1 Questions exercise class (29.9.2019)

1.1 Meaning of $\frac{\partial x'^{\mu}}{\partial x^{\nu}}$

We have seen that $\frac{\partial x_{\mu}}{\partial x_{\nu}} = \delta^{\nu}_{\mu}$. However from classical physics I know that $\frac{\partial x_1}{\partial x_0}$ is the velocity along the direction 1. From these two it would follow that the velocity along 1 is always zero?

In GR a different approach is taken. The trajectory of a massive point object is coded in a curve $\gamma(\tau)$ along the four-dimensional (curved) spacetime. Thus the velocity of that object is denoted by

$$v = \frac{d}{d\tau}\gamma(\tau) \tag{1}$$

Instead, $\frac{\partial x'^{\mu}}{\partial x^{\nu}}$ should be interpreted as a component of the jacobian of a transformation $x' = x'(x^0, x^1, x^2, x^3)$ of the coordinates.

1.2 Meaning of $(\partial_{\mu}\omega_{\rho})'$

Why does $(\partial_{\mu}\omega_{\rho})' = \partial'_{\mu}\omega'_{\rho}?$

By definition. One of the axioms of GR is that its equations should be covariant, that is they should involve tensors, that is objects which transform under the rule

$$\omega'_{\mu_1\dots\mu_n} = \omega_{\sigma_1\dots\sigma_n} \prod_{i=1}^n \frac{\partial x_{\mu_i}}{\partial x'_{\sigma_i}} \qquad v'^{\mu_1\dots\mu_n} = v^{\sigma_1\dots\sigma_n} \prod_{i=1}^n \frac{\partial x'^{\mu_i}}{\partial x^{\sigma_i}}; \tag{2}$$

in the case of a two rank tensor

$$\omega'_{\mu\nu} = \omega_{\sigma\rho} \frac{\partial x_{\mu}}{\partial x'_{\sigma}} \frac{\partial x_{\nu}}{\partial x'_{\rho}}.$$
(3)

This request allows to cast equations for tensors in a form that is explicitly invariant under action of diffeomorfisms (transformations of coordinates). Indeed, the contraction of two tensors, $C^{\mu_1...\mu_n}H_{\mu_1,...,\mu_n}$ is invariant under transformations in the form (2). In trying to find a way to differentiate tensors while preserving covariance, we would like to find tensors whose components transform as given in (3). In the exercise classes we have shown that $\partial_{\mu}\omega_{\nu}$ does not have the transformation properties of a two rank tensor. Instead, we showed that this can be done by defining D_{μ} with the constraint

$$(D_{\mu}v_{\nu})' := D'_{\mu}v'_{\nu} \stackrel{!}{=} D_{\sigma}v_{\rho}\frac{\partial x_{\mu}}{\partial x'_{\sigma}}\frac{\partial x_{\nu}}{\partial x'_{\rho}}.$$
(4)