! H: ✏p,GF = 0.4 for H ! �� [72, 74],
✏p,GF = 0.01 for H ! ⌧+⌧� [77, 78], ✏p,GF = 0.25 for
H ! 4l [4, 79], ✏p,GF = 0.10 for H ! 2l2⌫ [80, 81],
✏p,GF = 0.10 for H ! Z� [82, 83], and ✏p,GF = 0.50 for
H ! µµ [84, 85]. The H ! bb̄ decay is not considered for
the gluon fusion production mode. Taking a conservative
approach we assume the same reconstruction e�ciencies
for measurements at 14 TeV, independent of the Higgs
transverse momentum.

In the reconstruction of the Higgs boson we include
reconstruction and identification e�ciencies of the final
state objects:

H ! bb̄: We assume a flat b-tagging e�ciency of 60%,
i.e. ✏d,bb̄ = 0.36.

H ! ��: For the identification and reconstruction of iso-
lated photons we assume respectively an e�ciency
of 85%. Hence, we find ✏d,�� ' 0.72.

H ! ⌧+⌧�: We consider ⌧ -decays into hadrons
(BRhad = 0.648) or leptons, i.e. an electron
(BRe = 0.178) or muon (BRµ = 0.174). For the
reconstruction e�ciency of the hadronic ⌧ we
assume a value of 50% and for the electron and
muon we use 95%. Thus, the total reconstruction
e�ciency is ✏d,⌧⌧ ' 0.433.

H ! ZZ⇤
! 4l: We consider Z decays into electrons

and muons only, also taking into account ⌧ decays
into lighter leptons. For each lepton we assume a
reconstruction e�ciency of 95%, which gives a total
reconstruction e�ciency of ✏d,4l ' 0.815.

production process decay process

pp ! H 10 H ! bb̄ 25
pp ! H + j 30 H ! �� 20
pp ! H + 2j 100 H ! ⌧

+
⌧
� 15

pp ! HZ 10 H ! 4l 20
pp ! HW 50 H ! 2l2⌫ 15
pp ! tt̄H 30 H ! Z� 150

H ! µ
+
µ
� 150

TABLE II: Relative statistical uncertainties for each produc-
tion and decay channel in %.

H ! WW ⇤
! 2l2⌫: Only lepton decays into electrons

and muons are considered and for each visible lep-
ton we include a 95% reconstruction e�ciency, i.e.
✏d,2l2⌫ = 0.9025

H ! Z�: Again, we include separately an 85% identi-
fication and reconstruction e�ciency for isolated
photons and a 95% reconstruction e�ciency for
each electron and muon. As a result we find
✏d,Z� ' 0.767.

H ! µ+µ�: Each muon is assumed to have a reconstruc-
tion e�ciency of 95%, resulting in ✏d,µµ = 0.9025.

Owing to the di↵erent selections made in the various
experimental analyses, each channel has a unique back-
ground composition, resulting in di↵erent additional sta-
tistical uncertainties on the measurements. We approx-
imate those by adding uncertainties from the produc-
tion and decay channels in quadrature. The uncertainties
used are given in Tab. II.
Beyond identification and reconstruction e�ciencies

for production channels and Higgs decays, each channel
is plagued by individual experimental systematic uncer-
tainties. For the individual channels studied at a center-
of-mass energy of 8 TeV, we adopt flat systematic uncer-
tainties as published by the experiments [3, 4, 68, 72, 74,
77–88], see Tab. III. In channels where no measurement
has been performed or no information is publicly avail-
able, e.g. pp ! H+2j, H ! Z�, we choose a conservative
estimate of systematic uncertainties of 100%. In addition
to the uncertainties listed in Tab. III, we include a sys-
tematic uncertainty of 30% for the H ! 2l2⌫ channel for
di↵erential cross sections. This uncertainty is due to the
inability of reconstructing the Higgs transverse momen-
tum accurately.
During future runs, systematic uncertainties are likely

to improve with the integrated luminosity. Hence for
our results at 14 TeV we use the 8 TeV uncertainties
as a starting point, as displayed in Tab. III, and rescale
them by

p
L8/L14 for a given integrated luminosity at

14 TeV L14. This results in a reduction of statistical
and systematic uncertainties by a factor of about 0.3 for
L14 = 300 fb�1 and about 0.1 for L14 = 3000 fb�1.
We only consider measurements with more than 5 sig-

nal events after the application of all e�ciencies and a
total uncertainty smaller than 100%. The pseudo-data
are constructed using the SM hypothesis, i.e. all Wil-

Number of predicted events:

Each channel has own prod. and decay efficiencies:
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tion and decay channels in quadrature. The uncertainties
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for production channels and Higgs decays, each channel
is plagued by individual experimental systematic uncer-
tainties. For the individual channels studied at a center-
of-mass energy of 8 TeV, we adopt flat systematic uncer-
tainties as published by the experiments [3, 4, 68, 72, 74,
77–88], see Tab. III. In channels where no measurement
has been performed or no information is publicly avail-
able, e.g. pp ! H+2j, H ! Z�, we choose a conservative
estimate of systematic uncertainties of 100%. In addition
to the uncertainties listed in Tab. III, we include a sys-
tematic uncertainty of 30% for the H ! 2l2⌫ channel for
di↵erential cross sections. This uncertainty is due to the
inability of reconstructing the Higgs transverse momen-
tum accurately.
During future runs, systematic uncertainties are likely

to improve with the integrated luminosity. Hence for
our results at 14 TeV we use the 8 TeV uncertainties
as a starting point, as displayed in Tab. III, and rescale
them by
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L8/L14 for a given integrated luminosity at

14 TeV L14. This results in a reduction of statistical
and systematic uncertainties by a factor of about 0.3 for
L14 = 300 fb�1 and about 0.1 for L14 = 3000 fb�1.
We only consider measurements with more than 5 sig-

nal events after the application of all e�ciencies and a
total uncertainty smaller than 100%. The pseudo-data
are constructed using the SM hypothesis, i.e. all Wil-

signal strength:

36 indep. meas. (300 ifb)
46 indep. meas. (3000 ifb)
differential:
88 indep. meas. (300 ifb)
123 indep. meas. (3000 ifb)

[Englert, Kogler, Schulz, MS 1511.05170]
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signal strength measurement differential measurement

green = 300 ifb orange = 3000 ifb
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Interpretation of results

Composite (SILH) Higgs:

One expects

10

statistical and systematic uncertainties, which leads to a
more constrained fit. The fit for the 300 fb�1 scenario
uses 36 signal strength measurements, and 46 measure-
ments are used for the scenario with 3000 fb�1. Specifi-
cally the constraints on operators that modify associated
Higgs production and weak boson fusion benefit from the
increased centre-of-mass energy and luminosity. In the
scenario for the high luminosity phase the theoretical un-
certainties become dominant in some cases.

In a second step, we include the di↵erential pT,H mea-
surements from all production modes, except pp ! H.
For the pp ! H production mode we include six sig-
nal strength measurements, as no transverse momentum
of the Higgs boson is generated on tree-level. This re-
sults in 82+6 independent measurements included for
the fit with 300 fb�1 and 117+6 for 3000 fb�1. In a
given production and decay channel, experimental sys-
tematic uncertainties are included as correlated uncer-
tainties among bins in pT,H . Comparing the above con-
straints with those expected from including the di↵eren-
tial distributions, Fig. 4, we see a tremendous improve-
ment. Two-dimensional contours of the expected con-
straints are shown in Fig. 5. Several flat directions are re-
solved, which are present when using only signal strength
measurements, e↵ectively allowing to constrain all coef-
ficients simultaneously. Elements of studying di↵erential
distributions to e↵ective Higgs dimension six framework
have been investigated with similar findings in the liter-
ature [21, 23, 106], but, to our knowledge, Figs. 4 and 5
provide the first consistent fit of all single-Higgs relevant
operators in a fully di↵erential fashion, in particular with
extrapolations to 14 TeV.

A series of dimension six operators, on which no con-
straints can be formulated at this stage of the LHC pro-
gramme or by only including signal strength measure-
ments, can eventually be constrained with enough data
and di↵erential distributions. The reason behind this
is that di↵erential measurements ipso facto increase the
number of (correlated) measurements by number of bins,
leading to a highly over-constrained system. Also, since
the impact of many operators is most significant in the
tails of energy-dependent distribution, the relative statis-
tical pull is decreased by only considering inclusive quan-
tities.

IV. INTERPRETATION OF CONSTRAINTS

The whole purpose of interpreting data in terms of an
e↵ective field theory is to use this framework as a means
of communication between a low-scale measurement at
the LHC and a UV model defined at a high scale, out of
reach of the LHC. This way, the EFT framework allows
us to limit a large class of UV models.

For a well-defined interpretation using e↵ective opera-
tors, we assume that the operators, induced by the UV
theory, only directly depend on the SM particle and sym-
metry content, and we also need to assume that the UV

FIG. 6: Matching the constraints on |c̄g| . 5 ⇥ 10�6 of
Fig. 4 onto stop contributions using Eq. (11) for identified
soft masses m

Q̃
= m

t̃
= m. For details see text.

theory is weakly coupled to the SM sector. The last
condition is necessary to justify the truncation of the ef-
fective Lagrangian at dimension six. After establishing
limits on Wilson coe�cients of the e↵ective theory, as
performed in Secs. III A-III B, we can now address the
implications for a specific UV model.
Two popular ways of addressing the Hierarchy problem

are composite Higgs models and supersymmetric theo-
ries. Let us quickly investigate in how far these con-
straints are relevant once we match the EFT expansion
to a concrete UV scenario.
In the strongly-interacting Higgs case, from the power-

counting arguments of Ref. [9, 107, 108], one typically
expects

cg ⇠
m2

W

16⇡2f2

y2t
g2⇢

, (10)

where g⇢ . 4⇡ and the compositeness scale is set by
⇤ ⇠ g⇢f . So our constraint translates into ⇤ & 2.8
TeV, which falls outside the e↵ective kinematic coverage
of the Higgs phenomenology at the LHC. This means that
new composite physics with a fundamental scale ⇤ & 2.8
TeV can naively not be probed in the Higgs sector alone.
However, new contributions, such as narrow resonances
around this mass can be discovered in di↵erent channels
such as weak-boson fusion [109] or Drell-Yan production
[110].
Matching, say, the MSSM stop contribution on the c̄g

operator, we have (see e.g. [61, 111, 112] for a more
detailed discussion)
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m2

W

(4⇡)2
1
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◆
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with comp. scale
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more constrained fit. The fit for the 300 fb�1 scenario
uses 36 signal strength measurements, and 46 measure-
ments are used for the scenario with 3000 fb�1. Specifi-
cally the constraints on operators that modify associated
Higgs production and weak boson fusion benefit from the
increased centre-of-mass energy and luminosity. In the
scenario for the high luminosity phase the theoretical un-
certainties become dominant in some cases.

In a second step, we include the di↵erential pT,H mea-
surements from all production modes, except pp ! H.
For the pp ! H production mode we include six sig-
nal strength measurements, as no transverse momentum
of the Higgs boson is generated on tree-level. This re-
sults in 82+6 independent measurements included for
the fit with 300 fb�1 and 117+6 for 3000 fb�1. In a
given production and decay channel, experimental sys-
tematic uncertainties are included as correlated uncer-
tainties among bins in pT,H . Comparing the above con-
straints with those expected from including the di↵eren-
tial distributions, Fig. 4, we see a tremendous improve-
ment. Two-dimensional contours of the expected con-
straints are shown in Fig. 5. Several flat directions are re-
solved, which are present when using only signal strength
measurements, e↵ectively allowing to constrain all coef-
ficients simultaneously. Elements of studying di↵erential
distributions to e↵ective Higgs dimension six framework
have been investigated with similar findings in the liter-
ature [21, 23, 106], but, to our knowledge, Figs. 4 and 5
provide the first consistent fit of all single-Higgs relevant
operators in a fully di↵erential fashion, in particular with
extrapolations to 14 TeV.

A series of dimension six operators, on which no con-
straints can be formulated at this stage of the LHC pro-
gramme or by only including signal strength measure-
ments, can eventually be constrained with enough data
and di↵erential distributions. The reason behind this
is that di↵erential measurements ipso facto increase the
number of (correlated) measurements by number of bins,
leading to a highly over-constrained system. Also, since
the impact of many operators is most significant in the
tails of energy-dependent distribution, the relative statis-
tical pull is decreased by only considering inclusive quan-
tities.

IV. INTERPRETATION OF CONSTRAINTS

The whole purpose of interpreting data in terms of an
e↵ective field theory is to use this framework as a means
of communication between a low-scale measurement at
the LHC and a UV model defined at a high scale, out of
reach of the LHC. This way, the EFT framework allows
us to limit a large class of UV models.

For a well-defined interpretation using e↵ective opera-
tors, we assume that the operators, induced by the UV
theory, only directly depend on the SM particle and sym-
metry content, and we also need to assume that the UV
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FIG. 7: Marginalised 95% confidence level constraints for the dimension-six operator coe�cients for current data (blue),
the LHC at 14 TeV with an integrated luminosity of 300 fb�1 (green) and 3000 fb�1 (orange). The expected constraints are
centred around zero by construction, since the pseudo-data are generated by using the SM hypothesis. The left panel shows the
constraints obtained using signal strength measurements only, and on the right di↵erential pT,H measurements are included.
The inner error bar depicts the experimental uncertainty, the outer error bar shows the total uncertainty.

where ht ⌘ yts� , Xt ⌘ At � µ cot� and mQ̃ and mt̃R
denote the soft masses of the left and right-handed stops
respectively. To ensure the validity of our EFT approach
based on di↵erential distributions, we have to make the
strong assumption that all supersymmetric particles are
heavier than the momentum transfer probed in all pro-
cesses that are involved in of our fit [40, 113] (see also
[47, 114] for discussions of (non-)resonant signatures in
BSM scenarios and EFT). For convenience, we addition-
ally assume that all supersymmetric particles except the
lightest stop t̃1 are very heavy and decouple from cg.
The largest value for pT,H we expect to probe during the
LHC high-luminosity runs, based on our leading-order
theory predictions is 500 GeV. And we can therefore
trust the e↵ective field theory approach for mt̃1 > 600
GeV. For instance, fixing the soft masses mQ̃ = mt̃ = m,
µ = 200 GeV and tan� = 30 we can understand the con-
straints on cg as constraints in the At �m plane, Fig. 6.
Similar interpretations are, of course, possible with the
other Wilson coe�cients.

V. DISCUSSION, CONCLUSIONS AND
OUTLOOK

Even though current measurements as performed by
ATLAS and CMS show good agreement with the SM
hypothesis for the small statistics collected during LHC
run 1, the recently discovered Higgs boson remains one of
the best candidates that could be a harbinger of physics
beyond the SM. If new physics is heavy enough, modi-
fications to the Higgs boson’s phenomenology from inte-
grating out heavy states can be expressed using e↵ective
field theory methods.

In this paper we have constructed a scalable fitting
framework, based on adapted versions of Gfitter, Pro-
fessor, Vbfnlo, and eHdecay and have used an abun-
dant list of available single-Higgs LHC measurements to
constrain new physics in the Higgs sector for the results
of run 1. In these fits we have adopted the leading order
strongly-interacting light Higgs basis assuming vanishing
tree-level T and S parameters and flavour universality of
the new physics sector. Our results represent the latest
incarnation of fits at 8 TeV, and update results from the
existing literature. The main goal of this work, however,
is to provide an estimate of how these constraints will
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physical Higgs which can be tackled by adapted search
strategies. Such an invisible branching ratio, irrespective
of how it is measured, has far reaching consequences for
the relation between the Higgs boson and dark matter.

One strategy that has been motivated recently to con-
strain (or eventually measure) the invisible Higgs decay
width is through the so-called o↵-shell measurements in
gg ! ZZ [24–28]. Focussing on the intrinsic dependence
of this process on new heavy particles in the loop [29–
35], one can give an interpretation of this measurement
within the dimension-6 EFT framework [36–38] along the
lines of Eq. (1)

�h = �SM

h
+ �D6

h
+ �inv

h
. (2)

From a UV perspective such a model has several scales
withm� ⌧ v ⌧ ⇤, where ⇤ refers to the scale of new (un-
specified) interactions. A well-known and well-studied
UV completion of this simplified model could be the
NMSSM (see e.g. Ref. [39]). It is also important to note
that modifying the Higgs width in Eq. (2) amounts to
setting constraints on all experimentally non-resolvable
decay widths, e.g. first generation quarks or gluons with
(or without) the condition �inv

h
= 0.

In this paper we extend di↵erential Higgs fits [40] with
new decay channels as outlined above and study the ex-
tent to which limits can be set through a di↵erential mea-
surement of Higgs distributions. Our results are devoted
to a target luminosity of 3 ab�1 at a centre-of-mass en-
ergy of 14 TeV.

Central to such a projection is the theoretical accu-
racy that will be available at this stage of the LHC pro-
gramme (see similar discussions in the context of top sec-

tor fits [41, 42]). Any related assumption that is made in
this moment in time is guesswork and can be criticised as
either too optimistic or too pessimistic. However, trac-
ing the influence of theoretical uncertainties down to the
impact on the total Higgs width allows a clear avenue
to discuss the influence of di↵erential as well as total in-
clusive theoretical uncertainties as we will show below.
The merit of studying e↵ective theories of the form of
Eq. (1) is hence two-fold: we do not only discuss the
quantitative impact of BSM physics on the Higgs sector
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and we consider operators ⇠ c̄u,i, c̄d,i for the third gen-
eration of fermions only and identify c̄T = 0 as well as
c̄W + c̄B = 0 as the usual approach to reflect LEP con-
straints (see Ref. [8] for a more dedicated analysis). As
we do not consider precision studies [44–48] or di-Higgs
constraints [49–51], we neglect c̄6.

This list of operators is not exhausting all possibili-
ties [52], but provides a su�ciently general, while com-
putationally manageable, theoretical framework to gauge
the sensitivity to BSM e↵ects in the Higgs sector. The
details of our fit setup have been provided in Ref. [40]
and we refer the interested reader to this work. Most
notably, we rely on calculations obtained with eHde-
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cay [53], Vbfnlo [54], FeynArts, FormCalc, Loop-
Tools [55, 56], and FeynRules [57–59], which we inter-
polate by using Professor [60]. The statistical evalua-
tion is performed with the Gfitter framework [61–64].

A crucial question when analysing the impact of dif-
ferential distributions on the Higgs characterisation pro-
gramme is the level at which theoretical as well as ex-
perimental uncertainties can limit the sensitivity. When
setting constraints on continuum deviations from the SM,
the larger theoretical uncertainties that are intrinsic to
the perturbative modelling of large momentum-transfer
final states compared to inclusive quantities significantly
degrade the sensitivity to relative excesses, as expected
from Eq. (3). Hence the naive expectation that the over-
flow bins (or the very large transverse momentum re-
gions) provide the largest statistical pull in a fit is typi-
cally misleading for Wilson coe�cient choices that war-
rant the use of perturbative techniques [41, 65, 66].‡ In
practice, the most sensitive region in a fit is given by the
region of phase space where BSM deviations are large
compared to theoretical as well as experimental uncer-
tainties. However, as we will see below, the importance
of the tails of distributions also depends on the concrete
physics question that we would like to investigate.

A practical problem then arises when trying to pro-
vide sensitivity estimates for a large statistical sample
of expected LHC data.§ In the following we will focus
(and compare) a range of parametrisations of theoreti-
cal uncertainties in the Higgs transverse momentum dis-
tribution p

H

T
(this observable is likely to be reported in

unfolded form [67]) and trace their impact through the
fit procedure. Concretely, we choose a functional form of
the theory uncertainty of

�(pH
T
) = �0[a+ bf(pH

T
)] . (4a)

The parameter �0 refers to the inclusive cross section un-
certainties. We employ two parameterisations for the pH

T
-

dependence

(i) f(pH
T
) = log

✓
1 +

p
H

T
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◆
, (4b)

(ii) f(pH
T
) =

p
H

T

mH

. (4c)

A linear scaling of the theoretical uncertainties is un-
doubtably a very conservative outlook into the future
while a logarithmic scaling is motivated from QCD con-
siderations [68]. The two terms in Eq. (4), corresponding

‡
Note, however, that a non-perturbative Wilson coe�cient con-

straint remains a physical statement as the validity of the param-

eter range is only gauged by matching the EFT to a concrete UV

scenario.

§
Current LHC measurements, which constrain the Higgs couplings

at the 10% level, are just about providing a larger sensitivity to

BSM-induced modifications than expected from electroweak preci-

sion constraints in selected scenarios.

to an uncertainty in the inclusive cross section (⇠ a) and
an uncertainty in the tails of the p

H

T
distributions (⇠ b),

are allowed to vary independently in the fits.
In Fig. 1, we show constraints obtained from p

H

T
distri-

butions for the uncertainty choices detailed above. These
constraints document a categorisation of Wilson coe�-
cients that explicitly distinguish between the sensitivity
in the Higgs decay or its production, or in both decay and
production. For example, not being able to experimen-
tally resolve bb̄H production, the sensitivity to c̄d,3 comes
exclusively from branching ratio modifications, while c̄g

impacts both, in particular the most dominant gluon fu-
sion production mechanism.
This categorisation (within our approximations, for the

o↵-shell gg ! ZZ constraints see below) pinpoints to the
sensitivity gain that can be reached from improved the-
ory uncertainties. The results of Fig. 1 already provide a
telltale story of the relative statistical power of high mo-
mentum transfer final states. On the one hand, operators
like ⇠ c̄g (as well as all other operators which induce a
momentum dependence in Higgs production) will sculpt
the di↵erential distribution. On the other hand, opera-
tors like ⇠ c̄d,3 (or all other light flavour quark and lepton
operators), which have a suppressed contribution to the
production phenomenology and predominantly impact
the decay of the Higgs, will globally shift the distribution
and are therefore only constrained by the absolute cross
section measurement (or signal strength) and the associ-
ated uncertainty. As a consequence c̄d,3 is not impacted
too much by how we model the expected uncertainty in
the tails of the Higgs pT distributions but is saturated by
the total fiducial uncertainty of the combination of Higgs
measurements. This is di↵erent for operators ⇠ c̄g which
change the shape of the distributions towards harder or
softer pH

T
spectra (depending on the Wilson coe�cients’

sign) at a given observed signal strength. Here, the tail
uncertainties play a crucial role in constraining the new
physics-induced functional deviation of the Higgs distri-
butions in the light of the theoretical and experimental
uncertainties.
Starting from an idealised base-line where we assume

all theoretical uncertainties to be absent (black line) in
Fig. 1, the biggest relative deterioration of the limits we
find when including a flat uncertainty band across all
bins of the p

H

T
di↵erential distribution (red and orange

lines). The orange lines correspond to a band of size of
the current uncertainties on the inclusive Higgs produc-
tion processes (see also [40]), and the red line assumes a
50% improvement over time. Inflating the uncertainties
in the tails further, using either a linear or logarithmic
function, has only a minor e↵ect on all operators, with
the marked exception of c̄g.
We contrast the constraints from di↵erential distribu-

tions of Fig. 1 with signal-strength-only measurements
in Fig. 2. Limits derived from signal-strength measure-
ments are entirely based on the total number of recon-
structed Higgs boson events in each final state. Theoret-
ical uncertainties only enter via coe�cient a in Eq. (4),
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Starting from an idealised base-line where we assume

all theoretical uncertainties to be absent (black line) in
Fig. 1, the biggest relative deterioration of the limits we
find when including a flat uncertainty band across all
bins of the p

H

T
di↵erential distribution (red and orange

lines). The orange lines correspond to a band of size of
the current uncertainties on the inclusive Higgs produc-
tion processes (see also [40]), and the red line assumes a
50% improvement over time. Inflating the uncertainties
in the tails further, using either a linear or logarithmic
function, has only a minor e↵ect on all operators, with
the marked exception of c̄g.
We contrast the constraints from di↵erential distribu-

tions of Fig. 1 with signal-strength-only measurements
in Fig. 2. Limits derived from signal-strength measure-
ments are entirely based on the total number of recon-
structed Higgs boson events in each final state. Theoret-
ical uncertainties only enter via coe�cient a in Eq. (4),

Global Fit allows to address most fundamental question for high-
energy physics:

• Which theory calculations most important?

• Which systematic uncertainties most limiting?

• Where can we improve knowledge most?

Theoretical uncertainties:

flat band pT 
normalisation

pT 
uncertainty 

shape

[Englert, Kogler, Schulz, MS 1708.06355]

Additional weakly-coupled light degree of freedom:

Affects only decay

3

cay [53], Vbfnlo [54], FeynArts, FormCalc, Loop-
Tools [55, 56], and FeynRules [57–59], which we inter-
polate by using Professor [60]. The statistical evalua-
tion is performed with the Gfitter framework [61–64].

A crucial question when analysing the impact of dif-
ferential distributions on the Higgs characterisation pro-
gramme is the level at which theoretical as well as ex-
perimental uncertainties can limit the sensitivity. When
setting constraints on continuum deviations from the SM,
the larger theoretical uncertainties that are intrinsic to
the perturbative modelling of large momentum-transfer
final states compared to inclusive quantities significantly
degrade the sensitivity to relative excesses, as expected
from Eq. (3). Hence the naive expectation that the over-
flow bins (or the very large transverse momentum re-
gions) provide the largest statistical pull in a fit is typi-
cally misleading for Wilson coe�cient choices that war-
rant the use of perturbative techniques [41, 65, 66].‡ In
practice, the most sensitive region in a fit is given by the
region of phase space where BSM deviations are large
compared to theoretical as well as experimental uncer-
tainties. However, as we will see below, the importance
of the tails of distributions also depends on the concrete
physics question that we would like to investigate.

A practical problem then arises when trying to pro-
vide sensitivity estimates for a large statistical sample
of expected LHC data.§ In the following we will focus
(and compare) a range of parametrisations of theoreti-
cal uncertainties in the Higgs transverse momentum dis-
tribution p

H

T
(this observable is likely to be reported in

unfolded form [67]) and trace their impact through the
fit procedure. Concretely, we choose a functional form of
the theory uncertainty of

�(pH
T
) = �0[a+ bf(pH

T
)] . (4a)

The parameter �0 refers to the inclusive cross section un-
certainties. We employ two parameterisations for the pH

T
-

dependence

(i) f(pH
T
) = log

✓
1 +

p
H

T

mH

◆
, (4b)

(ii) f(pH
T
) =

p
H

T

mH

. (4c)

A linear scaling of the theoretical uncertainties is un-
doubtably a very conservative outlook into the future
while a logarithmic scaling is motivated from QCD con-
siderations [68]. The two terms in Eq. (4), corresponding

‡
Note, however, that a non-perturbative Wilson coe�cient con-

straint remains a physical statement as the validity of the param-

eter range is only gauged by matching the EFT to a concrete UV

scenario.

§
Current LHC measurements, which constrain the Higgs couplings

at the 10% level, are just about providing a larger sensitivity to

BSM-induced modifications than expected from electroweak preci-

sion constraints in selected scenarios.

to an uncertainty in the inclusive cross section (⇠ a) and
an uncertainty in the tails of the p

H

T
distributions (⇠ b),

are allowed to vary independently in the fits.
In Fig. 1, we show constraints obtained from p

H

T
distri-

butions for the uncertainty choices detailed above. These
constraints document a categorisation of Wilson coe�-
cients that explicitly distinguish between the sensitivity
in the Higgs decay or its production, or in both decay and
production. For example, not being able to experimen-
tally resolve bb̄H production, the sensitivity to c̄d,3 comes
exclusively from branching ratio modifications, while c̄g

impacts both, in particular the most dominant gluon fu-
sion production mechanism.
This categorisation (within our approximations, for the

o↵-shell gg ! ZZ constraints see below) pinpoints to the
sensitivity gain that can be reached from improved the-
ory uncertainties. The results of Fig. 1 already provide a
telltale story of the relative statistical power of high mo-
mentum transfer final states. On the one hand, operators
like ⇠ c̄g (as well as all other operators which induce a
momentum dependence in Higgs production) will sculpt
the di↵erential distribution. On the other hand, opera-
tors like ⇠ c̄d,3 (or all other light flavour quark and lepton
operators), which have a suppressed contribution to the
production phenomenology and predominantly impact
the decay of the Higgs, will globally shift the distribution
and are therefore only constrained by the absolute cross
section measurement (or signal strength) and the associ-
ated uncertainty. As a consequence c̄d,3 is not impacted
too much by how we model the expected uncertainty in
the tails of the Higgs pT distributions but is saturated by
the total fiducial uncertainty of the combination of Higgs
measurements. This is di↵erent for operators ⇠ c̄g which
change the shape of the distributions towards harder or
softer pH

T
spectra (depending on the Wilson coe�cients’

sign) at a given observed signal strength. Here, the tail
uncertainties play a crucial role in constraining the new
physics-induced functional deviation of the Higgs distri-
butions in the light of the theoretical and experimental
uncertainties.
Starting from an idealised base-line where we assume

all theoretical uncertainties to be absent (black line) in
Fig. 1, the biggest relative deterioration of the limits we
find when including a flat uncertainty band across all
bins of the p

H

T
di↵erential distribution (red and orange

lines). The orange lines correspond to a band of size of
the current uncertainties on the inclusive Higgs produc-
tion processes (see also [40]), and the red line assumes a
50% improvement over time. Inflating the uncertainties
in the tails further, using either a linear or logarithmic
function, has only a minor e↵ect on all operators, with
the marked exception of c̄g.
We contrast the constraints from di↵erential distribu-

tions of Fig. 1 with signal-strength-only measurements
in Fig. 2. Limits derived from signal-strength measure-
ments are entirely based on the total number of recon-
structed Higgs boson events in each final state. Theoret-
ical uncertainties only enter via coe�cient a in Eq. (4),

�13Seminar                  Zurich      Michael Spannowsky            05.06.2018                  



u3c
0.1− 0.05− 0 0.05 0.1

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0
 freeh

invΓ+ 
a = 0.5

 freeh
invΓ+ 

a = 1
 freeh

invΓ+ 

γc
0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

3−10×

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0
 freeh

invΓ+ 
a = 0.5

 freeh
invΓ+ 

a = 1
 freeh

invΓ+ 

signal strength measurement differential measurement

 14

gc
30− 20− 10− 0 10 20 30

6−10×

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0
 freeh

invΓ+ 
a = 0.5

 freeh
invΓ+ 

a = 1
 freeh

invΓ+ 

u3c
0.1− 0.05− 0 0.05 0.1

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0, b = 0
 freeh

invΓ+ 
a = 0.5, b = 0
a = 1, b = 0

a = 1, b = 1, log
a = 1, b = 1, lin

γc
0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

3−10×

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0, b = 0
 freeh

invΓ+ 
a = 0.5, b = 0
a = 1, b = 0

a = 1, b = 1, log
a = 1, b = 1, lin

gc
30− 20− 10− 0 10 20 30

6−10×

2 χ
Δ

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

a = 0, b = 0
 freeh

invΓ+ 
a = 0.5, b = 0
a = 1, b = 0

a = 1, b = 1, log
a = 1, b = 1, lin



I. Methods chosen to communicate important 

(eff. theory, simp. model, …)

• The information extracted depends on 
the ‘picture’, i.e. hypothesis, we 
compare with nature

• The more precise the picture is we have in 
mind, the more precise will be the answer 
on the question of interest

Observations:

II. Higgs pheno and new physics 
searches request/benefit from 
high energies

• EFT measurements

• direct searches for new 

physics

Matrixelement method for 
jet- and met-rich final states
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• In Matrix Element our physics 
understanding encoded

• MEM can improve S/B and S/sqrt(B)
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• The more precise our physics picture, 
the better the discrimination

• Matrix Element Method does not need 
MC samples as opposed to BDT, NN, …

• MEM provides direct connection 
between Lagrangian and Data

• MEM can improve S/B and S/sqrt(B)
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Result in measurable objects, e.g. 
Jets, stable leptons, photons

Nature:
Symmetries, Forces, Particles

Encoded in Lagrangian Density

Experiments measure radiation Event Generators predict radiation

Theory assumption:
Symmetries, Forces, Particles

Comparison

Phenomenology
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Result in measurable objects

Nature:
Symmetries, Forces, Particles

Encoded in Lagrangian Density

Experiments measure radiation Event Generators predict radiation

Theory assumption:
Symmetries, Forces, Particles

Comparison

Phenomenology

Matrix
 Element 

Method

Machine Learning 

MVAs
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“The strange death of theory”

23.01.2017

or is it?

Frankfurter 
Allgemeine 
Zeitung
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Matrix Element Method 

(= pQCD = QFT)

Multi-variate Analysis

• MVA well motivated to extract correlations without existing theory, 
i.e. stock trading or PDF fitting ;-)

vs

• In particle physics we established gauge theories, thus, we have existing 
theory to predict connection of ‘input with output’

• Current pheno approach:

We take first-principle QFT:

Put it into an event generator to generate pseudo-data

Then a smart physicist or MVA comes up with way to access the 
Lagrangian we put in in the first place

Seems like an unnecessary detour…
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Training MVAs on Monte Carlo

• MVAs will optimise for - according to MC - most sensitive exclusive 
phase space regions 

• Full event generators are mashup of different parts that are partly 
tuned, i.e. hard interaction, UE, ISR, hadronisation, …

theory uncertainties difficult to control

• Highly computationally intensive. If you want to template correlations 
of say 7 particles:

‣ Time estimate:

7 microjets, each 4-momentum components divided into only 10 bins

10  /7! 28-> ~ 10 24 configurations

If MC takes 1 ms per event -> 10   years to have 1 hit per config.13
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Training MVAs on data only

• Less plagued by systematics

• But only possible if objects to reconstruct or events to 
measure already in data.  
-> oxymoron for discovery of anything new,  
e.g. gluino-tag, axion-tag, pp->HH->4b,…

• Everything done purely on data without theory cross-check 
has 0 safety margins…

➡2 TeV excess in ATLAS and CMS might be an example  
(though I am not saying that anything was done wrongly)

see [Goncalves, Krauss, MS ’15]
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for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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Q
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D
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littin
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ro
b
ab

ility
fo
r
g
⌅

g
+
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T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese
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conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam
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hat

w
e
should
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for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
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In
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the
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show
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C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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D
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g
p
rob
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for
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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rob

ab
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for
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g
+
g

T
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splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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is
that

the
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that
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here
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on

the
left, w

hile
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3
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other

and
is
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of
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w
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the
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let
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the
label

of
the

harder
daughter

parton
and

s
be
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label of

the
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s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then
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by
graphs

in
w
hich
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s
is
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itted
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a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form
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from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
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For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
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atrix
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ent
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ith
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H
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A �
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p
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h
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k .
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W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of
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ro
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ility

fo
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g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
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hat

w
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should

choose
for

H
ggg

for
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⌅

g
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g
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W
e
take
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m
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to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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of
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ro
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ility

fo
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g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
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call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
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hat

w
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should

choose
for

H
ggg

for
a
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+
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take

the
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to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
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the
3̄
color

of
the

m
other

and
is
draw

n
on
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left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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is
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in
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the
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is
that
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split
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higher
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and
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that
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and
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,
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of
the
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and
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on
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w
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the
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of
the
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and
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he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
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daughter

partons
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the
softer.

W
e
let

h
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e
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lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
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<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
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b
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e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=
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=
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=
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=
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n
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µ
2s
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µ
2h
=

0),

H
d
ip
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C
A
�
s

2
2
p
h
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2
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s·p

h
2
p
s·p

k
.

(30)

W
e
u
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2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk
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s�

y
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(⇤

s�
⇤
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k
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h
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2
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s·p

k
⇥

k
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k
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p
h
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⇥
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k
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In
this

section,
w
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define

the
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ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
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ro
b
ab

ility
fo
r
g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
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h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole
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form

ed
from
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h
=
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and
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k
=

k(J
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.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
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m
atrix

elem
ent
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µ
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µ

2h
=
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H
d
ip
ole⇥

C
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k
2
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h
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.
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⇤
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⇥
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⇤
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the
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has

not
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at
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Let
us
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choose
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ggg

for
a
g
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g
+
g
splitting.

W
e
take

the

m
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parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
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A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on
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left, w
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B
caries

the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of
the

splitting
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depends
on

w
hich

of
the
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is
the
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e
let
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be

the
label

of
the

harder
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and

s
be

the
label of

the
softer

daughter
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k
s <

k
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y
definition, k

s <
k
h .
W
e
first

look
at
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in
the

lim
it
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k
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he
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probability
is
then
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by
graphs

in
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hich
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itted
from
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dipole
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of
parton

J
and

som
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other

parton,
call
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parton

k.
If
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=
A
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then

the
em

itting
dipole
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form
ed
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B
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parton
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=
k(J
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L , w
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if
s
=
B
, then

the
em

itting
dipole
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form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
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depends

on
w
hich

of
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daughter

partons
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parton

s, so
w
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needed
w
e
w
ill use
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notation
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instead
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sim

ply
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For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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needed
w
e
w
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the
notation

k(s)
instead
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k.
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H
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w
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dipole

approxim
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for
the

squared
m
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elem
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µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2
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p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
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2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]
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k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
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k
s k

h ⇥ 2sh
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2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
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p
h · p

k ⇥
k
h k

k ⇥ 2hk
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the
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the
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the
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w
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⇤
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⇤
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⇤
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⇤
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+
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splitting
vertex

for
a
Q
C
D

splitting
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+
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is
represented

by
a
function

H
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as

illustrated
in

F
ig. 6.
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is
that
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not
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and
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supp
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and

B
,
w
here

A
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the
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of
the

m
other

and
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draw
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on
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hile
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the
3
color

of
the

m
other

and
is
draw
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form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
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k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=
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and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
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o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead
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F
or

H
,
w
e
start

w
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dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent
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ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �
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2
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p
h · p
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s · p
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2
p
s · p

k
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(30)

W
e
use

2
p
s · p

h
=

2k
s k
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s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
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s �

y
h ) 2
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s �
⇤
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=
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2sh

,

2
p
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k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
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k
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of
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let
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of
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and
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the
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el
of

the
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s
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k
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k
h .

W
e
first

look
at

the
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in
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k
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he

splitting

probability
is
then
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inated

by
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in
w
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itted
from
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of
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J
and
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call

it
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If
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=
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then
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and
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if
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,
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=
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=
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of
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on
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of
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is
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w
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p
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s �
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⇤
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s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

Proton

Proton Anti-top

Higgs

top

W

W

electron

b-jet

b-jet

b-jet

b-jet jet

jet
jet

neutrino

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition,

k
s <

k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =
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⇤
h )]

⇥
k
s k

h [(y
s �
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�
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p
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⇤
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h [(y
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2
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s �
⇤
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2
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⇥
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k
⇥
2sk

,
2
p
h ·p

k
⇥

k
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k
,

(31)

13

jet

ISR jet

ISR jet

Give final state radiation distinctive meaning in terms of hypothesis

Signal:

�26Seminar                  Zurich      Michael Spannowsky            05.06.2018                  



F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
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if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
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H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)
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p
s·p

h
=
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sk
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s�
y
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cos(⇤
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⇤
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⇥
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y
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⇤
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h
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⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,
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dip
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=
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=
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w
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d
ip
ole ⇥
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A �
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s · p
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2
p
s · p

k
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W
e
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2
p
s · p

h
=
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s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]
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h [(y
s �

y
h ) 2
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s �
⇤
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s · p

k ⇥
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⇥
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k
,
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s �
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for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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that
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and
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A
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the
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the
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other

and
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the
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the
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other

and
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the
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form
of
the

splitting
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on
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of
the
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is
the

softer.
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let

h
be

the
label

of
the
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and

s
be
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label of

the
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k
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k
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B
y
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W
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look
at

the
splitting
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the
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k
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is
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a
dipole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
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=
A
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then

the
em

itting
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is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J
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L , w
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if
s
=
B
, then

the
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itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J
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T
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choice
of
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on
w
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of

the
tw
o
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partons
is
parton

s, so
w
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w
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w
ill use

the
notation
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instead

of
sim
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For
H
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w
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w
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dipole

approxim
ation

for
the
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atrix
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ent
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µ 2s =
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dip

ole ⇥
C

A �
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p
h · p

k
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p
s · p

h
2
p
s · p
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(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2
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(⇤

s �
⇤
h ) 2
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k
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dipole
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and
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other
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If
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then
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is

form
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the
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W
e
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s k
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⇤
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s �
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the
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and
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and
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draw
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the
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probability
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on

w
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of
the
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is
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let

h
be

the
label

of
the

harder
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parton
and

s
be
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label of

the
softer
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parton:

k
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k
h .

B
y
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k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form
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from

parton
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and

parton
k
=
k(J

)
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choice
of
k
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on
w
hich

of

the
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parton
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w
e
w
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notation

k(s)
instead

of
sim
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For
H
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w
e
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atrix

elem
ent
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p
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W
e
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p
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=
2k

s k
h [cosh(y

s �
y
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⇤
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k
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s �

y
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s �
⇤
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]
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k
s k

h ⇥ 2sh
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2
p
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k
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k
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of
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+
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T
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splitting
vertex

for
a
Q
C
D

splitting
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+
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is
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by
a
function

H
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as
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in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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w
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th
e
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au

ghter
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arton
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elled
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an

d
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ere
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e
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of
th
e
m
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th
e
left,

w
h
ile

B
caries

th
e
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of
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e
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form
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th
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ab
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ich

of
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p
arton
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is

th
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W
e
let

h
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e
th
e
lab

el
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th
e

h
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er
d
au
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p
arton

an
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s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
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h
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d
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en
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on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
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p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)
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=

k
s k

h
⇥
2sh
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p
s·p

k
⇥

k
s k

k
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p
h·p
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⇥

k
hk
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⇥
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k

,
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H
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a
g
⌅
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+
g
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W
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J
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the
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the
right.
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on
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let
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of
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parton
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the
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in
the

lim
it
k
s ⇤

k
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splitting

probability
is
then

dom
inated

by
graphs

in
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em

itted
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of
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parton
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the
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parton
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w
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approxim
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m
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µ 2h =
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dip

ole ⇥
C

A �
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p
h · p

k
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p
s · p
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2
p
s · p
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W
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p
s · p

h
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s k
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s �
y
h )�

cos(⇤
s �

⇤
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s �

y
h ) 2
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s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
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p
s · p

k ⇥
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k ⇥ 2sk
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k ⇥ 2hk
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other
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s �
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⇤
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s �
⇤
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of
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let

h
b
e
the

lab
el

of
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harder
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and
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el
of

the
softer
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look
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splitting
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splitting

probability
is
then
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by
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in
w
hich
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s
is
em

itted
from

a
dip

ole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
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=

A
,
then

the
em

itting
dip
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is
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from
parton

h
=

B
and

parton
k
=

k(J
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w
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if
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=

B
,
then
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=
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=
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on
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of
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w
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s �
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⇤
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s �
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s �
⇤
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D
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d
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d
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⌅
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ISR jet

neutrino

Ideally one would like to use all radiation related to 
hard process to discriminate signal from background

�29Seminar                  Zurich      Michael Spannowsky            05.06.2018                  



Applications of Matrix Element Method:

2005 [Abazov et al., Nature (2004), D0 Collab.]  

Plenty of recent applications in Higgs physics:

Spin/Parity

2010

1988 [Kondo, J.Phys.Soc.Jap. (1988)]Rec. of events with MET

top quark physics
[Abulencia et al., PRD 73 (2005), CDF Collab.]  
[Abazov et al., PLB 617 (2005), D0 Collab.]

1998 Anomalous gauge couplings [Diehl, Nachtmann Eur. 
Phys. J. C1 (1998)]

Automated implementation in MadWeight
[Artoisenet et al, JHEP 1012 (2010)]
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[Cranmer, Plehn EPJC 51 (2007)]
[Soper, MS PRD 84 (2011)]

[Andersen, Englert, MS PRD 84 (2013)]

[Avery, et al. PRD 87 (2013)]

[Campbell et al JHEP 1211 (2012)]
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The matrix element method in a nutshell:

Given a theoretical assumption     , attach a weight                 to each 
experimental event x quantifying the validity of the theoretical assumption        
for this event.

is squared matrix element

is the resolution or transfer function

is the parton-level phase-space measure

The value of the weight                 is the probability to observe the 
experimental event x in the theoretical frame 
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Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓
0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

p
µ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,
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where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1
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✓
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2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition

9

Purpose of the transfer function is to match jets to partons
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Probability density function:

hard scale

hadronization
scale
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The form of the transfer function:

Complex, high-dimensional gaussian distribution!

resolution in

Energy

azimuthal angle

rapidity

Transfer function introduces new peaks on top of propagators
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Subtleties of the convolution

1)

2)
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• Can be calculated at different order in pert. series  
(LO, NLO)

• Some kinematic configurations induce large logs  
(need resummation)
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• Number of final state objects limited to exclusive process

• Transfer function fit dependent (input from experiment)

• Integration very time consuming -> limits final state multiplicity

• Final state multiplicity fixed (exclusive process)
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Two objects that prove to be challenging for MEM

(mapping to matrix element)

• Jet-rich final state

• MET-rich final state

➡ jet -> parton mapping difficult, i.e. depends on 
jet definition, detector response

➡ many sources of jets at hadron colliders, i.e. 
particle multiplicity of hard process, not jet 
multiplicity of event

➡ MET -> particle mapping difficult, i.e. only 
indirect information about particle
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We want to study more objects in final state -> 

Transfer function limits us. Do we always need it?

Transfer functions only important if matrix element varies quickly:
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FIG. 2: 2-jet and 3-jet likelihoods Q̃2,3 for the cuts as described in the text and
p

s = 14 TeV. We show the influence of various
event generation modes, where “2j” refers to generating pp! hjj ! ��jj events from 2 jet matrix elements+parton shower,
“matched” refers to a matched 2j/3j sample, and “full t, b” stands for 2-jet events, including the full one loop mass dependence,
interfaced to the parton shower. We also show the influence of detector and photon resolution e↵ects.
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FIG. 3: Purification of GF vs. WBF on the basis of the likelihood Q̃2,3.

For the numerical implementation of Eqs. (2.1) and
(2.3) we rely on a combination of MadGraph v4 [19]
and Vbfnlo [20].

B. Event generation and selection

We generate two and three jet CKKW-matched [21]
and un-matched samples with Sherpa [22], which imple-
ments the e↵ective top approximation in the gluon fusion

channels [23]. The events are generated with Sherpa’s
default CT10 [24] pdf set to avoid biasing the analysis of
the likelihood distributions.

It is known that the e↵ective theory does not pro-
vide a valid description of the phenomenology as soon
as we are sensitive to momentum transfers larger than
the top mass, e.g. pT,j � mt. Cross sections, on the
other hand, are reproduced at the percent level, which
follows from smaller e↵ective theory cross sections for
pT,h . mt cancelling the excess with respect to the
full calculation for pT,h & mt. For large momentum
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FIG. 2: 2-jet and 3-jet likelihoods Q̃2,3 for the cuts as described in the text and
p

s = 14 TeV. We show the influence of various
event generation modes, where “2j” refers to generating pp! hjj ! ��jj events from 2 jet matrix elements+parton shower,
“matched” refers to a matched 2j/3j sample, and “full t, b” stands for 2-jet events, including the full one loop mass dependence,
interfaced to the parton shower. We also show the influence of detector and photon resolution e↵ects.
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For the numerical implementation of Eqs. (2.1) and
(2.3) we rely on a combination of MadGraph v4 [19]
and Vbfnlo [20].

B. Event generation and selection

We generate two and three jet CKKW-matched [21]
and un-matched samples with Sherpa [22], which imple-
ments the e↵ective top approximation in the gluon fusion

channels [23]. The events are generated with Sherpa’s
default CT10 [24] pdf set to avoid biasing the analysis of
the likelihood distributions.

It is known that the e↵ective theory does not pro-
vide a valid description of the phenomenology as soon
as we are sensitive to momentum transfers larger than
the top mass, e.g. pT,j � mt. Cross sections, on the
other hand, are reproduced at the percent level, which
follows from smaller e↵ective theory cross sections for
pT,h . mt cancelling the excess with respect to the
full calculation for pT,h & mt. For large momentum

Q̃n = � log

|MWBF(pp! (h! ��)jn)|2

|MGF(pp! (h! ��)jn)|2

�

Higgs reconstructed, but no transfer function for jets:

[Andersen, Englert, 
MS PRD 84 (2013)]
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FIG. 6: The matrix element observables Q̃2, Q̃3, Q̃
b
2, and Q̃b

3 for 8 TeV, employing the Higgs search’ 2-jet category cuts of
Ref. [1].
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FIG. 7: Exclusive number of jets distribution for LHC 8 TeV.

III. APPLICATION TO HIGGS IN
ASSOCIATION WITH TWO JETS AT 8 TEV

We can straightforwardly adopt the strategy of
Sec. II A to the current 8 TeV setup. The ATLAS se-
lection for the two jet category of the h → γγ search is
as follows [1]: We cluster anti-kT jets [33] with Fast-

Jet [17] for D = 0.4 and select at least two jets with
pT,j ≥ 25 GeV and pT,j ≥ 30 in the more forward region
2.5 ≤ |ηj | ≤ 4.5. The hardest jets are required to have
a rapidity gap |∆ηjj | ≥ 2.8 and the dijet system has
to recoil against the diphoton system in the transverse
plane ∆φ(jj, γγ) ≥ 2.6. Again as in Sec. II we require

a Higgs mass reconstruction within 20 GeV interval cen-
tered around mh = 126 GeV.
The exclusive number of jets for this selection is again

shown in Fig. 7; and we find agreement of our analy-
sis with the experiment’s quoted number of 3 expected
events in 4.7 fb−1. Obviously, there is again no need to
go beyond n = 3.

Finally we again analyze the potential S/B improve-
ment (where B refers to the irreducible background for
our purposes), which is the key limiting factor when deal-
ing with the small event rates for the 8 TeV run. Fig. 6
shows a similar behavior as Fig. 5, we infer that we can at
least gain a factor of 100% in S/B without cutting into
the signal count in the currently applied selection. All
remarks of the 14 TeV results generalize to the lower en-
ergy of 8 TeV, and again the GF and WBF signals rates
are affected identically by selecting events according to
Q̃b

2,3.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have applied the matrix element
method to pp → (h → γγ)jj production and investi-
gated the prospects to separate the GF and WBF contri-
butions. This is of utmost importance for CP analyses of
the newly discovered particle, as well as for the measure-
ment of its couplings to known matter. The same method

S/B % 100%

We want to study more objects in final state -> 

Transfer function limits us. Do we always need it?

Transfer functions only important if matrix element varies quickly:
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34

Higgs reconstructed, but no transfer function for jets:

compared to ATLAS selection
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After removing transfer function we can improve on precision 
of matrix element
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34

Matrix element method at NLO:

Boost along transverse and 
longitudinal direction such that LO 

final state multiplicity momenta balance

[Campbell, Giele, Williams JHEP 1211 (2012)]

Born phase space, but long. boost not 
unique, need longitud. integration

Calculate

Application to H->4l

(boost easier to identify)

virtual for born topology

real for jet function

sensitivity LO vs NLO improvement ~ 10%
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Remove limitation of final state objects on 
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Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓
0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

p
µ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,

y =
1

2
ln

✓
E + cpL

E � cpL

◆
=

1

2
ln

✓
1 + � cos(✓)

1� � cos(✓)

◆
,

where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1

y = � ln


tan

✓
✓

2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition
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hard scale

hadronization

scale

propagator-lines = Sudakov factors
vertices = Splitting functions

and Sudakov factors allow semiclassical approximation of quantum 
process:

Factorization of emissions in soft/collinear limit 

Can calculate weight for shower history iteratively
Can use smaller objects and more objects (more information)

[Soper, MS PRD 84 (2011)]
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Can improve reconstruction for tops and Higgs

make use of many properties of the top for reconstruction (top 
mass, W mass, EW structure of decay)

However, QCD radiation pattern are left mostly aside.

top QCD QCD
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Radiation off bottom quark down to 
hadronization scale

angular distribution for radiation 
off H/W decay products
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One can be more quantitative...
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pT top 500 GeV, pT gluon 20 GeV

Dead cone region around top

R=1.5

R=0.4

use emission prob. from [Soper, MS PRD 87]
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Signal hypothesis

FIG. 14: Sudakov factor between final state emission of a gluon from a b- or b̄-quarks. The previous
splitting can be either a gluon emission, a g ⇤ b+ b̄ or a ⇤ b+ b̄ splitting or a Higgs boson decay
to b+ b̄.

E. Sudakov exponent for b-quark splitting

The Sudakov factor for a b or b̄ quark splitting is illustrated in Fig. 14. The corresponding
Sudakov exponent is
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(87)

This is nearly the same as the Sudakov exponent for gluon splitting, Eq. (86). The di⇥erence
is that there is only one color connected partner k so there is no sum over the index s that
specifies which color connected partner to choose.

Sometimes there is no color connected parton with label k in the fat jet. Then, as in
Eq. (75) for Sg, we make the replacement ⇥k ⇤ R0.

F. After the last splitting

If in the shower history h, parton J does not split, then we look at its virtuality µ2
J and

include a factor e�Sa , e�Sg , or e�Sb , as illustrated in Fig. 15, that represents the probability
for parton J not to have split at a virtuality above the final virtuality µ2

J .
In principle, we should also include a factor

↵
dH representing the probability that parton

J did finally split at virtuality µ2
J . We do not know the splitting angle ⇥ for this splitting.

We do know that ⇥ was less than Rmicrojet, the radius parameter for the kT -jet algorithm
that we used to define the microjets: if ⇥ were larger than Rmicrojet, the jet algorithm would
not have merged the daughter partons to form the microjet. Thus we would calculate

↵
dH

by integrating the di⇥erential splitting function over the region ⇥ < Rmicrojet.6 We do not, in

6 Here we ignore the fact that we sometimes increase Rmicrojet in order to keep the number of microjets to

no larger than ten.
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FIG. 10: Splitting functions for final state QCD splittings of a b or b̄ quark.

Here there is no restriction on the angles ys,⇤s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

Hno-K =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kskh
�
�
µ2
J < k2

J

⇥
. (48)

B. Splitting probability for b � b+ g and b̄ � b̄+ g

Bottom quarks are created in the decay of a Higgs boson in signal events and by g � b+ b̄
splittings in background events. The bottom quarks can radiate gluons. These splittings
are represented by the splitting probabilities Hbbg and Hb̄gb̄ that are illustrated in Fig. 10.

A gluon emitted from the b quark is on the right of the daughter b quark in our history
diagram. If it is emitted from the b̄ quark, it is to the left of the b̄ quark in the diagram.
We take the splitting probability to be

Hbbg = Hb̄gb̄ =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kbkg

⇥2bk
⇥2gb + ⇥2gk

�(kg < kb)�

⇤
2
µ2
J

kJ
<

µ2
K

kK

⌅
. (49)

This is similar to the splitting probability in Eq. (46). The matrix element squared in
the eikonal approximation is singular when the gluon momentum approaches zero, but not
when the daughter b or b̄ quark momentum approaches zero. Thus we impose the condition
kg < kb, where kb is the transverse momentum of the daughter b or b̄ quark and kg is the
transverse momentum of the daughter gluon. There is an angle factor in which b labels
daughter b or b̄ quark, g labels the emitted gluon, and k labels the color connected partner
of the b or b̄ quark.

C. Splitting probability for g � b+ b̄

We need one more QCD splitting probability, for f � b + b̄ for a high transverse mo-
mentum f = a or f = g parton. We model this as a g � b + b̄ splitting since we treat
f = a partons as being almost always gluons. Now, a g � b + b̄ splitting is rare compared
to g � g + g splittings, so we could simply approximate the probability for a g � b + b̄
splitting by zero. However, g � b + b̄ is the main background for the H � b + b̄ signal, so
we need to keep track of g � b+ b̄ splittings even if they have a small probability.
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FIG. 6: Splitting functions for final state QCD
splittings that are modeled as g ⌅

g +
g
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In this section, we define the main part of the simplified shower, QCD
shower splittings.
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),
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FSR evolution

analogously

Wrapping up all factors gives weight for shower history

Here 
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we will have the best statistical significance for a measurement if we make �C(B) as small as
possible. Thus we seek to choose the cut so as to minimize �C(B) with �C(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant ⇥MC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = ⇥MC({p, t}N)� ⇥0 (8)

for some ⇥0. If we make any small adjustment to this by removing an infinitesimal region
with ⇥MC({p, t}N) > ⇥0 from the cut and adding a region having the same signal cross
section but with ⇥MC({p, t}N) < ⇥0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N) to
define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on ⇥MC to separate signal from background, one could
imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that method
in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N), we would need two things:
the di�erential cross section to find microjets {p, t}N in background events and then the
di�erential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this di�erential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ⇥ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate ⇥MC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate ⇥MC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N) that is an approximation to ⇥MC({p, t}N) such
that we can calculate ⇥({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

⇥({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)
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Chi distribution insensitive to pileup

Shower 
deconstruction 

improves on best 
taggers by factor 

2-4 in S/B

shower 

deconstruction
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Results by CMS

• Shower deconstruction 
best single variable

• Efficiencies matched if 
taggers combined

code available at https://www.ippp.dur.ac.uk/~mspannow/shower-deconstruction.html
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First application of Event Deconstruction

fully hadronic Z’ -> tt

Signal tt dijets

Z ′

q q̄

t̄ t
t̄ t

g g

-

g g

g g

[Soper, MS ’14]
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Efficiency for tagging Z’
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Measuring the Higgs-bottom coupling in VBF
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Table 3: Same as Table 1, with pjT > 80 GeV.

mH 115 GeV 120 GeV 140 GeV

Signal 1.3× 103 1.2× 103 5.2× 102

bb̄jj 2.4× 105 2.3× 105 1.9× 105

jbjbjj 2.6× 103 2.3× 103 1.8× 103

(Z∗/γ∗ → bb̄)jj 1.1× 102 6.6× 101 1.3× 101

(Z → bb̄)resjj 6.2× 102 3.4× 102 0.5× 101

jbj ⊕ jbj 2.9× 102 3.2× 102 4.5× 102

Table 4: Same as Table 3, for configuration (b).

mH 115 GeV 120 GeV 140 GeV

Signal 6.5× 103 6.4× 103 3.1× 103

bb̄jj 2.8× 106 2.2× 106 2.1× 106

jbjbjj 5.6× 104 5.3× 104 5.2× 104

(Z∗/γ∗ → bb̄)jj 3.0× 103 1.9× 103 7.5× 102

(Z → bb̄)resjj 1.1× 104 6.0× 103 5.6× 102

jbj ⊕ jbj 1.1× 104 1.2× 104 1.6× 104

In order to be conservative in the background estimates, we selected as a default for
our study a rather low scale, namely Q2 = ⟨p2T⟩, where the average is taken over all
light and b jets in the event4. In view of the large ŝ values of the elementary processes
involved, due in particular to the large mass threshold for the pair of forward jets, we
believe that our background rates may be overestimated by a factor of at least 2. In spite
of this we prefered the conservative approach, in order to present a worse-case scenario.
The backgrounds are much more sensitive to the scale choice than the signal, due to the
larger power of αs. The background uncertainty will not however be a limitation to the
experimental search, since the background rate should be determined directly from the
data, as we shall discuss.

Tables 1-4 present our results for signal and backgrounds, for the following cases: (i)
pjT > 60 GeV and rapidity configuration (a); (ii) pjT > 60 GeV and rapidity configuration
(b); (iii) pjT > 80 GeV and rapidity configuration (a); (iv) pjT > 80 GeV and rapidity
configuration (b). The numbers correspond to 600 fb−1 of integrated luminosity, namely
the expected value for three years of running of ATLAS and CMS with an instantaneous
luminosity of 1034cm−2sec−1. The numbers relative to final states with mistagged jets

4We also repeated our analyses with Q2 = m2
H , finding comparable results.

6

S/B ~ 1/200

Will render channel due to 
systematic uncertainties 

insensitive



[Englert, Mattelaer, MS ‘15]

Higgs-bottom difficult to measure

• Add new channel to measure this coupling:

Standard cuts are not discriminative enough

However, matrix element and shower still discriminative

Exploit shape

with 600 ifb

 52Seminar                  Zurich      Michael Spannowsky            05.06.2018                  



F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
13

F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)

13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)

13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �
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⇤
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for
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⌅
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is
represented

by
a
function

H
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as

illustrated
in
F
ig. 6.
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the
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H
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condition

is
that

the
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other
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has

not
split

already
at

a
higher

virtuality.

Let
us
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hat

w
e
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H
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for
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g
⌅

g
+
g
splitting.
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parton
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the

label
J
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that
the

daughter
partons
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labelled
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and

B
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here
A
caries

the
3̄
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of
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m
other

and
is
draw

n
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the
left, w
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B
caries

the
3
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of
the
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other

and
is
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the
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T
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form
of
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splitting
probability

depends
on

w
hich

of
the
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partons
is
the
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let

h
be

the
label

of
the
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daughter

parton
and
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be

the
label of

the
softer

daughter
parton:

k
s <

k
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s <
k
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at

the
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in
the

lim
it
k
s ⇤

k
h .
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splitting

probability
is
then

dom
inated

by
graphs

in
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hich

parton
s
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em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
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parton

k.
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s
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form
ed
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the
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form

ed
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and

parton
k
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choice
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k
depends

on
w
hich

of
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o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.
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H
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w
e
start

w
ith

the
dipole

approxim
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for
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atrix
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µ 2s =
µ 2h =
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H
dip
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A �
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2
p
h · p

k

2
p
s · p

h
2
p
s · p
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h
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s �
y
h )�

cos(⇤
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⇤
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y
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s �
⇤
h ) 2
]

=
k
s k
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p
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⇤
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s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the
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let
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e
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of
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harder
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and
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e
the
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of

the
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parton:

k
s
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k
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B
y
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look
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splitting
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probability
is
then
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em
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from
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dip

ole
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of
parton

J
and

som
e
other

parton,
call
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parton

k.
If
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=
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then
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em
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dip

ole
is

form
ed

from
parton

h
=

B
and
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=

k(J
)
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if
s
=

B
,
then
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dip

ole

is
form

ed
from
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=
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and
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=
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of
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dep

ends
on
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of
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daughter
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w
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instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim
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for
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=

µ
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H

d
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e
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=
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s �

y
h )�

cos(⇤
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⇤
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y
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s �
⇤
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of
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let
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of
the

harder
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and

s
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e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
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k
s
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k
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W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
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he

splitting

probability
is
then

dom
inated

by
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in
w
hich
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s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
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=

A
,
then

the
em

itting
dip
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is

form
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from
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h
=
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and
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=
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w
hile

if
s
=

B
,
then
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dip
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form

ed
from

parton
h
=
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=
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of
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dep

ends
on
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of
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w
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p
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=
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s �
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⇤
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s �
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s �
⇤
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Fig.6.W
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neutrino

Hard Interaction Matching between 4-momentum 
of jet and parton not perfect

Need to 
account for!

tth: di-lepton vs semileptonic channel
[Artoisenet et al. PRL 111 (2013)]
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• Analysis with 4 b-jets and std 
reconstruction as input to MEM

• Full integration over invisible 
particles

Projection at 14 TeV

• Using Matrix Element Method di-
lepton channel as or more sensitive 
than single-lepton channel

• However, single-lepton 
channel uses standard input, 
boosted region not captured
[Plehn, Salam, MS PRL 104 (2009)]

[Artoisenet et al. PRL 111 (2013)]
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Maximisation vs Integration

• To speed up the evaluation one can maximise over the phase 
space volume   , rather than integrate

2

parton distribution functions) and W (x, y) is the trans-
fer function which describes the evolution of the final
state parton-level configuration in y into a reconstructed
event x in the detector. The normalization by the total
cross section �↵ in Eq. (1) ensures that P↵(x) is a prob-
ability density,

R
P↵(x)dx = 1, if the transfer function

is normalized to one. As is evident from the definition
in Eq. (1), the calculation of each weight involves a non
trivial multi-dimensional integration of complicated func-
tions over the phase space. Even if the problem of com-
puting the weights for arbitrary models and processes can
be automated, e.g. as implemented in MadWeight [5],
such calculations remain extremely CPU intensive and
are subject to numerical inaccuracies. We instead pro-
pose to replace the convolution of the matrix element
with the transfer function by a maximisation procedure
over the phase-space volume �,

w↵(x) = max
y2�

�
|M↵|2(y)W (x, y)

�
. (2)

In order to use e�ciently the maximization algorithms
over a highly dimensional space, it is important to
parametrize the phase-space in an optimal way. In par-
ticular, the invariant mass of every propagator that can
be on-shell needs to be used as a degree of freedom of the
phase-space, as well as all the angles of visible particles
(due to the high detector resolution on those quantities).
Such parametrization allows to reduce the variance of the
function by smoothing the peak and it helps to find its
maximum more e�ciently. We rely on MadWeight to
find such a parametrization, which provides a large set of
changes of variables that can be combined to reach the
optimal parametrization of the phase-space.

After finding the most likely final state configuration,
given a limited amount of information 1, we construct an
observable �, which classifies each event on whether it
appears more signal- or background-like:

log(�) = log

✓
wSP
i
wBi

◆
. (3)

The significant gain in speed and high performance of
the classifier, allows one to extend it to complex final
states with many objects. The method can be inte-
grated straightforwardly into the EventDeconstruc-
tion approach [16], thereby extending EventDecon-
struction, which was already designed to handle an
arbitrary number of visible final state objects, to final
states with invisible particles.

Thus, even if this letter focuses on a single example,
the method is entirely generic and can be applied to a
large class of analyses. We will release a generic code [25],

1 That is, only the visible final state, which can be plagued by
experimental uncertainties.

which allows to apply the above method e�ciently for any
process and set of transfer functions, hence providing the
same flexibility as MadWeight.

PARTLY INVISIBLE HIGGS BOSON
RECONSTRUCTION

To show how performant the method is in separat-
ing signal from background, we apply it to the promi-
nent partly invisible decay of a Higgs boson into a
muon-antimuon pair and two muon-neutrinos via two
W bosons [26–28]. The pp ! H ! W

+
W

� !
µ

+
⌫µµ

�
⌫̄µ signal and dominant background [29], pp !

W
+
W

� ! µ
+
⌫µµ

�
⌫̄µ, have been simulated using Mad-

Graph5 aMC@NLO 2.5.2 [30, 31] and showered with
Pythia 8.226 [32], thereby allowing for hadronisation ef-
fects and additional initial state radiation. We assume
an integrated luminosity of 30 fb�1 and simulate proton-
proton collisions at

p
s = 13 TeV.

Before we apply the matrix-element-method, we select
candidate events with the following event selection cuts,
which render all but one irreducible background process
insignificant. We select muons with a minimum trans-
verse momentum requirement of pT,µ > 10 GeV and a re-
quirement that the absolute value of the pseudo-rapidity
is |⌘µ| < 2.5, to ensure that the muons are within the
range of the detector’s tracker system. The experimen-
tal resolution on the momenta of the muons are precise
enough for us to assume their experimental uncertainty
to be negligible. Thus, we define W (x, y) of Eq. 2 as
W (x, y) = �

4(pexp

µ+ �p
MC

µ+ )�4(pexp

µ� �p
MC

µ� ). To reduce the
muon mis-identification rate, the sum I of charged par-
ticles within �R(µ, particle) < min(0.3, 10 GeV/p

µ

T
) has

been required to satisfy I/p
µ

T
< 0.06.

Signal Background s/b s/
p
b

Basic event selection cuts 327 11451 0.029 3.058
Assuming perfect Emiss

T reconstruction
Veto �S,B(S,B) = 0 299 3724 0.080 4.912

log(�) > 1 262 2200 0.119 5.592
log(�) > 1.5 118 808 0.146 4.157
Assuming a 10% resulution e↵ect in Emiss

T

Veto wS,B(S,B) = 0 294 3742 0.079 4.806
log(�) > 1 256 2204 0.116 5.455
log(�) > 1.5 114 811 0.141 4.016

TABLE I. Signal-to-background ratio and signal-to-square-
root-of-background ratio after basic selection and the pro-
posed method.

With these basic selection cuts, for
p

s = 13 TeV and
an integrated luminosity of L = 30 fb�1, and no detec-
tor simulation, we obtain a signal-to-background ratio of
S/B ' 0.03 and a statistical sensitivity of S/

p
B ' 3.06,

as shown in Table I.
For the signal pseudo-data generated, we can now use

the method discussed to evaluate the weight for a sig-
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parton distribution functions) and W (x, y) is the trans-
fer function which describes the evolution of the final
state parton-level configuration in y into a reconstructed
event x in the detector. The normalization by the total
cross section �↵ in Eq. (1) ensures that P↵(x) is a prob-
ability density,

R
P↵(x)dx = 1, if the transfer function

is normalized to one. As is evident from the definition
in Eq. (1), the calculation of each weight involves a non
trivial multi-dimensional integration of complicated func-
tions over the phase space. Even if the problem of com-
puting the weights for arbitrary models and processes can
be automated, e.g. as implemented in MadWeight [5],
such calculations remain extremely CPU intensive and
are subject to numerical inaccuracies. We instead pro-
pose to replace the convolution of the matrix element
with the transfer function by a maximisation procedure
over the phase-space volume �,

w↵(x) = max
y2�

�
|M↵|2(y)W (x, y)

�
. (2)

In order to use e�ciently the maximization algorithms
over a highly dimensional space, it is important to
parametrize the phase-space in an optimal way. In par-
ticular, the invariant mass of every propagator that can
be on-shell needs to be used as a degree of freedom of the
phase-space, as well as all the angles of visible particles
(due to the high detector resolution on those quantities).
Such parametrization allows to reduce the variance of the
function by smoothing the peak and it helps to find its
maximum more e�ciently. We rely on MadWeight to
find such a parametrization, which provides a large set of
changes of variables that can be combined to reach the
optimal parametrization of the phase-space.

After finding the most likely final state configuration,
given a limited amount of information 1, we construct an
observable �, which classifies each event on whether it
appears more signal- or background-like:

log(�) = log

✓
wSP
i
wBi

◆
. (3)

The significant gain in speed and high performance of
the classifier, allows one to extend it to complex final
states with many objects. The method can be inte-
grated straightforwardly into the EventDeconstruc-
tion approach [16], thereby extending EventDecon-
struction, which was already designed to handle an
arbitrary number of visible final state objects, to final
states with invisible particles.

Thus, even if this letter focuses on a single example,
the method is entirely generic and can be applied to a
large class of analyses. We will release a generic code [25],

1 That is, only the visible final state, which can be plagued by
experimental uncertainties.

which allows to apply the above method e�ciently for any
process and set of transfer functions, hence providing the
same flexibility as MadWeight.

PARTLY INVISIBLE HIGGS BOSON
RECONSTRUCTION

To show how performant the method is in separat-
ing signal from background, we apply it to the promi-
nent partly invisible decay of a Higgs boson into a
muon-antimuon pair and two muon-neutrinos via two
W bosons [26–28]. The pp ! H ! W

+
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� !
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+
⌫µµ
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⌫̄µ signal and dominant background [29], pp !
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+
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� ! µ
+
⌫µµ
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⌫̄µ, have been simulated using Mad-

Graph5 aMC@NLO 2.5.2 [30, 31] and showered with
Pythia 8.226 [32], thereby allowing for hadronisation ef-
fects and additional initial state radiation. We assume
an integrated luminosity of 30 fb�1 and simulate proton-
proton collisions at

p
s = 13 TeV.

Before we apply the matrix-element-method, we select
candidate events with the following event selection cuts,
which render all but one irreducible background process
insignificant. We select muons with a minimum trans-
verse momentum requirement of pT,µ > 10 GeV and a re-
quirement that the absolute value of the pseudo-rapidity
is |⌘µ| < 2.5, to ensure that the muons are within the
range of the detector’s tracker system. The experimen-
tal resolution on the momenta of the muons are precise
enough for us to assume their experimental uncertainty
to be negligible. Thus, we define W (x, y) of Eq. 2 as
W (x, y) = �

4(pexp

µ+ �p
MC

µ+ )�4(pexp

µ� �p
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µ� ). To reduce the
muon mis-identification rate, the sum I of charged par-
ticles within �R(µ, particle) < min(0.3, 10 GeV/p
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) has

been required to satisfy I/p
µ

T
< 0.06.

Signal Background s/b s/
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Basic event selection cuts 327 11451 0.029 3.058
Assuming perfect Emiss

T reconstruction
Veto �S,B(S,B) = 0 299 3724 0.080 4.912

log(�) > 1 262 2200 0.119 5.592
log(�) > 1.5 118 808 0.146 4.157
Assuming a 10% resulution e↵ect in Emiss
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log(�) > 1.5 114 811 0.141 4.016

TABLE I. Signal-to-background ratio and signal-to-square-
root-of-background ratio after basic selection and the pro-
posed method.

With these basic selection cuts, for
p

s = 13 TeV and
an integrated luminosity of L = 30 fb�1, and no detec-
tor simulation, we obtain a signal-to-background ratio of
S/B ' 0.03 and a statistical sensitivity of S/

p
B ' 3.06,

as shown in Table I.
For the signal pseudo-data generated, we can now use

the method discussed to evaluate the weight for a sig-
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parton distribution functions) and W (x, y) is the trans-
fer function which describes the evolution of the final
state parton-level configuration in y into a reconstructed
event x in the detector. The normalization by the total
cross section �↵ in Eq. (1) ensures that P↵(x) is a prob-
ability density,

R
P↵(x)dx = 1, if the transfer function

is normalized to one. As is evident from the definition
in Eq. (1), the calculation of each weight involves a non
trivial multi-dimensional integration of complicated func-
tions over the phase space. Even if the problem of com-
puting the weights for arbitrary models and processes can
be automated, e.g. as implemented in MadWeight [5],
such calculations remain extremely CPU intensive and
are subject to numerical inaccuracies. We instead pro-
pose to replace the convolution of the matrix element
with the transfer function by a maximisation procedure
over the phase-space volume �,

w↵(x) = max
y2�

�
|M↵|2(y)W (x, y)

�
. (2)

In order to use e�ciently the maximization algorithms
over a highly dimensional space, it is important to
parametrize the phase-space in an optimal way. In par-
ticular, the invariant mass of every propagator that can
be on-shell needs to be used as a degree of freedom of the
phase-space, as well as all the angles of visible particles
(due to the high detector resolution on those quantities).
Such parametrization allows to reduce the variance of the
function by smoothing the peak and it helps to find its
maximum more e�ciently. We rely on MadWeight to
find such a parametrization, which provides a large set of
changes of variables that can be combined to reach the
optimal parametrization of the phase-space.

After finding the most likely final state configuration,
given a limited amount of information 1, we construct an
observable �, which classifies each event on whether it
appears more signal- or background-like:

log(�) = log

✓
wSP
i
wBi

◆
. (3)

The significant gain in speed and high performance of
the classifier, allows one to extend it to complex final
states with many objects. The method can be inte-
grated straightforwardly into the EventDeconstruc-
tion approach [16], thereby extending EventDecon-
struction, which was already designed to handle an
arbitrary number of visible final state objects, to final
states with invisible particles.

Thus, even if this letter focuses on a single example,
the method is entirely generic and can be applied to a
large class of analyses. We will release a generic code [25],

1 That is, only the visible final state, which can be plagued by
experimental uncertainties.

which allows to apply the above method e�ciently for any
process and set of transfer functions, hence providing the
same flexibility as MadWeight.

PARTLY INVISIBLE HIGGS BOSON
RECONSTRUCTION

To show how performant the method is in separat-
ing signal from background, we apply it to the promi-
nent partly invisible decay of a Higgs boson into a
muon-antimuon pair and two muon-neutrinos via two
W bosons [26–28]. The pp ! H ! W

+
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� !
µ

+
⌫µµ
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⌫̄µ signal and dominant background [29], pp !
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+
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+
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⌫̄µ, have been simulated using Mad-

Graph5 aMC@NLO 2.5.2 [30, 31] and showered with
Pythia 8.226 [32], thereby allowing for hadronisation ef-
fects and additional initial state radiation. We assume
an integrated luminosity of 30 fb�1 and simulate proton-
proton collisions at

p
s = 13 TeV.

Before we apply the matrix-element-method, we select
candidate events with the following event selection cuts,
which render all but one irreducible background process
insignificant. We select muons with a minimum trans-
verse momentum requirement of pT,µ > 10 GeV and a re-
quirement that the absolute value of the pseudo-rapidity
is |⌘µ| < 2.5, to ensure that the muons are within the
range of the detector’s tracker system. The experimen-
tal resolution on the momenta of the muons are precise
enough for us to assume their experimental uncertainty
to be negligible. Thus, we define W (x, y) of Eq. 2 as
W (x, y) = �

4(pexp

µ+ �p
MC

µ+ )�4(pexp

µ� �p
MC

µ� ). To reduce the
muon mis-identification rate, the sum I of charged par-
ticles within �R(µ, particle) < min(0.3, 10 GeV/p

µ

T
) has

been required to satisfy I/p
µ

T
< 0.06.

Signal Background s/b s/
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Basic event selection cuts 327 11451 0.029 3.058
Assuming perfect Emiss

T reconstruction
Veto �S,B(S,B) = 0 299 3724 0.080 4.912

log(�) > 1 262 2200 0.119 5.592
log(�) > 1.5 118 808 0.146 4.157
Assuming a 10% resulution e↵ect in Emiss

T

Veto wS,B(S,B) = 0 294 3742 0.079 4.806
log(�) > 1 256 2204 0.116 5.455
log(�) > 1.5 114 811 0.141 4.016

TABLE I. Signal-to-background ratio and signal-to-square-
root-of-background ratio after basic selection and the pro-
posed method.

With these basic selection cuts, for
p

s = 13 TeV and
an integrated luminosity of L = 30 fb�1, and no detec-
tor simulation, we obtain a signal-to-background ratio of
S/B ' 0.03 and a statistical sensitivity of S/

p
B ' 3.06,

as shown in Table I.
For the signal pseudo-data generated, we can now use

the method discussed to evaluate the weight for a sig-
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parton distribution functions) and W (x, y) is the trans-
fer function which describes the evolution of the final
state parton-level configuration in y into a reconstructed
event x in the detector. The normalization by the total
cross section �↵ in Eq. (1) ensures that P↵(x) is a prob-
ability density,

R
P↵(x)dx = 1, if the transfer function

is normalized to one. As is evident from the definition
in Eq. (1), the calculation of each weight involves a non
trivial multi-dimensional integration of complicated func-
tions over the phase space. Even if the problem of com-
puting the weights for arbitrary models and processes can
be automated, e.g. as implemented in MadWeight [5],
such calculations remain extremely CPU intensive and
are subject to numerical inaccuracies. We instead pro-
pose to replace the convolution of the matrix element
with the transfer function by a maximisation procedure
over the phase-space volume �,

w↵(x) = max
y2�
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|M↵|2(y)W (x, y)

�
. (2)

In order to use e�ciently the maximization algorithms
over a highly dimensional space, it is important to
parametrize the phase-space in an optimal way. In par-
ticular, the invariant mass of every propagator that can
be on-shell needs to be used as a degree of freedom of the
phase-space, as well as all the angles of visible particles
(due to the high detector resolution on those quantities).
Such parametrization allows to reduce the variance of the
function by smoothing the peak and it helps to find its
maximum more e�ciently. We rely on MadWeight to
find such a parametrization, which provides a large set of
changes of variables that can be combined to reach the
optimal parametrization of the phase-space.

After finding the most likely final state configuration,
given a limited amount of information 1, we construct an
observable �, which classifies each event on whether it
appears more signal- or background-like:
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. (3)

The significant gain in speed and high performance of
the classifier, allows one to extend it to complex final
states with many objects. The method can be inte-
grated straightforwardly into the EventDeconstruc-
tion approach [16], thereby extending EventDecon-
struction, which was already designed to handle an
arbitrary number of visible final state objects, to final
states with invisible particles.

Thus, even if this letter focuses on a single example,
the method is entirely generic and can be applied to a
large class of analyses. We will release a generic code [25],

1 That is, only the visible final state, which can be plagued by
experimental uncertainties.

which allows to apply the above method e�ciently for any
process and set of transfer functions, hence providing the
same flexibility as MadWeight.

PARTLY INVISIBLE HIGGS BOSON
RECONSTRUCTION

To show how performant the method is in separat-
ing signal from background, we apply it to the promi-
nent partly invisible decay of a Higgs boson into a
muon-antimuon pair and two muon-neutrinos via two
W bosons [26–28]. The pp ! H ! W

+
W

� !
µ

+
⌫µµ

�
⌫̄µ signal and dominant background [29], pp !

W
+
W

� ! µ
+
⌫µµ

�
⌫̄µ, have been simulated using Mad-

Graph5 aMC@NLO 2.5.2 [30, 31] and showered with
Pythia 8.226 [32], thereby allowing for hadronisation ef-
fects and additional initial state radiation. We assume
an integrated luminosity of 30 fb�1 and simulate proton-
proton collisions at

p
s = 13 TeV.

Before we apply the matrix-element-method, we select
candidate events with the following event selection cuts,
which render all but one irreducible background process
insignificant. We select muons with a minimum trans-
verse momentum requirement of pT,µ > 10 GeV and a re-
quirement that the absolute value of the pseudo-rapidity
is |⌘µ| < 2.5, to ensure that the muons are within the
range of the detector’s tracker system. The experimen-
tal resolution on the momenta of the muons are precise
enough for us to assume their experimental uncertainty
to be negligible. Thus, we define W (x, y) of Eq. 2 as
W (x, y) = �

4(pexp

µ+ �p
MC

µ+ )�4(pexp

µ� �p
MC

µ� ). To reduce the
muon mis-identification rate, the sum I of charged par-
ticles within �R(µ, particle) < min(0.3, 10 GeV/p

µ

T
) has

been required to satisfy I/p
µ

T
< 0.06.

Signal Background s/b s/
p
b

Basic event selection cuts 327 11451 0.029 3.058
Assuming perfect Emiss

T reconstruction
Veto �S,B(S,B) = 0 299 3724 0.080 4.912

log(�) > 1 262 2200 0.119 5.592
log(�) > 1.5 118 808 0.146 4.157
Assuming a 10% resulution e↵ect in Emiss

T

Veto wS,B(S,B) = 0 294 3742 0.079 4.806
log(�) > 1 256 2204 0.116 5.455
log(�) > 1.5 114 811 0.141 4.016

TABLE I. Signal-to-background ratio and signal-to-square-
root-of-background ratio after basic selection and the pro-
posed method.

With these basic selection cuts, for
p

s = 13 TeV and
an integrated luminosity of L = 30 fb�1, and no detec-
tor simulation, we obtain a signal-to-background ratio of
S/B ' 0.03 and a statistical sensitivity of S/

p
B ' 3.06,

as shown in Table I.
For the signal pseudo-data generated, we can now use

the method discussed to evaluate the weight for a sig-
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FIG. 1. Kinematic for signal and background processes.

nal event to look like signal wS(S) or to look like back-
ground wB(S). The impact of initial state radiation is
dampened by implementing a boost back technique of the
reconstructed momenta of the lepton as suggested in [6].
The four free parameters defining the phase space � over
which we maximise the matrix elements are ŝ, s13, s24, as
shown in Fig. 1, and the rapidity of the full system yall,
where all includes the two muons and the missing trans-
verse energy. In the example at hand, we can impose
further boundary conditions, i.e.

p
ŝ ' mh,

p
s13 ' mW

and
p

s24 < mW for the signal and 2mW <
p

ŝ < 3mW ,p
s13 ' mW and

p
s24 ' mW for the background2.

Despite limiting the four-dimensional parameter space,
the matrix-element weighted hypersurface is complicated
enough to give rise to multiple minima or to fail to
give a physical solution for the matrix element entirely.
Thus, to find the global minimum we rerun the minimisa-
tion procedure with randomly modified initial conditions
nr = 500 times for signal and background each3.

Thus, we can calculate the weight for the signal and
background hypotheses wS and wB , respectively for sig-
nal and background events. We show all four distribu-
tions in Figs. 2(a) and 2(b). Event kinematics which do
not result in a physical configuration for the signal or
background hypothesis give either wS = 0 or wB = 0.
We do not show such events in Figs. 2(a) and 2(b),
but their fraction can be inferred from Table I. A fairly
large number of background events fail to pass the kine-
matic requirements to look like signal, i.e. resulting in
wS(B) = 0. This behaviour is beneficial for the signif-
icance of the analysis, as such background events have
zero probability to mimic the signal.

After vetoing all events where wS,B(S, B) = 0 we find
S/B = 0.08, S/

p
B ' 4.81 and show the distribution of

weights in Fig. 2(c). While a comparison of the absolute
weights for the signal and background hypothesis does

2 We tested larger windows for
p
ŝ but did not find them to change

the background weights significantly. The asymmetric phase-
space cuts on

p
s13 and

p
s24 are flipped half of the time when

maximizing over the phase space.
3 We have varied nr between 0 and 500 and find for nr > 150 the
change of wS and wB to be insignificant.

(a)

(b)

(c)

FIG. 2. Signal (wS) and background (wB) weight distribu-
tions for signal (red) and background (green) samples respec-
tively.

not allow for a strong separation on an event-by-event
basis (see the distributions on the horizontal and vertical
axes of Fig. 2(c)), taking the ratio

� =
wS

wB

(4)

for each event results in a strong discrimination between
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ŝ (48)

p1 (49)

p2 (50)

p3 (51)

p4 (52)

s13 (53)

s24 (54)

4

FIG. 1. Kinematic for signal and background processes.

nal event to look like signal wS(S) or to look like back-
ground wB(S). The impact of initial state radiation is
dampened by implementing a boost back technique of the
reconstructed momenta of the lepton as suggested in [6].
The four free parameters defining the phase space � over
which we maximise the matrix elements are ŝ, s13, s24, as
shown in Fig. 1, and the rapidity of the full system yall,
where all includes the two muons and the missing trans-
verse energy. In the example at hand, we can impose
further boundary conditions, i.e.

p
ŝ ' mh,

p
s13 ' mW

and
p

s24 < mW for the signal and 2mW <
p

ŝ < 3mW ,p
s13 ' mW and

p
s24 ' mW for the background2.

Despite limiting the four-dimensional parameter space,
the matrix-element weighted hypersurface is complicated
enough to give rise to multiple minima or to fail to
give a physical solution for the matrix element entirely.
Thus, to find the global minimum we rerun the minimisa-
tion procedure with randomly modified initial conditions
nr = 500 times for signal and background each3.

Thus, we can calculate the weight for the signal and
background hypotheses wS and wB , respectively for sig-
nal and background events. We show all four distribu-
tions in Figs. 2(a) and 2(b). Event kinematics which do
not result in a physical configuration for the signal or
background hypothesis give either wS = 0 or wB = 0.
We do not show such events in Figs. 2(a) and 2(b),
but their fraction can be inferred from Table I. A fairly
large number of background events fail to pass the kine-
matic requirements to look like signal, i.e. resulting in
wS(B) = 0. This behaviour is beneficial for the signif-
icance of the analysis, as such background events have
zero probability to mimic the signal.

After vetoing all events where wS,B(S, B) = 0 we find
S/B = 0.08, S/

p
B ' 4.81 and show the distribution of

weights in Fig. 2(c). While a comparison of the absolute
weights for the signal and background hypothesis does

2 We tested larger windows for
p
ŝ but did not find them to change

the background weights significantly. The asymmetric phase-
space cuts on

p
s13 and

p
s24 are flipped half of the time when

maximizing over the phase space.
3 We have varied nr between 0 and 500 and find for nr > 150 the
change of wS and wB to be insignificant.

(a)

(b)

(c)

FIG. 2. Signal (wS) and background (wB) weight distribu-
tions for signal (red) and background (green) samples respec-
tively.

not allow for a strong separation on an event-by-event
basis (see the distributions on the horizontal and vertical
axes of Fig. 2(c)), taking the ratio

� =
wS

wB

(4)

for each event results in a strong discrimination between

Phase space has 4 free parameters
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ŝ (48)

p1 (49)

p2 (50)

p3 (51)

p4 (52)

4

M
l̃

(40)

M1 (41)

M2 (42)

M3 (43)

|µ| (44)

MA (45)

µ = 200 GeV, tan � = 5 (46)

µ = �150 GeV, tan � = 6.5 (47)
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FIG. 1. Kinematic for signal and background processes.

nal event to look like signal wS(S) or to look like back-
ground wB(S). The impact of initial state radiation is
dampened by implementing a boost back technique of the
reconstructed momenta of the lepton as suggested in [6].
The four free parameters defining the phase space � over
which we maximise the matrix elements are ŝ, s13, s24, as
shown in Fig. 1, and the rapidity of the full system yall,
where all includes the two muons and the missing trans-
verse energy. In the example at hand, we can impose
further boundary conditions, i.e.

p
ŝ ' mh,

p
s13 ' mW

and
p

s24 < mW for the signal and 2mW <
p

ŝ < 3mW ,p
s13 ' mW and

p
s24 ' mW for the background2.

Despite limiting the four-dimensional parameter space,
the matrix-element weighted hypersurface is complicated
enough to give rise to multiple minima or to fail to
give a physical solution for the matrix element entirely.
Thus, to find the global minimum we rerun the minimisa-
tion procedure with randomly modified initial conditions
nr = 500 times for signal and background each3.

Thus, we can calculate the weight for the signal and
background hypotheses wS and wB , respectively for sig-
nal and background events. We show all four distribu-
tions in Figs. 2(a) and 2(b). Event kinematics which do
not result in a physical configuration for the signal or
background hypothesis give either wS = 0 or wB = 0.
We do not show such events in Figs. 2(a) and 2(b),
but their fraction can be inferred from Table I. A fairly
large number of background events fail to pass the kine-
matic requirements to look like signal, i.e. resulting in
wS(B) = 0. This behaviour is beneficial for the signif-
icance of the analysis, as such background events have
zero probability to mimic the signal.

After vetoing all events where wS,B(S, B) = 0 we find
S/B = 0.08, S/

p
B ' 4.81 and show the distribution of

weights in Fig. 2(c). While a comparison of the absolute
weights for the signal and background hypothesis does

2 We tested larger windows for
p
ŝ but did not find them to change

the background weights significantly. The asymmetric phase-
space cuts on

p
s13 and

p
s24 are flipped half of the time when

maximizing over the phase space.
3 We have varied nr between 0 and 500 and find for nr > 150 the
change of wS and wB to be insignificant.

(a)

(b)

(c)

FIG. 2. Signal (wS) and background (wB) weight distribu-
tions for signal (red) and background (green) samples respec-
tively.

not allow for a strong separation on an event-by-event
basis (see the distributions on the horizontal and vertical
axes of Fig. 2(c)), taking the ratio

� =
wS

wB

(4)

for each event results in a strong discrimination between

Generic method for multiple source of MEM
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Maximise over phase space 
repeatedly with different starting 
conditions to find global minimum

3

M
l̃

(40)

M1 (41)

M2 (42)

M3 (43)

|µ| (44)

MA (45)

µ = 200 GeV, tan � = 5 (46)

µ = �150 GeV, tan � = 6.5 (47)

ŝ (48)

4

M
l̃

(40)

M1 (41)

M2 (42)

M3 (43)

|µ| (44)

MA (45)

µ = 200 GeV, tan � = 5 (46)

µ = �150 GeV, tan � = 6.5 (47)
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nal event to look like signal wS(S) or to look like back-
ground wB(S). The impact of initial state radiation is
dampened by implementing a boost back technique of the
reconstructed momenta of the lepton as suggested in [6].
The four free parameters defining the phase space � over
which we maximise the matrix elements are ŝ, s13, s24, as
shown in Fig. 1, and the rapidity of the full system yall,
where all includes the two muons and the missing trans-
verse energy. In the example at hand, we can impose
further boundary conditions, i.e.

p
ŝ ' mh,

p
s13 ' mW

and
p

s24 < mW for the signal and 2mW <
p

ŝ < 3mW ,p
s13 ' mW and

p
s24 ' mW for the background2.

Despite limiting the four-dimensional parameter space,
the matrix-element weighted hypersurface is complicated
enough to give rise to multiple minima or to fail to
give a physical solution for the matrix element entirely.
Thus, to find the global minimum we rerun the minimisa-
tion procedure with randomly modified initial conditions
nr = 500 times for signal and background each3.

Thus, we can calculate the weight for the signal and
background hypotheses wS and wB , respectively for sig-
nal and background events. We show all four distribu-
tions in Figs. 2(a) and 2(b). Event kinematics which do
not result in a physical configuration for the signal or
background hypothesis give either wS = 0 or wB = 0.
We do not show such events in Figs. 2(a) and 2(b),
but their fraction can be inferred from Table I. A fairly
large number of background events fail to pass the kine-
matic requirements to look like signal, i.e. resulting in
wS(B) = 0. This behaviour is beneficial for the signif-
icance of the analysis, as such background events have
zero probability to mimic the signal.

After vetoing all events where wS,B(S, B) = 0 we find
S/B = 0.08, S/

p
B ' 4.81 and show the distribution of

weights in Fig. 2(c). While a comparison of the absolute
weights for the signal and background hypothesis does

2 We tested larger windows for
p
ŝ but did not find them to change

the background weights significantly. The asymmetric phase-
space cuts on

p
s13 and

p
s24 are flipped half of the time when

maximizing over the phase space.
3 We have varied nr between 0 and 500 and find for nr > 150 the
change of wS and wB to be insignificant.

(a)

(b)

(c)

FIG. 2. Signal (wS) and background (wB) weight distribu-
tions for signal (red) and background (green) samples respec-
tively.

not allow for a strong separation on an event-by-event
basis (see the distributions on the horizontal and vertical
axes of Fig. 2(c)), taking the ratio

� =
wS

wB

(4)

for each event results in a strong discrimination between

4

signal and background, see Fig. 3. For example, by re-
quiring log(�) � 1 we reject 81% of background while
still accepting 80% of signal, resulting in S/B ' 0.12
and S/

p
B ' 5.59. We show the full ROC curve for a

variable cut on log(�) in Fig. 4.

FIG. 3. Distribution of � for signal (red) and background
(green).

While the momenta of the charged leptons can be mea-
sured very precisely, the total amount of missing trans-
verse energy instead is subject to experimental uncertain-
ties. Such uncertainties can potentially a↵ect the ROC
curve and overall significance negatively. To estimate the
impact of this uncertainty on our method we include a
10% resolution e↵ect by smearing the missing transverse
energy with a gaussian distribution.

Both in the ROC curve and Table I, we show the e↵ect
of the resolution e↵ect on the missing transverse energy
for this method. We find however, that such e↵ect re-
duces s/

p
b only slightly from 5.59 to 5.46.

Instead of a cut and count procedure, one can use the
full shape of the log(�) distribution of Fig. 3 to set a
CLs [33, 34] limits on the Higgs-W coupling. Including
the 10% resolution e↵ect on the missing transverse energy
reconstruction, one can set a 95% CL limit on the Higgs-
W-boson coupling at gH,WW 2 [0.65, 1.25] ⇥ gH,WW,SM .
While a direct comparison is di�cult due to the di↵erent
collider energies, the limit we obtain is already better
than the one from the full combined 7 and 8 TeV data
set for the gluon-fusion Higgs production process with
subsequent decay into W bosons [35].

SUMMARY AND CONCLUSION

We have proposed a matrix-element method, designed
to perform a hypothesis-test in the presence of multiple
invisible particles in the final state. Without integrating
over the phase space the most-likely kinematic configura-
tion is calculated separately for signal and background.
We make full use of the information available on the par-
ticle involved in the process.

FIG. 4. Background mis-identification rate versus signal ef-
ficiency for the proposed method, with (blue) and without
(red) smearing of the missing transverse energy.

We applied this method to separate the process pp !
H ! WW

⇤ ! µ
+
µ
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⌫µ⌫̄µ from the irreducible back-
ground pp ! WW ! µ

+
µ
�

⌫µ⌫̄µ. Using only objects
that are experimentally well under control, i.e. the mo-
menta of the muons, from which we calculate the missing
transverse energy, we are able to set a strong limit on the
Higgs-coupling to W bosons, assuming an integrated lu-
minosity of 30 fb�1 at

p
s = 13 TeV.

Other methods to reconstruct partly invisible final
states have been devised before, e.g. mT2 [9, 36] or
boosted kinematics [37]. However, this matrix element
method is not relying on a specific kinematic structure
for the decays, e.g. the presence of particles with the
same mass, or the number of invisible final state parti-
cles. We will release a generic Monte-Carlo implementa-
tion of this method in a future publication [25], thereby
showing the flexibility and applicability to a wide range
of beyond the Standard Model scenarios.

Acknowledgements:

OM would like to thank Pierre Artoisenet for fruitful discus-

sions and the CERN TH division for its hospitality. OM

was partly supported by the Belgian Pole d’attraction Inter-

Universitaire (PAI P7/37) and by the European Union’s Hori-

zon 2020 research and innovation programme as part of the

Marie Sklodowska-Curie Innovative Training Network MC-

netITN3 (grant agreement no. 722104). DEFL has been

partly supported by the Alexander von Humboldt Foundation.

⇤ dferreir@cern.ch
† olivier.mattelaer@uclouvain.be
‡ michael.spannowsky@durham.ac.uk

[1] A. Abdesselam et al., Boost 2010 Oxford, United King-
dom, June 22-25, 2010, Eur. Phys. J. C71, 1661 (2011),
arXiv:1012.5412 [hep-ph].



�57Seminar                  Zurich      Michael Spannowsky            05.06.2018                  

4

signal and background, see Fig. 3. For example, by re-
quiring log(�) � 1 we reject 81% of background while
still accepting 80% of signal, resulting in S/B ' 0.12
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than the one from the full combined 7 and 8 TeV data
set for the gluon-fusion Higgs production process with
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⌫µ⌫̄µ from the irreducible back-
ground pp ! WW ! µ

+
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⌫µ⌫̄µ. Using only objects
that are experimentally well under control, i.e. the mo-
menta of the muons, from which we calculate the missing
transverse energy, we are able to set a strong limit on the
Higgs-coupling to W bosons, assuming an integrated lu-
minosity of 30 fb�1 at

p
s = 13 TeV.

Other methods to reconstruct partly invisible final
states have been devised before, e.g. mT2 [9, 36] or
boosted kinematics [37]. However, this matrix element
method is not relying on a specific kinematic structure
for the decays, e.g. the presence of particles with the
same mass, or the number of invisible final state parti-
cles. We will release a generic Monte-Carlo implementa-
tion of this method in a future publication [25], thereby
showing the flexibility and applicability to a wide range
of beyond the Standard Model scenarios.

Acknowledgements:

OM would like to thank Pierre Artoisenet for fruitful discus-

sions and the CERN TH division for its hospitality. OM

was partly supported by the Belgian Pole d’attraction Inter-

Universitaire (PAI P7/37) and by the European Union’s Hori-

zon 2020 research and innovation programme as part of the

Marie Sklodowska-Curie Innovative Training Network MC-

netITN3 (grant agreement no. 722104). DEFL has been

partly supported by the Alexander von Humboldt Foundation.

⇤ dferreir@cern.ch
† olivier.mattelaer@uclouvain.be
‡ michael.spannowsky@durham.ac.uk

[1] A. Abdesselam et al., Boost 2010 Oxford, United King-
dom, June 22-25, 2010, Eur. Phys. J. C71, 1661 (2011),
arXiv:1012.5412 [hep-ph].

Strong improvement in 
S/B on top of event 
selection and purification 
cuts on visible objects

2

parton distribution functions) and W (x, y) is the trans-
fer function which describes the evolution of the final
state parton-level configuration in y into a reconstructed
event x in the detector. The normalization by the total
cross section �↵ in Eq. (1) ensures that P↵(x) is a prob-
ability density,

R
P↵(x)dx = 1, if the transfer function

is normalized to one. As is evident from the definition
in Eq. (1), the calculation of each weight involves a non
trivial multi-dimensional integration of complicated func-
tions over the phase space. Even if the problem of com-
puting the weights for arbitrary models and processes can
be automated, e.g. as implemented in MadWeight [5],
such calculations remain extremely CPU intensive and
are subject to numerical inaccuracies. We instead pro-
pose to replace the convolution of the matrix element
with the transfer function by a maximisation procedure
over the phase-space volume �,

w↵(x) = max
y2�

�
|M↵|2(y)W (x, y)

�
. (2)

In order to use e�ciently the maximization algorithms
over a highly dimensional space, it is important to
parametrize the phase-space in an optimal way. In par-
ticular, the invariant mass of every propagator that can
be on-shell needs to be used as a degree of freedom of the
phase-space, as well as all the angles of visible particles
(due to the high detector resolution on those quantities).
Such parametrization allows to reduce the variance of the
function by smoothing the peak and it helps to find its
maximum more e�ciently. We rely on MadWeight to
find such a parametrization, which provides a large set of
changes of variables that can be combined to reach the
optimal parametrization of the phase-space.

After finding the most likely final state configuration,
given a limited amount of information 1, we construct an
observable �, which classifies each event on whether it
appears more signal- or background-like:

log(�) = log

✓
wSP
i
wBi

◆
. (3)

The significant gain in speed and high performance of
the classifier, allows one to extend it to complex final
states with many objects. The method can be inte-
grated straightforwardly into the EventDeconstruc-
tion approach [16], thereby extending EventDecon-
struction, which was already designed to handle an
arbitrary number of visible final state objects, to final
states with invisible particles.

Thus, even if this letter focuses on a single example,
the method is entirely generic and can be applied to a
large class of analyses. We will release a generic code [25],

1 That is, only the visible final state, which can be plagued by
experimental uncertainties.

which allows to apply the above method e�ciently for any
process and set of transfer functions, hence providing the
same flexibility as MadWeight.

PARTLY INVISIBLE HIGGS BOSON
RECONSTRUCTION

To show how performant the method is in separat-
ing signal from background, we apply it to the promi-
nent partly invisible decay of a Higgs boson into a
muon-antimuon pair and two muon-neutrinos via two
W bosons [26–28]. The pp ! H ! W

+
W

� !
µ

+
⌫µµ

�
⌫̄µ signal and dominant background [29], pp !

W
+
W

� ! µ
+
⌫µµ

�
⌫̄µ, have been simulated using Mad-

Graph5 aMC@NLO 2.5.2 [30, 31] and showered with
Pythia 8.226 [32], thereby allowing for hadronisation ef-
fects and additional initial state radiation. We assume
an integrated luminosity of 30 fb�1 and simulate proton-
proton collisions at

p
s = 13 TeV.

Before we apply the matrix-element-method, we select
candidate events with the following event selection cuts,
which render all but one irreducible background process
insignificant. We select muons with a minimum trans-
verse momentum requirement of pT,µ > 10 GeV and a re-
quirement that the absolute value of the pseudo-rapidity
is |⌘µ| < 2.5, to ensure that the muons are within the
range of the detector’s tracker system. The experimen-
tal resolution on the momenta of the muons are precise
enough for us to assume their experimental uncertainty
to be negligible. Thus, we define W (x, y) of Eq. 2 as
W (x, y) = �

4(pexp

µ+ �p
MC

µ+ )�4(pexp

µ� �p
MC

µ� ). To reduce the
muon mis-identification rate, the sum I of charged par-
ticles within �R(µ, particle) < min(0.3, 10 GeV/p

µ

T
) has

been required to satisfy I/p
µ

T
< 0.06.

Signal Background s/b s/
p
b

Basic event selection cuts 327 11451 0.029 3.058
Assuming perfect Emiss

T reconstruction
Veto �S,B(S,B) = 0 299 3724 0.080 4.912

log(�) > 1 262 2200 0.119 5.592
log(�) > 1.5 118 808 0.146 4.157
Assuming a 10% resulution e↵ect in Emiss

T

Veto wS,B(S,B) = 0 294 3742 0.079 4.806
log(�) > 1 256 2204 0.116 5.455
log(�) > 1.5 114 811 0.141 4.016

TABLE I. Signal-to-background ratio and signal-to-square-
root-of-background ratio after basic selection and the pro-
posed method.

With these basic selection cuts, for
p

s = 13 TeV and
an integrated luminosity of L = 30 fb�1, and no detec-
tor simulation, we obtain a signal-to-background ratio of
S/B ' 0.03 and a statistical sensitivity of S/

p
B ' 3.06,

as shown in Table I.
For the signal pseudo-data generated, we can now use

the method discussed to evaluate the weight for a sig-

4

signal and background, see Fig. 3. For example, by re-
quiring log(�) � 1 we reject 81% of background while
still accepting 80% of signal, resulting in S/B ' 0.12
and S/

p
B ' 5.59. We show the full ROC curve for a

variable cut on log(�) in Fig. 4.

FIG. 3. Distribution of � for signal (red) and background
(green).

While the momenta of the charged leptons can be mea-
sured very precisely, the total amount of missing trans-
verse energy instead is subject to experimental uncertain-
ties. Such uncertainties can potentially a↵ect the ROC
curve and overall significance negatively. To estimate the
impact of this uncertainty on our method we include a
10% resolution e↵ect by smearing the missing transverse
energy with a gaussian distribution.

Both in the ROC curve and Table I, we show the e↵ect
of the resolution e↵ect on the missing transverse energy
for this method. We find however, that such e↵ect re-
duces s/

p
b only slightly from 5.59 to 5.46.

Instead of a cut and count procedure, one can use the
full shape of the log(�) distribution of Fig. 3 to set a
CLs [33, 34] limits on the Higgs-W coupling. Including
the 10% resolution e↵ect on the missing transverse energy
reconstruction, one can set a 95% CL limit on the Higgs-
W-boson coupling at gH,WW 2 [0.65, 1.25] ⇥ gH,WW,SM .
While a direct comparison is di�cult due to the di↵erent
collider energies, the limit we obtain is already better
than the one from the full combined 7 and 8 TeV data
set for the gluon-fusion Higgs production process with
subsequent decay into W bosons [35].

SUMMARY AND CONCLUSION

We have proposed a matrix-element method, designed
to perform a hypothesis-test in the presence of multiple
invisible particles in the final state. Without integrating
over the phase space the most-likely kinematic configura-
tion is calculated separately for signal and background.
We make full use of the information available on the par-
ticle involved in the process.

FIG. 4. Background mis-identification rate versus signal ef-
ficiency for the proposed method, with (blue) and without
(red) smearing of the missing transverse energy.

We applied this method to separate the process pp !
H ! WW

⇤ ! µ
+
µ
�

⌫µ⌫̄µ from the irreducible back-
ground pp ! WW ! µ

+
µ
�

⌫µ⌫̄µ. Using only objects
that are experimentally well under control, i.e. the mo-
menta of the muons, from which we calculate the missing
transverse energy, we are able to set a strong limit on the
Higgs-coupling to W bosons, assuming an integrated lu-
minosity of 30 fb�1 at

p
s = 13 TeV.

Other methods to reconstruct partly invisible final
states have been devised before, e.g. mT2 [9, 36] or
boosted kinematics [37]. However, this matrix element
method is not relying on a specific kinematic structure
for the decays, e.g. the presence of particles with the
same mass, or the number of invisible final state parti-
cles. We will release a generic Monte-Carlo implementa-
tion of this method in a future publication [25], thereby
showing the flexibility and applicability to a wide range
of beyond the Standard Model scenarios.
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J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
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if
s
=

B
,
then
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em
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dip

ole
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form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
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2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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H
g
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F
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6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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• My personal view:

• Matrix Element Method is active field of research

• Current interest in machine-learning is not taking matrix element 
methods out of the picture! MEM can help to check MVAs
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• MEM can be discovery tool Cure from Big Mac Blues
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W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
13

F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
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function
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as
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probabilities.
H
ere

the
condition

is
that

the
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other

parton
has

not
split

already
at

a
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et

us
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hat
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for
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⌅
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J
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supp
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that
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daughter

partons
are

lab
elled
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and

B
,
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the
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other
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the
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w
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the
3
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the
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other

and
is
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the
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T
he

form
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the
splitting

probability
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on
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hich

of
the

tw
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daughter
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is
the
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let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the
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el
of

the
softer
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parton:

k
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h.
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k
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the
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in
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it
k
s⇤

k
h.
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is
then
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inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent
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ith

µ
2s
=
µ

2h
=
0),

H
d
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ole⇥

C
A
�
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2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
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(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
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k
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g
+
g
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vertex

for
a
Q
C
D
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g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
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the
conditional splitting
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H
ere
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is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
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B
y
definition, k

s <
k
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W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
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T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
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T
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choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation
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instead

of
sim

ply
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For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
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2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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+
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for
a
Q
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D
splitting

g
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g
+
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is
represented

by
a
function

H
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as

illustrated
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F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
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2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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+
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for
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is
represented

by
a
function

H
ggg

as
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F
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W
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the
conditional splitting

probabilities.
H
ere
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is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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and
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and
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itting
dipole
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hile
if
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B
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itting
dipole
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and
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on
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the
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0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �
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s �
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the
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of
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S
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p
ro
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a
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ility

fo
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g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
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g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
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hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,
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in
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that
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of
the
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form
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the
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on
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hich

of
the
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let

h
b
e
the

lab
el

of
the

harder
daughter
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and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
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B
y
definition,

k
s
<

k
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W
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first

look
at

the
splitting

in
the

lim
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k
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k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
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=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
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start

w
ith
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dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
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s

2
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p
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k
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p
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2
p
s · p

k
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W
e
use
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p
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h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2
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(⇤

s �
⇤
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=
k
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2sh
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2
p
s · p

k ⇥
k
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for
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+
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is
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by
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is
that
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and
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and
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dep
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on
w
hich

of
the
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let
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e
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of
the

harder
daughter
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and
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the

lab
el
of

the
softer

daughter
parton:

k
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<

k
h .
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y
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<

k
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first

look
at

the
splitting

in
the

lim
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k
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k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then
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em

itting
dip

ole

is
form

ed
from

parton
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=
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and

parton
k
=

k(J
)
R .
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of
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dep

ends
on
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hich

of

the
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daughter

partons
is
parton
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so

w
here

needed
w
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the

notation
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instead
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sim
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F
or

H
,
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w
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ole
approxim

ation
for
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squared
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atrix

elem
ent
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ith

µ
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=

µ
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H

d
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C
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p
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W
e
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p
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=

2k
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h [cosh(y
s �

y
h )�

cos(⇤
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⇤
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s �
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s �
⇤
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of
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let
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of
the

harder
daughter
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and
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el
of

the
softer

daughter
parton:

k
s
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k
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y
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k
s
<

k
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W
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first

look
at

the
splitting

in
the
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k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip
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is

form
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from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then
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ole
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form
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parton
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=
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=

k(J
)
R .

T
he

choice
of

k
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on
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hich

of
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daughter
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parton
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w
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k(s)
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of
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F
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H
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w
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dip
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ation
for
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squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
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ole ⇥

C
A �
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2
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p
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k
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h
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p
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k
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W
e
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2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�
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s �

⇤
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⇥
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s �

y
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s �
⇤
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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µ
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=
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C
A
�
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2
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p
s·p

k
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(30)

W
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u
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2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
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sk

h[(y
s�

y
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2+
(⇤

s�
⇤
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2]
=

k
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h
⇥
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2
p
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k
⇥

k
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k
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h
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⇥
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k

,
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• Matrix Element Method is active field of research

• Current interest in machine-learning is not taking matrix element 
methods out of the picture! MEM can help to check MVAs

• MEM can be discovery tool Cure from Big Mac Blues



F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
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ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
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s
=
B
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then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
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.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
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2
p
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h
=
2k

sk
h[cosh(y

s�
y
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cos(⇤
s�

⇤
h)]

⇥
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⇤
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k
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=
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cos(⇤
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has
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already
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and
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are
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of
the

m
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draw
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color
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the
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form
of
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hich
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of
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be
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k
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first

look
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the
splitting

in
the

lim
it
k
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k
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he

splitting

probability
is
then

dom
inated
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graphs

in
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hich
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itted
from
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dipole

consisting

of
parton

J
and

som
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other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
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parton
k
=
k(J
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L , w
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if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J
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T
he

choice
of
k
depends

on
w
hich

of
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tw
o
daughter

partons
is
parton

s, so
w
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needed
w
e
w
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notation

k(s)
instead

of
sim

ply
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For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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2
p
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W
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p
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y
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⇤
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is
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by
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as
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⌅
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the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
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on
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the
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of
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the
em

itting
dipole
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depends

on
w
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daughter

partons
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parton

s, so
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needed
w
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ill use
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notation
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⇤
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⇤
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and
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If
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A
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from
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=
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if
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=
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w
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⇤
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⇤
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of
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ro
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ility

fo
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.
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the
conditional splitting
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condition

is
that

the
m
other

parton
has

not
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at
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hat
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for
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and
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supp
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that

the
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partons
are

lab
elled

A
and

B
,
w
here

A
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the
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color

of
the

m
other

and
is
draw
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on
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w
hile
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caries

the
3
color

of
the

m
other

and
is
draw
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on
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right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=
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and
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k
=

k(J
)
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he
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of
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dep

ends
on
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hich

of

the
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daughter

partons
is
parton

s,
so
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here

needed
w
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w
ill
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the

notation
k(s)

instead
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sim
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F
or

H
,
w
e
start
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dip

ole
approxim

ation
for

the
squared
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atrix

elem
ent
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ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �
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2
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2
p
s · p

k
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(30)
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e
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=
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s �

y
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⇤
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y
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s �
⇤
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,
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+
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T
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for
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+
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is
represented

by
a
function
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as

illustrated
in
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the
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is
that

the
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other

parton
has

not
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at

a
higher
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for
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and
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that
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are
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A
and

B
,
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here
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the
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of
the
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other

and
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on
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hile
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the
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of
the
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other

and
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form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
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partons
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the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
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h
=

B
and
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k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
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dip

ole
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form

ed
from

parton
h
=
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and
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=
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of

k
dep

ends
on
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hich

of
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partons
is
parton
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needed
w
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ill
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notation
k(s)

instead
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dip
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µ
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p
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s �
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⇤
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s �
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s �
⇤
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• My personal view:

Summary
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• Matrix Element Method is active field of research

• Current interest in machine-learning is not taking matrix element 
methods out of the picture! MEM can help to check MVAs

• MEM can be discovery tool Cure from Big Mac Blues
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