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According to Wigner’s work on the unitary representations of the Poincaré group, represen-
tations of it are characterized by a minimal set of Casimir invariants, PµPµ and WµW

µ,
corresponding to mass and spin. Together with the notion that particles are representations
of the symmetry group of the theory (and leaving gauge symmetry aside), one understands
that particles are defined uniquely by their mass and spin.

Exercise 1

• Let P̂µ be the generator of translations along the direction µ, that is

eiaPµΦ(x0, x1, x2, x3) = Φ(x0 + δµ0a, x1 + δµ1a, x2 + δµ2a, x3 + δµ3a). (1)

Show that the eigenvalue equation for the Casimir invariant PµPµΦ = m2Φ is the
Klein-Gordon equation.

• Let Wµ = 1
2εµνσρJ

νσP ρ, where

Jνσ = (X ∧ P )νσ = ενσταX
τPα (2)

is the relativistic angular momentum. Show that, if the particle Ψ is massive, in its rest
frame

W0Φ = 0, WiΦ =
m

2
εijkJ

jkΦ (3)

where J jk is now the ordinary 3d Angular momentum. As a consequence show that the
operator WµW

µ reduces to the usual Casimir invariant for the angular momentum

WµW
µ = −m2J jkJjk. (4)

The eigenvalues of this operator denote the representation of the SO(3) group, and thus
WµW

µ = s(s+ 1). If the particle is massless, a more careful treatment has to be done.
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Exercise 2 In the last exercise, we have seen that imposing symmetry under Poincaré
transformations naturally leads to viewing particles as representations of the Poincaré group.
However, we have also seen that the spin of such particles can only be an integer. We
would now like to construct half-spin particles. These particles must still satisfy the relation
PµP

µΨ = m2Ψ.

• A topological space is said to be simply connected if every closed curve on it can be
continuously contracted to a point. We will identify the group SO(3) with a topological
space, and show that it is not simply connected. Consider a solid sphere of radius π
(meaning all the points on the surface and those inside the surface). We can associate
to each rotation, given by a unit vector n̂ and an angle θ ∈ [−π, π], the point in the
solid sphere θn̂. However, we observe that, for fixed n̂, θ = π and θ = −π identify
the exact same rotations, and thus one has that all the antipodal points on the sphere
surface must be identified. The solid sphere, with this identification of antipodal points,
is a topological space homeomorphic to the SO(3) group. Show that it is not simply
connected.

As a consequence of the fact that SO(3) is not simply connected one obtains that SO+(3, 1)

(the ortochronous Lorentz group), which has as a subgroup SO(3), is not simply connected.
The universal covering space of SO+(3, 1) is SL(2, C).

• Show that the Lie algebra of SO+(3, 1) is su(2)× su(2).

The relevance of covering spaces is especially clear in light of this result, that SL(2, C) and
SO+(3, 1) share the same Lie algebra, su(2)× su(2). Indeed, representations of su(2)× su(2)

exponentiate to representations of SO+(3, 1) only if the sum of the spins j1 and j2 of the two
su(2) algebras satisfy j1 + j2 ∈ Z, due to it being not simply connected, while they always
exponentiate to representations of SL(2, C).

• Consider the most general first order equation

Aµ∂µΨ−mΨ = 0 (5)

and show that this equation is invariant under transformations Ψ → SΨ, where S is a
matrix in some representation of SL(2,C), if and only if
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S−1AµS = Λ ν
µ Aν . (6)

It turns out that the above equation can only be satisfied if S is in a half-spin repre-
sentation of SL(2,C). This relation defines a set of matrices Aµ, which give rise to a
Clifford algebra.
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