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Searching for new physics indirectly

Generically we can search for new physics either directly through the new
resonance production or indirectly by measuring precisely the SM
interactions.

Generically indirect searches can test new physics interactions even if it is
hard to observe directly at collider (new states are too heavy or have

complicated decay final state) ,
Of course indirect searches depend on our knowledge of the precision SM

prediction/



How to parametrize new physics effects?

EFT provides a consistent framework for the parametrization of the new
physics effects.

I If new physics states are heavier than the SM
states and the typical mass scale of the process
Λ > E .

I We can integrate these states out and
parametrize their effects in terms of the higher
dimensional operators.

I The effects of new physics will appear as
corrections in the

(
E
Λ

)
series. SM

NP

EFT



Bounding EFT @ LHC

I EFT expansion is valid only below the
mass of the new heavy resonance

I We are testing the deviations from the
SM in the tails of the Breight -Wigner
resonances.

I EFT analysis becomes important if
the new resonances are too heavy to
be directly produced at the collider.

Λ

E

I At LHC the collision energy is not fixed

I Deviations from SM are bigger at large energies, at the same time
we are closer to the boundary of the EFT validity.

I The searches which are performed on the mass peak of the SM
particle (Higgs coupling) are safe, but we loose information from the
tails



Out of 2499 operators present at the dimension six level we will
focus only on the ones that change the interactions between three
gauge bosons, anomalous Triple Gauge Couplings (aTGC)



Anomalous TGC

I In SM interactions of the vector bosons are fixed by the gauge
symmetry

ig W+µνW−µ W 3
ν + ig W 3µνW+

µ W−ν

I Two possible deformations are allowed at the level of six derivatives

igcθδg1,Z ZνW
+µνW−µ + h.c .+ ig(cθ δκZ Zµν + sθδκγA

µν)W+
µ W−ν

and

λZ
ig

m2
W

W+µ2
µ1

W−µ3
µ2

W 3µ1
µ3

These interactions are bounded at LEP-2 at % level
λZ ∈ [−0.059, 0.017], δg1,Z ∈ [−0.054, 0.021], δκZ ∈ [−0.074, 0.051]



Testing anomalous TGC @LHC

I At LHC these couplings are constrained mainly from the qq → VV
process.

V

V

V

V

I We want to exploit large collision energy of LHC to put stricter
bounds.



SM expectations

I We can use the Goldstone theorem to easily predict the leading
energy growth of the amplitudes.

W+
L

=

G+

×
(
1 + O(m2

W /E2)
)

trWµνW
µν ⊃ ∂VTVTVT , (DµH)†DµH ⊃ ∂VLVTVL + vVTVTVL

⇓

M
(
qq̄ → VTW

+
T

)
∼ E 0, M

(
qq̄ → VLW

+
L

)
∼ E 0

M
(
qq̄ → VTW

+
L /VLW

+
T

)
∼ v

E



Anomalous TGC energy scaling

I It is useful to think about TGC in terms of the EFT operators before
EWSB.

OHB = ig ′(DµH)†DνHBµν ,OHW = ig(DµH)†σaDνHW a
µν

O3W = g
3!εabcW

a ν
µ W b ρ

ν W c,µ
ρ

λZ =
m2

W

Λ2
c3W , δg1,Z =

m2
Z

Λ2
cHW , δκZ =

m2
W

Λ2

(
cHW − tan2 θcHB

)

(not a unique map)

I We can use the Goldstone boson equivalence theorem to estimate
the leading energy scaling of the new contributions.



Energy growth of the BSM amplitudes

We start with dimension six operators

OHB = ig ′(DµH)†DνHBµν ,OHW = ig(DµH)†σaDνHW a
µν

O3W = g
3!
εabcW

a ν
µ W b ρ

ν W c,µ
ρ

Goldstone equivalence theorem relates H ⇒WL,ZL

OHB ⊃ ∂WL∂ZT∂WL + vWT∂ZT∂WL + v2WT∂ZTWT + . . .

OHW ⊃ ∂VL∂VT∂VL + vVT∂VT∂VL + v2VT∂VTVT + . . .

O3W ⊃ ∂VT∂VT∂VT + . . .

Leading energy scaling can be estimated by noting that the light quarks couple
mostly to transverse gauge bosons:

M
(
qq̄ →W−L W+

L

)
∼ E2/Λ2 cHB + E2/Λ2 cHW ∼ E2/m2

W δg1,Z + E2/m2
W δκZ

M
(
qq̄ → ZLW

+
L

)
∼ E2/Λ2 cHW = E2/m2

Z δg1,Z ,

M
(
qq̄ → VTW

+
T

)
∼ E2/Λ2 c3W = E2/m2

W λZ

We have an additional E 2 compared to the SM amplitudes, as
expected from dimensional analysis



EFT bounds @ LHC

Precision of the LHC searches naively has already surpassed the precision
of LEP



EFT bounds @ LHC

sensitivity comes from the tails of the distributions where the EFT
description can fail!



EFT bounds @ LHC

sensitivity comes from the tails of the distributions where the EFT
description can fail!



looking only at low energy categories bounds at LEP are still a bit
stronger!



SM and BSM amplitudes with more details

M
(
qq̄ →W−L W+

L

)
∼ E2/Λ2 cHB + E2/Λ2 cHW ∼ E2/m2

W δg1,Z + E2/m2
W δκZ

M
(
qq̄ → ZLW

+
L

)
∼ E2/Λ2 cHW = E2/m2

Z δg1,Z ,

M
(
qq̄→ VTW+

T

)
∼ E2/Λ2 c3W = E2/m2

W λZ does not interfere with SM!
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Helicity selction rule for O3W

Lorentz symmetry and the dimensional analysis
fixes three point amplitudes to satisfy:∑

h = 1− [g ] = 3

for dimension 6 operators (Cachazo,Benincasa) ⇒
fields coming from WµνWνλWλµ have always the
same helicity.

in SM the vectors will have opposite helicities



General interference/non-interference pattern

In high energy limit we can treat all the SM particles as massless, the
spinor-helicity formalism becomes very useful!

In SM all the amplitudes for 2→ 2 processes follow the helicity selction
rule:

A(V+V+V+V+) = A(V+V+V+V−) = A(V+V+ψ+ψ−)

= A(V+V+φφ) = A(V+ψ+ψ+φ) = 0.

The total helicity is always zero, except for the four fermion amplitudes
mediated by the Higgs exchange.

In BSM for the processes we never get total helicity zero if there is at
least one transverse vector boson. arXiv:1607.05236 AA R.Contino, C.Machado, F.Riva

No interference between SM and BSM in the presence of the
transverse vector bosons!



Helicities of BSM amplitudes

Oi #legsmin helicitymin

F 3 3 3

F 2φ2, Fψ2φ, ψ4 4 2

ψ2ψ̄2, ψψ̄φ2D, φ4D2 4 0

ψ2φ3 5 1

φ6 6 0

Fµνσ
µ
αα̇σ

ν
ββ̇
≡ Fαβ ε̄α̇β̇ + F̄α̇β̇εαβ

Adding extra legs can change the helicity only by ±1



BSM noninterference for 2→ 2 processes

A4 |h(ASM
4 )| |h(ABSM

4 )|
VVVV 0 4,2
VVφφ 0 2
VVψψ 0 2
Vψψφ 0 2

For which operators the non-interference is important?

I F 3 - anomalous triple gauge coupling

I ψψFφ -dipole operators- constrained much stronger by low energy
measurements.

I F 2φ2 - relevant for the diboson production in VBF, however most of
the operators are already strongly constrained by the EWPT and
Higgs physics.



Why the interference term is important?

I Generically in the presence of new physics

L = LSM + L6 + L8 + · · · , LD =
∑

i c
(D)
i O

(D)
i , c

(D)
i ∼ 1

ΛD−4

σ ∼ SM2 +
SM × BSM6

Λ2
+

BSM2
6

Λ4
+

SM × BSM8

Λ4
+ ...

I leading term in 1
Λ2 comes from the interference between SM and

BSM

I Both |BSM8| and |BSM6|2 are suppressed by the Λ4 scale. Is it
consistent to truncate the expansion at the dimension six level?

I The analysis is consistent if only

Max

[
SM × BSM6

Λ2
,
BSM2

6

Λ4

]
� SM × BSM8

Λ4



Importance of interference (qq → VTVT )

σ6 ∼
g4

SM

E 2
[1 +

BSM6× SM︷ ︸︸ ︷
c3W

m2
V

Λ2
+

BSM6
2

︷ ︸︸ ︷
c2

3W

E 4

Λ4
], σ8 ∼

g4
SM

E 2
[

BSM8× SM︷ ︸︸ ︷
c8
E 4

Λ4
+

BSM8
2

︷ ︸︸ ︷
c2

8

E 8

Λ8
]

Then the dimension six truncation is valid if only

max

(
c3W

m2
V

Λ2
, c2

3W

E 4

Λ4

)
> max

(
c8
E 4

Λ4
, c2

8

E 8

Λ8

)

If we will be able to overcome the interference suppression the condition
relaxes to

max

(
c3W

E 2

Λ2
, c2

3W

E 4

Λ4

)
> max

(
c8
E 4

Λ4
, c2

8

E 8

Λ8

)

is this important?

Depends on power-counting i.e. types of UV completions we are studying.
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Typical size of c3W

In the weakly coupled theories O3W appears at one loop level c3W ∼ g2

16π2

⇒ too small to be discovered at LHC independently of weather the
interference suppression is present or not (SUSY, Composite Higgs...)

Remedios power counting (Liu, Riva,Rattazzi,Pomarol) - c3W ∼ g∗
g , c8 ∼ g∗

g , no
improvement in EFT validity reach.

We are getting sensitivity to the sign of the Wilson coefficient,
otherwise hidden from the measurements!
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Overcoming the non-interference obstruction: 1st method
Dixon, Shadmi 94

I The non-interference selection rule applies only for the 2→ 2
processes at tree level. There are violations at NLO!

V +

V +

I Effects are (αs

4π ) suppressed, what about real emission?



Overcoming the non-interference obstruction: 1st method
Dixon, Shadmi 94

I The non-interference selection rule applies only for the 2→ 2
processes at tree level. There are violations at NLO!

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

I (W )3 vertex always emits same helicity W bosons, however the
helicity of the gluon is not restricted!

I For SM amplitudes gluons are carrying away the needed opposite
helicity.

We can use a tag for jet to suppress the background as well, no need to
pay αs

4π for the signal to background ratio.



qq → VV + j

I Indeed the interference grows once an
additional hard jet is required.

I There are no soft and colinear
singularities in the SM amplitude

A(qq̄ → VT±VT±g∓).

since it cannot be generated from
2→ 2 by splitting quark(anti-quark)
line into q(q̄)→ q(q̄)g .

No Jet

Jet with pjT>100GeV

Jet with pjT>mwz/10

Jet with pjT>mwz/5

500 1000 1500

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

mwz [GeV]

σ
in
t/σ

S
M

Jet needs to be hard otherwise the signal will be hidden inside the SM
background which grows quickly in the soft and colinerar regimes.



Overcoming the interference obstruction: 2nd method
Duncan,Kane,Repko 85

I Non-interference result is obtained for the 2→ 2 processes , in
reality we are looking at 2→ 4 process since both W,Z decay.

I Let us consider for simplicity 2→ 3 process in the narrow width
approximation, then the interference with of the amplitudes with
opposite intermediate Z helicities will be:

BSM

V
+

V
+

V
−

V
+

q

q

q

q
l

l

S M
l

l

π
2s
δ(s−m2

Z )
ΓZmZ

MSM
qq̄→WT+ZT−

(
MBSM

qq̄→WT+ZT+

)∗
MZT−→l− l̄+

M∗
ZT+→l− l̄+

⇒
dσint(qq̄→W+l− l̄+)

dφZ
∝MZT−→l− l̄+

M∗
ZT+→l− l̄+

∝ cos(2φZ )



π
2s
δ(s−m2

Z )
ΓZmZ

MSM
qq̄→WT+ZT−

(
MBSM

qq̄→WT+ZT+

)∗
MZT−→l− l̄+

M∗
ZT+→l− l̄+

⇒
dσint(qq̄→W+l− l̄+)

dφZ
∝MZT−→l− l̄+

M∗
ZT+→l− l̄+

∝ cos(2φZ )

The interference is non-zero but modulated with azimuthal angle
of the Z decay products plane. As expected from the 2→ 2 results
the integrated interference is zero again.
( similar ideas for Wγ final state 1708.07823)



Azimuthal angle modulation

θ
φZ

φW

ν

p

p

W Z
l l+

l-

dσint(qq̄ →WZ → 4ψ)

dφZ dφW
∝ cos(2φZ ) + cos(2φW )

I The modulation in azimuthal angles will always happen if there are
virtual states with the different polarizations

I for the λZ deformation, no need to bin in both angles, we can just
look at the decays of one gauge boson.



Azimuthal angle modulation

500 1000 1500

-100

0

100

200

mWZ [GeV]

σ
in
t/
σ
S
M
·
10

3

1st reg.
2nd&3rd reg.
4th reg.

dσint(qq̄ →WZ → 4ψ)

dφZ dφW
∝ cos(2φZ ) + cos(2φW )

I The modulation in azimuthal angles will always happen if there are
virtual states with the different polarizations

I for the λZ deformation, no need to bin in both angles, we can just
look at the decays of one gauge boson.



Ambiguities in angles ( Panico,Riva, Wulzer 1708.07823)

I In experiment we measure only the charges of the leptons, not their
helicities

I Angualr modulation is fixed by the helicities of the decay products,
so we have an ambiguity in determining the plane of the Z decay φZ .

φZ → φZ + π mod 2π

I irrelevant for the O3W operator since the modulation is

∝ cos 2φZ



W decay?( Panico,Riva, Wulzer 1708.07823)

I So far we have focused only on the Z
decay plane, what about W decay
plane?

I We need to reconstruct the neutrino
momentum.

I Two-fold ambiguity leads to the
degeneracy

φW → π − φW mod 2π



φW → π − φW mod 2π φZ → φZ + π mod 2π

Both O3W and Õ3W can be measured in spite of these ambiguities

g

3!
εabcW

a ν
µ W b ρ

ν W c,µ
ρ ∝ cos 2φ1 + cos 2φ2,

g

3!
εabcW̃ a

µνW
b,νρW c,µ

ρ ∝ sin 2φ1 + sin 2φ2

These ambiguities make harder to observe the interference between (+−)
and LL final states( δgZ

1 coupling).

( Panico,Riva, Wulzer 1708.07823)



Bounding EFT consistently

I Suppose EFT expansion breaks down at the scale Λ.

I Obviously EFT analysis is consistent if only the energy of events is
below E < Λ

I What to do if the energy of event is not fully reconstructed?



Leakage

I For 3lν final state the events are
binned in

mT
WZ =

√
(EW

T + EZ
T )2 − (pWx + pZx )2 − (pWy + pZy )2

I we can find approximate map between
the transverse and invariant masses

Leakage =
Ni (mVW > Q)

Ni
× 100%

5%

10%

20%

50%

500 1000 1500 2000 2500 3000
0

1000
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4000

mWZ
T [GeV]

Q
[G
eV

]

then once we know the precision of the measurements we can find the
function Q = Q(mT

WZ ).

Note that to calculate leakage we need to assume something about the
signal, not completely model-independent.



Leakage

I Leakage can become problematic if we
have a sharp resonance peak, we can
overpopulate the region where EFT is
violated.

I leakage will be underestimated ⇒ we
will overestimate the Wilson
coefficient.

However if we discover a sharp resonance
who cares about EFT...

Λ

E



Bounding EFT consistently

I Experimental collaborations use form-factor procedure

Nth → Ñth = nSM + n̂1c3W + n̂2c
2
3W

I where the n̂i values are calculated assuming

c3W → c3W ×
1

(1 + ŝ/Λ2)2

I if the sensitivity comes from the events with energy > Λ, EFT
interpretation is not clear.



Bounding EFT consistently

Another possibility would be to restrict the generated event phase space
to be only within EFT validity (1609.06312)(proposed for DM in 1502.04701)

Nth → Ñth = nSM + n1|(minv<ΛMC)c3W + n2|(minv<ΛMC)c
2
3W

The the bound is conservative if only

sign(∆σBSM)|minv>ΛMC
= sign(∆σBSM)|minv<ΛMC

can become problematic if interference term is big.

similar to the previous method with step-function “form-factor”

1

(1 + ŝ/Λ2)2
→ θ(Λ−

√
ŝ)



all of the methods trivially coincide once Λ→∞. For the values of
Λ ∼ O(few TeV) the difference can be of O(20%)

For W ,Z production the problem can be partially resolved once the
neutrino momentum is reconstructed.
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Analysis

I We look only at pp →W±Z → lllν final state

I All of the events are binned in mT
WZ mass

[200, 300, 400, 600, 600, 700, 800, 900, 1000, 1200, 1500, 2000] GeV

I We perfomr the binning in pT of the aditional jet
pTj = [0, 100], [100, 300], [300, 500], [500,∞] GeV

I Z decay azimuthal angle is binned in two categories
φZ ∈ [π/4, 3/4π] and φZ ∈ [0, π/4] ∪ [3π/4, π] .



Results

Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]

95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1
Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5
Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2
Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

λZ ∈ [−0.0014, 0.0016] ([−0.003, 0.0034])

Sensitivity to linear terms is strongly improved!



Results
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We are sensitive to the sign of the Wilson coefficient, can resolve possible
degeneracies in the fit!



RφZ
=

NφZ∈[π/4,3π/4] − NφZ∈[0,π/4]∪[3π/4,π]

NφZ∈[π/4,3π/4] + NφZ∈[0,π/4]∪[3π/4,π]

RφZ asymmetry is particularly sensitive to the interference!



Adding CP odd operator to the fit

O3W =
g

3!
εabcW̃ a

µνW
b,νρW c,µ

ρ

Wilson coefficient is strongly bound neutron EDM

|λγ,Z | < 1.2× 10−3, |c̃3W | < 0.19 at 90 %CL

from 1309.7822



O3W and Õ3W at 3ab−1 ( with Barducci, Elias-Miro,Panico,Riva,Venturini,Wulzer)

★

nEDM
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I Binning in φZ strongly improves the possibility to differentiate
between the CP even and CP odd operators

I HL-LHC sensitivity becomes comparable to the neutron EDM
cosntraints on the CP odd operator.



O3W and Õ3W at FCC, preliminary results

★
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LEP HL-LHC ILC ×10−4 CEPC×10−4 FCC×10−4
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ILC & CEPC from 1507.02238, 1306.6352



Outlook

Differential distributions improve the sentivity to the New Physics.
In particular for the O3W operator the improvement is not only
quantitative but qualitative. We are able to test the interference between
SM and BSM ⇒ better behaved EFT expansion, measure the sign of the
new couplings.

Similar azimuthal modulation effect should happen always when
there are different helicity intermediate states:

I applications to the other operators?different final states?

I improvements of the global fit with all the TGCs?
...





Cross-section in the presence of the dimension six operators

I If we assume the lepton number conservation

L = LSM + L6 + L8 + · · · , LD =
∑

i

c
(D)
i O

(D)
i

c
(D)
i ∼ 1

ΛD−4

I Dominant effects come from the dimension six operators!

σ ∼ SM2 +
SM × BSM6

Λ2
+

BSM2
6

Λ4
+

SM × BSM8

Λ4
+ ...

I leading term in 1
Λ2 comes from the interference between SM and

BSM!

What are the properties of the interference term?

SM× BSM6

Λ2



Energy dependence of 2→ 2 scattering

SM BSM+

I From dimensional analysis

A2→2 ∼ ASM + ABSM6

(
m2

Λ2
+

E2

Λ2

)

I Large energy E region is most sensitive to BSM effects, however we
need to be careful to make sure the EFT expansion remains valid.
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I Large energy E region is most sensitive to BSM effects, however we
need to be careful to make sure the EFT expansion remains valid.

For simplicity let us start with the massless theory i.e. E � mW ,mt



2→ 2 scattering at tree level: the best basis

I There are many basis for dimension six operators, which one is more
convenient for understanding the properties of 2→ 2 scattering?

I It is easier to calculate the contact diagram, so it is better to reduce
the number of the bivalent and trivalent operators to minimum.

I So we need something like Warsaw basis with the following
operators:

F3,F2φ2,Fψ2φ, ψ4, ψ2ψ̄2, ψψ̄φ2D, φ4D2, ψ2φ3, φ6

I F ≡ Fµν ,D ≡ Dµ



Selection rules for 2→ 2 scattering in SM

I Amplitudes of the massless gauge theory follow the helicity selection
rules (MHV)

A(V+V+V+V+) = A(V+V+V+V−) = A(V+V+ψ+ψ−)

= A(V+V+φφ) = A(V+ψ+ψ+φ) = 0.

I helicity of all the SM 2→ 2 scattering amplitudes is zero, except for
the four fermion amplitudes mediated by the Higgs exchange.

I SM helicity selection rules follow supersymmetric Ward identities
(SM is supersymmetric at tree level if yu = 0 or yd,l = 0)

It is very important to trace the helicity of the BSM amplitudes! very
transparent in the helicity-spinor formalism!
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Helicity counting rules

I fermions: Weyl spinors ψα, ψ̄
α̇ transforming as (1/2,0) and (0,1/2)

under Lorentz group

I gauge field (1/2,1/2):

Fµνσ
µ
αα̇σ

ν
ββ̇
≡ Fαβ ε̄α̇β̇ + F̄α̇β̇εαβ

where F , F̄ are self-dual and anti-self dual parts transforming as
(1,0) and (0,1). F (F̄ ) project helicity +1(−1) states.

I Calculation of the helicity of the amplitudes from the 4-valent
operators becomes trivial:

h(φ2F 2) = 2h(φ) + 2h(F ) = 2



Helicity of the non-contact diagrams
Am Am′± ∓

I Helicity of the total amplitude will be

h(An) = h(Am) + h(Am′)

I True if there is a pole in the factorization channel, i.e. we have a
definite helicity state propagating on the virtual line.

I in SM always true, in EFT the pole of the propagator can be
cancelled by the derivatives in the new vertex:

2φ/p2 ∼ φ⇒ no pole

I To avoid cancellations between the derivatives in the vertex and the
poles it is better to redefine operators to have as less derivatives as
possible.

It is better to use basis where the operators have less number of
derivatives and more fields.



Classifying the dimension six operators (Cheung, Shen)

I Define for an arbitrary amplitude holomorphic and anti-holomorphic
weights:

w(A) = n(A)− h(A), w̄(A) = n(A) + h(A)

I We can define the weight of the operator in the following way

w(O) = min
A
{w(A)} , w̄(O) = min

A
{w̄(A)}

I note that this definition can be applied in any basis of dim 6
operators.



Properties of holomorphic weights (w , w̄) (Cheung, Shen)

I we need to find

w(O) = min
A
{w(A)} , w̄(O) = min

A
{w̄(A)}

I note that weights are monotonically growing functions of n

AO ASM
± ∓

∆w = ∆n + ∆h = 1 + h(ASM) & 0

∆w̄ = ∆n −∆h = 1− h(ASM) & 0

I the weight of the operator is defined by the diagram with less
number of legs!



The weights of the dimension six operators

Oi nmin hmin (w , w̄) ci

F 3 3 3 (0,6) g∗/Λ2

F 2φ2, Fψ2φ, ψ4 4 2 (2,6) g2
∗/Λ2

ψ2ψ̄2, ψψ̄φ2D, φ4D2 4 0 (4,4) g2
∗/Λ2

ψ2φ3 5 1 (4,6) g3
∗/Λ2

φ6 6 0 (6,6) g4
∗/Λ2

The helicity of the amplitude generated by the operator O will be
constrained

w̄(O)− n ≤ h(AOn ) ≤ n − w(O) .



BSM noninterference for 2→ 2 processes

A4 |h(ASM
4 )| |h(ABSM

4 )|
VVVV 0 4,2
VVφφ 0 2
VVψψ 0 2
Vψψφ 0 2

ψψψψ 2,0 2,0
ψψφφ 0 0
φφφφ 0 0

no interference for V 4,V 2φ2,V 2ψ2,Vψψφ processes!!



Classifying the finite mass effects

I insertion of the Higgs vev flips the fermion helicity ∆h = 1, and
every helicity flip will cost ∼ mψ

E .

Vµ ∂µφ

< φ >

I Insertion of the one scalar vev can transform the transverse
component to longitudinal and vice versa ∆h = 1 ∼ mV

E



BSM noninterference for 2→ 2 processes

A4 |h(ASM
4 )| |h(ABSM

4 )|
VVVV 0 4,2
VVφφ 0 2
VVψψ 0 2
Vψψφ 0 2

For which operators the non-interference is important?

I F 3 - anomalous triple gauge coupling

I ψψFφ -dipole operators- constrained much stronger by low energy
measurements.

I F 2φ2 - relevant for the diboson production in VBF, however most of
the operators are already strongly constrained by the EWPT and
Higgs physics.
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