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S,
Complexity of Feynman diagrams

m Gauge-theory scattering amplitudes are traditionally formed as sums
of gauge-dependent Feynman diagrams.

m Resulting expressions can be long and unmeaningful, e.g. 2 — 3
pure gluon scattering:
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m What “organizational principle” should we use to write loop
integrands?

m Can we expose the physics without actually integrating?



-
Organizing D-dimensional loop integrands

m Focus on gauge theories: typically use ordered color decomposition:

A%ﬁ)h = g”—2+2LN£- Ztr( T ... Taz)A(L)(lfn’ e nhn) + O(Ni:_l)
Sn

T2 are SU(N,) generators, g is the coupling, h; are helicities.
Ordered amplitudes given as sums of integrals of numerators Ar:
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m A7 are not unique: we are free to move terms, e.g.
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m Passarino-Veltman reduction: favor diagrams with fewer propagators.

m Eg.




Planar two-loop five-gluon all-plus integrand

[Badger, Frellesvig & Zhang '13]
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m E.g. box-triangle numerator, s;j = (p; + pj)2, w123 spurious direction.
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B si3 is an unphysical pole: doesn't appear in the integrated
result [Gehrmann, Henn, Lo Presti '15]
m Other helicities @ 5 points, 2 loops computed numerically:

m [Badger, Brgnnum-Hansen, Hartanto & Peraro '17]
m [Abreu, Cordero, Ita, Page & Zheng '17]



Local integrands in planar A/ = 4 SYM

[Arkani-Hamed, Bourjaily, Cachazo & Trnka '12]

m Compact L-loop MHYV integrands

i<j<k<l<i

i !
= Two-loop NMHV now computed [Bourjaily & Trnka '15]

m These expressions enjoy manifest physical properties at the integrand
level: IR structure, locality, soft behavior, etc.

m BUT, they rely on the momentum twistor formalism [Hodges '09].

m This limits applicability to D = 4, color ordered amplitudes.



Moving to Dirac traces

m Local integrands can be re-expressed as Dirac traces:
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where tri(ij~ k)= 1tr((1+ ’y5)pl.,¢j P
m Expressions work in D dimensions! Define regulated integrals as
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m No reference to color ordering or on-shell conditions.

m Applicable to a much wider class of theories.
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-
Generalizing to D = 4 — 2¢

[Bern & Morgan '95]

m Generalize momenta to D dimensions by writing
N —2¢ —2e¢ —2¢
0= (7,679 py =~ 2
pi = (pi, 0) p? = — (22
m Dirac traces formally require a D-dimensional Clifford algebra:

{7i,5}=0 [7;[726]’75] =0

where 75 = iY0717273-
m D-dimensional traces decompose as
tri(il s I'kfxéyl'k_H s I',,) = tri(il s I'kgxfyl'k_,_l s in)
- :U/xytri(il e ’n)



An invitation: the box integral in D = 4 — 2¢
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m IR divergences occur between pairs of massless external legs,
m soft, e.g. £ — 0;
m collinear, e.g. ¢//p1.

m Regulate IR using local box numerator:
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Five-point N’ = 4 local integrands

m Armed with this notation, we can write ' = 4 MHV integrands as
1
AD (1,2,3,4,5) =
miv(1,2,3,4,5) (12)(23)(34)(45) (51
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AR (1,2,3,4,5) =

= s = (pi+ pj)?
m All expressions are free of spurious singularities because
tr+(1345)
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S,
All-plus helicity amplitudes

[Bern, Dixon, Dunbar & Kosower '96]
m Tree amplitudes vanish:
AO(1F2F...pt) =0

m One-loop amplitudes integrate to rational functions:

AD 1+t gty = 748;2 Z m + O(e)

1<ii<h<i<ig<n

m Also satisfy dimension-shifting relation with A" = 4 MHV:

,ADW=4(1-2-3+ _ pt)
(12)*

AD @2 onT) = —2¢(1 — €)(47)
D—D+4

m Corresponds to numerator correspondence:

(Ds —2)

4
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-
Two-loop correspondence

m At 2 loops we distinguish between genuine two-loop (left) and
one-loop-squared (right) topologies:

m Genuine two-loop numerators related to A/ = 4:

Ar(1t2t - ontieg ) = AW (103 ntiy 1)

(12)*
F1 =(Ds—2)(p1p22+ (b1 + p22)? +2p12 (p11 4 p122)) +16(u3 — pr11122)
m One-loop squared split into terms proportional to (Ds—2) and
(Ds—2)?,
F> = 4(Ds—2) pa2(pa1 + p22)
Fs = (Ds—2)?pua1pi22

m [, vanishes on integration; F3 gives rise to rational terms.
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The two-loop five-gluon all-plus integrand

m Genuine two-loop numerators follow N = 4:
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m One-loop-squared numerators have no /' = 4 counterparts:
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Soft limits on external legs

m Numerators obey soft limits on external legs:
1
A(S:lz 51: 2) 230 A<5]z2 éi[1>
4 4 3
4 1?1 1 5 1
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m E.g. consider
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m Reproduces four-point result [Bern, Dixon & Kosower '00]:

NG ot 01+ 05)?
o(J8) - men (152
3 2 S



The six-gluon all-plus integrand

m Genuine two-loop topologies remarkably compact:
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3
m We also have expressions for one-loop-squared, but less compact.
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Universal infrared structure
[Catani, Dittmaier & Trécsanyi '01]

m Tree-level all-plus amplitudes are vanishing, so two-loop IR
divergences are proportional to one-loop amplitudes:

/4(2)(1+2Jr s n*) = I'Z S,'J.;.lzD (=‘<
i=1

i+1

)A<1>(1+2+ o)+ 0(°)

m Triangle integral carries IR poles:

i o

D . —1—

(=<, ) = 15
i+ 1 €

m Reproducing this behavior requires us to find the IR divergences up
to O(e~1) of all two-loop integrals.

m Two-loop integrals are broken into sums of regions with soft
singularities and evaluated in their respective limits.
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-
Soft limits of two-loop integrals

m Soft and collinear regions involve taking 65_261 — 0.

m All two-loop integrals contain

F1 = (Ds—2)(pa1pioo+ (pa1 + p22)® + 2012 (pa1 + pi22)) + 16 (135 — 11 p122)
Fo = 4(Ds — 2)pr1a(p11 + p12)
Fs = (Ds — 2)?pu11 22

m In these limits,

=2 40 =21 40
Fi — (Ds — 2)p13, F = (Ds — 2)u1;

25726] —0 0

A= 50

F> 0 F3

m No divergences beyond O(e2) as only one of the loop momenta can
enter a soft or collinear region at a time.
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Soft limit of the pentabox

m The regulated pentabox has only one soft region:

(e = - ono (B (I o

m The other two supposedly soft limits /1 — p; and {1 — p12 are finite
because try (1(¢1 — p1)(¢1 — p12)3) — 0. So,

(- 0o (B o

+O(%).

m If we weren't using local integrands, this would only be true up to

O(e).



Six-point integrals

= Up to terms O(c?),
2 (= 022 (P (o
(g (o
(e - 02 (o (Y-

m IR divergences always come from boxes: these split off to form
triangle integrals.



Five-gluon infrared decomposition (1)
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Five-gluon infrared decomposition (2)
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109 T () (2

cyclic

o3I (jj) 1] — 51251577 (j:[l) [;ﬁ]) + O()

m Therefore,

AR (1+2737475%) =iy "5 0 TP (=<(
i=1

as expected.

)A<1>(1+2+3+4+5+) +O(e)

i+1

m The procedure works equally well for six-gluon scattering.



S,
Subleading color structure
m Until now we have focused on the planar limit. Disposing of

momentum twistors makes it possible to consider nonplanar
topologies.
2 . D : 1
A =i sy () T Tro Al 0
i#j J
where for external gluons T, =i fhac,
m Need a way to assign color factors to non-cubic diagrams:

AT 3:7P/, / ZCT AT pngl)
m Also need to find local integrands for nonplanar topologies, e.g.
5. b2 4 1 5 1
&y
4 2 3
m Studies of subleading color have already been initiated in N’ = 4
[Bern, Herrmann, Litsey, Stankowicz & Trnka '15].



-
Generalizing to alternate helicities

m For mixed external helicities we lose the N/ = 4 connection. So how
to make use of local integrand structures?

m Return to an integrand-reduction based procedure.

m Integrand written as polynomial of irreducible scalar products (ISPs):
i i j
AT =Y CTihia X5 X0,
i15eeesin

m ISPs form basis of objects which cannot be expressed in terms of
propagators. Generally satisfy polynomial relationships.

m Replace spurious components ¢; - w in favor of local integrands, e.g.
4 (1(¢ — pr)(¢ — p12)3).
m Can we learn more from local integrands in the NMHV sectors of

N =47



Color-kinematics duality
[Bern, Carrasco & Johansson '08], [Johansson & Ochirov '15]

dPte 1 ¢n;(l)

AV =) /27TDL5 D;(0)

cubic diagrams j

m Color factors ¢; satisfy Jacobi/commutation relations:
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m Color-dual numerators nt

G =¢C — Ck <= nj=n;— ng

m Advantages: natural color basis, small number of planar masters



Two-loop N =2 SQCD

[Johansson, Kélin & G.M. '17]

m At four points, only two masters required:

m Fermion lines are hypermultiplets, inherited from full N' = 4
spectrum. Numerators extend to arbitrary number of flavors.

m Simple resulting MHV expressions, e.g.

e\ [12]34] 1

m Can be extended to include massive matter.

m Ongoing N =1 SYM calculation, then hope to study A" =0 and 3
loops.



Color-dual two-loop five-gluon all-plus
[G.M. & O'Connell '15]

m Locality easily realized at four points using perm-invariant overall

factor
[12][34] 0
2 — stA(0)(1234
(12)(3a) ~ A (1239)
m Unclear what generalization to use at higher points, try:
5 _ [12][23][34][45][51] _5 5  [12]?[34][45][35]
12345 = 4¢(1234) ) 12 = P12345 21345 = T 034y (1234)

m Only need one master: the pentabox,

5y (2 L1
n( ):Q'2> = Y12M1 + Y13M2 + Y14M3 + Y23M4 + Y24Ms5 + Y34 Mg
3

4

m But, the resulting solution is large: 12 powers of loop momentum!
m We know the issue: can't find a local basis!
m Now would be a good time to look for local integrands!



N
Conclusions

m D-dimensional local integrands are a powerful tool in the context of
dimensionally-regulated amplitudes.

m All-plus Yang-Mills is a convenient testing ground: we now have
local integrand representations of the five- and six-gluon amplitudes
at two-loop order.

m The presentation highlights three important physical properties
before integration:

m Infrared structure;

m Absence of spurious singularities (nonlocalities);
m Manifest soft limits on external legs.

m Moving forward, we hope to explore both nonplanar amplitudes and
mixed external helicities.

m An important next step is understanding the mechanism by which
integrals factorize.
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Thanks for listening!



Momentum twistor geometry
[Hodges '09]

m Momentum twistor geometry expressed using dual coordinates x;:
Za+2
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= Momentum twistors Z = (), 1) defined in CP* as
Pa = Xa — Xa—1 Pa = AXaz

m Momentum twistors automatically imply
m > . pi =0 (momentum conservation)
m p? = 0 (massless on-shell condition)

m But, we are limited to massless, color-ordered amplitudes in D = 4.



Nonplanar numerators from BCJ relations
[Badger, G.M., Ochirov & O'Connell '15]

m Maximal cuts of diagrams satisfy relations:
5. %2 4 1 5. %2 41 1
Cut( ) = (@1 +p45)2 Cut( I | )
4 2 4 L 2
m This implies an on-shell relationship between numerators:
5 2 1 5\fl2 {1 5agd2 01 1
() -a(HF) (3%
4 2 4 3 3 2
5. M2 G 1
# (s pera( TTT ).
4 2

3

(b1+£2+p3)?=0

m This identity is a Jacobi identity: the last term is a correction.
m Expressions still need to be continued off-shell!



Integrand reduction via polynomial division
[Zhang '12] and others!

m Use diagrams with smallest number of propagators, e.g. @ 1 loop
include only boxes, triangles, bubbles & tadpoles.

m Express At as polynomials of ISPs x;:

AT— § CT:iviy-- I,,Xl Xnv

m ISPs x; cannot be expressed in terms of propagators of T. Could be

E[ 2¢]

. X = 4726],6; -w, where w - p; = 0.

pij =
m Unique coefficients c71.j,j,...;, generally extracted from on-shell data.
m ISPs x; satisfy higher-order relations, resulting from Gram matrices.

A4 L 1
A(]:[)—Co+C1£-w+C2M2+C3,u2€-w+C4,u4+-~-

3 2

m Two powers of £-w do not appear because

(¢ - w)?—p? = linear combination of /2, (£—p1)?, (£—p12)?, (£+pa)?



Multi-peripheral color decomposition
[Badger, G.M., Ochirov & O'Connell '15], [Ochirov & Page '16]

m Think about color-dressed unitarity cuts.
m Use DDM basis on tree amplitudes:

o(n—1)

o(2)o
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m Build color-dressed numerators out of corresponding cuts:
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Multi-peripheral color decomposition (2)
[Badger, G.M., Ochirov & O’'Connell '15]

(4.9)



