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Feynman integrals

Important for detailed analysis of multiloop amplitudes, e.g. for LHC
physics discoveries

Difficult to compute; key tools include differential equations and
discontinuities

Have a Hopf algebra structure that maps the functions to simpler ones in a
way that exposes their behavior in differential equations and discontinuities

At 1 loop, this Hopf algebra is consistent with the Hopf algebra of multiple
polylogarithms, in the expansion of Feynman integrals in dimensional
regularization



Operations of the Hopf algebra

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log2 z) = 1⊗ log2 z + 2 log z ⊗ log z + log2 z ⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z

Discontinuities and cuts:

∆ Disc = (Disc⊗1) ∆

Differential operators:
∆ ∂ = (1⊗ ∂) ∆
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Master formula for Hopf algebra on integrals

We conjecture a framework as follows.

Coactions of the following form:

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

The master formula coaction is like inserting a complete set of states (“ωi are a
set of master integrands for ω”).
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Algebras and bialgebras

An algebra H is a ring (addition group & multiplication)
which has a multiplicative unit (1)
and which is also a vector space over a field K .

Example: n × n matrices with entries in K .
In this talk, the field is always K = Q.

A bialgebra is an algebra H with two more maps, the coproduct
∆ : H → H ⊗ H, and the counit ε : H → Q, satisfying the following axioms.

Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆

∆ and ε are algebra homomorphisms:
∆(a · b) = ∆(a) ·∆(b) and ε(a · b) = ε(a) · ε(b)

The counit and the coproduct are related by (ε⊗ id)∆ = (id⊗ ε)∆ = id
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The “incidence” bialgebra [Joni, Rota]

A simple combinatorial algebra: let [n] = {1, 2, . . . , n}.
Elements: pairs of nested subsets S ⊆ T , where S ⊆ T ⊆ [n].

{1} ⊆ {1, 2} represented by 1 2
∅ ⊆ {1, 2} represented by 1 2
∅ ⊂ ∅ represented by ∗

Multiplication is free, and the coproduct is defined by

∆(S ⊆ T ) =
∑

S⊆X⊆T

(S ⊆ X )⊗ (X ⊆ T ).

The counit is

ε(S ⊆ T ) =

{
1 , if S = T ,
0 , otherwise .

e.g. ε(2) = 0, ε(1 2) = 0, ε(2) = 1, ε(∗) = 1
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Illustration of axioms

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

∆(2) = 2⊗ 2 + ∗ ⊗ 2

∆(2) = 2⊗ 2

∆(∗) = ∗ ⊗ ∗

Coassociativity of the coproduct, (∆⊗ id)∆ = (id⊗∆)∆

(∆⊗ id)∆(2) = ∆(2)⊗ 2 + ∆(∗)⊗ 2

= 2⊗ 2⊗ 2 + ∗ ⊗ 2⊗ 2 + ∗ ⊗ ∗ ⊗ 2

= 2⊗∆(2) + ∗ ⊗∆(2)

= (id⊗∆)∆(2)

Counit, (ε⊗ id)∆ = (id⊗ ε)∆ = id

ε(2)⊗ 2 + ε(∗)⊗ 2 = 2⊗ ε(2) + ∗ ⊗ ε(2) = 2



Coproduct and coaction

If H is a Hopf algebra, then a H (right-) comodule is a vector space A with a
map ρ : A→ A⊗ H such that

(ρ⊗ id)ρ = (id⊗∆)ρ and (id⊗ ε)ρ = id .

Here ∆ is a coproduct on H. ρ is a coaction on A.

MPLs modulo iπ form a Hopf algebra H. For the full space of MPLs, we need
the comodule Q[iπ]⊗ H, with a coaction ρ where ρ(iπ) = iπ ⊗ 1.

[Goncharov, Duhr, Brown]

In this presentation, the distinction is not terribly important. We continue to
use ∆ to denote our operations, which are formally coactions of bialgebras.



Hopf algebras

A Hopf algebra is a bialgebra H with an antipode map S : H → H that satisfies

H ⊗ H
S⊗id // H ⊗ H

µ

��
H

∆

FF

∆

��

ε // K
η // H

H ⊗ H
id⊗S

// H ⊗ H

µ

FF

(Here µ, η denote multiplication and inclusion, respectively.)

The incidence bialgebra becomes a Hopf algebra if we adjoin inverse elements
(S ⊆ S)−1.



Example of the incidence algebra: edges of graphs

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

For graphs, set ∗ = (∅ ⊆ ∅) = 0.

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

∆(1 2 3) = 1 2 3⊗ 1 2 3 + 1 2⊗ 1 2 3 + 2 3⊗ 1 2 3 + 1 3⊗ 1 2 3

+1⊗ 1 2 3 + 2⊗ 1 2 3 + 3⊗ 1 2 3 + ∗ ⊗ 1 2 3

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

Can also start with a cut diagram.

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2

∆(1 2) = 1 2⊗ 1 2



Multiple polylogarithms (MPL)

A large class of iterated integrals are described by multiple polylogarithms:

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t)

Examples:

G(0; z) = log z , G(a; z) = log
(

1− z

a

)
G(~an; z) =

1

n!
logn

(
1− z

a

)
, G(~0n−1, a; z) = −Lin

(z
a

)
Harmonic polylog if all ai ∈ {−1, 0, 1}.
n is the transcendental weight.

Many Feynman integrals can be written in terms of classical and harmonic
polylogs.



Hopf algebra of MPL [Goncharov; Duhr]

Closure under multiplication via the shuffle product:

G(~a1; z)G(~a2; z) =
∑

~a∈~a1 qq~a2

G(~a; z) ,

where ~a1qq ~a2 are the permutations preserving the relative orderings of ~a1 and
~a2.

There is a coaction on MPLs. It is graded by weight, and thus breaks MPLs
into simpler functions (lower weight).

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log x log y) = 1⊗ (log x log y) + log x ⊗ log y + log y ⊗ log x + (log x log y)⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z



Contour integrals

The coaction is a pairing of contours and integrands. Recalls the incidence
algebra.

∆MPL(G(~a; z)) =
∑
~b⊆~a

G(~b; z)⊗ G~b(~a; z)

0 z

a4

a3

a2

a1

(a)

0 z

a4

a3

a2

a1

(b)

γb⃗

Contour (b) takes a subset of residues in a given order.
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Feynman integrals

A useful basis for all 1-loop integrals:

Jn =
ieγE ε

πDn/2

∫
dDnk

n∏
j=1

1

(k − qj)2 −m2
j

k is the loop momentum

qj are sums of external momenta, mj are internal masses

Dimensions:

Dn =

{
n − 2ε , for n even ,
n + 1− 2ε , for n odd .

e.g. tadpoles and bubbles in 2− 2ε dimensions,
triangles and boxes in 4− 2ε dimensions, etc.

Each Jn has uniform transcendental weight and satisfies nice differential
equations.



2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of
evaluated diagrams!

The graph with n edges is interpreted as Jn, i.e. in Dn dimensions, no
numerator.

Need to insert extra terms in the diagrammatic equation:

Isomorphic to the more basic construction. (For any value of 1/2.)

How do we evaluate the cut graphs?

[related work: Brown; Bloch and Kreimer]



What are generalized cuts?

Traditional [Veltman]:

Better interpretation: cuts should be understood primarily as residues.
[related: Kosower, Larsen]

Change the contour, not the integrand

Consistent with prior expectations

Fits with diagrammatic coaction



Generalized cuts as residues and determinants

1-loop cuts defined as residues:

CC [In] =
eγE ε

iπ
D
2

∫
ΓC

dDk
∏
j 6∈C

1

(k − qj)2 −m2
j + i0

mod iπ ,

C is the set of cut propagators

Contour ΓC encircles poles of cut propagators

Cut integrals give discontinuities of their uncut counterparts.
Some results:

CC In =
eγE ε√
YC

(
YC

GC

)(D−c)/2 ∫
dΩD−c+1

iπD/2

∏
j /∈C

1

(k − qj)2 −m2
j


C

where we often find Gram and modified Cayley determinants:

GC = det (qi · qj)i,j∈C\∗

YC = det

(
1

2
(m2

i + m2
j + (qi − qj)

2)

)
i,j∈C
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Maximal and next-to-maximal cuts

Some special cases:

C2k [J2k ] =
Γ(1− ε)

Γ(1− 2ε)

eγE ε√
Y2k

(
Y2k

G2k

)−ε
C2k+1[J2k+1] =

eγE ε

Γ(1− ε)
√
G2k+1

(
Y2k+1

G2k+1

)−ε
.

C2k−1[J2k ] = −Γ(1− 2ε)2

Γ(1− ε)3

eγE ε√
Y2k

(
Y2k−1

G2k−1

)−ε
2F1

(
1

2
,−ε; 1− ε; G2k Y2k−1

Y2k G2k−1

)
.

For more complicated cuts, we set up a Feynman parametrization.

Landau conditions are expressed in polytope geometry: these determinants are
volumes of simplices. [Cutkosky]



Landau conditions

αi

[
(kE − qE

i )2 + m2
i

]
= 0, ∀i .

n∑
i=1

αi (k
E − qE

i ) = 0 .

Therefore

 (kE − qE
1 ) · (kE − qE

1 ) . . . (kE − qE
1 ) · (kE − qE

c )
...

. . .
...

(kE − qE
c ) · (kE − qE

1 ) . . . (kE − qE
c ) · (kE − qE

c )


 α1

...
αc

 = 0 .

Nontrivial solution ⇔ YC = 0 and integral over ΓC : Landau singularities of the
first type.

Second-type singularities come from GC = 0 and integral over ΓC∪∞. Contour
is pinched at infinity.



Homology theory for Feynman contours

Homology describes the inequivalent integration contours. Also explains why
cuts are discontinuities. Use Leray residues. [Fotiadi, Pham; Hwa, Teplitz; Federbusch; Eden,

Fairlie, Landshoff, Nuttall, Olive, Polkinghorne,...]

Residues: if

ω =
ds

s
∧ ψ + θ

and S = {s = 0}, while ψ, θ are regular on S , then

ResS [ω] = ψ|S .

Cut integrals: if In =
∫
ωn, then

CC [In] =

∫
SC

ResSC [ωn]

= (2πi)−k

∫
δSC

ωn

where δ constructs a “tubular neighborhood” around SC = ∩i∈CSi , the
spherical locus of the cut conditions.



Homology theory for Feynman contours

For 1-loop Feynman integrals, the Decomposition Theorem shows that the
contours ΓC = δSC form a basis. [Fotiadi, Pham]

Γ∞C = −2xC ΓC −
∑

C⊂X⊆[n]

(−1)d
|C|

2
e+d |X|

2
e ΓX , xc =

{
1 , |C | odd ,
0 , |C | even .

Can work in a compactified projective space, where ∞ is on the same footing
as other labels.



Examples of the graphical conjecture

∆

 e1

e2

 =

e1

e2

⊗
e1

e2

+ e1 ⊗

 e1

e2

+
1

2

e1

e2


+ e2 ⊗

 e1

e2

+
1

2

e1

e2



∆

(∫
Γ∅

ω12

)
=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
ω1 ⊗

(∫
Γ1

ω12 +
1

2

∫
Γ12

ω12

)
+ · · ·

=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
Γ∅

ω1 ⊗
∫
− 1

2
Γ1∞

ω12 +

∫
Γ∅

ω2 ⊗
∫
− 1

2
Γ2∞

ω12

The odd-shaped integrals have poles at infinity.



Examples of the graphical conjecture

Terms with 1/2 are always present in principle, but vanished here due to
massless propagators.



Examples of the graphical conjecture

∆


e2

e1

1

e3

 =

e2

e1

1

e3
⊗

e2

e1

1

e3
.



Statement of the graphical conjecture

The coaction on 1-loop graphs defined by pinching and cutting subsets of
propagators,

when evaluated by Feynman rules,
if expanded order by order in ε,

is consistent with the coaction on MPLs!



Evidence for the graphical conjecture

all tadpoles and bubbles

triangles and boxes with several combinations of internal and external
masses

consistency checks for more complicated boxes, 0m pentagon, 0m hexagon

diagrammatic groupings emerging in 2-loop integrals

Checked to several orders in ε, or for closed forms with hypergeometric
functions.



Coproducts of diagrams

Second entries are discontinuities; first entries have discontinuities.

Motivated by the identity

∆ Disc = (Disc⊗1) ∆.

The companion relation
∆ ∂ = (1⊗ ∂) ∆

produces differential equations.
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Application: cuts and discontinuities

∆ Disc = (Disc⊗1) ∆

∆ (Disc In) = (Disc⊗1) (∆In)

Since ∆ (Disc In) = 1⊗ (Disc In) + · · · , it is enough to look at the terms
∆1,w−1In.

The basis integrals of weight 1 are precisely the tadpoles and bubbles. The
corresponding cut diagrams have 1 or 2 propagators cut.

Therefore: the discontinuities are precisely the unitarity cut diagrams
(momentum invariant discontinuities) and the single-cut diagrams (mass
discontinuities).

Generalized cuts can be interpreted as well.



Application: differential equations

∆ ∂ = (1⊗ ∂) ∆

Likewise, we get differential equations by focusing on nearly-maximal cuts in
the second factor:

d

  =
∑
(ijk)

j

i

k d

 i

k
j

+
1

2

∑
l

i

k
j

l


ε0

+
∑
(ijkl)

i

j

k

l

d

 i

k
j

l


ε0

+ ε d

 
ε1

This also shows a way to identify the symbol alphabet.



Outline



The master formula for the 2F1 family

Consider the diagrammatic coaction

∆


e2

e1

e3
1

 = e1 ⊗

 e1
e3

1

e2

+
1

2

e2

e1
e3

1



+

e1

e2

1 1 ⊗

e2

e1
e3

1

There is a coaction on 2F1 that gives

∆2F1 (1, 1 + ε, 2− ε, x) = 2F1 (1, ε, 1− ε, x)⊗ 2F1 (1, 1 + ε, 2− ε, x)

+2F1 (1, 1 + ε, 2− ε, x)⊗ 2F1

(
1, ε, 1− ε, 1

x

)
without expanding in ε!



Master formula for Hopf algebra on integrals

Coaction of the form

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

To be precise, Pss projects onto the space of semi-simple numbers x satisfying
∆(x) = x ⊗ 1.



The master formula for the 2F1 family

Consider the family of integrands

ω(α1, α2, α3) = xα1 (1− x)α2 (1− zx)α3 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
2F1(−α3, α1 + 1;α2 + α1 + 2; z)

Basis of master integrands:∫ 1

0

ω = c0

∫ 1

0

ω0 + c1

∫ 1

0

ω1

where

ω0 = xε1 (1− x)−1+ε2 (1− zx)ε3

ω1 = xε1 (1− x)ε2 (1− zx)−1+ε3

With the two contours γ0 = [0, 1] and γ1 = [0, 1/z], we have Pss

∫
γi
ωj ∼ δij .



Master formula for Appell F1

Family of integrands for F1.

ω(α1, α2, α3, α4) = xα1 (1− x)α2 (1− z1x)α3 (1− z2x)α4 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3, α4) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
F1(α1, α3, α4, α2; z1, z2)

Master integrands:

ω0 = xε1 (1− x)−1+ε2 (1− z1x)ε3 (1− z2x)ε4

ω1 = xε1 (1− x)ε2 (1− z1x)−1+ε3 (1− z2x)ε4

ω2 = xε1 (1− x)ε2 (1− z1x)ε3 (1− z2x)−1+ε4

Master contours: γ0 = [0, 1], γ1 = [0, z−1
1 ], γ2 = [0, z−1

2 ].



Diagrammatic example with F1

∆


e1

e2

e3

 = e1 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+ e2 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+

e1

e2

⊗

e1

e2

e3

+

e1

e2

e3
⊗

e1

e2

e3



Master formula for p+1Fp

Family of integrands for 3F2.

ω(α1, α2, α3, α4, α5) = xα1 (1− x)α2yα3 (1− y)α4 (1− zxy)α5 dx dy

where αi = ni + εi and ni ∈ Z.
Then ∫ 1

0

∫ 1

0

ω(α1, α2, α3, α4, α5) =

Γ()Γ()Γ()Γ()

Γ()Γ()
3F2(α1 + 1, α3 + 1,−α5; 2 + α1 + α2, 2 + α3 + α4; z)

Basis of master integrands:

ω0 = xε1 (1− x)−1+ε2y ε3 (1− y)−1+ε4 (1− zxy)ε5

ω1 = xε1 (1− x)−1+ε2y ε3 (1− y)ε4 (1− zxy)−1+ε5

ω2 = xε1 (1− x)ε2y ε3 (1− y)−1+ε4 (1− zxy)−1+ε5

With the master contours γ0 =
∫ 1

0
dx
∫ 1

0
dy , γ1 =

∫ 1

0
dx
∫ 1/zx

0
dy ,

γ1 =
∫ 1

0
dy
∫ 1/zy

0
dx , we find that Pss

∫
γi
ωj ∼ δij



Diagrammatic example with 3F2

∆


1 2

 =

1 2

⊗
1 2

+ 1 ⊗
1 2

+ 2 ⊗
1 2

+ 1

2

⊗
1 2

+ 2

1

⊗
1 2

+ 1 2 ⊗
1 2

(with various prefactors and dimension shifts inserted to produce pure integrals)



Features of diagrammatic coaction at two loops

Matrix of integrands and contours for each topology.

Example: sunrise with one internal mass. 2 master integrands in top topology.

=

∫
Γ∅

ω111 ∼ 2F1

(
1 + 2ε, 1 + ε, 1− ε, p2/m2

)
=

∫
Γ∅

ω121 ∼ 2F1

(
2 + 2ε, 1 + ε, 1− ε, p2/m2

)
For each, only two of the generalized cuts are linearly independent!

Thus 2 independent integration contours, e.g. Γ∅ and Γ123.

Diagonalize the matrix:
∫
γi
ωj ∼ δij with

ω1 = aε2ω111, ω2 = bεω111 + cεω121

γ1 = Γ∅, γ2 = − 1

6ε
Γ123 +

2

3
Γ∅

Coaction ∆
(∫

γ
ω
)

=
∑

i

∫
γ
ωi ⊗

∫
γi
ω is expressible in terms of diagrams.



Features of diagrammatic coaction at two loops

For example:

∆

( )
= ⊗

[
+

]

+

[
+

]
⊗

[

+ + +


(with prefactors as seen on previous slide)

In particular, we can recover weight 1 discontinuities:

∆1,k−1

( )
= log(p2 −m2)⊗ + log(m2)⊗



Summary & Outlook

We observe a Hopf algebra structure on Feynman diagrams. At 1 loop,
there is a basis for which the coaction is simply related to pinches and cuts
of the original diagram. Beyond 1-loop: encounter matrix equations (cf.
higher-order differential equations)

Corresponds to Goncharov’s Hopf algebra on MPLs, with prospects for
extensions to hypergeometric integrals and beyond.

Cuts should be understood through homology and Leray residues.

Deep connections to discontinuities and differential equations, which are
tools for computation.

Abstracted master formula: a Hopf algebra based on matched pairs of
integrands and contours

To explore further: systematic description beyond 1 loop, full range of
hypergeometric functions, applications to integral and amplitude
computations.


