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Outline

Talk based upon
PN, arXiv:1712.02796;
Ferrario Ravasio,Ježo,Oleari,PN,arXiv:1801.03944.
I General issues on the top mass measurement at hadron

colliders;
I Top, precision physics, vacuum stability
I Current measurements
I Issues on the theoretical interpretation of the results
I A discussion focussing upon the Pole Mass Renormalon

problem.

I Addressing the problem with NLO+PS Monte Carlos
I Available NLO+PS Monte Carlos
I Comparison within the same shower model (Pythia8)
I Comparison using Herwig7.

I Conclusions
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Top and precision physics

From PDG:

∆Gµ/Gµ = 5 · 10−7; ∆MZ/MZ = 2 · 10−5;

∆α(MZ )/α(MZ ) =

{
1 · 10−4(Davier et al.; PDG)
3.3 · 10−4(Burkhardt, Pietrzyk)

Now that MH is known, tight constraint on MW -mt ,
(depending on how aggressive is the error on α(MZ )).

But: precision on MW is more important now ...
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Top and vacuum stability

Degrassi et al. 2012
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With current value of Mt and MH the vacuum is metastable.
No indication of new physics up to the Plank scale from this.
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Top and vacuum stability

Degrassi et al. 2012
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Mt = 173.1 ± 0.6 GeV HgrayL
Α3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.3 GeV

ΑsHMZL = 0.1163

ΑsHMZL = 0.1205

Mt = 174.9 GeV

The quartic coupling λH becomes tiny at very high field values,
and may turn negative, leading to vacuum instability.
Mt as low as 171 GeV leads to λH → 0 at the Plank scale.
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Top Mass Measurements

 [GeV]topm
165 170 175 180 185

ATLAS+CMS Preliminary  = 7-13 TeVs summary, topm
LHCtopWG

shown below the line
(*) Superseded by results

September 2017

World Comb. Mar 2014, [7]
stat
total uncertainty

total  stat

 syst)± total (stat ± topm        Ref.s

ATLAS, l+jets (*) 7 TeV  [1] 1.35)± 1.55 (0.75 ±172.31 
ATLAS, dilepton (*) 7 TeV  [2] 1.50)± 1.63 (0.64 ±173.09 

CMS, l+jets 7 TeV  [3] 0.97)± 1.06 (0.43 ±173.49 

CMS, dilepton 7 TeV  [4] 1.46)± 1.52 (0.43 ±172.50 

CMS, all jets 7 TeV  [5] 1.23)± 1.41 (0.69 ±173.49 
LHCtop WGLHC comb. (Sep 2013) 7 TeV  [6] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [7] 0.67)± 0.76 (0.36 ±173.34 
ATLAS, l+jets 7 TeV  [8] 1.02)± 1.27 (0.75 ±172.33 

ATLAS, dilepton 7 TeV  [8] 1.30)± 1.41 (0.54 ±173.79 

ATLAS, all jets 7 TeV  [9] 1.2)± 1.8 (1.4 ±175.1 

ATLAS, single top 8 TeV  [10] 2.0)± 2.1 (0.7 ±172.2 

ATLAS, dilepton 8 TeV  [11] 0.74)± 0.85 (0.41 ±172.99 

ATLAS, all jets 8 TeV  [12] 1.01)± 1.15 (0.55 ±173.72 

ATLAS, l+jets 8 TeV  [13] 0.82)± 0.91 (0.38 ±172.08 
)

l+jets, dil.
Sep 2017(ATLAS comb.  7+8 TeV  [13] 0.42)± 0.50 (0.27 ±172.51 

CMS, l+jets 8 TeV  [14] 0.48)± 0.51 (0.16 ±172.35 

CMS, dilepton 8 TeV  [14] 1.22)± 1.23 (0.19 ±172.82 

CMS, all jets 8 TeV  [14] 0.59)± 0.64 (0.25 ±172.32 

CMS, single top 8 TeV  [15] 0.95)± 1.22 (0.77 ±172.95 

CMS comb. (Sep 2015) 7+8 TeV  [14] 0.47)± 0.48 (0.13 ±172.44 

CMS, l+jets 13 TeV  [16] 0.62)± 0.63 (0.08 ±172.25 
[1] ATLAS-CONF-2013-046
[2] ATLAS-CONF-2013-077
[3] JHEP 12 (2012) 105
[4] Eur.Phys.J.C72 (2012) 2202
[5] Eur.Phys.J.C74 (2014) 2758
[6] ATLAS-CONF-2013-102

[7] arXiv:1403.4427
[8] Eur.Phys.J.C75 (2015) 330
[9] Eur.Phys.J.C75 (2015) 158
[10] ATLAS-CONF-2014-055
[11] Phys.Lett.B761 (2016) 350
[12] arXiv:1702.07546

[13] ATLAS-CONF-2017-071
[14] Phys.Rev.D93 (2016) 072004
[15] EPJC 77 (2017) 354
[16] CMS-PAS-TOP-17-007

DIRECT
MEASUREMENTS

(roughly, from the
mass of the system
of decay products).
The most precise
method as of now.

Add: CMS 13 TeV, 172.25±0.08 (stat+JSF) ±0.62 (syst) GeV
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Theory issues

I The measurement is performed by reconstructing a top mass
peak out of a reconstructed W and a b-jet.

I The reconstructed mass is only loosely related to the top mass
(i.e. it cannot be identified with the top mass, for obvious
reasons, since it is a colourless system).

I The extracted mass is the mass parameter in the Monte Carlo
that yields the best fit to the reconstructed mass distribution.

So:

� in which renormalization scheme is the MC mass parameter?
Pole mass? MS mass?

� It has been argued that since MC are Leading-Order, they
can’t distinguish between Pole and MS mass
(the difference is around 10 GeV ...).
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Selected Th. results relevant to top mass measurements

I Narrow width tt̄ production and decay at NLO,
Bernreuther,Brandenbourg,Si,Uwer 2004, Melnikov,Schulze 2009.

I lνlνbb̄ final states with massive b, Frederix, 2013,
Cascioli,Kallweit,Maierhöfer,Pozzorini, 2013.

I NNLO differential top decay, Brucherseifer,Caola,Melnikof 2013.

I NLO+PS in production and decay, Campbell,Ellis,Re,PN

I NNLO production, Czakon,Heymes,Mitov,2015.

I lνlνbb̄ + jet Bevilacqua,Hartanto,Kraus,Worek 2016.

I Approx. NNLO in production and exact NNLO in decay for tt̄.
Gao,Papanastasiou 2017.

I Resonance aware formalism for NLO+PS: Ježo,PN 2015;

I Off shell + interference effects+PS, Single top,
Frederix,Frixione,Papanastasiou,Prestel,Torielli, 2016

I Off shell + interference effects+PS, lνlνbb̄,
Jeo,Lindert,Oleari,Pozzorini,PN, 2016.
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Alternative mass-sensitive observables

I Butenschoen,Dehnadi,Hoang,Mateu,Preisser,Stewart,2016 Use
boosted top jet mass + SCET.

I Agashe,Franceschini,Kim,Schulze,2016: peak of b-jet energy
insensitive to production dynamics.

I Kawabata,Shimizu,Sumino,Yokoya,2014: shape of lepton
spectrum. Insensitive to production dynamics and claimed to
have reduced sensitivity to strong interaction effects.

I Frixione, Mitov: Selected lepton observables.

I Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos ,2013;
Bayu etal: Mt from tt̄j kinematics.

I tt̄ threshold in γγ spectrum (needs very high luminosity),
Kawabata,Yokoya,2015
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From total cross section and tt̄j kinematics
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 [GeV]tm
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 GeV-4.70 +5.20167.50 
), 1.96 TeVt(tσD0 

PLB 703 (2011) 422
MSTW08 approx. NNLO

 GeV-3.20 +3.40172.80 ), 1.96 TeVt(tσD0 
PRD 94, 092004 (2016)
MSTW08 NNLO

 GeV-2.50 +2.50169.10 )/dx, 1.96 TeVt(tσD0 d
D0 Note 6473-CONF (2016)
MSTW08 NNLO

 GeV-2.60 +2.50172.90 ), 7+8 TeVt(tσATLAS 
EPJC 74 (2014) 3109

 GeV-2.11 +2.28173.70 +j shape, 7 TeVtATLAS t
JHEP 10 (2015) 121

 GeV-1.80 +1.70173.80 ), 7+8 TeVt(tσCMS 
JHEP 08 (2016) 029
NNPDF3.0

 GeV-2.70 +2.70170.60 ) 13 TeVt(tσCMS 
arXiv:1701.06228 (2017)
CT14

 GeV-3.66 +4.52169.90 +j shape, 8 TeVtCMS t
TOP-13-006 (2016)

 GeV-0.76 +0.76173.34 
World combination
ATLAS, CDF, CMS, D0
arXiv:1403.4427, standard measurements

July 2017Top-quark pole mass measurements

It is claimed that since higher order cal-
culations (NNLO for total cross sec-
tion, NLO for tt̄j shape variables) are
used in this determination, one is enti-
tle to specify the scheme used for the
mass.

In the figure they are quoted as “pole
mass measurement”.
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I The “pole mass” attribute is not given to direct measurement.

I In some experimental papers and talk, direct measurements
are reported as “Monte Carlo Mass” measurements, often
stating that they need some theoretical interpretation.

I “Monte Carlo Mass” measurements are often interpreted as
pole mass measurements by theorists. See for example

I Degrassi etal, 2012 on the EW vacuum stability, adding a
further 250 MeV error to direct measurements.

I Ciuchini etal, 2017 in Global EW fits, adding a further 500
MeV error to direct measurements.

I Theorist have done work in proposing alternative methods to
avoid the issues on direct measurements; however, the
alternative methods are generally inferior in precision.
Illuminating theoretical progress that saves the direct
measurements is not in sight.
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High-school quiz on top mass measurement

Tick the correct statements:

� Direct top mass measurements measure the Pole Mass.

� Direct top mass measurements measure the Monte Carlo Mass.

� Direct top mass measurements measure the Monte Carlo Mass. but you
can pretend that it is the pole mass, just inflate the error a bit.

� The top is the only SM particle with more than one mass.

� You should use only leptons to avoid hadronization uncertainty.

� You should use at least NLO calculations to measure the pole mass.

� The top pole mass has renormalons, you should stay away from it.

• The MC mass differs from the pole mass by
� terms of order mαS ; � terms of order ΛQCD; � terms of order αSΓt .

• The Pole Mass renormalon ambiguity is
� ≈ 1GeV; � ≈ 250 MeV; � ≈ 200 MeV; � ≈ 110 MeV.
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The Pole Mass Renormalon perspective

Thinking in terms of the Pole Mass renormalon can serve as a
guideline for sorting out the mass measurement problem.
Correction to the Pole Mass:

δm = N
∫ m

0
dk αS(k2) + UV divergent terms. (1)

(Linear sensitivity to the momentum scale flowing in the graph.)

The integration region k ≈ Λ is uncertain, leading to an ambiguity
of order Λ in the mass correction.
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The Pole Mass Renormalon perspective

The uncertainty can be associated to the factorial growth of the
perturbative expansion:∫ m

0
dk αS(k2) =

∫ m

0
dk

αS(m2)

1 + b0αS(m2) log k2

m2

= αS(m2)
∞∑
n=0

(2b0αS(m2))n
∫ m

0
dk logn

m

k︸ ︷︷ ︸
n!

.

Asymptotic expansion.

I Minimal term at nmin ≈ 1
2b0αS (m2)

.

I Size of minimal term: αS(m2)
√

2πnmine
1

nmin ≈ ΛQCD.

I Typical scale dominating at order αn+1
S : m exp(−n).
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The Pole Mass Renormalon perspective

The mass divergence needs a UV counterterm.
I MS: only subtract high-scale effects.

I The mass of initial or final state (on-shell) top quarks is shifted
at each order in perturbation theory

I The factorial growth appears in the self energy as it
approaches the mass shell.

I If the top width is accounted for, the top dominant
off-shellness is Γ, and the factorial growth is visible up to the
order n ≈ log(m/Γ), and should disappears for larger orders.

I Pole Mass Scheme: subtract everthing, leading to no mass
correction when on-shell.

I The factorial growth appears in radiative corrections, since
they involve off-shell top quarks

I In processes with dominant off-shellness Γ the factorial growth
is determined solely by the mass counterterm.
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The Pole Mass Renormalon perspective

Should we use the Pole Mass
scheme in all circumstances when
we have on-shell tops in the final
state?

Inclusive cross sections: they can be written as∫ Q

0
dk2G (k2)Im

[
1

k2 −m2 + iε

(
Σ(k2 + iε)−mct

) 1

k2 −m2 + iε

]
The imaginary part can be written
as half a contour integral, that can
be moved away from the pole.
So: MS is more appropriate.
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Reminder

The relation of the pole mass mp to the MS mass m is
(Marquard,A.V.Smirnov,V.A.Smirnov,Steinhauser, 2015)

mp = m(1 + 0.4244αs + 0.8345α2
s + 2.375α3

s + (8.49± 0.25)α4
s )

The renormalon asymptotic formula (Beneke,Braun+Beneke,1994)

rn → N mt(2b0)nΓ(n + 1 + b)

(
1 +

∞∑
k=1

s
k

nk

)
, b =

b1

b2
0

,

yields a good fit to the exact result, so that higher order terms can
be estimated, yielding a very accurate conversion formula, with
typical size

mp = m + 7.557︸ ︷︷ ︸
NLO

+ 1.617︸ ︷︷ ︸
N2LO

+ 0.501︸ ︷︷ ︸
N3LO

+ 0.195︸ ︷︷ ︸
N4LO

+ 0.300︸ ︷︷ ︸
N5,6,..LO

GeV

(Pineda etal, 2001,2014 for bottom;
Beneke,Marquard,Steinhause,PN, 2016 and

Hoang,Lepenik,Preisser, 2017 for top)
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Mass renormalon

The asymptotic nature of the relation between the MS and the
pole mass leads to an irreducible ambiguity of the order of typical
hadronic scales.

Some authors have quoted an ambiguity of 1 GeV.

Recent calculations give much smaller results:

I Beneke, Marquard, Steinhauser, PN 2016: 110 MeV.

I Hoang, Lepenik, Preisser, 26 Jun 2017: 250 MeV.

I Pineda etal, 2001,2013,2014 190,200 MeV.
(in a bottom context, but valid also for top.)

Safely below currently quoted errors.
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Caveat

In calculations involving off-shell top quarks, as in the Vacuum
Stability calculations, or in electroweak fits, it is more appropriate
to use the MS mass scheme. If the pole mass is used, we expect
higher order corrections (arising from the mass counterterm) with
factorially growing coefficients.

When converting the Pole to the MS mass or viceversa, it is safe to
include the missing higher order terms, fitted from the renormalon
formula, rather than truncate it to the known fourth order terms.
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The appropriate mass scheme

I Mass from the total cross section: the MS mass should be
more appropriate. At the NNLO level, using the Pole mass
should amount to a difference of about 1 GEV, well below
present errors.
Should the error decrease, one should also worry about the
fact that the cross section is measured in a fiducial region (i.e.
not fully inclusive) ...

I Mass from tt̄j kinematic distributions: no particular reason to
pick either scheme, not fully inclusive.

I Mass measurements from decay products (insensitive to
production dynamics): Pole Mass measurements.
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Mass from decay products

If we DO NOT use the pole mass, the term in the round bracket
differs from zero near the mass peak. This leads to an NLO
correction of the form

1 + δm
∂

∂m
(2)

to be applied to the amplitude, i.e. a shift in mass.

Thus, even when using LO Monte Carlo, we better think of it as
using the pole mass, as far as measurements of the mass of the
decay products are concerned.
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Intermediate mass schemes

In processes dominated by a top off-shellness mt � δk � ΛQCD it
makes sense to use intermediate mass schemes, such that the mass
counterterm il close to the Pole Scheme for orders n ≈ log(mt/δk),
but such that the factorial growth stops at higher orders.

I Schemes of this sort are used in calculations of e+e− → tt̄
production near threshold like the PS mass (Beneke 98) and
the 1S mass (Hoang,Ligeti,Manohar 98).

I Since the top has a width Γ� ΛQCD, that screens infrared
effects in self-energy insertions, using one such scheme may
become appropriate even for direct measurements (if it ever
became possible to reach accuracy below the pole mass
renormalon uncertainty)
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Top and precision physics

Rather than e+e− → tt̄ at threshold, we may also look at the γγ
spectrum at LHC Kawabata,Yokoya, 2016. It is unclear whether
this can be done even at the High Luminosity LHC ...
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It avoids theoretical problems present in direct measurements.
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A weaker objection to direct measurements

In Hoang,Stewart, 2008 it is stated that “It is not the pole mass
that is measured at the Tevatron”.

In a sequel of papers they have advocated the use of boosted top
jet, claiming that for these observables the non-perturbative effects
can be reliably modeled.

It is clear that for this method to be useful one should show that a
mass measurement using boosted top jets can achieve the GeV
precision (at the moment, the error is near 10 GeV).
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A weaker objection to direct measurements

I In order to avoid the renormalon problem, they make use of
an intermediate mass scheme (the MSR mass) evaluated at a
scale near the top width.

I They extract a relation between this MSR mass and the mass
parameter in the Monte Carlo by comparing their SCET
calculations to Shower MC output (always in the context of
highly boosted top quarks).

I When translated into the Pole Mass language, the difference
they find with respect to the Monte Carlo mass parameter is
few hundred MeV.

� This “definition” of Monte Carlo mass is clearly process
dependent.
� It leads to shifts of the order of typical hadronic scales. We

might as well say that direct measurements do measure the
pole mass, with a non-perturbative error that needs to be
quantified.
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Calibration of the “Monte Carlo mass”

Butenschoen,Dehnadi,Hoang,Mateu,
Preisser,Stewart 2016
Esimating mpole

t from mMSR
t (R)

requires resumming the asymptotic
series. But the difference is positive,
going in the opposite direction with
respect to the calibration plot.
Hard to argue for large differences.

In all cases, this is for boosted top.
No reason to believe that it should
apply to direct measurements
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Calibration of the “Monte Carlo mass”

On Calibration: see also Kieseler,Lipka,Moch 2015.
Deals with eventual perturbatuive inaccuracy of the MC (unlike
Hoang’s paper), and addresses cross sections and distributions that
can be computed at NLO or NNLO (i.e. does not consider direct
measurements.)
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Two open issues

I Strictly theoretical issue: How to understand the uncertainties
of order Λ on the top mass from a theoretical viewpoint.
Must rely upon simplified theoretical models, or simpler
kinematic regions.

I More practical issue: How to use Monte Carlo generators to
estimate order Λ uncertainties.
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Issue #1

I Linear power suppressed corrections: δm = m × Λ
m .

I They can be associated to IR renormalon with linear IR
sensitivity:

∫
dk αS(k2).

I Those associated to the mass renormalon can yield systematic
shifts of the mass value for processes dominated by off-shell
tops?

I How about renormalons associated with jets?

For example, Hoang and collaborators have looked at boosted tops
in e+e− annihilation, where renormalons associated with jets
should be the same as for standard jets.
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Issue #2

Can we use Monte Carlo generators to assess (linear)
power-suppressed corrections? (usually the method of choice in
collider physics). What shall we require?
I The Monte Carlo should implement the correct perturbative

physics, as accurately as possible, and model non-perturbative
physics in a coherent way.

I The errors associated to power-suppressed effects should be
determined by varying parameters, hadronization models, or
even Monte Carlo implementations.

I One should impose the following restriction: the range of
parameters variations, the hadronization models, and in
general the Monte Carlo should give a good description of
relevant data.

If, on one side, it is difficult to accept the result of this procedure
as an upper bound on the error, it can certainly provide a lower
bound, i.e. it can give an indication of the level of accuracy that
we may conceivably aim to.
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Modeling perturbative physics as accurately as possible

I MC@NLO Frixione,Webber,PN and POWHEG-hvq
Frixione,Ridolfi,PN. Include NLO radiation in production.
hvq: User-Processes-V2/hvq

I The above with Shower Monte Carlo that do MEC corrections
to top decay (Pythia8, Herwig7).

I tt̄ dec Campbell,Ellis,Re,PN. Includes exact spin correlations
and NLO corrections in decay in NWA.
User-Processes-V2/ttb NLO dec

I bb̄4l Ježo,Lindert,Oleari,Pozzorini,PN 2016 Includes exact
NLO matrix element for pp → l ν̄l ¯̀ν`bb̄, thus finite width
effects and interference between radiation in production and
decay is included (Ježo,PN, 2015).
User-Processes-RES/b bbar 4l
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Experimental collaborations use typically the POWHEG-hvq
generator interfaced to Pythia8 for the shower.

Comparing with the two more accurate generators, i.e. tt̄ dec and
bb̄4l, we can understand whether

I modeling of radiation from the b-jet is adequate (comparing
hvq and tt̄ dec).

I interference effects in radiation from production and decay
play a relevant role (comparing bb̄4l and tt̄ dec).
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A study with generators of increasing accuracy

(Ferrario-Ravasio,Ježo,Oleari,PN, arXiv:1801.03944)

I We focus upon the pp → l ν̄l ¯̀ν`bb̄ process. Can be studied with the
hvq, tt̄ dec, and bb̄4l generators.

I We make the simplifying assumption that the W can be fully
reconstructed.

I We consider the top mass determination from mass distribution of
the system comprising the W and a (charge matched) b jet.
(we also considered the b-jet energy spetrum, and the leptonic
observables proposed by Frixione and Mitov.)

I We studied the effect of scale variation, PDF and αs sensitivity, and
the differences between the Pythia8 and Herwig7 shower interface,
as a first rough estimate of non-perturbative errors.
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General approach

Assuming we have an observable O sensitive to the top mass, we
will have in general

O = Oc + B(mt −mt,c) +O((mt −mt,c)2)

where mt,c = 172.5 GeV is our central value for the top mass.
Oc and B differ for different generator setup. Given an
experimental result for O, the extracted mass value is

mt = mt,c + (Oexp − Oc)/B

By changing the generator setup Oc,B → O ′c,B
′:

mt −m′t = −Oc − O ′c
B

− (Oexp−O ′c)(B −B ′)/(BB ′) ≈ −Oc − O ′c
B

.
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General approach

Thus:

I Compute the B coefficient using a single setup for the
generator.

I Compute the Oc coefficient (i.e. the value of the observable
for mt = mt,c) for all different setup we want to explore.

I Extract the difference in the extracted mt between different
setups, according to the equation

∆mt = −∆Oc

B
.
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mW−bj

W − bj is defined in the following way:

I Jets are defined using the anti-kT algorithm with R = 0.5.
The b/b̄ jet is defined as the jet containing the hardest b/b̄.

I W± is defined as the hardest l± paired with the hardest
matching neutrino.

I The W − bj system is obtained by matching a W+/− with a
b/b̄ jet (i.e. we assume we know the sign of the b).

A difference δmrec in the reconstructed mass peak between two
generators with the same mt parameter will lead to a
δmt = −δmrec in the mass extracted by fitting a given data set
(i.e. B ≈ 1)
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Impact of finite width

Both bb̄4l and tt̄ dec include NLO radiation in decay.
bb̄4l also includes finite width, non-resonant effects, interference
of radiation in production and decay. Comparison of the two
indicates that these effects, although not negligible, are not large.
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Focus upon bb̄4l-hvq comparison.
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Pythia8, POWHEG-hvq - POWHEG-bb̄4l comparison

We compare the new bb̄4l NLO+PS generator with the old hvq,
using Pythia8 for the shower.
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Pythia8, POWHEG-hvq - POWHEG-bb̄4l comparison

Same, accounting for experimental errors by smearing the peak
with a gaussian distribution with a width of 15 GeV.
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Pythia8, hvq, tt̄ dec,bb̄4l comparison

Small differences in the smeared peak. Larger differences when
smearing is included (i.e. modeling differences).
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Pythia8, hvq, tt̄ dec,bb̄4l comparison

Jet radius dependence:

Summary of theoretical uncertainties:
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Summary of comparisons within Pythia8

We can summarize the comparison with Pythia8 by saying that we
find a fairly consistent picture.

I The matrix element corrections (MEC) in Pythia work as well
as the NLO corrections in decays, as expected.

I The smallness of scale variations in tt̄ dec and hvq with
respect to the bb̄4l can be explained as being due to the way
in which the two generators implement off-shell effects.

I Hadronization effects have a consistent impact on the three
generators.

I The shift in mass associated to the use of the bb̄4l generator
with respect to the other two is around 150 MeV, with
opposite signs. Although not totally negligible, this shift is
well below presently quoted errors.
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POWHEG-bb̄4l, Herwig7 - Pythia8 comparison

No large difference in the peak position (i.e. no indication here of
large NP effects that displace the peak.). However, the marked
difference in shape is bound to lead to problems when the
experimental resolution is taken into account.
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POWHEG-bb̄4l, Herwig7 - Pythia8 comparison

When the resolution is accounted for, we find a 1.1 GeV difference
between Herwig7 and Pythia8.
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POWHEG-bb̄4l, Herwig7 - Pythia8 comparison
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POWHEG-bb̄4l

While in the Pythia8 case we found a fully consistent picture, we
cannot say the same for Herwig7. Several results are hard to
understand:

I While the new generators bb̄4l and tt̄ dec behave
consistently with Herwig7, they display a large difference with
respect to hvq.

I This means that MEC in Herwig7 do not have the same
(expected) effect as in Pythia8

Can we dismiss Herwig7 on this ground? Consider that

I MEC in Pythia8 are also technically very similar to POWHEG.

I MEC in Herwig, being an angular ordered shower, are
technically very different, since they are applied to the hardest
emission found at each step of the shower.

So, the difference may well be beyond NLO effects, and thus may
have to be considered as an uncertainty.
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Including Herwig6

With the collaboration of Bryan Webber, we have also included
Herwig6 in our study.

0.001

0.01

0.1

1

150 160 170 180 190 200

d
σ
/d
m
W
b j

[p
b

/G
eV

]

Py8.2 mmax
Wbj

= 172.793 ± 0.004 GeV

Hw7.1 mmax
Wbj

= 172.727 ± 0.005 GeV

Hw6.5 mmax
Wbj

= 172.590 ± 0.006 GeV

8 TeV
No smearing
bb̄4`
full

mWbj [GeV]

Py8.2

Hw7.1

Hw6.5

0.001

0.01

0.1

1

150 160 170 180 190 200
d
σ
/d
m
W
b j

[p
b

/G
eV

]

Py8.2 mmax
Wbj

= 172.522 ± 0.002 GeV

Hw7.1 mmax
Wbj

= 172.512 ± 0.002 GeV

Hw6.5 mmax
Wbj

= 172.509 ± 0.002 GeV

8 TeV
No smearing
bb̄4`
NLO+PS

mWbj [GeV]

Py8.2

Hw7.1

Hw6.5

At the shower level, Hw7 and Hw6 are very similar. Glitch right
before the peak absent in Hw6.
After hadronization and MPI, Hw6 becomes more symmetric with
respect to Py8.
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As a consequence of that:

MWj (GeV)
Py8 Hw6 Hw7

bare smeared bare smeared bare smeared
bb̄4l 172.793 172.717 172.59 172.384 172.727 171.626
tt̄ dec 172.814 172.857 172.602 172.484 172.775 171.678
hvq 172.803 172.570 172.803 172.95 173.038 172.552

as a fortuitous consequence of compensation due to hadronization
and MPI in Herwig6.
This findings also suggest that shower and hadronization
uncertainties may be dominant in direct measurements.
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Jet energy peak

Agashe,Franceschini,Kim,Schulze,2016

With Pythia8:

I tt̄ dec and bb̄4l differ by less than 200 MeV

I hvq differs from the other two by more than 500 MeV

I hvq NO MEC differs from the others by more than 1.9 GeV.

Obviously more sensitive to radiation from the b quark.

Since δmt ≈ δE (max)
bjet /0.45, using hvq can cause a 1 GeV shift in

mass (well below current uncertainties).
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Jet energy peak

With Herwig7:

I tt̄ dec and bb̄4l differ by 20 MeV

I hvq differs from the other two by more than 660 MeV

I bb̄4l+Py8 and bb̄4l+Hw7 differ by more than 2 GeV

Switching from Pythia8 to Herwig7 leads to large differences, that
would impact the mass measurement by more than 4 GeV.
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Lepton Observables

Frixione, Mitov, 2014
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Looking only at Pythia8: only pT (`+`−) and m(`+`−) differ,
presumably because of their sensitivity to spin correlations.
Nearly 3 GeV difference between Pythia8 and Herwig7.
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Prospect for MC studies

I Try Pythia6.

I Try Sherpa? (unfortunately, no POWHEG-BOX interface is
given there ...)

I Include also fully hadronic decay in a bb̄4l style generator,
and perform more realistic studies of direct measurements.

Caveat:
Our results cannot be directly translated into an error in standard
measurement. This can only be done within the experimental
collaborations. However, it strongly suggests to consider using
other shower generators in the analysis to assess the errors.
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Conclusions

I Unsatisfactory status of top mass measurements.

I The most precise measurements (i.e. the Direct
Measurements) are being discredited in favour of much less
precise methods.

I Two direction of research need to be explored:
I Theoretical issues with direct top mass measurements should

be addressed, also in simplified theoretical contexts, in order to
understand whether there are phenomena that lead to
systematic shifts of the measured mass.

I The study of ambiguities in the top mass determination related
to the use of different, or differently tuned NLO+PS
combinations, may evidence problems in current measurements
that are even more important, since they are manifestly
practical problems that are likely to impact the accuracy of the
measurements.

53 / 62



BACKUP MATERIAL

54 / 62



Renormalon Issue: Simplified (1-loop αs) illustration

mP = m + Nαs

∞∑
n=0

cn(µ,m)αn
s ,

where mp is the pole mass, m is the MS mass, and αs = αs(µ).
The asymptotic behaviour of the expansion is (in 1-loop αs)

αn
s cn

n→∞−→ µt
(n)
a ,

t
(n)
a ≡ (2b0αs)nn! ≈

√
2πe(n+1/2) log n−n+n log(2b0αs), (3)

Minimum at nm ≈ 1/(2b0αs). Using αs = 1/(b0 log[µ2/Λ2]):

t
(nm)
a =

√
2πnm e−nm =

√
2πnm

Λ

µ

The ambiguity of the asymptotic formula should be µ independent.
But the minimal term goes like

Nµαst
(nm)
a = N αs

√
2πnm Λ (4)

Needs an extra factor of
√
nm to be µ independent.
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Around the minimum

t
(n)
a ≈ t

(nm)
a

(
1 +

1

2n
(n − nm)2

)
(5)

We can supplement the minimal term by a factor quantifying how
many terms are close to the minimum

1

2n
(n − nm)2 < p =⇒ ∆n =

√
2pnm

∆n times the minimal term is in fact µ independent, and equal to

N

√
4πp

2b0
Λ
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Borel sum approach

We transform the series in the inverse Borel transform of a
convergent series. Order by order in αs we have the identity

Nαs

a∑
n=0

cn(µ,m)αn
s = N

∫ ∞
0

dr e−
r
αs

a∑
n=0

cn(µ,m)
rn

n!
.

Plugging in the asymptotic value for the coefficients:

Nµ

∫ ∞
0

dr e−
r
αs

a∑
n=0

(2b0r)n = Nµ

∫ ∞
0

dr
e−

r
αs

1− 2b0r

The singularity in r = 1/(2b0) is due to the renormalon. One can
define the sum as the principal value for the integral, and the
ambiguity as the imaginary part of the integral divided by π
(Beneke, 1999)

Nµ
1

2b0
e
− 1

2b0αs =
N

2b0
Λ
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Mass Renormalon: size of the ambiguity

The Pole Mass mP is given in terms of the MS mass m by an
expansion of the form

mP = m + Nαs

∞∑
n=0

cn(µ,m)αn
s . (6)

The coefficients grow as the factorial of n. Can also be written as

mP = m + N

∫ ∞
0

dr e−
r
αs

∞∑
n=0

cn(µ,m)

n!
rn. (7)

cn ∝ n! −→ cn/n! ∝ const., i.e.: geometric divergence for some r .

Prescription used by Beneke etal: take the principal value of the
integral as its central value, and (the absolute value of) its
imaginary part divided by Pi as the estimate of the error.
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Mass Renormalon: size of the ambiguity
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Hoang etal prescription:

Take as error half of the sum
of all terms that do not exceed
the smallest term by more than
a factor f .

f is defined to be “a number
larger but close to unity” and
f = 5/4 = 1 + 0.25 is chosen.

It is not difficult to make contact among the two procedures, and
show that the Beneke etal method roughly corresponds to the
above with f = 1 + 1/(4π) (which explains a good part of the
difference).
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Mass Renormalon: size of the ambiguity

A remaining part is due to the way scale variation uncertainties are
estimated in Hoang etal: they truncate the expansion at the
minimal term and then perform scale variation.
When the scale is varied, the position of the minimal term
changes, leading to scale compensation, see PN, arXiv:1712.02796.
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It is clear that the choice of f in Hoang etal, as well as the choice
of the factor in front of Im/Pi in Beneke etal, are rather arbitrary
(and slightly reminiscent of scale variation issues).

The motivation for the Im/Pi choice in Beneke etal is that it works
well in context where the renormalon effect can be related to some
physical observable (Beneke 1999).

In all cases, the message is: the renormalon problem cannot be
used as an excuse to abandon pole mass measurements.
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