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Exercise 1

To Einstein’s equations as quickly as possible (following A. Zee: Gravity in a

Nutshell)

(i) General Relativity postulates a connection between matter (or energy) that fills space

and the geometry of that space. The metric gµν is seen as a dynamical quantity that

changes from point to point in space-time, according to the corresponding equations of

motion. We want to start from a field theoretical approach here, according to which,

the equations of motion can be derived from minimizing an action, i.e. the integral over

space-time of some Lagrangian density, with respect to varying the dynamical field, i.e.

the metric. Let’s begin from the action of some field as seen in Quantum Field Theory

I =

∫
d4xL(φ(x)) (1)

However, in curved spacetime, one can choose any kind of coordinates to describe it.

Hence the action should be invariant under a general coordinate transformation

xµ → x′µ = Sµν x
µ (2)

The Lagranigian density L(φ(x)) should be a scalar under general coordinate trans-

formations. The same, then, should be true for the integral measure. Show that the

measure d4x is not invariant under the transformation in eq.2. Show, however, that the

quantity

d4x
√
−g , g ≡ det(gµν) (3)

is invariant. Hence we should look for an action of the form

I =

∫
d4x
√
−gL(φ(x)) (4)

(ii) Postulate that the Lagrangian is a scalar function of the ‘field’, i.e. the metric, and it

should contain a term with a two derivatives with respect to the metric, in the same

way that the Lagrangian of a field has a ‘kinetic’ term with two derivatives.
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(iii) Gravity is related to curvature, and curvature expresses the failure of commutativity

in differentiation. So let’s start with a covariant vector Bρ. Show that the derivative

of this object, ϑµBρ does not transform as a second rank tensor, under eq. 2. Instead,

show that we have to define a new derivative, the covariant derivative,

DµBρ ≡ ϑµBρ − ΓσµρBσ (5)

and fix the transformation properties of the object Γσµρ such DµBρ transforms as a

second rank covariant tensor:

Γ′σµρ = (S−1)βµ(S−1)γρS
σ
αΓαβγ + Sσα

ϑ2xσ

ϑx′µϑx′ρ
(6)

Note that the covariant derivative defined here is completely analogous to the covariant

derivative defined for gauge fields.

(iv) The non-commutativity of derivatives is expressed by defining the Riemann tensor Rσµνρ
from

[Dµ, Dν ]Bρ ≡ −RσρµνBσ (7)

Show that

Rσρµν =
(
ϑµΓσνρ + ΓσµκΓκνρ

)
− (µ↔ ν) (8)

Taking into account that (we don’t show this here)

Γµνρ =
1

2
gµτ (ϑµgντ + ϑνgρτ − ϑτgνρ) (9)

note that Rσρµν contains terms with two derivatives, so it’s the object we are looking

for.

(v) Show that Rλρµν = −Rλρνµ, Rτρµν = −Rρτνµ, Rτρµν = −Rµντρ. Hence show that out of

the Riemann tensor you can only construct one rank-2 tensor, the Ricci tensor

Rµν ≡ gτρRτµρν (10)

and one scalar

R ≡ gµνRµν (11)

(vi) We are thus led to the action (called the Einstein-Hilbert action) for empty space-time

IEH =

∫
d4x
√
−gCR(x) (12)

Vary the action with respect to the metric, gµν to get Einstein’s equation in empty

space:

Rµν −
1

2
gµνR = 0 (13)
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Note: when you vary the action and you require δI = 0, there are three terms inside

the integral:

δIEH =

∫
d4xδ(

√
−g)CgµνRµν +

∫
d4x
√
−gCδ(gµν)Rµν +

∫
d4x
√
−gCgµνδ(Rµν)

(14)

The last term is in fact a total derivative, so it does not contribute to the action. If you

want to derive this, look at section VI.5 of Zee’s book.

Note: You will need the identity δ
√
−g =

√
−g 1

2g
µνδgµν . If you want to prove this, you

need to use log(detM) = Tr(logM), for gµν in the place of the matrix M .
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