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Feynman integrals

@ Important for detailed analysis of multiloop amplitudes, e.g. for LHC
physics discoveries

e Difficult to compute; key tools include differential equations and
discontinuities

@ Have a Hopf algebra structure that maps the functions to simpler ones in a
way that exposes their behavior in differential equations and discontinuities

o At 1 loop, this Hopf algebra is consistent with the Hopf algebra of multiple
polylogarithms, in the expansion of Feynman integrals in dimensional
regularization
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A(log z)
A(log® 2)

A(Lix(2))

Discontinuities and cuts:

Differential operators:
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We conjecture a framework as follows.

Coactions of the following form:
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Master formula for Hopf algebra on integrals

We conjecture a framework as follows.

Coactions of the following form:

2([) = e ]

with a duality condition
ng/ wj = (5,‘] .
Vi

Pss is semi-simple projection (“drop logarithms but not 7).

The master formula coaction is like inserting a complete set of states (“w; are a
set of master integrands for w").
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An algebra H is a ring (addition group & multiplication)
which has a multiplicative unit (1)

and which is also a vector space over a field K.

Example: n X n matrices with entries in K.
In this talk, the field is always K = Q.
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Algebras and bialgebras

An algebra H is a ring (addition group & multiplication)
which has a multiplicative unit (1)
and which is also a vector space over a field K.

Example: n X n matrices with entries in K.
In this talk, the field is always K = Q.

A bialgebra is an algebra H with two more maps, the coproduct
A:H— H® H, and the counit € : H — Q, satisfying the following axioms.

e Coassociativity: (A ® id)A = (id ® A)A
@ A and ¢ are algebra homomorphisms:
A(a-b) = A(a) - A(b) and e(a- b) =¢e(a) - e(b)
@ The counit and the coproduct are related by (¢ ® id)A = (id ® €)A = id



A simple combinatorial algebra: let [n] = {1,2,...,n}.
Elements: pairs of nested subsets S C T, where S C T C [n].
{1} C {1, 2} represented by 12

() C {1,2} represented by 12

) C O represented by *
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The “incidence” bialgebra (1on ro)

A simple combinatorial algebra: let [n] = {1,2,...,n}.
Elements: pairs of nested subsets S C T, where S C T C [n].
{1} C {1,2} represented by 12

0 C {1,2} represented by 12

( C O represented by *

Multiplication is free, and the coproduct is defined by
ASCT)= Y (SCX)@(XCT).

SCXCT
For example:
A(12) = 12®124+1®124+2R12+xR12
A(12) = 12®12+2R®12
A2) = 2®2+x®2
A(2) = 2®2

A(SCS) = (SCSH(SCS)



The “incidence” bialgebra (1on ro)

A simple combinatorial algebra: let [n] = {1,2,...,n}.
Elements: pairs of nested subsets S C T, where S C T C [n].
{1} C {1,2} represented by 12

0 C {1,2} represented by 12

( C O represented by *

Multiplication is free, and the coproduct is defined by
ASCT)= Y (SCX)@(XCT).

SCXCT

The counit is
1, ifS=T,
0, otherwise.

eg. £(2)=0, ¢(12)=0, ¢2)=1, e(x)=1



A(12) = 12®124+1®124+2R12+x212
A2) = 2@24+x®2

A2) = 2®2

A(x) = *xQ®x

o Coassociativity of the coproduct, (A ® id)A = (id ® A)A

(A®id)A(2) = AQ)R2+A(x)®2
= 2@2024+*xR2®24+*x*x®2
= 2QA(2)+*®A(2)
= (id®A)A(2)

e Counit, (e ®id)A = (id®e)A =id

e2)®2+e(x)®2=2Re(2)+*®e(2) =2

«O>» «F»r <«

i
it
it
N)
¥l
i)



Coproduct and coaction

If H is a Hopf algebra, then a H (right-) comodule is a vector space A with a
map p: A— A® H such that

(p®id)p=(ld® A)p and (d®ce)p =id.

Here A is a coproduct on H. p is a coaction on A.

MPLs modulo im form a Hopf algebra H. For the full space of MPLs, we need
the comodule Q[in] ® H, with a coaction p where p(it) = iT ® 1.

[Goncharov, Duhr, Brown]

In this presentation, the distinction is not terribly important. We continue to
use A to denote our operations, which are formally coactions of bialgebras.



A Hopf algebra is a bialgebra H with an antipode map S : H — H that satisfies

5®|d

/N
N

(Here p,n denote multiplication and inclusion, respectively.)

(scs)

The incidence bialgebra becomes a Hopf algebra if we adjoin inverse elements
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A(12)

1212411242012+ %x®12
For graphs, set * = () C 0) = 0.

Pinch and cut complementary subsets of edges:

€] €1 e
AIncl<ez>]=< e2>_® —Q—
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Example of the incidence algebra: edges of graphs
A(123) = 123®123+4+12®123+23®123+13®123
+1®123+2®123+3®123++x®123

Pinch and cut complementary subsets of edges:

2
Ame €3 =
[3)
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Can also start with a cut diagram.

A(12)

1212+1®12

[ |0 - 00

A(12)

12®12
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Multiple polylogarithms (MPL)

A large class of iterated integrals are described by multiple polylogarithms:

G(ah...,an:z):/ % Gl an )
0

t—a

Examples:

G(0;z) =logz, G(a;z)=log (1 — g)
G(an 2) = %Iog" (1-%). 6(@-1a2)=-Li (%)

Harmonic polylog if all a; € {—1,0,1}.
n is the transcendental weight.

Many Feynman integrals can be written in terms of classical and harmonic
polylogs.



HOpf algebra Of MPL [Goncharov; Duhr]

Closure under multiplication via the shuffle product:

where 31 II1 3> are the permutations preserving the relative orderings of 31 and
3.

There is a coaction on MPLs. It is graded by weight, and thus breaks MPLs
into simpler functions (lower weight).

A(logz) = 1Q®logz+logz®1
Alogxlogy) = 1® (logxlogy)+logx ®logy + logy ® logx + (logxlogy) ® 1
A(Lix(z)) = 1®Lix(z)+ Liz(z) ® 1+ Liy(2) ® log z



algebra.

The coaction is a pairing of contours and integrands. Recalls the incidence

AvrL(G(F 2)) = Z G(E; z) ® Gy(&; z)

bca

a4
.

(a)

(b)
Contour (b) takes a subset of residues in a given order.
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Feynman integrals

A useful basis for all 1-loop integrals:

e
Jy = —/dD"k
H (k — q;)? J2

@ k is the loop momentum
@ g; are sums of external momenta, m; are internal masses
@ Dimensions:

D — n—2e, for n even,
"7 n+1—-2e, fornodd.

e.g. tadpoles and bubbles in 2 — 2¢ dimensions,
triangles and boxes in 4 — 2¢ dimensions, etc.

@ Each J, has uniform transcendental weight and satisfies nice differential
equations.



2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of
evaluated diagrams!

@ The graph with n edges is interpreted as J,, i.e. in D, dimensions, no
numerator.
@ Need to insert extra terms in the diagrammatic equation:

Isomorphic to the more basic construction. (For any value of 1/2.)

N =

N =

@ How do we evaluate the cut graphs?

[related work: Brown; Bloch and Kreimer]



Traditional [Veltman] 2

=i o=—i
P % P —i
¢ — — b 6= ,
p? +ie P2 —ic
14 E 2
[ =27r6(p)0(p0)

Better interpretation: cuts should be understood primarily as residues.
[related: Kosower, Larsen]

o Change the contour, not the integrand
o Consistent with prior expectations

o Fits with diagrammatic coaction
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1-loop cuts defined as residues:

CC[In] - j/ deH
17T 2

2 _
s (k — qj) m? + i0
o C is the set of cut propagators

mod i,

@ Contour ¢ encircles poles of cut propagators

Cut integrals give discontinuities of their uncut counterparts

«4O» «F»r « =
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Generalized cuts as residues and determinants

1-loop cuts defined as residues:

eES D .
Cc/n:—/dk mod i,
=2 Jg( k—q) *m2+10

o C is the set of cut propagators

@ Contour ¢ encircles poles of cut propagators

Cut integrals give discontinuities of their uncut counterparts.
Some results:

Ccl, :LAH (YC)(D_C)/2/C/QD c+1 H 1
" VYe \Gc iz Lt (k= qp)? — m?

j¢c c

where we often find Gram and modified Cayley determinants:
Gc = det(qi- Qj)f,jec\*

1
det <§(m,2 +m+ (g — qj)z))
ijeC

Yc



Maximal and next-to-maximal cuts

Some special cases:
M1l—e) eeEe (Y2k>76
Cok[J = — 5 — (=
2l J2i] T(1—2¢) VYo \ Ga

Coonlin] = eVE Yors1\ ¢
+ + F(l — () vV G2k+1 G2k+1

M(1—2¢)” e Yoo\ © 1 Gok Yok—1
) _ F(z,—gl—¢ 221
Car—1[Ja] M1—¢€)? Yo (szﬂ 2 ‘ Yok Gak-1

For more complicated cuts, we set up a Feynman parametrization.

Landau conditions are expressed in polytope geometry: these determinants are

volumes of simplices. [Cutkosky]




Landau conditions

g
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Therefore
(kE—qr)-(K®—qr) ... (k®—gqr)- (k" —ac) o1
5 : | =0
(KE—qé)- (K5 —qf) ... (KF—qf)-(KF —qf) Qe

Nontrivial solution < Y¢ = 0 and integral over I'c: Landau singularities of the
first type.

Second-type singularities come from G¢ = 0 and integral over I'c .. Contour
is pinched at infinity.



Homology theory for Feynman contours

Homology describes the inequivalent integration contours. Also explains why
cuts are discontinuities. Use Leray residues. [Fotiadi, Pham; Hwa, Teplitz; Federbusch; Eden,

Fairlie, Landshoff, Nuttall, Olive, Polkinghorne,...]

Residues: if 4
w= ?5 A +0

and S = {s = 0}, while v, 0 are regular on S, then

Ress[w] = 9, -

Cut integrals: if [, = [wn, then
Celh] = / Ress [u:]
Sc

(zm')*k/ W
5S¢

where 0 constructs a “tubular neighborhood” around S¢ = NjecS;, the
spherical locus of the cut conditions.



For 1-loop Feynman integrals, the Decomposition Theorem shows that the
contours ¢ = §S¢ form a basis. [Fotiadi, Pham]

e =—2xcTc— Z

1,

(i Xc:{ :
ccXCln] ’

|C| odd,
|C| even.
Can work in a compactified projective space, where co is on the same footing
as other labels.
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Examples of the graphical conjecture
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The odd-shaped integrals have poles at infinity.



Terms with 1/2 are always present in principle, but vanished here due to
massless propagators.
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The coaction on 1-loop graphs defined by pinching and cutting subsets of
propagators,

when evaluated by Feynman rules,
if expanded order by order in ¢,

is consistent with the coaction on MPLs!
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Evidence for the graphical conjecture

o all tadpoles and bubbles

@ triangles and boxes with several combinations of internal and external
masses

@ consistency checks for more complicated boxes, Om pentagon, Om hexagon
e diagrammatic groupings emerging in 2-loop integrals

Checked to several orders in ¢, or for closed forms with hypergeometric
functions.



Second entries are discontinuities; first entries have discontinuities.

A«
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Second entries are discontinuities; first entries have discontinuities
Motivated by the identity

A Disc = (Disc ®1) A.
The companion relation

Ad=(1®09)A
produces differential equations.
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Application: cuts and discontinuities

A Disc = (Disc®1) A
A (Disc I,) = (Disc®1) (Aly)

Since A (Disc/y) =1® (Discly) + - - -, it is enough to look at the terms
A1,W71ln-

The basis integrals of weight 1 are precisely the tadpoles and bubbles. The
corresponding cut diagrams have 1 or 2 propagators cut.

Therefore: the discontinuities are precisely the unitarity cut diagrams
(momentum invariant discontinuities) and the single-cut diagrams (mass

discontinuities).

Generalized cuts can be interpreted as well.



Application: differential equations

AD=(120)A

Likewise, we get differential equations by focusing on nearly-maximal cuts in

the second factor:
J
d = > +
COR !

I v 0 *&

This also shows a way to identify the symbol alphabet.

I\JM—\

=~
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The master formula for the o F; family

Consider the diagrammatic coaction

There is a coaction on »F; that gives
AoFi(1,1462—¢6x) = 2FA(l,6,1—¢€x)®2F(1,14¢€2—¢x)

+2F1 (1,14 €2 —€6,x)®2F (1,6,1—6,%)

without expanding in e!



Coaction of the form

o([) = [we ]

with a duality condition

Pss/wj-zé,-j.
i

i

A(x)=x®1.

Pss is semi-simple projection (“drop logarithms but not 7).
To be precise, Pss projects onto the space of semi-simple numbers x satisfying
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Consider the family of integrands
w(a, az, as)

= x"(1—-x)"(1—2zx)*® dx
where o = nj + ¢ and nj € Z.
L F(al)r(az — 0(1)
w 1, 2, x3) =
], )= )
Basis of master integrands:

2F(—az, 01+ 100 + 01 + 2; 2)
1 1 1

/w = Co/ wo+C1/ w1

0 0 0

X1 —x)"M2(1 — zx)
W= xT(1—x)?(1—zx)

where

wo

With the two contours o = [0,1] and 71 = [0,1/z], we have Pg f»,- wj ~ bjj

DA



Family of integrands for F;.

w(aa,az,a3,s) = xH1—x)2(1 — z1x) (1 — zox)™ dx
where a; = ni +¢; and n; € Z.

1
Mo (a2 — «
/ w(ar, a2, a3, 1) = Men)l (a2 = 1) Fi(oa, a3, aa, az; 21, 22)
0 M(az2)
Master integrands:

wo = xU(1—x)""21 = zx)%(1 — zx)
w o= xM(1—=x)2(1—z21x) 31— zx)
w2

X1 = x)2(1 — z21x)3(1 — zox) 1 H
Master contours: 4o = [0,1], 71 = [0,z %], 72 = [0, 2z, !]

«4O>» «F»r « =)

« =

DA



Diagrammatic example with F;




Master formula for ,1Fp

Family of integrands for 3F;.
w(an, 6z, 03, a,05) = XL = x)"2y (1 y)™ (1 — 20/)°° ddy

where a; = n; + ¢; and n; € Z.

Then
/ / w(an, a2, as, as, as5) =

sha(ar + 1,3 + 1, —as5; 2 + a1 + 2,2 + a3 + aa; 2)

Basis of master integrands:

X1 —x) T2y (1 — y) (1 — 2xy)
wi o= xM(1—x) YL - )N (1 - zxy) T
X

wp = xM(L—x)2y(L—y) 41— zxy) M

With the master contours vo = fol dx fol dy, 1 = fo dx l/zx dy,
= [y dy J,/¥ dx, we find that Py [ w; ~ &y



(with various prefactors and dimension shifts inserted to produce pure integrals)
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Features of diagrammatic coaction at two loops

Matrix of integrands and contours for each topology.

Example: sunrise with one internal mass. 2 master integrands in top topology.

_@_:/ UJ111N2F1(1+26,1+6,1—€,p2/m2)

To

_@_:/ w121 ~ 2F; (2+2e,1+e,1—e,p2/m2)
To

For each, only two of the generalized cuts are linearly independent!

Thus 2 independent integration contours, e.g. [y and M2z,

Diagonalize the matrix: [ w; ~ d; with

2
w1 = ac w11, w2 = bew1ir + cewinn

1 2
=T - T °r
71 05 V2 6e 123+3 0

Coaction A (ﬁ/ w) =3, fV wi ® fy w is expressible in terms of diagrams.



Features of diagrammatic coaction at two loops

For example:

(with prefactors as seen on previous slide)

In particular, we can recover weight 1 discontinuities:

Aq g1 <_@_> = log(p” — m*) ® + log(m®) ® _@—



Summary & Outlook

o We observe a Hopf algebra structure on Feynman diagrams. At 1 loop,
there is a basis for which the coaction is simply related to pinches and cuts
of the original diagram. Beyond 1-loop: encounter matrix equations (cf.
higher-order differential equations)

@ Corresponds to Goncharov's Hopf algebra on MPLs, with prospects for
extensions to hypergeometric integrals and beyond.

@ Cuts should be understood through homology and Leray residues.

@ Deep connections to discontinuities and differential equations, which are
tools for computation.

@ Abstracted master formula: a Hopf algebra based on matched pairs of
integrands and contours

@ To explore further: systematic description beyond 1 loop, full range of
hypergeometric functions, applications to integral and amplitude
computations.



