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Chapter 9

Proton structure in QCD

Literature:

• Halzen/Martin [1], Chap. 8-10.

This chapter reviews the study of the proton structure, which lasted form after World
War II to the closure of HERA (DESY) in 2007. The understanding gained from those
results is of essential importance to predict cross-sections for the Tevatron (Fermilab) and
the LHC (CERN), since both of them use hadrons as colliding particles.

First, the methods used to study the proton structure are presented and the relevant
kinematic quantities are defined, starting from the similar case of e−µ−-scattering. We
then generalize to the case of a composite hadron. After that, the Bjorken scaling is
introduced. Finally, the steps leading to the discovery of the uncharged parton – the
gluon – are described.

One must remember that the link between the particle zoo and the results concerning the
proton structure was not at all obvious, as the quark model had not yet imposed itself as
a leading theory.

9.1 Probing a charge distribution & form factors

To probe a charge distribution in a target one can scatter electrons on it and measure their
angular distribution (Fig. 9.1). The measurement of the cross-section can be compared
with the expectation for a point charge distribution,

dσ

dΩ
=

(
dσ

dΩ

)

point

|F (q)|2, (9.1)

where F (q) is called the form factor, and q := ki−kf is the momentum transfer from the
probing particle to the target. The momentum transfer is also related to the resolution
power of the probe.

1
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�
ki

kfq

Figure 9.1: Probing a charge distribution

When probing a point (≡ spinless & structureless) target, F (q) ≡ 1 and one gets the
Mott cross section,

(
dσ

dΩ

)

point

=
(Zα)2E2

4k4 sin4(θ/2)

(
1− k2

E2
sin2(θ/2)

)
, (9.2)

where Z is the electric charge measured in units of the elementary charge, E and k =
|ki| = |kf | are respectively the energy and the momentum of the probing particle, and θ
is the scattering angle. One typically measures θ and E of the scattered electron.

Comparing the angular dependence of the differential cross-section of eletrons scattering
off protons with the Mott cross sections, measurements show that the two distributions
do not agree at large scattering angles as shown in Fig. 9.2.

⇤
“The Discovery of the Point-Like Structure of Matter” 4 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

The first electron scattering measurements at Stanford were made using carbon targets. 
Scattering from hydrogen was first observed using a CH2 target, although the first published data 
on hydrogen came from measurements using high-pressure gas targets. The early data indicated 
that the “proton was not a point”, that there were contributions from magnetic scattering, and 
also that the magnetic and electrical sizes were comparable. 
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Figure 3 First published results on electron-proton elastic scattering measured at the Mark III 
accelerator at Stanford. 

These very direct measurements of the proton’s extended charge and magnetic moment 
distributions were a major event in high energy physics in the mid-1950s. Measurements on 
hydrogen (and deuterium) targets continued at energies up to 1 Gev. The electron community 
began to consider electron accelerators with even higher electron energies. By this time, it had 
been demonstrated (at Cornell and elsewhere) that scattering experiments could be performed at 
electron synchrotrons using internal targets or external beams. CEA, DESY and SLAC were soon 
under construction.  

In the original proposal for SLAC (1957), electron scattering was mentioned as an 
extension of the successful experiments at Stanford’s Mark III linac, and as experiments where 
violations of QED might be observed. In a 1960 summer study at SLAC, J. Cassels produced a 
more sophisticated analysis of electron scattering, finding that there might still be lots to learn 
from elastic scattering at SLAC energies. 

In 1963 a collaboration of physicists from MIT, Caltech and SLAC began to think 
seriously about scattering experiments at SLAC, and the equipment that would be needed to 
make such measurements. 

Figure 9.2: Mott cross section (dashed line) and compared to the experimental data form
electron-hydrogen scattering. The measurement disagrees with the point-linke cross sec-
tion at large scattering angles.
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9.2 Structure functions

Starting from the example of scattering of two different elementary spin-1
2

particles, an
ansatz is made for the general case.

9.2.1 e−µ−-scattering in the laboratory frame

In the case of the e−µ−-scattering in the laboratory frame at high energy (s�M = mµ),
the matrix element is given by,

|Mfi|2 =
e4

q4
Lµνe−L

µ−

µν

=
8e4

q4
2M2E ′E

(
cos2(θ/2)− q2

2M2
sin2(θ/2)

)
,

where E ′ is the energy of the scattered electron, and the transferred momentum,

q2 ≈ −2k · k′ ≈ −4EE ′ sin2(θ/2),

yielding – upon inclusion of the flux factor and phase space – the differential cross section
for e−µ− in the laboratory frame,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E

E ′

(
cos2(θ/2)− q2

2M2
sin2(θ/2)

)
. (9.3)

9.2.2 e−p-scattering & the hadronic tensor

When dealing with hadrons, the possibility of inelastic scattering, i.e. scattering where
the final state contains excited states or other particles than the probe and the scattering
particle, must be taken into account, shown in the Feynman diagram,

�p

ki kf

q

W

where W is the invariant mass of the particles in the final state (Sect. 4.4.4, p. 50). The
scattering cross-section as a function of W is shown in Fig. 9.3. One notes the elastic peak
at W = mp followed by a peak at 1232 MeV corresponding to the ∆+ resonance and
produced by the reaction,

e−p→ e−∆+ → e−pπ0
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Figure 9.3: Differential cross section as a function of the invariant mass W .

To calculate the e−p-scattering, one makes the substitution Lµνµ− → W µν
p , where,

W µν
p = −W1g

µν +
W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν), (9.4)

is the most general rank-2 tensor with functions W1, ...,W5 constructed from Lorentz
scalars 1 depending on the internal structure of the proton, constructible from the 4-
momentum of the proton (p) and the momentum transfer (q).

Imposing current conservation ∂µj
µ
p = 0, one can rewrite W4 and W5 in terms of W1 and

W2 :

W5 = −p · q
q2

W2

W4 =

(
p · q
q2

)2

W2 +
M2

q2
W1,

Replacing W4 and W5 in Eq. (9.4) :

W µν
p = W1

(
−gµν +

qµqν

q2

)
+
W2

M2

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
. (9.5)

W1 and W2 are the so-called the structure functions of the proton. They depend on
two independent variables,

Q2 := −q2 : the 4-momentum transfer squared,

ν =
p · q
M

: the energy transferred to the nucleon by the scattering electron,

1The “missing” W3-term is related to the axial part of the current, and is relevant when considering
the weak interaction. It is discarded in what follows.
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or their dimensionless counterparts,

x = − q2

2p · q =
Q2

2Mν
: the Bjorken scaling x-variable, 0 ≤ x ≤ 1,

y =
p · q
p · ki

, 0 ≤ y ≤ 1.

With the variables defined above, we have the following expression for the invariant mass :

W 2 = (p+ q)2 = M2 + 2Mν −Q2. (9.6)

The elastic scattering case W 2 = M2 corresponds to the value x = 1. Fig. 9.4 shows the

Figure 9.4: Allowed kinematical region of the Q2-ν-plane.

kinematic region in the Q2-ν-plane.

Using the hadron tensor, Eq. (9.5), the scattering matrix element is,

Le
−

µνW
µν
p = 4EE ′

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)

Including the flux and phase-space factors (Sect. 2.2.4, p. 13 & 3.2.3, p. 23) one finds the
differential cross-section in the laboratory frame,

dσ

dE ′dΩ
=

α2

4E2 sin4(θ/2)

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)

Integrating over the energy of the outgoing election E ′, one gets,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E ′

E

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)
.
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9.3 Parton model

The key factor for investigating the proton substructure is the wavelength of the probing
photon, which is related to the transferred momentum by,

λ ∼ 1√
Q2
,

Therefore, large momentum transfer is equivalent to high resolution. As shown in Fig. 9.5,
for λ ≈ 1 fm, one can “see” the proton as a single particle, whereas for, λ � 1 fm, the

Figure 9.5: Relationship between resolution and transferred momentum.

probed particles are the constituents of the proton.

9.3.1 Bjorken scaling

J. Bjorken proposed in 1968 that, in the limit of infinite Q2, the structure functions
should only depend on the scaling variable x, and not on Q2 and ν independently. This
corresponds to postulating that at large Q2 the inelastic e−p-scattering is a sum of elastic
scatterings of the electron on free partons within the proton, as illustrated below.

�
p

γ∗

�p

γ∗

Q2→∞
=⇒

In this limit, one defines then the functions,

F1(x) := lim
Q2→∞

MW1(Q2, ν), (9.7)

F2(x) := lim
Q2→∞

νW2(Q2, ν). (9.8)
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9.3.2 SLAC-MIT experiment

To test the hypothesis of Bjorken, a joint experiment of the SLAC and MIT groups was
performed at the SLAC laboratory. Sketches and photographs of the experiment are shown
in Fig. 9.6.

(a) (b)

⇤
“The Discovery of the Point-Like Structure of Matter” 6 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

There were two common ways of defining the inelastic form factors in the 1950s, and 
that history has left us using a mixture of parameters from the two expressions for the cross-
section. In the end the virtual photon approach did not simplify the physics, but we still talk 
about R, the ratio of longitudinal to transverse virtual photons, along with the structure functions 
W1 and W2 . 

In the initial planning of the SLAC experimental facilities, the kinematics and the 
estimates of cross-sections for elastic scattering and for photoproduction of pions provided the 
main design guidelines for the equipment. It was important to have sufficient resolution to 
cleanly separate states that differed by a single pion mass in photoproduction or to separate the 
excited states in inelastic scattering. 

I will not describe the spectrometer facility we built in End Station A, since that has been 
done many times and details are available in the literature. We built three spectrometers capable 
of analyzing singly charged particles with moment of 20, 8, and 1.6 Gev/c. The solid angle 
acceptances were 0.1, 1, and 5 milli-steradians respectively. The scale of the devices was quite 
impressive for its day.  

TARGET 
POSITION

8 Gev SPECTROMETER

20  Gev SPECTROMETER

      1.6 Gev
SPECTROMETER

MONITORS
BEAM

 

Figure 5 Spectrometer facility at the Stanford Linear Accelerator. Each of the Spectrometers 
can be rotated about the target position to vary the angle of scattering. 

The basic design philosophy was conservative – SLAC was a very visible project, and it 
was important to the laboratory that reliable results be generated in the early running. It seemed 
unlikely that the experiments could be reproduced soon at another accelerator, so any wrong 
answers were likely to mislead for a long time. Beam time would be very costly at SLAC, so we 
tried hard to make the spectrometer complex efficient. This led us to incorporate a mid-sized 
computer dedicated to our data acquisition and on-line analysis. Our computer system became a 
model for those who could afford such things. 

(c)

Figure 9.6: SLAC-MIT experiment. (a), (b) Sketches showing the 1.5 GeV, 8 GeV and 20
GeV spectrometers. (c) Photograph of the experiment.

The setup measured the scattering cross-section for fixed energies of the scattered electron
and various angles. Fixing x (or ω = 1

x
) one gets different values of Q2 by varying the

angle. The experimental result is shown in Fig. 9.7. This experiment confirmed the scaling
hypothesis of Bjorken and gave a decisive piece of evidence in favour of the parton model
introduced by Feynman in 1969. This model describes the proton as composed of partons
which are the object one “sees” during an e−p-scattering. One may describe the scattering
process as shown in the following diagrams,
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⇤
“The Discovery of the Point-Like Structure of Matter” 14 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

ω = 4

4 6 820
Q2

  [(GeV/c)2]

0

0.2

0.4

νW2

  6O       18O

10OooOOO

O        26O

7145A54-92  

Figure 13  Values of νW2 vs. Q2 at ω = 4, showing that νW2 does not vary with Q2, (ie. νW2 
“scales”) 

So things were in pretty good shape, but nothing is ever perfect. As the data improved, it 
became clear that scaling was not working over the full range of our data (it turns out that ω = 4 
is not a good place to look for scale breaking). At first, the scale breaking was observed only 
below W = 2.6 Gev, and we wondered if the "resonant region" was more extensive than we had 
assumed, even though we were seeing no visible peaks between 2 and 2.6 Gev. So for a while we 
made “scaling plots” including only data having W >2.6 Gev. Another solution was to use a 
slightly different scaling variable, ω’= W2 /Q2 – (this variable is equivalent to 2Mν/Q2 in the 
limit as ν, Q2, and W go to infinity, so Bjorken’s hypothesis was still valid). We could detect 
only minor deviations from scaling in ω’, and used ω’ in our presentations for a couple of years. 

By the summer of 1971, most people were at least aware of our results and the quark-
parton interpretation of our data. A growing number of theorists were hard at work, and soon the 
concepts of “asymptotic freedom” and “confinement” (sometimes called “infra-red slavery”) led 
on to Quantum Chromodynamics. These advances actually predicted scale breaking, so we could 
go back to ω (or x) as the scaling variable.  

It was in 1971 that the original SLAC-MIT collaboration split into two independent 
groups. There was, at that time, some disagreement about what to do next. Most of the SLAC 
contingent worked on an experiment at 4º (and at 58 – 60°), while all the MIT scientists and a 
couple of people from SLAC repeated the hydrogen measurements at 18º, 26º and 34º along with 
new measurements on deuterium. The breakup was so friendly that many people don't realize that 
it ever happened and make no distinction between SLAC-MIT and MIT-SLAC. 

Late in 1969 we had heard rumors that an analysis of CERN neutrino data was indicating 
that the neutrino scattering cross-sections were proportional to the neutrino energy, as expected 
in the quark-parton picture. By 1972 a major independent confirmation of the quark model was 
announced by Don Perkins at the ICHEP conference in Batavia. The Gargamelle data showed 

Figure 9.7: Experimental evidence for Bjorken scaling as measured at the SLAC-MIT
experiment (ω = 1/x).

�
p

γ∗

�p

γ∗

i, xp

=
∑

i

∫
dxe2

i

[ ]

The sum runs over all possible partons, each carrying an electric charge ei (in units of
the elementary charge) and a fraction x of the total momentum of the proton. This gives
us a physical interpretation of the Bjorken scaling variable x. Since the fraction of proton
momentum carried by the i-th parton is not known a priori, one needs to integrate over all
possible values of x between zero (the parton carries no momentum) and one (the parton
carries all the proton momentum).

The probability fi(x) that the struck parton carries a fraction x of the proton momentum
is called parton distribution function (PDF). The total probability must be equal to
1, in order for the proton as a whole to carry all its momentum :

∑

i

1∫

0

dx xfi(x) = 1. (9.9)

In Feynman’s parton model the structure functions are sums of the parton densities
constituting the proton,

νW2(Q2, ν)→ F2(x) =
∑

i

e2
ixfi(x) (9.10)

MW1(Q2, ν)→ F1(x) =
1

2x
F2(x) (9.11)
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9.3.3 Callan-Gross relation

The result,

2xF1 = F2 , (9.12)

is known as Callan-Gross relation and is a consequence of quarks being spin-1
2

particles.
It can be derived by comparing the e−p and e−µ− differential cross sections and setting
the mass of the quark to be m = xM . Remembering the definitions of F1 and F2, Eqs.
(9.7) and (9.8), one has,

F1(x)

F2(x)
=
W1(Q2, ν)

W2(Q2, ν)

M

ν
,

and since the scattering is elastic with a point particle (the parton),

2W1(Q2, ν) =
Q2

2m2
δ

(
ν − Q2

2m

)

W2(Q2, ν) = δ

(
ν − Q2

2m

)
⇒ W1(Q2, ν)

W2(Q2, ν)
=

Q2

4m2
,

and one gets the desired result, by putting in the definition of x and m = xM ,

F1(x)

F2(x)
=

Q2

4m2

M

ν
=

Q2

2Mν

1

2x2
=

1

2x

Fig. 9.8 shows the Q2-independence of the Callan-Gross relation.

Figure 9.8: Experimental evidence for the Callan-Gross relation.
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9.3.4 Parton density functions of protons and neutrons

The proton is know to be composed of two up and one down quarks (Sect. 7.3, p. 131).
These quarks are known as valence quarks and are denoted qv. They are the ones de-
termining the properties of a hadron. It can however occur (in particular at high Q2,
corresponding to a high resolution) that a valence quark radiates a gluon which then
splits in a quark-antiquark pair which is then probed by the virtual photon. These quarks
are referred to as sea quarks and are denoted qs.

In the case of e−p-scattering and e−n-scattering, writing qN instead of fNq (x) for conve-
nience and using Eq. (9.10), we get respectively,

1

x
F ep

2 =

(
2

3

)2

(up + ūp) +

(
1

3

)2

(dp + d̄p) +

(
1

3

)2

(sp + s̄p) (9.13)

1

x
F en

2 =

(
2

3

)2

(un + ūn) +

(
1

3

)2

(dn + d̄n) +

(
1

3

)2

(sn + s̄n), (9.14)

where we have discarded the contributions of partons heavier than the strange quark.

One makes the assumption that these functions are not independent (exchanging an up
quark for a down turns basically a proton into a neutron), and defines the total PDF of
a given quark as the sum of its valence and sea components,

u := uv + us = up = dn

d := dv + ds = dp = un.

Furthermore, we assume that the three lightest quark flavours (u,d,s) occur with equal
probability in the sea:

S := us = ūs = ds = d̄s = ss = s̄s.

Combining all definitions and assumptions one obtains,

1

x
F ep

2 =
1

9
(4uv + dv) +

4

3
S (9.15)

1

x
F en

2 =
1

9
(4dv + uv) +

4

3
S. (9.16)

At small momentum fractions (x ≈ 0) the structure function is dominated by low-
momentum qq̄-pairs constituting the “sea”, and hence

F en
2

F ep
2

→ 1,

whereas for x ≈ 1 the valence quarks dominate and,

F en
2

F ep
2

→ 1

4
.

The experimental evidence is shown in Fig. 9.9.

Fig. 9.10 shows the distribution of F ep
2 that one would observe in different scenarios of

proton structure.
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Figure 9.9: Ratio of the proton and neutron structure functions as a function of the
Bjorken x-variable.

9.4 Gluons

9.4.1 Missing momentum

Summing the measured momenta of the partons cited above should give the proton mo-
mentum. However this is not the case.

1∫

0

dx x(u+ ū+ d+ d̄+ s+ s̄) = 1− εg,

where,

εq :=

1∫

0

dx x(q + q̄).

The experimental data, neglecting the contribution of strange quarks, show that,

1∫

0

dxF ep
2 =

4

9
εu +

1

9
εd = 0.18,

1∫

0

dxF en
2 =

1

9
εu +

4

9
εd = 0.12.
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Figure 9.10: Structure functions F ep
2 in different scenarios of the proton structure.

Therefore,

εu = 0.36

εd = 0.18,

and the fraction of the proton momentum not carried by quarks is,

εg = 1− εu − εd = 0.46.

Almost half of the proton momentum is carried by electrically uncharged partons. By
repeating the scattering experiments with neutrinos instead of electrons, one observes
that these uncharged partons do not interact weakly either. The parton carrying the
missing momentum is now known as the gluon, the gauge boson of QCD.
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9.4.2 Gluons and the parton model at O(ααs)

By including the gluons into the parton model, the following diagrams need to be taken
into account :

�p

γ∗

�p

γ∗

Looking specifically at the contribution of the first diagram, and using the kinematic
variables defined in the following diagram,

�
p

γ∗

pi = yp zpi = xp

one can show that the contribution to the proton structure function is of the form :

1

x
F γ∗q→qg

2 =
∑

i

e2
i

1∫

x

dy

y
fi(y)

[
αs
2π
Pqq(x/y) log

(
Q2

µ2

)]
, (9.17)

where µ is a cutoff to regularize soft gluon emission and,

Pqq(z) =
4

3

(
1 + z2

1− z

)
,

is called splitting function. It is the probability of a quark to emit a gluon and reduce
momentum by a fraction z. It is obviously divergent for soft gluons (z → 1).

From the form of Eq. (9.17), one sees that Q2 appear explicitely, and not divided by
2Mν. This logarithmic term is responsible for the phenomenon of scaling violations wo
be discussed in the next chapter.

Why did the SLAC-MIT experiment not see this violation? The effect of scaling violation is
only visible at extremely small x-values which were not available at this time. The scaling
violation was indeed observed in later experiments as we will discuss in the following
sections.
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9.5 Experimental techniques

The main site dedicated to the study of the proton structure is the HERA accelerator
(DESY), shown in Fig. 9.11. It was the only e−p-collider ever built and reached the beam
energies Ee = 30 GeV and Ep = 900 GeV for electrons and protons respectively.

Figure 9.11: Schematics of the HERA accelerator at DESY.

Fig. 9.12 shows the coverage of the Q2-x-kinematic region achieved at HERA and other
experiments. The data at low Q2 and low x allowed the observation of scaling violation
and definitively confirmed the existence of the gluon as a constituent of the proton.

Fig. 9.13 shows the sketches of the H1 and ZEUS experiments at HERA, as well as the
integrated luminosity collected by ZEUS. One can notice the asymmetrical configuration
due to the different beam energies.

A typical deep inelastic scattering (DIS) event at ZEUS is shown in Fig. 9.14. One can
observe the different properties of the final state : the quark jet deposits energy in the
hadron calorimeter, while the electron is stopped in the electromagnetic section. The
angles of the electron and hadronic system are measured in the central tracking chamber.

A “two jets” event, corresponding to the reaction,

e− + p→ e− + q + q̄ +X,

where X denotes the proton remnant (whose products are visible in the forward calorime-
ter), is shown in Fig. 9.15. An interesting feature of this event is the presence of a muon
in correspondence of the jet. This muon may originate from the decay of a heavy quark.



9.6. Parton model revisited 15

Figure 9.12: Coverage of the Q2-x-kinematic region at HERA.

Since scaling is no longer preserved, both Q2 and x (or y = Q2

sx
) have to be measured.

Those can be obtained by measuring the energy E ′e and angle θe of the scattered eletron
and using,

ye = 1− E ′e
2Ee

(1− cos θe)

Q2
e = 2EeE

′
e(1 + cos θe).

Fig. 9.16 shows the kinematic region measured at ZEUS while Fig. 9.17 shows the experi-
mental results for the structure function F2 as well as the NLO QCD fits. For low values
of x, the scaling violation appears very clearly. It is due to the inclusion of the processes
containing gluons.

Finally, Fig. 9.18 shows the measurement of the proton PDFs achieved at HERA. The
relative importance of the sea and gluon distribution can be seen to vary significantly for
Q2 between 1.9 GeV2 and 10 GeV2 (note the scale reduction!). One can notice similarities
with the expectation shown in Fig. 9.10.

9.6 Parton model revisited

In the following two sections we formalize the foregoing discussion and derive the expres-
sion of the QCD improved parton model for F2(x,Q2)/x given in Eq. (9.17).

As we have seen the proton is a bound state of three quarks with strong binding. “Strong
binding” says that the quark binding energy is much larger than the light quark masses:
Ebind � mq. Compare this to the weak binding of the hydrogen atom electron: Ebind � me.
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(a) (b)

(c)

Figure 9.13: Experiments at HERA. (a) H1. (b) Luminosity integrated by the ZEUS during
its operation. (c) ZEUS.

We consider a proton with large momentum (| #»p | � mp):

pµ =

(√
| #»p |2 +m2

p

#»p

)
'
(
| #»p |

#»p

)
.
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Figure 9.14: DIS event recorded by the ZEUS experiment.

(a) (b)

Figure 9.15: Two jet event at ZEUS (a) Side view. (b) Transverse view.

In Sect. 7.4.2 (p. 148) we discussed asymptotic freedom, namely the fact that for Q2 �
Λ2

QCD the strong coupling constant ᾱs � 1. In this case the quarks of the proton are asymp-
totically free and therefore deep inelastic lepton-proton scattering is not an interaction
with the whole proton but with just one of its constituents. This means that coherence
and interference are lost (one of mutually exclusive scattering events is taking place) and
deep inelastic lepton-proton scattering is an incoherent sum of lepton-quark scattering



18 Chapter 9. Proton structure in QCD

 x

 Q
2  (G

eV
2 )

b)

a)

ZEUS 1994

Figure 7: a)The distribution of the events in the (x ,Q2) plane. b) The (x ,Q2)-bins used in the
structure function determination. Also indicated are lines of constant y and of constant γ

H
.

The γ
H

values for this figure are calculated directly from x and Q2.

35

Figure 9.16: Kinematic phase-space measured by the ZEUS experiment.

processes (see Sect. 9.3.2 for diagrams) with the doubly differential cross section2

d2σ

dxdQ2
=
∑

q

1∫

0

dξfq(ξ)
d2σ̂lq

dxdQ2
(9.18)

where

• fq(ξ) is a quark distribution function, i. e. the probability density of finding a quark
with momentum ξp inside a proton with momentum p,

• ξfq(ξ) is the corresponding momentum density,

• and the hat is used to denote quantities in the lepton-quark system (to distinguish
them from lepton-proton system quantities).

Depending on strength and nature of the binding, one expects different behaviors of the
momentum density ξfq(ξ), as is shown in Fig. 9.19 (compare also Fig. 9.10). If the proton
were pointlike the momentum density would be just a delta function, δ(1− ξ), enforcing
ξ = 1 for the one particle involved, see Fig. 9.19(a). A proton built out of three massive
and weakly coupled quarks leads to momentum densities consisting of non-ideal delta
functions located at ξ = 1/3, 1/3δ(1/3− ξ), which are insignificantly smeared out due to
the ongoing exchange of binding energy between the quarks with weak, QED like coupling:

2Note that ξ and x are not a priori identical. Their relationship under varying assumptions is discussed
below and eventually involves QCD corrections.
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Figure 9.17: Proton structure function F p
2 measured by H1 and other experiments for

various values of Q2 and x. Scaling violations appear for x < 10−2.

mp ' 3mq, see Fig. 9.19(b). If, however, the proton consisted of three light and strongly
coupled quarks, mq � 1/3mp, the peaks of ξf(ξ) would still be located around 1/3, but,
since most energy is present in the form of potential and kinetic energy, they would be
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(a) (b)

Figure 9.18: Parton distribution functions of the proton (a) Q2 = 1.9 GeV2. (b) Q2 =
10 GeV2. The sea and gluon PDFs are reduced by a factor 20.

smeared out significantly at any given instant of time, as shown in Fig. 9.19(c).

1
Ξ

Ξ fqHΞL

(a) Pointlike proton.

1

3
1

Ξ

Ξ fqHΞL

(b) Three massive, weakly interact-
ing quarks: mp ' 3mq.

1

3
1

Ξ

Ξ fq�Ξ�

(c) Three light, strongly coupled quarks:
mq � mp/3.

Figure 9.19: Quark momentum density ξfq(ξ).
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Let us consider the kinematics of the simple parton model. The on-shell condition for the
outgoing quark (see Fig. 9.20(a)) yields

m2
q = (ξp+ q)2 ' 2p · qξ −Q2 =

Q2

x
ξ −Q2 ⇒ ξ =

(
1 +

m2
q

Q2

)
x ' x.

Therefore, given the assumptions made are valid, the Bjorken variable x is the momentum
fraction ξ of a parton inside the proton.

�
p

l(k) l(k′)

q = k − k′

q(ξp)

(a)

�
q

l

q

l

(b)

Figure 9.20: (a) Kinematics of simple parton model and (b) Feynman diagram for lepton-
quark scattering.

To determine d2σ̂lq/dxdQ2 of lepton-quark scattering, we consider the Feynman diagram
in Fig. 9.20(b) which is just a crossing of the Born level diagram for e+e− → µ+µ− (see
Sect. 5.10, p. 92). We therefore find

dσ̂lq

dt
=

2πα2e2
q

ŝ2

(
ŝ2 + û2

t̂2

)

where the Mandelstam variables read (the subscript ep emphasizes that sep refers to the
lepton-proton system)

ŝ = (xp+ k)2 = 2xpk = xsep

t̂ = −Q2 = −xysep = t

û = −ŝ− t̂ = −x(1− y)sep.

Note that t̂ = t depends only on the lepton kinematics. This leads to the lepton-quark
differential cross section

d2σ̂lq

dxdQ2
=

2πα2e2
q

Q4

(
1 + (1− y)2

)
δ(x− ξ).

Inserting this result into the parton model expression for lepton-proton scattering of
Eq. (9.18) yields

d2σ

dxdQ2
=

4πα2

xQ4

∑

q

1∫

0

dξfq(ξ)e
2
q

x

2

(
1 + (1− y)2

)
δ(x− ξ).
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Upon comparison with the deep inelastic scattering structure functions we find

F2(x,Q2) =
∑

q

e2
qxfq(x)

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) = 0

where FL is called longitudinal structure function. We recognize that F2(x,Q) = F2(x)
ceases to be a function of two variables, but under the assumed conditions depends only
on one variable, a phenomenon generally referred to as scaling. Furthermore, FL = 0 ⇔
2xF1 = F2 is the Callan-Gross relation, a consequence of quarks having spin 1/2 familiar
from Sect. 9.3.3.

Before we go on we introduce the following notation for the distribution functions

fq(x) = q(x) (q = u, d, s, c, . . . , ū, . . . )

fg(x) = g(x) (gluons).

9.7 QCD corrections to the parton model

Our discussion of the parton model involved no QCD corrections up to now; it rested on
the assumption of electromagnetic interactions alone. QCD corrections will concern the
quark part of our diagram. Within the parton model we just found

� q

γ?

q

=
4παe2

q

ŝ
δ(x− ξ) =: σ̂0δ(x− ξ) (9.19)

and

F2(x,Q2)

x
=
∑

q

1∫

0

dξ

ξ
q(ξ)e2

q δ

(
1− x

ξ

)
(9.20)

where σ̂0 is the QED contribution which drops out of the structure functions.

The O(αs) = O(g2
s) QCD corrections are given by

∣∣∣∣∣∣∣� +�
∣∣∣∣∣∣∣

2

and 2Re

∣∣∣∣∣∣∣� ·�
∣∣∣∣∣∣∣
,

i. e. gluon radiation and virtual gluon exchange. The one-loop virtual gluon interference
term stems from the loop corrections to the quark-photon vertex squared at O(g2

s). As an
example, consider the process γ?q → qg (which is a crossing of γ? → qq̄g):

|M|2 = 32π2(e2
qααs)CF

(
− t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

)
.
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This expression for |M|2 is unproblematic for small ŝ, since ŝ is fixed. However, a prob-
lem arises at small t̂, since we have to integrate over it as it is a dynamic variable (see
Sect. 3.3.2, p. 26).

For small scattering angles −t̂� ŝ and we have

p2
T =

ŝ(−t̂)
ŝ+Q2

for the transverse momentum of the outgoing gluon. Eliminating the Mandelstam variable
û, the differential cross section becomes

dσ̂

dp2
T

=
1

16πŝ2
|M|2 ' σ̂0

αs
2π
CF

(
− 1

t̂ŝ

[
ŝ+

2(ŝ+Q2)Q2

ŝ

])
.

By introducing the dimensionless variable

z =
x

ξ
=

Q2

2pq · q
=

Q2

ŝ+Q2
,

we arrive at

dσ̂

dp2
T

= σ̂0
1

p2
T

αs
2π
Pqq(z)

where

Pqq(z) = CF
1 + z2

1− z
(compare Sect. 9.4.2). Note that in the simple parton model we had pq = ξp which is no
longer the case when QCD corrections are taken into account.

To find the inclusive cross section, we have to integrate over the transverse momentum
squared:

σ̂γ
?q→qg

σ̂0

=
αs
2π
Pqq(z)

Q2∫

µ2

dp2
T

p2
T

=
αs
2π
Pqq(z) log

Q2

µ2

where the infrared cutoff µ2 has been introduced because of the collinear singularity at
p2
T → 0. The rationale is to later define observables in a way that allows to send µ2 → 0

(compare also Sect. 8.2.1, p. 160). Having calculated the QCD corrections at O(αs) to the
structure function in Eq. (9.20), we can state the resulting corrected expression:

F2(x,Q2)

x
=
∑

q

1∫

x

dξ

ξ
q(ξ)e2

q

{
δ
(

1− x

ξ

)
+
αs
2π

[
Pqq

(x
ξ

)
log

Q2

µ2
+ finite

]
+O(α2

s)

}

(9.21)
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which leads to some interesting consequences.3 Observe that we found an equality of
a measurable and hence finite quantity (after all, F2 is just a specific coefficient in the
parametrization of a cross section) and an expression which is divergent at the given order
of perturbation theory. Since the LHS of Eq. (9.21) is fixed, the problem has to be tackled
on its RHS. As a starting point, recall that we justified the form of the quark distribution
functions by asymptotic freedom and neglected QCD interactions among the quarks in the
first place. When QCD corrections are taken into account, the naive parton model is no
longer valid. Therefore, it is necessary to redefine the parton distribution functions such
that they are well-defined for the case of interacting quarks. This amounts to a redefinition
of the quark distribution in the infrared region and is called mass factorization of the quark
distribution:

q(x, µ2
F ) = q(x) +

αs
2π

1∫

x

dξ

ξ
q(ξ)Pqq

(x
ξ

)
log

µ2
F

µ2
(9.22)

where q(x, µ2
F ) is a measurable, screened quark density, q(x) denotes the bare (unphysical)

quark density, and the integral term is the contribution from unresolvable gluon radiation
with transverse momentum µ2

F ≥ p2
T ≥ µ2 where µ2

F is the mass factorization scale
at which the quark distribution is measured. Recall that the infrared cutoff µ2 can be
chosen arbitrarily small—smaller than any given detector resolution. At sufficiently small
scattering angles the emitted gluon cannot be resolved by the detector as it appears to
be parallel to the proton remnants. Two-jet events in deep inelastic scattering can only
be excluded in the momentum range where they could be detected. Therefore, the quark
distribution q(x, µ2

F ) admits gluon radiation below a predefined resolution scale µF .

Let us solve for q(x) in Eq. (9.22) and plug it into the QCD corrected structure function
in Eq. (9.21), we have

F2(x,Q2)

x
=
∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e2
q

{
δ
(

1− x

ξ

)
+
αs
2π
Pqq

(x
ξ

)
log

Q2

µ2
− αs

2π
Pqq

(x
ξ

)
log

µ2
F

µ2

}

=
∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e2
q

{
δ
(

1− x

ξ

)
+
αs
2π
Pqq

(x
ξ

)
log

Q2

µ2
F

}

which is independent of the infrared cutoff µ2 and finally, setting µ2
F = Q2 as in deep

inelastic scattering experiments,

=
∑

q

q(x,Q2)e2
q.

Perturbative QCD is used to answer the question how the Q2 dependence of the quark
distribution q(x,Q2) looks like.

3One can observe, as was done before, that because of QCD corrections to the naive parton model
scaling no longer holds, since F2(x,Q2) ceases to be a function of the single variable x alone.
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9.8 Altarelli-Parisi equations

The bare quark distribution q(x) is independent of µ2
F :

µ2
F

d

dµ2
F

q(x) = 0.

Differentiating Eq. (9.22) with respect to log µ2
F we thus obtain the renormalization group

equation4 for the quark distribution:

∂q(x, µ2
F )

∂ log µ2
F

=
αs
2π

1∫

x

dξ

ξ
q(ξ, µ2

F )Pqq

(x
ξ

)
(9.23)

which means that scaling invariance is logarithmically violated.

Eq. (9.23) is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation, or simply Altarelli-Parisi evolution equation. It is a small-p2

T approximation,
which resums the collinear gluon radiation in the initial state at O(αns lognQ2).

�q(x0, Q
2
0)

q(x1 ≤ x0, Q
2
1 > Q2

0)

q(x2 ≤ x1, Q
2
2 > Q2

1)

q(x ≤ xn, Q
2 > Q2

n)

This diagram is a universal correction, since the emitted gluons do not know about the
scattering process of the quark off the virtual photon. The DGLAP equation tells us what
happens if one infinitesimally increases the resolution. It is an integro-differential equation
with one “initial condition” q(x, µ2

F = µ2
0). Knowing the latter, one can compute the quark

distribution at any value of µ2
F . The procedure is analogous to the determination of the

running coupling of QED (Sect. 6.1.2, p. 102) or QCD (Sect. 7.4.2, p. 148).

In using Eq. (9.23) we omitted until now, the fact that Pqq(z) has a singularity in z = 1,
which belongs to the integration domain. This singularity corresponds to the emitted

4For a concise discussion of this topic see [2, pp. 28].
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gluon becoming soft. It is compensated by a singularity in the virtual corrections. As a
result, Pqq(z) is modified to become,

Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
,

which takes into account the virtual corrections occuring at z = 1. We use the ‘+’-
presciption, coming from the reguarisation procedure and defined by,

1∫

0

dz
f(z)

(1− z)+

=

1∫

0

dz
f(z)− f(1)

1− z . (9.24)

The factor in front of the δ-function can be inferred from the quark number conservation,
which can be stated as,

1∫

0

dzPqq(z) = 0. (9.25)

Up to now, we considered only gluon radiation off a quark. However, the emission history
can be made more complicated with gluons at intermediate stages of the parton cascade,

�
By inspection, one can find out that there are four different splitting processes at O(αs) :

• q → q :

�

p zp

! Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
, (9.26)
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• q → g :

�

p zp

! Pgq(z) = CF

(
1 + (1− z)2

z

)
, (9.27)

• g → q :

�

p zp

! Pqg(z) = TF
(
z2 + (1− z)2

)
, (9.28)

• g → g :

�

p zp

! Pgg(z) = 2CA

(
z

(1− z)+

+
1− z
z

)
+

(
11

6
CA −

3

2
TFnf

)
δ(1− z).

(9.29)

Those splitting functions satisfy a set of coupled DGLAP equations,

∂

∂ log µ2
F

(
q(x, µ2

F )
g(x, µ2

F )

)
=
αs(µ

2
F )

2π

1∫

x

dz

z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)(
q
(
x
z
, µ2

F

)

g
(
x
z
, µ2

F

)
)
. (9.30)

In this equation, αs
2π
Pji(z) is the probability for i → j splitting with momentum fraction

z in the transverse momentum interval [log µ2
F , log µ2

F + d log µ2
F ].

For nf quark flavours, we get 2nf +1 coupled equations (antiquarks must be taken explic-
itly into account). This system can be diagonalized be introducing (i labels the flavour),

• nf valence quark distributions

qVi = qi − q̄i, (9.31)

• nf − 1 flavour non-singlet quark distributions

qFi =
i−1∑

n=1

(qn + q̄n − qi − q̄i), (9.32)

• 1 flavour singlet quark distribution

qS =

nf∑

n=1

(qn + q̄n). (9.33)
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We also define the convolution,

(P ⊗ q)(x, µ2
F ) =

1∫

x

dz

z
P (z)q

(x
z
, µ2

F

)
,

allowing us to write,

∂qVi
∂ log µ2

F

=
αs
2π
Pqq ⊗ qVi (9.34)

∂qFi
∂ log µ2

F

=
αs
2π
Pqq ⊗ qFi (9.35)

∂qS

∂ log µ2
F

=
αs
2π

(
Pqq ⊗ qS + 2nfPqg ⊗ g

)
(9.36)

∂g

∂ log µ2
F

=
αs
2π

(
Pgq ⊗ qS + Pgg ⊗ g

)
. (9.37)

The factor 2nf in Eq. (9.36) comes from the fact that one needs to consider quarks
and antiquarks of all possible flavours. This set of equations only includes leading order
corrections that are precise at 15%. The data obtained in the last years yield however
results to the 5% precision, so that correction from higher orders need to be taken into
account.

At NLO, O(αns logn−1Q2), the finite term from the O(αs)-processes is relevant,

∣∣∣∣∣∣� +�
∣∣∣∣∣∣

2

This translates in the expressions for the structure functions,

1

x
F2(x,Q2) =

1∫

x

dξ

ξ

{∑

q

q
(
ξ,Q2

) [
δ

(
1− x

ξ

)
+
αs
2π
C2,q

(
x

ξ

)]
+ g(ξ,Q2)

αs
2π
C2,g

(
x

ξ

)}

(9.38)

FL(x,Q2) = O(αs) 6= 0 (9.39)

We now need to compute O(α2
s)-corrections to the spitting functions Pji. At this

order, there is essentially one new spitting process with two quark-gluon vertices,

�
i j

�
i j
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At O(αs), we had implicitly P V
qq = P F

qq = P S
qq = Pqq in Eqs. (9.34), (9.35) and (9.36). This is

no longer true at O(α2
s), where all these splitting functions are different from one another.

At even higher orders, no essentially new features appear, so that NLO calculations lead
already quite acceptable results. These are of crucial importance for W and Z production
at hadron colliders.

9.9 Solution of DGLAP equations

Looking at the set (9.30) of coupled DGLAP integro-differential equations one can expect
that solving it could be a highly non-trivial task. There are basically two approaches to
attack the problem :

1. Numerical solution, e.g. with the Runge-Kutta method. This approach is yielding
satisfactory results for Q2

0 & 2 GeV, i.e. in the asymptotically free regime, where
αs(Q

2
0)� 1,

2. Analytically, by using Mellin tranformation. This approach is especially useful to
obtain a quantitative understanding and to determine the asymptotic properties.

In both cases we have to start from given initial distributions qi(x,Q
2
0), q̄i(x,Q

2
0), g(x,Q2

0).

Mellin transformation The Mellin transform of a function f : [0, 1]→ R is given by,

f(n) = M [f(x)] =

1∫

0

dxxn−1f(x), (9.40)

with inverse

f(x) =
1

2πi

a+i∞∫

a−i∞

dnx−nf(n), (9.41)

for f(n) analytical in the half plane Ren > a.

We list here some of the properties of Mellin transformations:

M [af(x) + bg(x)] = af(n) + bg(n) (linearity) (9.42)

M

[
dk

dxk
f(x)

]
= (−1)n−k

Γ(n)

Γ(n− k)
f(n− k) (derivative) (9.43)

M [(f ⊗ g)(x)] = f(n)g(n) (convolution) (9.44)
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Armed with this new technology, we Mellin transform Eq. (9.34) with respect to the x
variable to get (the following analysis is valid for the valence and flavour non-singlet quark
distribution, thus, we drop the i, V/F for notational convenience),

∂q(n, µ2
F )

∂ log µ2
F

=
αs(µ

2
F )

2π
Pqq(n)q(n, µ2

F ). (9.45)

Using the evolution equation for αs (Sect. 7.4.2, p. 151) in the leading order approximation,

1

αs

∂αs
∂ log µ2

F

=
∂ logαs
∂ log µ2

F

= − β0

4π
αs,

one gets,

∂q(n, µ2
F )

∂ logαs
= − 2

β0

Pqq(n)q(n, µ2
F )

∂ log q(n, µ2
F )

∂ logαs
= − 2

β0

Pqq(n), (9.46)

which can now be solved by integrating from µ2
F = Q2

0 to Q2,

q(n,Q2) = q(n,Q2
0)

[
αs(Q

2
0)

αs(Q2)

] 2
β0
Pqq(n)

,

or, in the usually known form, using Eq. (7.44), p. 152,

q(n,Q2) = q(n,Q2
0)exp

{
2

β0

Pqq(n) log
log(Q2/Λ2)

log(Q2
0/Λ

2)

}
. (9.47)

This is the solution for the quark valence and flavour non-singlet distributions.

We now turn to the two remaining distributions, namely the quark singlet and and gluon
distributions. Mellin transforming Eqs. (9.36) and (9.37) yields,

∂

∂ log µ2
F

(
qS(n, µ2

F )
g(n, µ2

F )

)
= − 2

β0

(
Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)(
qS(n, µ2

F )
g(n, µ2

F )

)
. (9.48)

The first step is the diagonalization of the matrix,
(
Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)
.

Then one applies the same formalism as for the valence quark distribution discussed above.
By inverse Mellin transformation, one gets the result in the variable x.

Specific values of n correspond to various physical quantities. For example, Pqq(n = 1) = 0
is the Mellin transform of Eq. (9.25) and q(n = 2) corresponds to the fraction of the total
momentum transported by the quark q. One has the momentum sum rule,

qS(2, Q2) + g(2, Q2) = 1.
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with the asymptotic values,

qS(2, Q2 →∞)→ 3nf
16 + 3nf

nf=5
=

15

31

g(2, Q2 →∞)→ 16

16 + 3nf

nf=5
=

16

31
.

9.10 Observables at hadron colliders

We now study processes and observables at hadron colliders and the consequences of
parton evolution in this context.

The simple parton model cross section for processes at hadron-hadron colliders reads

σpp =
∑

i,j∈{q,g}

∫
dx1dx2fi(x1)fj(x2)σ̂ij→X(sij = x1x2spp), (9.49)

i. e. two partons enter into a hard collision from which a final state X emerges, as shown
in Fig. 9.21(a).

�p(p2)

p(p1)

j(x2p2)

i(x1p1)

Xσ̂

(a)

�
q

q̄
γ?

µ−

µ+

(b)

Figure 9.21: (a) Hadron-hadron collision in naive parton model and (b) Drell-Yan process.

As an example consider the Drell-Yan process, pp → µ+µ−, shown in Fig. 9.21(b). The
parton model cross section reads

σDY =
∑

q

∫
dx1dx2 [q(x1)q̄(x2) + q(x2)q̄(x1)] σ̂qq̄→µ+µ− (9.50)
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where

σ̂qq̄→µ+µ− =
4πα2

3sqq̄

1

3︸ ︷︷ ︸
σ̂DY
0

e2
q δ(1− x1x2spp/M

2
µ+µ−) (9.51)

which we basically already calculated before (Sect. 5.10, p. 92). The difference to the
e+e− → µ+µ− result is the color factor of 1/3 and the delta function which states that
the muon pair invariant mass fulfills (pµ+ + pµ−)2 =: M2

µ+µ− = x1x2spp.

The following QCD corrections have to be included:

�
q

q̄

γ?

µ−

µ+

g � q

g

γ?

µ−

µ+

q

� γ?
µ−

µ+

where the first two diagrams are because of parton evolution and the third diagram is a
virtual correction. Setting z = x1x2spp/M

2
µ+µ− , the QCD corrected Drell-Yan cross section

reads

σDY = σ̂DY
0

∑

q

e2
q

∫
dx1dx2

{
q(x1)q̄(x2)δ(1− z) +

αs
2π
Cqq̄(z)

+ [q(x1) + q̄(x1)] g(x2)
αs
2π
Cqg(z) + (x1 ↔ x2)

}

where q(xi) etc. are the QCD evolved parton distributions.

In the following some standard reactions are listed.

• W±, Z0 production
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�
q̄

q

W±, Z0

• γ + jet production

�
g

q

q

γ

�
q̄

q

g

γ

• 2-jet production

�
q̄

q

q̄

q

�
q̄

q

g

g

Further processes leading to 2-jet events are qg → qg, gg → gg, gg → qq̄ and
qq → qq.

Examples for relevant processes in searches for new physics:

• Higgs production

�
t

t̄ H

g

g

• SUSY particles
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�
g

q

q̃

g̃

A general feature of hadron-hadron colliders is that
√
sparton-parton is variable since the

parton momentum fractions vary.5 This allows to search for peaks in mass spectra at
fixed collider energy. An example for this effect is the Z0 peak in the µ+µ− spectrum of
SPS at CERN (compare also Sect. 4.4.4, p. 50).

9.11 Multiparticle production

Describing multijet final states in QCD is problematic because of two reasons.

• Factorial growth of the number of diagrams
E. g. for gg → ng the number of diagrams # scales with the number of final state
gluons n in the following way:

n 2 3 4 5 6 7
# 4 25 220 2485 34300 559405.

These numbers illustrate that a computation even on the amplitude level is time-
consuming.

• Complexity of the final state phase space
In addition to the aforementioned problem, the final state phase space has high
dimension and the integrations are constrained in various ways.

These problems can be approached by introducing approximate descriptions. One uses the
fact that |M|2 is largest if partons are emitted into soft (E → 0) or collinear (θij → 0)
regions of phase space. Therefore, the dominant contributions stem from these phase space
regions.

5Compare this to the e+e− case where the center of mass energy of the actual collision is fixed by the
collider energy: s = ŝ.
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Let us analyze a collinear parton shower. Consider the shower subgraph

�
a

θc

θb

c

b

where p2
a � p2

b , p
2
c and p2

a = t. The opening angle is θ = θb + θc and the energy fractions
are

z =
Eb
Ea

1− z =
Ec
Ea
. (9.52)

For small angles we have

t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2 (9.53)

θb
1− z =

θc
z

= θ. (9.54)

For θ → 0 the matrixelement factorizes as

|Mn+1|2 =
4g2

s

t
CFFqq(z)|Mn|2

where

Fqq(z) =
1 + z2

1− z = Pqq(z < 1).

Analogous splittings involve Fqg, Fgq, and Fgg.

Also the phase space factorizes:

dφn = . . .
d3pa

2Ea(2π)3

dφn+1 = . . .
d3pb

2Eb(2π)3

d3pc
2Ec(2π)3

.
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Since pc = pa − pb, we have d3pc = d3pa for fixed pb. For small θ this yields6

dφn+1 = dφn
1

2(2π)3

∫
EbdEbθbdθbdφ

dz

1− z δ(z − Eb/Ea)dtδ(t− EaEbθ
2)

= dφn
1

4(2π)3
dtdzdφ

(recall Eq. (9.52) and (9.53)).

Since the matrixelement and the phase space factorize, so does the cross section:

dσn+1 = dσn
dt

t
dz
dφ

2π

αs
2π
CFF (z).

Therefore, multiple emission processes like

�γ?(Q)

t1 < Q2

t2 < t1

tc < tn

q̄

z1 < 1

z2 < z1

q

where tc is a cutoff scale at which hadronization sets in, tc & Λ2
QCD, can be subdivided

into fundamental steps in (t, z) space:

�
(t1, z1)

(t2, z1)

(t2, z2)A Monte Carlo method to generate a corresponding set of final state partons proceeds as

6One observes that

dφn+1 = . . .
d3pb

2Eb(2π)3
d3pc

2Ec(2π)3
= dφn

Ea
Ec

d3pb
(2π)32Eb

' dφn
Ea
Ec

EbdEb
2(2π)3

θbdθbdφ = dφn
1

1− z
EbdEb
2(2π)3

θbdθbdφ.

And the Jacobian determinant is just 2zEaθb/(1− z).
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follows: Starting from a simple final state (e. g. e+e− → qq̄), generate additional partons
step-by-step while admitting only visible (i. e. non-soft) emission:

z > ε(t) (1− z) > ε(t)

where ε(t) can be expressed in the following way:

p2
a = t and p2

b , p
2
c > tc

p2
T = z(1− z)p2

a − (1− z)p2
b − zp2

c > 0

⇒ z(1− z) >
tc
t

⇒ ε(t) =
1

2
− 1

2

√
1− 4

tc
t
' tc

t

which means that the threshold ε(t) gets more strict for decreasing t.

Let us define the Sudakov form factor ∆(t)

∆(t) = exp




−

t∫

tc

dt′

t′

1−ε(t′)∫

ε(t′)

dzαsCFFqq(z)





which is the probability for a parton to evolve from t to tc without emission of another
parton. Observe that

∆(tc) = 1

and the probability for a parton to evolve from t1 → t2 without emission of another parton
is given by

R(t1, t2) =
∆(t1)

∆(t2)
.

The Monte Carlo procedure is now as follows.

0. Starting point (t1, z1)

1. Generate a random number R ∈ ]0; 1[.

2. Solve ∆(t1)/∆(t2) = R for t2.

• For ∆(t1) > R:
∆(t2) > 1: t2 < tc: no emission, parton saved for final state
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• For ∆(t1) < R:
Generate further random number R′ ∈ ]0; 1[ and solve

z2/z1∫

ε(t2)

dz
αs
2π
P (z) = R′

1−ε(t2)∫

ε(t2)

dz
αs
2π
F (z)

for z2.

3. Use the two new partons

(
(t2, z2);

(
t2,

z1 − z2

z1

))

as starting point for another Monte Carlo step (see Fig. 9.22).

4. Repeat steps 1 to 3 until all partons fulfill ti < tc.

This procedure generates events with the same probabilities as in experiment and produces
a list of final state particles which allows to perform the same analyses as on experimental
data. This is how one arrives at the “theory curves” shown e. g. in some of the plots in
Chap. 8.

�t1
t2

t2

z1

z1−z2
z1

z2

Figure 9.22: Starting point for second Monte Carlo step.
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Hadron collider physics

Literature:

• Ellis/Stirling/Webber [3]

• Dissertori/Knowles/Schmelling [4]

• Kane/Pierce [5]

• Review on QCD of the Particle Data Group [6]

• Technical Design Reports (TDRs) about the Physics Performance of ATLAS and
CMS [7, 8]

With the start of the LHC at CERN on March 30, 2010, operating at the moment at a
total center of mass energy of 7 TeV, a new record in particle collision energy has been
achieved. Like the Tevatron at Fermilab (operating at a total center of mass energy of
about 2 TeV) it is a hadron collider. The purpose of this chapter is to present the most
important features of this kind of colliders and the physics studied there.

First, the purposes, advantages and weaknesses of using a hadron collider are dis-
cussed in the introduction. Then the different components of the cross-section of proton-
(anti)proton interactions are presented. Next comes a digression to the topic of parton
distribution functions (PDF), in particular how these are determined from the wealth of
data from different experiments. An excellent knowledge of the proton structure, i. e. of
the PDFs, is a necessary ingredient for obtaining precise predictions of production rates
and other observables at hadron colliders. Finally specific processes are presented, such
as jet production, electroweak, top and Higgs physics.

39
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10.1 Introduction

Many measurements performed at earlier colliders have tested the standard model of
particle physics to a very high accuracy. As it can be seen in Fig. 10.1, the relevant
measured parameters of the model agree with their fitted values within 1 to 3 standard
deviations, as obtained from a global fit of the standard model predictions to the data.
Up to now there is basically no phenomenon in contradiction with the predictions of
the minimal version of the standard model (with the exception of neutrino masses and
oscillations). However, there are some key questions which remain unanswered so far.

Figure 10.1: Comparison of the measured parameters of the standard model with the
result of a global fit.

10.1.1 Open questions in particle physics

Mass? The question of the origin of mass of the fundamental constituents of matter
still lies at the center of the investigations. More precisely, in its simplest form, without any
spontaneous symmetry breaking, the electroweak theory 1 predicts the existence of 4 mass-
less vector particles (gauge bosons). However, the observations show that the W+, W−

and Z have a non-zero mass, whereas the photon γ is massless. A possible explanation is
given by adding a scalar field to the model, the Higgs field (or boson). This field has a non-
zero vacuum expectation value, which breaks the original symmetry (of the ground-state)
and gives those particles a mass which interact with it . Since this symmetry is not broken
at the Lagrangian level, one speaks of a spontaneous symmetry breaking mechanism. Pre-
dicted since the sixties, this particle has not yet been observed. Fig. 10.2 shows the most

1To be discussed in the next chapter.
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likely Higgs mass range as obtained from global fits of the standard model to the data,
with the Higgs mass as free parameter (see http://lepewwg.web.cern.ch/LEPEWWG/).
Also shown is the mass region excluded by the LEP data (< 114 GeV).

Figure 10.2: Most likely region for the Higgs mass (indicated by the minimum in the χ2

value) as obtained from a fit of standard model predictions to LEP, SLD and Tevatron
data

Unification? In the spirit of the electroweak theory of Glashow, Salam and Weinberg,
which describes together the electromagnetic and weak interactions as being the low en-
ergy limit of a unified gauge theory, physicists soon thought of further unifications of the
four fundamental interactions. Since the coupling of the strong interaction is decreasing
with the energy, whereas the electroweak couplings are increasing, it is tempting to pos-
tulate that all three interactions would arise from a single coupling strength related to
a gauge theory with extended gauge group, which “splits into three” as the energy gets
below a certain (large) value. This is the basic idea behind grand unification theories
(GUTs), which view the standard model gauge group,

SU(3)color × SU(2)weak isospin × U(1)hypercharge,

with three different couplings as a subgroup of a bigger “unified” gauge group G. However,
a nice convergence of the electroweak and strong couplings at a single unification scale
is not necessarily achieved. In case of supersymmetry this is achieved. Here a new
fundamental symmetry is introduced, which associates to each fermion a boson and vice-
versa. The supersymmetric partner of the electron e is called selectron, denoted ẽ, which is
a spin-0 particle, whereas the superpartner of the photon is called photino γ̃ and is a spin-
1
2

particle. Supersymmetry is the only way to combine the internal symmetry group of a
field with the Poincaré group in a non-trivial fashion. As of now, there is no quantum field
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theory of gravitation. Supersymmetry might provide a natural context for the inclusion of
gravity (supergravity), opening the possibility for a unified theory of all interactions. The
extreme weakness of gravity at the level of particle interactions has also lead physicists
to conjecture that it could propagate in extra dimensions, whereas other interactions
and matter cannot. Thus, in the usual 3+1-dimensional world we would only feel a small
fraction of the total gravitational flux, which then explains the weak nature of gravity.

At this point, it should be noted that the lightest supersymmetric particle is neutral,
stable and weakly interacting, thus a good candidate for dark matter. From astrophysical
observations we know that dark matter represents ∼ 23% of the mass of our universe.
Dark matter does not interact electromagnetically, hence the name. This is based on the
principle that the lightest supersymmetric particle cannot decay because of the conserva-
tion of a new quantum number, R-parity. This is an analogous explanation as the one for
the stability of the electron (due to the conservation of the lepton number) or the proton
(baryon number).

Flavour? From the decay width of the Z, at LEP it could be shown that there are
exactly 3 types of light neutrinos, leading to the conclusion that there are three families
of leptons and, by extension to the quark sector, of matter. The natural question becomes
then: why 3 and not say 4? The existence of 3 families of quarks leads to CP-violation
through the number of free parameters within the CKM matrix, related to the weak
decays of quarks. A major issue is the precise measurement of its coefficients. Fig. 10.3
shows the experimental constraints on the possible values of the parameters describing
the elements of the CKM matrix.

Figure 10.3: Experimental constraints on the parameters of the CKM matrix [6]

In view of these basic questions, the main goals of the experiments at the LHC are :

• Mechanism behind the electroweak symmetry breaking: search for the Higgs boson;



10.1. Introduction 43

• Unification : test of the standard model, search for supersymmetric partners or for
other physics beyond the standard model;

• Flavour : study of CP-violation in the b quark sector, by measuring properties
(decays, oscillations) of B-hadrons.

10.1.2 Hadron colliders vs. e+e−-colliders

In essence, physics at hadron colliders is much more complex than at e+e−-colliders such
as LEP or SLC, since now we are dealing with composite objects as our beam particles,
whereas leptons are (as far as we know) point-like. Why then bother using hadrons?

e+e−-colliders are precision machines : they lead to clean events, where basically all the
energy of the initial state is used and the centre-of-mass system and the laboratory frame
typically coincide (if both beam energies are the same). Thus the kinematics of the re-
action is fixed and can be well reconstructed. Furthermore, theoretical calculations are
simplified by the point-like and non-coloured initial state. On the other hand, in order to
scan the energy range, the energy of the particle beam has to be changed “manually”. Fur-
thermore, the maximum energy achievable is limited (in the case of circular accelerators)
by synchrotron radiation.

Hadron colliders are better suited for discoveries : the synchrotron radiation (going with
the inverse fourth power of the accelerated mass) is much less relevant, and the energy
range of the hard interaction is automatically scanned, since quarks and gluons can have
any fraction of the proton 4-momentum. However, the complexity of the event result-
ing from the non-trivial proton structure and hadronization needs to be overcome and
represents a challenge to and a limitation for the theoretical calculations.

10.1.3 Kinematic variables

We recapitulate here the most important kinematic quantities for hadron colliders.

Transverse (longitudinal) momentum pT (pL) is defined as the component of the
3-momentum perpendicular (parallel) to the beam. If θ is the angle relative to the beam
and p is the modulus of the momentum, then,

pT = p sin θ,

pL = p cos θ.

Rapidity y is defined through,

y =
1

2
ln

(
E + pL
E − pL

)
, (10.1)

where E = p0 is the energy of the scattered particle/jet.
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Pseudorapidity η is defined through,

η = − ln tan

(
θ

2

)
, (10.2)

with again θ being the angle between the beam and the particle/jet. For massless particles,
rapidity and pseudorapidity coincide. It is customary to represent e.g. the energy deposits
in the calorimeters as histograms in the η-φ plane, where φ is the angle around the detector
(Fig. 10.4(a)). Tab. 10.1 gives the correspondence between angle and pseudorapidity. The
barrel detectors (trackers, calorimeters) usually cover a region |η| ≤ 1.5, whereas the
endcap detectors go up to |η| ∼ 2.5− 5.

θ η
90◦ 0
10◦ 2.4
170◦ −2.4
1◦ ∼ 5

Table 10.1: Correspondence between angle and pseudorapidity.

The interest of introducing rapidity and pseudorapidity lies in the fact that at hadron
colliders the laboratory(detector)-frame in general does not coincide with the center of
mass frame of the parton-parton collision, unless the two beams have the same energy
and the parton momentum fractions fulfill x1 = x2. Typically x1 6= x2, which leads to a
longitudinal boost of the scattered system. We thus want to introduce quantities invariant
under longitudinal boosts. It can be shown that the difference of two rapidities is invariant
under such boosts. As a further consequence, detectors are typically built and structured
in “rapidity towers” (Fig. 10.4(b)).

10.2 Components of the hadron-hadron cross section

The different components of the proton-proton cross section are shown in Fig. 10.5.

In elastic as well as in double diffractive scattering, both protons remain intact. In sin-
gle diffractive scattering, one of the protons remains intact, whereas the other breaks
up into several fragments. In these diffractive events, an uncolored object (a so-called
“Pomeron”), which has the quantum numbers of the vacuum, is exchanged between the
protons. Diffractive scattering is not well understand theoretically and it is the main field
of research of the LHCf and TOTEM experiments, which focus on scattering events at
very small angles.

The kind of events we will mostly focus on are called non-diffractive and correspond
to the case of the complete break-up of both protons, with a cross section of ∼ 70 mb.
The biggest fraction of this cross section is associated to soft scattering, i.e. scattering
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(a) (b)

Figure 10.4: (a) η-φ-plane representation of a calorimeter signal. (b) Calorimeter towers
of a detector, structured according to rapidity intervals.

Figure 10.5: Pictorial representation of the components of the total proton-proton cross
section. Here “interesting physics” refers to those processes relevant for the study of hard
interactions.

where the exchanged momentum is small. The really interesting events are so-called “hard
scattering events”, in particular for the study of heavy objects such as energetic jets, W
and Z bosons, top quarks, or the search for new heavy particles. These events are orders
of magnitudes less probable than soft scattering events.
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10.2.1 Soft scattering

Most of the proton-proton collisions are due to interactions with a small momentum
transfer. This results in a shower of particles having a large longitudinal momentum and
a small transverse momentum,

〈pT 〉 ≈ 700 [MeV] for
√
s = 14 [TeV].

These processes cannot be reliably computed in perturbative QCD, since the coupling
constant is rather big for soft processes. Thus the structure of such events is poorly
known and one must rely on phenomenological models, implemented in the simulations,
as well as on measurements.

Example When a proton is broken up, it produces neutral and charged pions (because
of hadronization). Assuming a simple constant matrix element, from the structure of the
phase-space element we realize that the produced particles should be uniformly distributed
in transverse momentum squared and rapidity :

d3p

2E
=
π

2
dp2

Tdy.

Thus, the produced particles should be distributed according to an almost flat distribution
in pseudorapidity (due to the finite pion mass), as the one seen in Fig. 10.7(a) and 10.7(b).
A typical soft event at 2.36 TeV measured by CMS is shown in Fig. 10.7(c). At 14 TeV one
expects 4-6 charged and 2-3 neutral pions per unit of pseudorapidity, uniformly distributed
in φ.

10.2.2 Pile-up events

Due to the very large cross section for soft scattering, the probability of having multiple
proton-proton collisions during the same bunch crossing can become big, if the luminosity
is large. Put in another way, interesting events – such as the production of a Higgs boson –
will most probably be accompanied by other less interesting events, “polluting” the signal.
The amount of additional soft proton-proton scatterings depends on the luminosity of the
collider as seen in Fig. 10.8.

For example, at full LHC luminosity (1034 cm−2sec−1) there can be up to∼25 soft collisions
per bunch crossing, each generating ∼9 pions. Taking the total rapidity range typically
covered by an LHC experiment to be ymax = ±5, we can estimate that there will be

25 · 9 · 2|ymax| ≈ 2250
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Figure 10.6: Cross sections for different processes in proton-proton scattering

pions produced that will deposit a total energy of,

2250 · 700 [MeV]︸ ︷︷ ︸
〈pT 〉

≈ 1.6 [TeV]

in the calorimeters for each bunch crossing, resulting in an important background noise,
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(a) (b)

(c)

Figure 10.7: (a) Pseudorapidity distribution simulated with PYTHIA and PHOJET. (b)
Pseudorapidity distribution measured by CMS and ALICE and compared with UA5. (c)
Soft event at 2.36 TeV recorded by CMS.



10.3. Hard scattering 49

Figure 10.8: Pile-up events at different luminosities.

which has to be isolated from the interesting signal (hard scattering event).

10.3 Hard scattering

The main process of relevance for the study of energetic jets, heavy standard model
particles or the discovery of new particles, is hard scattering, depicted in Fig. 10.9. Here
we have a large momentum transfer (Q) involved in the scattering process. The function
fa/h1 denotes the PDF for the parton a in the hadron h1, and analogously for fb/h2 .
Denoting by x1(2) the momentum fraction of h1(2) carried by a(b), the available center of
mass energy for the underlying scattering process is then (assuming massless partons)

√
ŝ =
√
x1x2s, (10.3)

with s = (ph1 + ph2)
2 the center of mass energy of the colliding hadrons.
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Figure 10.9: Basic Feynman graph for the description of a hard scattering process in a
hadron-hadron collision.

At high energies (� ΛQCD), we can view the resulting interaction as the incoherent sum
of the interactions for any combination of the constituents 2, yielding the master formula,

dσh1h2→cd =

1∫

0

dx1

1∫

0

dx2

∑

a,b

fa/h1(x1, µ
2
F )fb/h2(x2, µ

2
F )dσ̂ab→cd(Q2, µ2

F ) (10.4)

Here µ2
F is the factorization scale and Q is the typical scale of the process, e.g. the

momentum transfer in a t-channel or Q =
√
ŝ in an s-channel process. Examples of

parton-parton processes with a cross section σ̂ can be found in Sect. 9.10, p. 32. The
calculation of such cross sections can be achieved by using a given interaction theory,
typically QED, QCD, electroweak theory, supersymmetry, etc.

We proceed by demonstrating that heavy particle states are produced more centrally in the
detector, i.e. at low rapidity, compared to soft-particle production. For this, we consider
the production of a hypothetical heavy gauge boson, Z ′, with mass M ∼ 1 TeV � mp,
energy E and rapidity y at a proton-proton collider. The heavy gauge boson can appear
in the propagator of an s-channel quark-antiquark annihilation diagram. From the mass
shell condition (which gives the largest cross section) in this propagator we have,

ŝ = x1x2s
!

= M2.

Since each proton has an energy Ebeam =
√
s/2 � mp, it is straightforward to see that

(we assume w.l.o.g. that x1 ≥ x2),

E =

√
s

2
(x1 + x2)

pL =

√
s

2
(x1 − x2).

2This is nothing else than Eq. (9.49) in Sect. 9.10
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Inserting those values in the definition of the rapidity, Eq. (10.1), we get,

ey =

√
x1

x2

,

and hence y → 0 if x1 → x2. In this case, the energy is used optimally, since the longitu-
dinal component of the momentum of the Z ′ vanishes, and it becomes “easier” to produce
it (Fig. 10.10). With one line of algebra, one can see that,

Figure 10.10: Rapidity distribution for Z ′ production

x1,2 =
M√
s

e±y, (10.5)

i.e. to produce a Z ′ with rapidity y, one of the partons must have had a momentum
fraction Me+y/

√
s, while the other had the momentum fraction Me−y/

√
s. This formula

is often used to determine the momentum fraction carried by the partons, if the rapidity of
the heavy object and its mass can be reconstructed experimentally. This is relatively easy
in cases where the heavy particle decays into a lepton-antilepton pair, since the lepton
momenta can be measured rather precisely.

Using Eq. (10.5), we can find the momentum fraction, which a parton should carry in order
to produce a heavy particle centrally, y ≈ 0⇔ x = x1 ≈ x2 for a given collider. To produce
a particle with a mass of order 100 GeV (e.g., Z and W bosons, a light Higgs), one needs
x ≈ 0.05 in the case of Tevatron (

√
smax = 2 TeV), whereas at LHC (

√
smax = 14 TeV)

one only needs x ≈ 0.007, a momentum fraction at which the gluon PDF is already very
big (compared to the PDF of valence quarks). To produce a particle with mass 5 TeV,
one needs x ≈ 0.36 at LHC, where the dominant PDF contribution comes from valence
quarks.
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10.4 Global PDF fits

The master formula (10.4) contains not only the underlying parton-parton cross section,
calculable in the context of some theory, but also the PDFs of both hadrons. These
quantities cannot be calculated from first principles. Therefore, we stop for a moment in
our study of hadron colliders to review the techniques associated with the determination
of the PDF of the proton.

Many measurements have been performed which probe the proton structure, such as

• F2 measurements, in particular at HERA,

• F3 measurements at HERA in CC 3 interactions,

• F3 measurements in neutrino-nucleon scattering,

• measurements of the Drell-Yan process (W and Z production in hadron-hadron
collisions with subsequent decays to leptons),

• Sum rules,

• Jets and direct photon production,

• Constraints on the gluon content from scaling violations, jets and heavy quark pro-
duction.

Tab. 10.2 shows a typical data set which is used for a global determination (fit) of PDFs.

The general procedure goes as follows:

1. Choose a set of experimental data with possible restrictions in x and Q2 in order to
avoid critical phase-space regions and thus systematic uncertainties.

2. Parametrize the PDFs at a given fixed scale, e.g. Q2
0 = 4 GeV2, with an ansatz of

the type,

xfi(x,Q
2
0) = Ai x

αi︸︷︷︸
low-x

(1− x)βi︸ ︷︷ ︸
large-x

,

for i = u, d, g, ū etc. with different coefficients.

3. Evolve the PDFs in Q2 using the DGLAP evolution equations (9.34)-(9.37) to bring
the PDFs from the scale Q2

0 to the scale Q2 of the specific data set. Then fold

3Charged current; exchange of W± bosons.
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TABLE III. Processes studied in the global analysis (∗ indicates data fitted).

Process/ Leading order Parton behaviour probed
Experiment subprocess



DIS (µN → µX) γ∗q → q

F µp
2 , F µd

2 , F µn
2 /F µp

2 Four structure functions →
(SLAC, BCDMS, u + ū
NMC, E665)∗ d + d̄

ū + d̄

DIS (νN → µX) W ∗q → q′ s (assumed = s̄),
F νN

2 , xF νN
3 but only

∫
xg(x, Q2

0)dx " 0.35

(CCFR)∗ and
∫
(d̄ − ū)dx " 0.1

DIS (small x) γ∗(Z∗)q → q λ

F ep
2 (H1, ZEUS)∗ (xq̄ ∼ x−λS , xg ∼ x−λg)

DIS (FL) γ∗g → qq̄ g

NMC, HERA

"N → cc̄X γ∗c → c c

F c
2 (EMC; H1, ZEUS)∗ (x >∼ 0.01; x <∼ 0.01)

νN → µ+µ−X W ∗s → c s ≈ 1
4(ū + d̄)

(CCFR)∗ ↪→ µ+

pN → γX qg → γq g at x " 2pγ
T /

√
s →

(WA70∗, UA6, E706, . . . ) x ≈ 0.2 − 0.6

pN → µ+µ−X qq̄ → γ∗ q̄ = ...(1 − x)ηS

(E605, E772)∗

pp, pn → µ+µ−X uū, dd̄ → γ∗ ū − d̄ (0.04 <∼ x <∼ 0.3)
(E866, NA51)∗ ud̄, dū → γ∗

ep, en → eπX γ∗q → q with ū − d̄ (0.04 <∼ x <∼ 0.2)
(HERMES) q = u, d, ū, d̄

pp̄ → WX(ZX) ud → W u, d at x " MW /
√

s →
(UA1, UA2; CDF, D0) x ≈ 0.13; 0.05

→ "± asym (CDF)∗ slope of u/d at x ≈ 0.05 − 0.1

pp̄ → tt̄X qq̄, gg → tt̄ q, g at x >∼ 2mt/
√

s " 0.2
(CDF, D0)

pp̄ →jet + X gg, qg, qq → 2j q, g at x " 2ET /
√

s →
(CDF, D0) x ≈ 0.05 − 0.5

Table 10.2: Example of data sets employed for fitting PDFs, from Stirling et al.
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the PDFs with the coefficient functions/parton cross sections from NLO or NNLO
perturbative QCD in order to get a structure function/cross section 4,

F2(x,Q2) =
∑

i

Ci(z,Q
2/µ2

F )⊗ fi(x/z, µ2
F )

dσ(Q2) =
∑

i,j

fi(x, µ
2
F )⊗ fj(y, µ2

F )⊗ dσ̂ij(xyQ2, µ2
F )

4. Fit to the experimental data to determine Ai, αi, βi for all i and use the obtained
PDFs for the evolution to any other scale and the corresponding computation of
cross sections.

Different groups use a different ansatz, which leads to differences in the extracted PDFs
(Fig. 10.11). These agree up to a few percent, which ultimately translates into an uncer-
tainty on the cross section given by the master formula (10.4). Therefore, a good knowledge
of the structure of the proton, i.e. of the PDFs of its constituents is essential in order to
be able to compute accurately cross sections at hadron colliders such as the Tevatron or
the LHC.

From Fig. 10.11(a), it becomes clear that the LHC is effectively a gluon-gluon collider if
one considers the production of particles around or below a scale of ∼ 100 GeV. This is
because of the relative importance of the gluon PDF (downscaled by a factor of 20 on the
figure) in the relevant x-range (see the discussion above).

As can be seen in Fig. 10.12, the kinematic regime of the LHC is much broader than the
one currently tested experimentally. Much of the relevant x range is covered by HERA,
but for much smaller values of Q2. The question arises if the DGLAP evolution is sufficient
to evolve the PDFs to the full LHC kinematic range. Furthermore, one has to propagate
the uncertainties on the PDFs in order to have a meaningful comparison of the predictions
to data. The data acquired at the LHC will themselves serve to constrain the PDFs.

10.5 Jets

At the LHC, an important component of the inelastic cross-section after soft scattering
is jet production, i.e. events where colored partons with significant transverse momentum
are produced in the final state. Fig. 10.5 shows this component, labeled σjet in the case of
a minimal jet energy of 250 GeV. One notes that this component is 6 orders of magnitude
smaller than the total cross-section for pp-scattering.

Jet processes are important for multiple purposes. First, they are the main tool to test
precisely perturbative QCD. Second, they allow to test if the quarks are composite objects.

4It is implicitly understood that one integrates over the z variable or the x and y variables respectively,
see Sect. 9.8.
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(a)

H. Jung, QCD & Collider Physics, Lecture 5  WS 05/06 15

Extraction of pdfs from DGLAP fits ...

Solve DGLAP equations
adjust input parameters (starting 
distributions) such that F2 is best 
described
extract pdf's as fct of x
then DGLAP gives pdfs at any 
Q2

(b)
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(c)

Figure 10.11: (a) PDFs for Q2 = 10 GeV2 from Botje. (b) PDFs for Q2 = 10 GeV2 from
HERA collaborations. (c) PDFs for Q2 = 5 GeV2 from CTEQ.

Finally, they represent a part of the background for other more rare processes and must
thus be extensively understood in order to be able to filter out the signal.

Fig. 10.13 shows the differential production cross section at zero rapidity (center of the
detector) as a function of the transverse momentum of the jet for the Tevatron and the
LHC (note the logarithmic scale). We see that the Tevatron almost cannot produce jets
with transverse energy bigger than 800 GeV, whereas the LHC can access for the same
rate about 4.5 TeV.
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Figure 10.12: Q2-x range of LHC, Tevatron and HERA.

Figure 10.13: Differential cross section for jet production at zero rapidity as a function of
the transverse momentum for the Tevatron and the LHC.

The relevant elementary processes (represented by ŝ in Fig. 10.9) for jet production are
shown in Fig. 10.14. These processes can all be achieved at both Tevatron and LHC since
sea partons are dominant at low x. Since the color factor for a three-gluon vertex (3) is
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almost twice the one for a quark-gluon vertex (4
3
), jets are more likely to be produced

through gg-collisions. Also, the gluon PDF dominates at low x.

� � � �

� � � �
Figure 10.14: Elementary processes at hadron colliders.

10.5.1 Jet algorithms

Section 8.2, p. 159, contains a discussion of jet algorithms used at e+e−-colliders.

CONE algorithms Fig. 10.15 shows some typical jet events at the DØ and CDF ex-
periments at Tevatron, a pp̄-collider.

(a) (b)

Figure 10.15: Jet events. (a) at DØ, (b) at CDF.

From this type of events it seems sensible to define jets via a cone with opening,

R =
√

(∆η)2 + (∆φ)2,
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where η is the pseudorapidity and φ the angle around the beam axis. This is the basis of
the CONE class of jet algorithms.

The CONE algorithm can be represented by the following algorithmic flow, starting from
a list of seeds and a given R:

1. Is the list of seeds exhausted?

• Yes : send list of protojets to recombination/splitting algorithm

• No : continue to 2.

2. Compute centroid using R. Is the new axis the same as the old one?

• Yes : continue to 3.

• No : return to 2.

3. Was the cone already found?

• Yes : remove it from the list of seeds.

• No : add it to the list of protojets.

4. Return to 1.

The computation of the centroid is achieved by doing an energy weighting of the (η, φ)-
coordinates of the energy deposits inside a cone of a given R. An energy deposit i is part
of the cone C if,

i ∈ C :
√

(ηi − ηC)2 + (φi − φC)2 ≤ R,

where,

ηC :=
1

EC
T

∑

i∈C
Ei
Tη

i, φC :=
1

EC
T

∑

i∈C
Ei
Tφ

i, EC
T :=

∑

i∈C
Ei
T

One of the major drawbacks of the CONE algorithm is that it is neither infrared nor
collinear safe. A new algorithm called SISCone has been developed recently that solves
this issue.

Recombination algorithms (kT -type) We are now going to present a class of algo-
rithms called kT -recombination algorithms [9], having the following properties:

• Infrared and collinear safe,

• No overlapped jets,

• Every particle/detector tower is unambiguously assigned to a single jet,
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• No biases from seed towers

• Sensitive to soft particles, area could depend on pile-up.

We start with a set of 4-momenta {pi}i=1,...,n with coordinates (ηi, φi). One then defines
the metric,

dij = min(p2
T,i, p

2
T,j)

∆Rij

D2
i > j (10.6)

dii = p2
T,i,

with,

∆R2
ij = (ηi − ηj)2 + (φi − φj)2

D ∼ 0.4− 1.

Next, we determine the minimum dmin of the set {dij|i ≥ j}. If dmin = dkl, k 6= l, we
combine the 4-momenta k and l: pk + pl → pkl. If instead dmin = dkk, we identify it as a
jet of its own and take pk out of the list of 4-momenta. One then restarts with the new
set until there are no 4-momenta left. This algorithm ends up with a list of jets having
∆R ≥ D.

A deviation from this algorithm is obtained by modifying the metric, for a given p ∈ Z,

dij = min(p2p
T,i, p

2p
T,j)

∆Rij

D2
i > j (10.7)

dii = p2p
T,i.

One then speaks of,

• p = 1 : regular kT jet algorithm,

• p = 0 : Cambridge/Aachen jet algorithm,

• p = −1 : anti-kT jet algorithm.

Interestingly enough, the anti-kT jet algorithm yields jets with a cone structure. The soft
particles are first clustered with hard particles instead of being combined with other soft
particles. Fig. 10.16 shows the jet shapes for different recombination algorithms.

Further difficulties In the context of jet physics, pile-up events (typically containing a
hard scattering and some soft proton-proton interactions) generate a homogeneous back-
ground that needs to be substracted before applying the jet algorithms since this energy
is not carried by the original jets themselves.

Another challenge is the identification of the underlying event. As an example, consider
the case in which 4 jets are observed. They could come from a true 4-jet event (2 quarks +
2 initial or final state gluon radiation) or from two independent 2-jet events (see Sect. 10.7
for a discussion of this phenomenon).
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Figure 10.16: Jet areas for different values of the p-parameter in the modified kT jet
algorithm and for the SISCone jet algorithm for the same input data.

10.5.2 Measurements

The goal of a jet algorithm is to make it possible to measure cross-sections in an inclusive
manner as a function of the transverse energy of the jet ET . Fig. 10.17 shows a comparison
of the Monte Carlo simulation JETRAD with the data from DØfor small rapidities.

If there is some new physics, e.g. if quarks have a substructure, the high-energy tail would
be shifted from the simulation values.

One can compare the predicted value in perturbative QCD and the experimental data
through the relation,

〈
d2σ

dETdη

〉
=

N

∆ET∆ηεLint
,

whereN is the number of events in the bin (Ej, ηj) ∈ [ET , ET+∆ET ]×[η, η+∆η], ε denotes
the efficiency in reconstructing jets (typically obtained using Monte Carlo simulations)
and Lint is the integrated luminosity.
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Figure 10.17: Differential jet cross-section as a function of ET . Monte Carlo simulation
(JETRAD) and DØdata.

A decisive requirement for a precise measurement, a test of QCD, and to be able to “see”
new physics, is to have a very good energy calibration. Indeed, the double-differential
cross section is very steeply falling:

d2σ

dETdη
∝ E−6

T ,

and the propagation of the error becomes important,

δN

N
≈ 6

δET
ET

.

In fact, the slope is so steep that the energy resolution can distort the spectrum. The
number of measured events with a given ET can be expressed as the convolution,

N(Emeas
T ) =

∞∫

0

N(Etrue
T ) ·Resol(Emeas

T , Etrue
T )dEtrue

T . (10.8)
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It is usual to assume a Gaussian resolution function,

Resol(Emeas
T , Etrue

T ) ∝ exp

[
−(Emeas

T − Etrue
T )2

2σ2
ET

]
,

where σET is the typical energy resolution of the detector. Although the resolution is
symmetric around Etrue

T the steepness causes it to have more influence on one side than
on the other, leading to the distortion of the spectrum. This problem can be minimized
by choosing the bin-width ∆ET ≈ σET .

Beside these measurement problems, one must account also for the errors/uncertainties on
the theory’s side (non-perturbative effects) or of the proton PDFs (see Sect. 10.4) when
comparing measurement with theory. Fig. 10.18 shows the typical relative uncertainty
range on the energy of the jet from the experimental and theoretical point of view for√
s = 10 TeV at CMS. We see that the jet energy scale and the PDFs induce the largest

uncertainties.

Figure 10.18: Experimental and theoretical part of the fractional uncertainty as a function
of the jet transverse energy ET .
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10.5.3 Jet energy scale

In order to calibrate the (transverse) energy of a jet, the most useful process is qq̄ → gγ,

�
.

Indeed, the energy of the photon can be measured to a high precision (1-2%) with the
electromagnetic calorimeter. From conservation of momentum, the (transverse component
of the) 3-momenta of the jet and the photon must add up to zero and their energies are
then the same. The selection of this type of event is achieved by requiring that the photon
is well isolated, that there is no secondary jet and that the photon and the jet must
be well separated in the transverse plane. Fig. 10.19 shows a typical event of this type
as observed at DØ. However, a bias cannot be fully avoided since soft charged particles
might not make it to the calorimeter due to the strong magnetic fields. Also, an additional
second soft jet can spoil the momentum balance.

Figure 10.19: Event display of DØwith a jet and a photon used to calibrate the jet energy
scale.
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10.5.4 Isolation

It is often the case that the signal we would like to observe is smaller than the background
(e.g. Higgs). The way out is the introduction of some filtering procedure to reject back-
ground events. This can be for example a veto on events presenting an energy deposit in a
given cone about a photon. For an observed jet + photon event, one background consists
in a photon radiation off the final state quark, yielding a 2-jets + photon event,

� � � �
In this specific case, a sufficient requirement is that the photon should be isolated, i.e.
there are no energy deposits nor charged tracks in a cone around the photon. This does
not exclude possible “fake” photons from a boosted pion decay, π0 → γγ. Fig. 10.20 shows
the background and signal before and after the isolation cut for jet + photon events.

(a) (b)

Figure 10.20: Isolation. Signal and background (a) before and (b) after isolation cut.

10.5.5 Di-jet events

To look for new physics (e.g. a heavy gauge boson Z ′ of some grand unified theory) a
simple procedure consists in making a histogram of the invariant mass of all di-jet events.
A new resonance would then manifest itself as a peak in this histogram. In the eventuality
that there is no special feature, we can test higher order QCD corrections (see Fig. 10.21).
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Figure 10.21: Measured dijet angular distributions at DØcompared to LO and NLO QCD
calculations.

10.6 W and Z production

After jets the second most abundantly produced type of events at LHC are the ones
containing the massive gauge bosons of the weak interaction : W± and Z0 (Fig. 10.5). For
a luminosity of 1034 cm−2s−1 (design luminosity of LHC) at

√
s = 14 TeV there will be

about 100 W bosons produced per second. These bosons can decay into leptons and are
thus easy to separate from the hadronic signal (jets) : one filters events with high-pT and
isolated leptons.

Since the weak gauge bosons do not couple to gluons and a high center of mass energy
is needed, the valence quarks are determinant for their production. At LHC, W bosons
can be produced via ud̄→ W+ and dū→ W−, and since there are more u-valence quarks
than d-valence quarks in the proton, there will be more W+ produced than W−.
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10.6.1 Predictions

The production cross sections for weak gauge bosons in pp-collisions are known to NNLO
in perturbative QCD. Fig. 10.22 shows some of the diagrams contributing to the produc-
tion of Z bosons with two leptons in the final state.

�

� � �

� � �

� �
Figure 10.22: LO, NLO and NNLO Feynman diagrams for Z-production

Fig. 10.23 shows the double differential cross-section for W - and Z-production at LHC at
LO, NLO and NNLO. One observes the stabilization of the shape and the small uncer-
tainty at NNLO (at zero rapidity : 0.5-0.7% for the W and 0.1% for the Z). However, for
the total production cross-sections significant uncertainties from the PDFs interfere and
cause 4-5% of relative error (Remember the master formula, Eq. (10.4)).

10.6.2 Experimental signature

Events involving weak gauge bosons are relatively easy to spot, due to their clean signa-
ture. We focus here on a decay involving at least one lepton and disregard decays involving
hadrons.
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(a)

On-shell Z boson at the LHC

small NNLO scale uncertainty: (30% − 25%)(LO) → (6%)(NLO) → 0.1%(Y =

0) − 1%(Y ≤ 3) − 3%(Y $ 4)(NNLO)

shape stabilizes at NNLO

Electroweak boson rapidity distributions at hadron colliders – p. 28/48

(b)

Figure 10.23: Differential production cross-section at LO, NLO and NNLO perturbative
QCD as a function of the rapidity. (a) W boson (b) Z boson.

Z : pair of charged leptons A Z boson decays (in its visible mode!) into a pair of
charged leptons. These carry a large transverse momentum pT , are well isolated, have
opposite charge (bending direction) and have an invariant mass (Sect. 4.4.4, p. 50) in a
typical range of 70− 110 GeV. Fig. 10.24 shows the topology of a typical Z event.

Figure 10.24: Typical dileptonic signature for a Z event.

W : single charged lepton A W boson decays into a charged lepton and its corre-
sponding neutrino. The charged lepton has a large transverse momentum pT and is well
isolated. By summing the energies and momenta, one can deduce the missing pT of the
neutrino that escapes undetected. Fig. 10.25 shows the topology of a typical W event.



68 Chapter 10. Hadron collider physics

Figure 10.25: Typical signature for a W event.

Fig. 10.26 shows the experimental data (37584 candidates for a W production, Lint =
72 pb−1 of data) from CDF at Tevatron and the Monte Carlo simulation for different
channels before and after a missing ET cutoff : /ET > 25 GeV. The low-ET events (denoted
QCD) correspond to collimated jets erroneously interpreted as electrons.

(a) (b)

Figure 10.26: Histogram of missing ET associated with W production. (a) Raw data. (b)
Data after /ET > 25 GeV cut.
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Fig. 10.27 shows the invariant mass of e+e− (4242 candidates) and µ+µ−-pairs (1371
candidates) around the Z pole and the Monte Carlo simulation with Lint = 72 pb−1 of data
from CDF at Tevatron. The larger number of charged leptons (making the identification
of the process easier) makes the background very small.

(a) (b)

Figure 10.27: Histogram of the invariant mass of lepton pairs associated with Z production.
(a) Electron decay channel. (b) Muon decay channel.

The total production cross section for W and Z bosons are respectively (CDF, electron
and muon channels):

σW = 2775± 10(stat)± 53(sys)± 167(lum)[pb]

σZ = 254.9± 3.3(stat)± 4.6(sys)± 15.2(lum)[pb].

Fig. 10.28 shows the evolution of the measured production cross-sections for weak gauge
bosons at UA1, UA2, CDF and DØcompared to the theoretical prediction.

Fig. 10.29 shows the expected experimental missing ET and invariant mass distribution at
LHC after collection of 10 pb−1 of data at 10 TeV for W and Z production respectively.
Selection will be achieved by requiring isolated leptons and a transverse energy of 30 resp.
20 GeV.

W/Z + jets An important background for many searches are the W/Z + jets events.
Indeed the topology of a SUSY event will be typically jet + n leptopns + /ET , n ≥ 0,
which is for example identical if the Z of a Z + jet event decays in 2 neutrinos, resulting
also in a large /ET .
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Figure 10.28: Evolution of the production cross-section for W and Z bosons.

(a) (b)

Figure 10.29: Simulation of the different signal and backgrounds for CMS. (a) W− → e−ν̄e.
(b) Z → e+e−.

10.7 Underlying event and multi-parton interactions

So far we have neither discussed the role of the remnants left over e. g. from a hard
scattering process like the one depicted in Fig. 10.9 nor the possibility of multiple-parton
scattering. Since the scattering partons carry color, so do the remnants. Therefore, soft
particle production out of the color field between parton and remnant is to be expected.
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Figure 10.30: Underlying event. The underlying event is everything except for the hard
scattering component of the collision. This includes initial and final state radiation of soft
gluons, spectators, and remnants (a), as well as multi-parton interactions (b).

Furthermore, as was discussed in connection with parton evolution, gluons may be radi-
ated off before the partons engage in the actual scattering. In summary this means that
many soft particles, not directly related to the hard scattering process, are around in the
detector constituting the so-called underlying event (see Fig. 10.30(a)).

The underlying event is defined to be everything except for the hard scattering component
of the collision, i. e. initial and final state soft gluon radiation, spectators, remnants, and
multiple-parton interactions.

The momentum scale of the interaction is set by the parton hard scattering. There is the
possibility of further partons engaging in scattering; one then speaks of multiple-parton
scattering (see Fig. 10.30(b)). Since high pT values are improbable, any further parton
scatterings will, if they happen, do so at a lower pT scale than the initial hard scattering.
It is in this way that multi-parton scattering contributes to the background of soft hadrons
potentially obscuring interesting results of hard parton scattering processes. Calculations
concerning multi-parton interactions are hard and thus only phenomenological models
with some parameters to be tuned exist. In tuning these parameters for LHC, the issue
is their energy dependence.

Now that the problem is stated, let us examine the possibilities to study the underly-
ing event by taking a look at corresponding observables. One possibility is to work with
charged jets, using minimum bias and and jet triggers. Looking for the highest pT (leading
jet), the direction φ = 0 is defined (see Fig. 10.31). Since the underlying event should be
uniformly distributed in φ, the transverse region, where neither the leading jet nor the
back-to-back jet are relevant, is particularly sensitive to the underlying event. The under-
lying event depends on the leading jet pT and one wants to measure how many particles
are in the transverse region per rapidity and angle and their transverse momentum, i. e.
the charged density dN/dηdφ and the transverse momentum density dpT,sum/dηdφ. An-
other possibility is to work with Drell-Yan muon pair production (see Fig. 9.21(b)), using
muon triggers. In this case, after removing the muon pair, everything else is by definition
the underlying event.
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Figure 10.31: Leading jet and transverse region.

Examples of results for the charged density, dN/dηdφ, as function of φ and leading jet pT
are shown in Fig. 10.32. Besides the expected peaks at the position of the leading jet and
in the opposite direction, one can also observe that the underlying event depends on the
leading jet transverse momentum. This behavior is also shown in the RHS plot, which
in addition illustrates the dependence of underlying event studies on phenomenological
models and the values of their parameters.

To conclude this section on the underlying event, let us briefly mention handles to estimate
multiple partonic interaction rates: One can count pairs of mini-jets (two additional jets
balanced on their own) in minimum bias interactions, reconstructing them using charged
tracks. Another possibility is to look for the production of same-sign W pairs.5

10.8 Top production

Since the top quark which was discovered in the nineties at Tevatron is much heavier than
the other quarks and leptons (see Fig. 10.33(a)), one might suspect a special link to the
Higgs which, after all, should be responsible for nonvanishing masses. Because of its large
mass, the top decays immediately into bW+, such that no top-mesons can be produced.

Why is it important to measure the top mass (besides in its own right)? First of all, mt,
combined with mW , yields an indirect constraint on the Higgs mass (see Fig. 10.33(b)).
Furthermore, the measurement of mt serves to test the overall consistency of the standard
model (or of something beyond that), if the Higgs is found. The Higgs contributions to

5See [10].
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Figure 10.32: Underlying event studies at CMS.

cross sections depend on mt. One can therefore check how well corresponding predictions
agree with the data as a function of mt. The ellipses in Fig. 10.33(b) state restrictions
on the Higgs mass from measurements of mt and mW and can accordingly be shrunk by
more precise measurements of these masses.

Possible measurements related to the top quark include the production cross section, the
production via a heavy intermediate state Z ′ (resonance production), along with mass,
spin and charge. A summary of top quark physics is given in Fig. 10.34.

The examples of decay modes given here indicate the type of events originating from top
production: They involve many jets and possibly missing energy. But what exactly does
the shaded blob (in Fig. 10.34) hide? Two possible diagrams for top production are shown
in Fig. 10.35. Initial state gluon radiation may produce additional hadrons X or the tt̄
pair may be produced in pair creation by two gluons.

As mentioned before, the top almost immediately and exclusively decays into W+b:
BR(t → W+b) ∼ 100%. According to the subsequent decays of the thus produced W s
one classifies the top decay channels as follows:

• Dilepton channel. Both W s decay via W → lν (l = e or µ; 5%);

• Lepton + jet channel. One W decays via W → lν (l = e or µ; 30%);

• All-hadronic channel. Both W s decay via W → qq̄ (44%).

Therefore, important experimental signatures are leptons or lepton pairs, missing trans-
verse momentum (ν), and b jets. In terms of detection, the all-hadronic channel causes
some difficulties, since the QCD background has a comparable magnitude. Figure 10.36(a)
shows some features of an event that can be used to search for jets originating from b
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(a)

(b)

Figure 10.33: Top quark mass (a) and constraints on Higgs mass by mt and mW (b).
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Figure 10.34: Top physics summary.
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Figure 10.35: Two possibilities for top production. In (a) initial state radiation produces
additional hadrons X while in (b) the top pair is produced by pair creation.
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Isolated lepton
pT> 20 GeV

4 jets pT> 40 GeV

2 jets M(jj) ~ M(W)

ET
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(a) (b)

Figure 10.36: b tagging. Event features used to identify b jets (a) and vertex close-up of a
top decay. b jets can be identified by looking for displaced vertices. They arise because B
mesons can travel some millimeters before decaying (b).

quarks (b tags). From the invariant mass of the jets the top mass can be reconstructed;
however, it can be difficult to correctly combine the observed jets. Since b tagging is im-
portant for top identification, excellent silicon vertex and pixel detectors are needed to
measure displaced tracks originating from secondary vertices. These secondary vertices
arise because the B meson lifetime allows it to travel some millimeters before decay.
Therefore, displaced vertices can be used to find b jets, see Fig. 10.36(b).

Results of measurements which employ the discussed criteria for b tagging are shown in
Fig. 10.37.6 On the LHS semi-leptonic events (one b tag) are counted, while the RHS lists
events with two b tags (which excludes one-jet events). The background of the measured
top signal stems from the production of W + jets by diagrams like the following:

� �
One can observe that the background signal relies on gluon radiation for jet production and
is therefore rather limited in jet multiplicity. An example for the top mass reconstruction
from lepton + jets events is shown in Fig. 10.38.

6For a collection of Tevatron results on the top mass and production cross section see e. g. http://
www-cdf.fnal.gov/physics/new/top/top.html or http://www-d0.fnal.gov/d0_publications/d0_

pubs_list_runII_bytopic.html#top.



10.8. Top production 77

Figure 10.37: Jet multiplicity and b tagging.

Figure 10.38: Mass reconstruction. Comparison between data and Monte Carlo two-jet
(m2j) and three-jet (m3j) invariant mass distributions.
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Figure 10.39: Tevatron results for top production cross section and mass.

By combining measurements for different decay channels (see Fig. 10.39(a)) the CDF
experiment determined the top production cross section to be σpp̄→tt̄/pb = 7.50± 0.31±
0.34±0.15 (statistical, systematic, and integrated luminosity errors). This is compared to
theoretical predictions for a top mass of mt = 172.5 GeV and

√
s = 1.96 TeV. Top mass

results obtained by considering various channels are given in Fig. 10.39(b).

10.9 Searches for a SM Higgs and SUSY

We conclude this chapter on collider physics by discussing ways to produce and detect a
standard model Higgs and SUSY particles.

Let us first examine Higgs production. The Higgs couples to particles with mass, while it
couples to g and γ indirectly via loops of heavy particles:

�
g

g

H

This motivates the first of the four production diagrams shown in Fig. 10.40. Gluon fusion
is the most likely one of these processes at hadron colliders (if mH ∼ 100−200 GeV), since
for small parton momentum fractions x gluons are dominating in the proton PDFs (see
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Figure 10.40: Higgs production at hadron colliders.

Fig. 9.18(b)). Figure 10.41 shows as functions of mH the corresponding standard model
cross sections σpp→H+X at

√
s = 14 TeV. Again, one observes that the gluon fusion cross

section is dominant; the subdominant mechanisms are important for measuring the Higgs
couplings.

To appreciate the challenges in Higgs detection, we now discuss Higgs decay. Branching
ratios and width predictions are shown in Fig. 10.42(a) and 10.42(b), respectively. The
Higgs couplings to fermions grow with their masses and the coupling of H to W and Z
grows as m2

H . Therefore, the branching ratios strongly depend on the Higgs mass. If mH

is around 120 GeV the dominant channel is decay to b quarks. This basically leads to
two-jet events which compete with a large QCD background. Although the 2γ channel
only has a branching ratio of ∼ 0.002 it is still useful since in this case detection is easier
as in the b quark case. Also, together with jets, the tau channel seems feasible. In the
case of mH = 120− 200 GeV the W and Z channels are dominant. Figure 10.42(b) shows
the total Higgs width as a function of the Higgs mass: Only for mH less than 200 GeV a
narrow resonance is to be expected. In the most likely mass region there is a considerable
spread in possible values for the the total Higgs width.

Combining Higgs production cross sections and branching ratios, we can (in parts reca-
pitulatory) discuss some experimental signatures:

• Two-photon final states.
Excellent detector resolution, isolation and rejection of QCD background jets is
required.
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Figure 10.41: Higgs production cross section as function of Higgs mass.

(a) (b)

Figure 10.42: Higgs branching ratios (a) and total width (b).
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• Lepton final states (µ, e or τ).
As in the 2γ case the final state has to be isolated. This measurement relies on the
lepton momentum resolution and, if necessary, τ identification.

• Lepton + neutrino final states.
Here lepton identification and missing energy resolution are important. In addition,
the background from W and t pairs has to be rejected.

• Associated Higgs production (bb̄H, tt̄H).
b tagging as well as jet spatial and energy resolution are important. Background
signal from hadronic top decays.

• Higgs production via vector boson fusion.
The two jets in forward direction have to be identified: “very forward jet tagging”.
This signature (a rapidity gap appears if the Higgs is produced by vector boson
fusion) will help distinguish the signal from the hadronic top decay and underlying
event background.

The final states can be classified according to whether mass reconstruction is possible:
For the final states γγ, 4l, and bb̄ the mass can be fully reconstructed. In these cases the
background is obtained from the “sidebands” surrounding the signal box. For hadronic
final states an excellent jet ET resolution is needed. Final states containing neutrinos
form a second class for which no exact mass reconstruction is possible. Such decays are
for example H → W+W− → l+νl−ν̄ or decays into tau pairs. In these cases one will
look for Jacobian peaks in the transverse mass spectrum, while the background will be
determined from sideband measurements if possible.

As we have discussed, there are three important Higgs discovery channels:

• mH ' 114− 140 GeV: γγ(H → γγ);

• mH ' 140− 175 GeV: 2l + /ET (H → WW (?)) and 4l(H → ZZ(?));

• mH ' 175− 600 GeV: 4l(H → ZZ(?)).

Note that there are further possibilities under detailed study which appear more diffi-
cult for now. These are vector boson fusion with decay into taus and associated Higgs
production with Higgs decays into b quark pairs which may turn out to be extremely
difficult.

As an example for event selection and background treatment in measuring the important
Higgs discovery channels consider the decay H → γγ. In this case the event selection
would proceed as follows: Search for two isolated photons such that pT,1 > 25 GeV, pT,2 >
40 GeV, and |η| < 2.5 and identify the primary vertex. This procedure will yield about
30% selection efficiency. Estimating the background from the sidebands will yield an
uncertainty smaller than 1% for an integrated luminosity of 20 fb−1. The problem is that



82 Chapter 10. Hadron collider physics

the reducible background will be large. Figure 10.43 shows a plot of expected background
and signal. This QCD background arises for example from diagrams analogous to electron-
positron pair annihilation:

�
q̄

q

γ

γ

The spectrum of these background photon pairs will just decrease with invariant mass
without peaks, as is also shown in Fig. 10.43. Note that the simulated Higgs peaks shown
there are amplified by a factor of 10. Therefore, integrated luminosities of much more
than 1 fb−1 are needed to see a signal significantly above the background. There is also
the possibility that one photon is produced immediately and instead of a second photon
a gluon is radiated off which forms a π0 that subsequently decays into two almost parallel
photons which are finally detected as one. Overall, the event will therefore look like pair
annihilation,

�
π0

q̄

q

2γ

γ

and it will contribute to the background since the large probability of radiating off the
initial gluon outweighs the small probability of it forming one π0 carrying almost all its
momentum.

As a second example consider the channel H → ZZ(?) → 4l. In this case the selection goes
as follows: Look for four isolated and well reconstructed leptons; because they originate
from Z decays, they can be either two e+e− pairs (see Fig. 10.44(a)) or two µ+µ− pairs
or an e+e− and a µ+µ− pair (see Fig. 10.44(b)). The transverse momentum should be
above 5 − 10 GeV. For mH ∼ 140 − 150 GeV the expected signal should be larger than
the background produced by top decays: tt̄ → WbWb → lν clν lν clν. This background
contribution is considerable, since σ × BR ∼ 1300 fb. In oder to reduce it, criteria based
on isolation of the detected leptons and secondary vertexing can be used.

10.9.1 The road to discovery

There are three scenarios for an early discovery which vary in their experimental difficulty.
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1 fb-1
cut-based analysis

Figure 10.43: Invariant mass a of photon pair for the Higgs decay H → γγ. Note that the
Higgs peaks are increased by a factor of 10.

(a)

2e+2µ

(b)

Figure 10.44: Mass reconstruction in H → 4l decays. Note that (a) shows the 4e final
state case while (b) is the 2e2µ case.
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Figure 10.45: Diagram for production and decay of a new heavy resonance Z ′ (a) and
expected signal for decay into a lepton pair (b).

1. An easy case.
A new resonance decaying into e+e− or µ+µ−, e. g. Z ′ → e+e− of mass 1 − 2 TeV
would be easily detectable.

2. An intermediate case.
SUSY (See below.)

3. A difficult case.
As we have seen, a light Higgs with mH ∼ 115−120 GeV would be difficult to detect
since, with many other interactions happening at the same momentum scale as the
Higgs mass scale, the background would be large.

The easy case is the production of new heavy gauge bosons, as predicted by GUT, dy-
namical EWSB, etc. which are generically called Z ′. The diagram would look like in
Fig. 10.45(a) and the background would be low and mainly stem from the Drell-Yan pro-
cess (see Fig. 9.21(b)). The clear two-lepton signature combined with the low background
should yield a clear signal as shown in Fig. 10.45(b).

Let us now turn to the intermediate case, the search for SUSY at the LHC. If SUSY exists
at the EW scale, a discovery at the LHC should be easy. What helps is that squarks and
gluinos are colored and are therefore produced via the strong interaction, which means
large production cross sections. These then decay via cascades into the lightest SUSY
particles (LSP) and other SM particles (leptons and jets) (see Fig. 10.46(a)). Thus the
final states contain leptons, jets and missing energy. The general procedure will be as
follows:

1. Look for deviations from the SM predictions, e. g. in the multi-jet + Emiss
T signature.
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(a) (b)

Figure 10.46: Diagram for strong production and subsequent decay of SUSY particles (a)
and SUSY event display simulation (b).

2. Establish the SUSY mass scale by using inclusive variables such as the effective mass

Meff = /ET +
∑

jets

pT (jet).

3. Determine the model parameters (difficult). The strategy is to select particular decay
chains and to use kinematics to determine the mass combinations.

Because of the mentioned features SUSY events promise to be very spectacular: There
will be many hard jets, large missing energy (from two LSPs and many neutrinos), and
many leptons. A corresponding event display simulation is shown in Fig. 10.46(b). As one
can see from the following numbers, for low SUSY mass scales the LHC should become a
real SUSY factory (numbers for

√
s = 14 TeV):

M/GeV σ/pb #events per year

500 100 106 − 107

1000 1 104 − 105

2000 0.01 102 − 103

Having said that, SUSY detection is still not easy, for it relies on good reconstruction
and understanding of multi-jet backgrounds and missing transverse energy. A typical
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Figure 10.47: Typical SUSY signal and backgrounds.

selection would be based on the following criteria: Njet > 4, ET > 100, 50, 50, 50 GeV,
and /ET > 100 GeV. One would then hope to find a signal as shown in Fig. 10.47, where
the effective mass variable Meff is used.



Chapter 11

Electroweak interactions

Literature:

• Böhm/Denner/Joos [11]

In this chapter a unified theory of electromagnetic and weak interactions is discussed.
The energy scale of this unification corresponds to the mass of the vector bosons: EEW ∼
MW , MZ ∼ 100 GeV. At low energies, in contrast, there are two distinct interactions,
the electromagnetic interaction described by QED, and the weak interaction described by
Fermi’s theory. Some signals are also present in low energy atomic physics, e. g. electroweak
interference and parity violation.

11.1 Introduction – the weak force

A comparison of strong, electromagnetic and weak interactions is given in the following
table:

Interaction Involved ∼ τ/s

Strong quarks 10−23

Electromagnetic charged leptons and quarks 10−16

Weak all leptons and quarks 10−6 − 10−8

One can observe that the timescales involved in weak decays are much larger than the
ones of strong or electromagnetic decays. Thus, since τ ∼ 1/coupling2, the weak coupling
is supposed to be some orders of magnitude smaller than the strong coupling (see also
Sect. 7.3.3).

Weak processes are classified according to the leptonic content of their final state:

• Leptonic.
E. g. µ+ → e+ + ν̄µ + νe; νe + e− → νe + e−.

87
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• Semi-leptonic.
E. g. τ+ → ρ+ + ν̄τ .

• Hadronic (non-leptonic).
E. g. K0 → π+ + π−; Λ0 → n+ π0.

The weak interaction violates parity (P ) and charge conjugation (C) symmetry. It also
violates CP and T, much more weakly, though. Also flavor is not conserved in weak
interactions (see Sect. 7.3.2). If mν 6= 0, neutrino oscillations occur and lepton family
number is not conserved either.

Let us review some of the experimental results for the weak interaction.

Existence of neutrinos. Consider nuclear β− decay, assuming a two-particle final
state: n→ p+ e−. Since me � mn, mp, the recoil can be neglected and so

mn = Ep + Ee

mn ' mp + pe

pe ' mn −mp.

This result means that for a two-body decay monoenergetic electrons are to be expected.
However, the measured electron spectrum is continuous (see Fig. 11.1(a)). To solve this
problem, Fermi and Pauli introduced an invisible neutrino carrying part of the decay
energy: n → p + e− + ν̄e (see Fig. 11.1(b)). The Fermi theory amplitude for this process
reads

M =
GF√

2
(ψ̄pγ

µψn)(ψ̄eγµψν̄), (11.1)

where GF ∼ 1/(300 GeV)2 is the Fermi constant. Note that the expression in Eq. (11.1)
has vector structure and therefore does not violate parity. This point will be revisited
later on.

Leptonic decays of π±. Since π± is the lightest hadron, it cannot decay into other
hadrons. Furthermore, electromagnetic decay (like in the case of π0 → γγ) is forbidden
by charge conservation. Thus no other channels are obscuring the study of the leptonic
decay π+ → µ+ + νµ.

Non-observation of µ→ e+γ. Although energetically possible, the decay µ− → e−+γ
is not observed in experiment. This leads to the introduction of a new quantum number
called lepton number L, where

Ll = 1 e−, µ−, νe, . . .

Ll̄ = −1 e+, µ+, ν̄e, . . . .

The leptonic muon decay conserving lepton number per family reads µ− → e− + νµ + ν̄e.
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(a)

�n

ν̄e

e−

p

(b)

Figure 11.1: β− decay spectrum (a) and diagram (b). (a) shows an electron momentum
spectrum for the β− decay of 64Cu, source: [12, p. 14].

Parity violation. One famous instance of parity violation is the so-called τ -θ puzzle
(1956). It consists in the finding that the Kaon K+ decays into two final states with
opposite parity:

K+

{
θ → π+π0

τ → π+π+π−

P |ππ〉 = (−1)(−1)(−1)l = +1

P |πππ〉 = (−1)3(−1)lπ1π2 (−1)lπ3 = −1,

where l denotes angular momentum eigenvalues. The above is true for JK+ = 0, since then,
by conservation of angular momentum, l = 0 and lπ1π2 ⊕ lπ3 = 0 such that lπ1π2 = lπ3 .
Lee and Young introduced the idea that θ and τ are the same particle K+ (fitting into
its multiplet, see Fig. 7.6) which undergoes a flavor changing decay.

Another famous example for the demonstration of parity violation in weak interactions
is the Wu experiment (1957). The idea is to consider β decay of nuclei polarized by an
external magnetic field:

60Co����
J=5

→ 60Ni�� �� �
J=4

+ e− + ν̄e� �� �
Jz=1

�B

The Cobalt nuclei are aligned to the external magnetic field and are in a state with
J = 5. By conservation of angular momentum, the electron and neutrino spins have to
be parallel (the decay product 60Ni? is fixed). Since, to fulfill momentum conservation,
they are emitted in opposite directions, the electron and its neutrino must have opposite
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chirality. It is observed that electrons are emitted preferentially opposite to the
#»

B field
direction:

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R
)

>Γ
(

60Co→ 60Ni? + e−R + νe,L
)

= P
{

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R
)}
.

Thus left-handed leptons and right-handed antileptons (e−L , ν̄e,R) are preferred over right-
handed leptons and left-handed antileptons (e−R, ν̄e,L). Recall (Sect. 5.2.4) that one uses
the projectors PR

L

= 1
2
(1± γ5) to indicate the chirality basis: uL,R = PL,Ru.

These observations gave rise to the V − A theory of weak interactions, described in
Sect. 11.3 below.

11.2 γ5 and εµνρσ

Recall that the amplitude in Eq. (11.1) does not violate parity. Therefore it has to be
modified such that parity violation is included. To achieve this aim, the matrix γµ which
forms the vector ψ̄γµψ has to be replaced by a linear combination of elements of the set

{1, γµ, σµν , γ5γ
µ, γ5}

where σµν = i
2
[γµ, γν ] and γ5 = iγ0γ1γ2γ3. Using these matrices we can form the following

field bilinears whose names are inspired by their transformation behavior under proper
and improper Lorentz transformations1

ψ̄ψ scalar

ψ̄γµψ vector

ψ̄σµνψ tensor

ψ̄γ5ψ pseudoscalar

ψ̄γµγ5ψ pseudovector.

In Sect. 5.2.4 we discussed operators on spinor spaces, including helicity,

h =
1

2
#»σ ·

#»p

| #»p | ⊗ 1 P± =
1

2
(1± h),

and chirality,

γ5 PR
L

=
1

2
(1± γ5).

Recall that in the high energy limit chirality and helicity have the same eigenstates.

The chirality matrix γ5 has the following useful properties (see also Sect. 5.9)

1See e. g. [13, p. 64].
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• γ2
5 = 1;

• {γ5, γµ} = 0;

• γ†5 = iγ3γ2γ1γ0 = γ5;

• Trγ5 = 0;

• Dirac-Pauli representation: γ5 =

(
0 1

1 0

)
.

Now let us define the totally antisymmetric ε tensor in four dimensions:

εµνρσ =





+1, {µ, ν, ρ, σ} even permutation of {0, 1, 2, 3}
−1, {µ, ν, ρ, σ} odd permutation of {0, 1, 2, 3}
0 else

, (11.2)

such that

ε0123 = +1

εµνρσ = −εµνρσ.

The product of two such ε tensors is then given by

εµνρσεµ
′ν′ρ′σ′ = − det




gµµ
′
gµν

′
gµρ

′
gµσ

′

gνµ
′
gνν

′
gνρ

′
gνσ

′

gρµ
′
gρν

′
gρρ

′
gρσ

′

gσµ
′
gσν

′
gσρ

′
gσσ

′




resulting in

εµνρσεµν
ρ′σ′ = −2(gρρ

′
gσσ

′ − gρσ′gσρ′)
εµνρσεµνρ

σ′ = −6gσσ
′

εµνρσεµνρσ = −24 = −4!.

Using the definition in Eq. (11.2), one can express γ5 as

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ.

Here are some traces involving γ5:

• Trγ5 = 0;

• Tr(γ5γ
µγν) = 0;
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• Tr(γ5γ
αγβγγγδ) = −4iεαβγδ

Observe that interchanging two matrices in the trace above yields a minus sign,
furthermore the trace vanishes if two indices are identical. Hence the trace is pro-
portional to the ε-tensor:

aεαβγδ = Tr(γ5γ
αγβγγγδ).

Multiplying both sides by εαβγδ yields

−24a = Tr(γ5γ
αγβγγγδ)εαβγδ

= 24iTr(γ5γ5 = 1)

⇒ a = −4i.

11.3 The V − A amplitude

The correct linear combination of bilinears replacing the vector ψ̄γµψ in Eq. (11.1) in
order to achieve parity violation turns out to be the “vector minus axialvector”, or V −A,
combination ψ̄γµψ − ψ̄γµγ5ψ.

2

Adjusting the amplitude in Eq. (11.1) accordingly yields for the β− decay amplitude

M(n→ pe−ν̄e) =
GF√

2
[ūpγ

µ(1− γ5)un][ūeγµ(1− γ5)uνe ] (11.3)

and analogously for the muon decay

M(µ− → νµe
−ν̄e) =

GF√
2

[ūνµγ
µ(1− γ5)uµ][ūeγµ(1− γ5)uνe ]. (11.4)

Let us analyze the general form and properties of V − A amplitudes. Their structure is
that of a current-current interaction:

M =
4√
2
GFJ

µ
i J
†
j,µ (11.5)

where

Jµi = ūi0γ
µ1

2
(1− γ5)ui− (11.6)

J†j,µ = ūj−γµ
1

2
(1− γ5)uj0 . (11.7)

Note the following properties of this kind of amplitudes:

2An axialvector is a pseudovector, since the prefix “pseudo” is used for cases where an extra minus
sign arises under the parity transformation (in contrast to the non-pseudo case).
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1. γµ(1− γ5) selects left-handed fermions,

γ5uL = γ5PLu = γ5
1

2
(1− γ5) = −1

2
(1− γ5)u = −uL,

and right-handed antifermions, as desired.

2. GF is universal.

3. Parity and charge conjugation alter the outcome of experiments, but here CP is
conserved:

Γ
(
π+ → µ+

R + νL
)
6= Γ

(
π+ → µ+

L + νR
)

/P 7

Γ
(
π+ → µ+

R + νL
)
6= Γ

(
π− → µ−R + ν̄L

)
/C 7

Γ
(
π+ → µ+

R + νL
)

= Γ
(
π− → µ−L + ν̄R

)
CP 3.

11.4 Muon decay – determination of GF

Consider the decay

µ−(p)→ e−(p′) + ν̄e(k
′) + νµ(k),

see Fig. 11.2. The amplitude is given by

M =
GF√

2
[ū(k)γµ(1− γ5)u(p)][ū(p′)γµ(1− γ5)v(k′)].

Recall that the differential decay rate reads

dΓ =
1

2Eµ
|M|2(2π)4dR3(p′, k, k′)

where

dR3(p′, k, k′) =
d3p′

(2π)32Ep′

d3k

(2π)32Ek

d3k′

(2π)32Ek′
δ(4)(p− p′ − k − k′).

For mν = me = 0 this yields

dΓ

dEp′
=
mµG

2
F

2π3
m2
µE

2
p′

(
3− 4Ep′

mµ

)

and

Γ =

mµ/2∫

0

dEp′
dΓ

dEp′
=
G2
Fm

5
µ

192π3
=

1

τ
.
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�p k′

k

p′

µ−

ν̄e

e−

νµ

Figure 11.2: Leptonic muon decay.

The measured muon lifetime is

τ = 2.1970 · 10−6 s = 2.9960 · 10−10 eV;

assuming a muon mass of

mµ = 105.658 · 106 eV,

this yields

GF = 1.166 · 10−5 GeV−2 ' 1

(300 GeV)2

which is a dimensionful ([GF ] = m−2) quantity. This hints to the fact that there are some
problems with Fermi’s theory:

1. It deals with massless fermions only.

2. It is not renormalizable. This problem, along with the dimensionful coupling, is
typical for an effective theory, a low energy approximation of a more general theory,
in this case the GWS theory.

3. It violates unitarity at high energies. E. g. one finds that the cross section for
electron-neutrino scattering is divergent for ECM →∞:

σe
−+νe→e−νe =

4G2
F

π
E2

CM.

One can show that the optical theorem yields the following unitarity constraint
for the S-wave: G2

F s
2 . 1. Thus Fermi’s theory is a good approximation only for√

s . 1/
√
GF and it breaks down for higher energies.
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11.5 Weak isospin and hypercharge

From the earlier analysis, we consider the currents of the weak interaction as charged
currents 3,

jµ = j+
µ = ūνγµ

1

2
(1− γ5)ue = ν̄γµ

1

2
(1− γ5)e = ν̄LγµeL = �W+

e−

νe

j†µ = j−µ = ūeγµ
1

2
(1− γ5)uν = ēγµ

1

2
(1− γ5)ν = ēLγµνL = �W−

νe

e−

.

These currents correspond to transitions between pairs of fermions whose charge differs
by one unit. For this reason, one speaks of charged currents (CC). These two currents
are the ones associated with (weak) decays of muons and neutrons.

In analogy to the case of isospin, where the proton and neutron are considered as the two
isospin eigenstates of the nucleon, we postulate a weak isopin doublet structure (T = 1

2
),

χL =

(
ν
e

)

L

T3 = +1
2

T3 = −1
2

, (11.8)

with raising and lowering operators,

τ± =
1

2
(τ1 ± iτ2),

where the τi are the usual Pauli matrices. With this formalism, one can write the charged
currents as,

j+
µ = χ̄Lγµτ+χL (11.9)

j−µ = χ̄Lγµτ−χL (11.10)

The next step consists in postulating an SU(2) symmetry of these currents. In the case
of isospin, this leads to the prediction of three currents mediated by the pions π±, π0. We
thus expect a third current to exist, which does not change the charge and is thus called
neutral current (NC),

j3
µ = χ̄Lγµ

1

2
τ3χL = ν̄Lγµ

1

2
νL − ēLγµ

1

2
eL = �W 3

νe(e
−)

νe(e
−)

, (11.11)

3The ‘plus’ + and ‘dagger’ † shall not be confused.
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yielding a weak isospin triplet of weak currents,

jiµ = χ̄Lγµ
1

2
τiχL i = 1, 2, 3,

with algebra,

[τi, τj] = iεijkτk.

Now, we compare these to the electromagnetic current,

jemµ = ēγµQe = ēRγµQeR + ēLγµQeL, (11.12)

where Q is the electromagnetic charge operator. This current is invariant under U(1)Q, the
gauge group of QED associated to the electromagnetic charge. It is however not invariant
under the SU(2)L which we postulated for the weak currents : it contains eL instead of χL.

To solve this issue, we construct an SU(2)L-invariant U(1)-current,

jYµ = ēRγµYReR + χ̄LγµYLχL, (11.13)

where the hypercharges YR and YL are the conserved charge operators associated to the
U(1)Y symmetry. It is different for left and right handed leptons.

We now want to write jemµ as a linear combination of j3
µ and 1

2
jYµ (the factor 1

2
is a matter

of convention). One gets,

ēRγµQeR + ēLγµQeL = ν̄Lγµ
1

2
νL − ēLγµ

1

2
eL +

1

2
ēRγµYReR +

1

2
χ̄LγµYLχL,

from which we read out,

YR = 2Q YL = 2Q+ 1. (11.14)

with the weak isospin third components,

T3(eR) = 0 singlet, blind to the weak interaction

T3(νL) = +1
2

T3(eL) = −1
2

}
doublet,

one can then write the relation,

Y = 2Q− 2T3 . (11.15)

In Tab. 11.1 and 11.2, we summarise the quantum numbers of leptons and quarks. It should
be noted that the right handed neutrino νR does not carry SU(2)L or U(1)Y charges, and
thus decouples from the electroweak interaction.
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T T3 Q Y
νL 1/2 1/2 0 −1
e−L 1/2 −1/2 −1 −1
νR 0 0 0 0
e−R 0 0 −1 −2

Table 11.1: Weak quantum numbers of leptons

T T3 Q Y
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 11.2: Weak quantum numbers of quarks

11.6 Construction of the electroweak interaction

As in the case of QED (Sec. 5.12, p.98) and QCD (Sec. 7.4, p. 138), we expect the elec-
troweak interaction to be mediated by gauge fields. In the case of QED, we had,

LQED
int = −iejemµ Aµ,

where e is the (U(1)Q-)coupling, jemµ the (U(1)Q-)current, and Aµ the (U(1)Q-)gauge field
(photon). We copy this for the current triplets and singlet :

LEW
int = −igjiµW iµ − ig

′

2
jYµ B

µ, (11.16)

where we introduced the SU(2)L-gauge field triplet W iµ and singlet Bµ associated to the
weak isospin and weak hypercharge respectively.

From those we can construct the massive charged vector bosons,

W±µ =
1√
2

(W 1µ ∓ iW 2µ),

as well as the neutral vector bosons (mass eigenstates) as a linear combination of W 3µ

and Bµ,

Aµ = Bµ cos θw +W 3µ sin θw massless → γ,

Zµ = −Bµ sin θw +W 3µ cos θw massive → Z0,

where θw is called the weak mixing angle (or sometimes Weinberg angle).
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Substituting these quantities in the interaction Lagrangian of the neutral electroweak
current, we obtain,

−igj3
µW

3µ − ig
′

2
jYµ B

µ =− i
(
g sin θwj

3
µ + g′ cos θw

jYµ
2

)
Aµ

− i
(
g cos θwj

3
µ − g′ sin θw

jYµ
2

)
Zµ.

The first term corresponds to the electromagnetic current, for which we had jemµ = j3
µ +

1
2
jYµ , implying,

g sin θw = g′ cos θw = e , (11.17)

and thus linking the three couplings together. One often uses e and sin θw as parameters
for the standard model to be measured experimentally.

The second term corresponds to the weak neutral current. From jYµ = 2(jemµ − j3
µ), we get,

jNC
µ =

g

cos θw
(j3
µ − sin2 θwj

em
µ ). (11.18)

11.7 Electroweak Feynman rules

Vertices The Feynman rules for vertices stemming from,

LEW
int = LQED

int + LCC
int + LNC

int ,
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can be computed as follows,

iLQED
int = −ieψ̄fγµQψfAµ

⇒ �γ
f

f

= −ieQfγµ

iLCC
int = −i g√

2
(χ̄Lγµτ+χL)W+µ − i g√

2
(χ̄Lγµτ−χL)W−µ

= −i g√
2
ν̄γµ

(
1− γ5

2

)
eW+µ − i g√

2
ēγµ

(
1− γ5

2

)
νW−µ

⇒ �W+

e−

νe

= �W−

νe

e−

= −i g√
2
γµ

(
1− γ5

2

)

iLNC
int = −i g

cos θw
ψ̄fγµ

[(
1− γ5

2

)
T3 − sin2 θwQ

]
ψfZ

µ

= −i g

cos θw
ψ̄fγµ

1

2
(cfV − cfAγ5)ψfZ

µ

⇒ �Z0

f

f

= −i g

cos θw
γµ

1

2
(cfV − cfAγ5)

where cfV and cfA are the vector and axial vector couplings of the fermion type f . A simple
calculation yields,

cfV = T f3 − 2 sin2 θwQ
f (11.19)

cfA = T f3 . (11.20)

Tab. 11.3 lists the couplings for the various types of fermions.

Qf cfV cfA
ν 0 1/2 1/2
e −1 −1/2 + 2 sin2 θw −1/2
u 2/3 1/2− 4/3 sin2 θw 1/2
d −1/3 −1/2 + 2/3 sin2 θw −1/2

Table 11.3: Vector and axial vector couplings of fermions.



100 Chapter 11. Electroweak interactions

Propagator of a massive vector boson Form Eq. (11.17), we see that e and g
should be of the same order of magnitude (since we know experimentally that sin2 θw ≈
0.23). This leads to the question : why is the weak interaction so much weaker than the
electromagnetic one? This can be made evident by looking at the typical lifetime of weakly
decaying particles (as the neutron or the muon) compared with electromagnetic decays.
The answer lies in the large mass of the weak gauge bosons W± and Z0.

The components Xµ = W+µ,W−µ, Zµ fulfill the Klein-Gordon equation,

(�+M2)Xµ = 0, ∂µX
µ = 0 (gauge fixing),

which results in the propagator,

i

∑
λ(ε

µ
λ)∗ενλ

p2 −M2
.

The polarisation sum Πµν must take the form,

Πµν =
∑

λ

(εµλ)∗ενλ = Agµν +Bpµpν .

Using the identities,

pµp
µ = M2, pµΠµν = pνΠ

µν = 0, gµνΠ
µν = 3,

coming from the on-shell condition, the conservation of current and the count of polar-
ization states (for a massive particle) respectively, we get A = −1 and B = M−2, making
us able to write,

�W±, Z0

µ ν= i
−gµν + pµpν/M2

p2 −M2
.

So unless momentum transfer is not of the order of M & 100 GeV, the propagator gets
suppressed drastically by the mass.

Relation of the Fermi V −A-interaction In V −A-theory, we have a 4 point vertex,

�
4GF√

2



11.8. Spontaneous symmetry breaking:
Higgs mechanism 101

yielding the matrix element,

MV−A =
4GF√

2
jµj†µ.

The same process, viewed as the exchange of a low momentum (q2 �M2
W ) vector boson,

� q

g√
2

g√
2

corresponds to the matrix element,

MEW ≈
(
g√
2
jµ
)

1

M2
W

(
g√
2
j†µ

)
,

yielding the relation,

GF =

√
2g2

8M2
W

. (11.21)

From this relation, the first estimates of the mass of the W± bosons were 50− 100 GeV.

11.8 Spontaneous symmetry breaking:

Higgs mechanism

The ad hoc introduction of non-vanishing vector boson masses runs into a serious problem:
One would have to include into the Lagrangian the usual mass term

LM = −m
2

2
AµA

µ (11.22)

which violates gauge invariance (the boson field transforms as Aµ → Aµ− ∂µα(x)). If the
“massive vector bosons” are indeed to be massive, gauge symmetry needs to be broken
in some way, since the inclusion of a mass term requires breaking of gauge symmetry.
To avoid problems at the theory level caused by broken gauge symmetry, the idea is
to retain gauge symmetry in this respect, while physical states are less symmetric than
the Lagrangian. This situation can e. g. also be found in solid state physics: Consider a
ferromagnet modeled as a collection of spins. As long as no magnetization is imposed, this
system is rotationally invariant. A non-vanishing magnetization breaks this symmetry, in
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that it singles out a specific direction. Symmetry breaking occurs due to the influence of
changing a continuos parameter (magnetization) caused by the environment. This does not
affect the rotational invariance of the theory describing the ferromagnet and two physical
states with different imposed directions are related by a transformation corresponding to
the symmetry that is broken by imposing directions.

Let us start out with an example: Consider a real scalar field with a four-point interaction
(which is to the complex scalar field what is the Ising model to the isotropic ferromagnet
mentioned above):

L =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

1

4
λφ4

)
(11.23)

= T − V (11.24)

where −1/2µ2φ2 is a mass term and −1/4λφ4 is an interaction term corresponding to the
four-point vertex. Because the potential needs to be bounded from below, λ > 0. Observe
that L is even in φ and therefore invariant under the transformation φ→ −φ.

The vacuum state of this theory corresponds to a minimum of the potential:

∂V

∂φ
= φ(µ2 + λφ2)

!
= 0. (11.25)

Depending on the sign of µ2, one can distinguish two cases.

a) µ2 > 0, λ > 0.
In this case the vacuum state is reached for φ = 0, see Fig. 11.3(a).

b) µ2 < 0, λ > 0.
Here, φ = 0 is still an extremum, but has turned into a local maximum. In addition
there are two minima at

φ = ±
√
−µ2

λ
= ±v

which correspond to two vacua, degenerate in energy, see Fig. 11.3(b). In this case,
the symmetry transformation φ → −φ, which leaves the Lagrangian in Eq. (11.23)
invariant, changes two distinct physical states into each other.

A perturbative calculation is an expansion around the vacuum sate. If we consider case
b), this means φ = v or φ = −v. Therefore, the symmetry φ → −φ is broken, although
the Lagrangian has this symmetry irrespective of the signs of µ2 and λ. Let us choose the
positive sign vacuum state and expand:

φ(x) = v + η(x) (11.26)
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Figure 11.3: The Potential V (φ) for (a) µ2 > 0 and (b) µ2 < 0 and λ > 0. Source: [1, p.
322].

where η(x) is some perturbation around v. Inserting this expansion into the Lagrangian
yields

L =
1

2
(∂µη)2 − λv2η2 − λvη3 − 1

4
λη4 + const. (11.27)

Here, the first term is a kinetic term for η with mass mη =
√

2λv2 =
√
−2µ2 and the

second an third terms are the thee-pint and four-point interaction terms, respectively.

Two other examples for spontaneous symmetry breaking are

• The alignment of spins in a ferromagnet which violates rotational invariance and

• The bending of an elastic bar under a force aligned with its symmetry axis, see
Fig. 11.4.

These examples share the following feature: Variation of some continuous parameter is
associated with a transition between two phases with differing degree of symmetry.

Above we considered a discrete symmetry of the Lagrangian; we now turn to the sponta-
neous breaking of a continuos symmetry, namely of global gauge symmetry. Consider now
a complex scalar field:

φ =
1√
2

(φ1 + iφ2) (11.28)

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2. (11.29)
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Figure 11.4: Bending of an elastic bar. Source: [1, p. 324].

The Lagrangian is invariant under global U(1) transformations φ → eiαφ. In the case
λ > 0, µ2 < 0 the minimum of the potential V (φ) is a circle in the φ1, φ2 plane with

φ2
1 + φ2

2 = v2 = −µ
2

λ
, (11.30)

see Fig. 11.5. Out of the infinitely many distinct vacua, degenerate in energy, we choose
φ1 = v, φ2 = 0. Again, we can expand around the ground state, this time in two orthogonal
directions: η(x) denotes the perturbation in the steepest ascent direction and ξ(x) is the
perturbation in the orthogonal direction (potential valley, see Fig. 11.5):

φ(x) =
1√
2

[v + η(x) + iξ(x)] . (11.31)

Inserting this expansion into the Lagrangian in Eq. (11.29) yields

L =
1

2
(∂µξ)

2 +
1

2
(∂µη)2 + µ2ξ2 + const +O

(
(η, ξ)3

)
(11.32)

where we identify a mass term −1/2m2
ηη

2 with mη = −2µ2 while for the ξ field there is
only a kinetic and no mass term.4 This is because η is an excitation along the potential
direction while ξ corresponds to a rotation along the circle of vacua. Here, the process
of spontaneous symmetry breaking leads from a more symmetric phase with two massive
fields to a less symmetric phase with a massive and a massless field.

4This massless scalar is a Goldstone boson. The Goldstone theorem says that for every broken con-
tinuous symmetry there is a massless boson.
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Figure 11.5: The potential V (φ) for a complex scalar field for the case µ2 < 0 and λ > 0.
Source: [1, p. 325].

Let us now turn to the spontaneous breaking of local gauge symmetry. Consider a complex
scalar field and local U(1) gauge transformations:

φ→ φ′ = φeieα(x). (11.33)

Gauge invariance of the Lagrangian requires the covariant derivative

Dµ = ∂µ + ieAµ (11.34)

with the massless U(1) gauge field Aµ transforming as

Aµ → A′µ = Aµ − ∂µα(x). (11.35)

A gauge invariant Lagrangian reads

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
F µνFµν . (11.36)

As before, we consider the case µ2 < 0, λ > 0; v and the expansion are

v2 = −µ
2

λ
φ(x) =

1√
2

[v + h(x)] ei
ξ(x)
v (11.37)

where in this case wee keep the finite rotation due to ξ to preserve gauge freedom. This
allows to absorb ξ(x) into a redefinition of the gauge field:

Aµ → Âµ = Aµ −
1

v
∂µξ(x). (11.38)
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Combining expansion and redefinition with the Lagrangian in Eq. (11.36) yields

L =
1

2
(∂µh)2 − λv2h2 +

1

2
e2v2Â2

µ − λvh3 − 1

4
λh4 +

1

2
e2Â2

µh
2 + ve2Â2

µ −
1

4
F̂ µνF̂µν .

(11.39)

The particle spectrum of this theory is as follows.

• There is a massive scalar field h (Higgs) of mass mh =
√

2λv2.

• The Goldstone field has been absorbed into Âµ and is no longer present in the
Lagrangian.

• There is a massive U(1) vector field Âµ of mass mA = ev.

It is important to notice that the vacuum state φ = v/
√

2 is charged under the gauge
interaction.

Finally, let us consider the degrees of freedom for the Lagrangian given in terms of φ and
A and in terms of h and Â:

L Fields d. o. f.

L in φ, A
φ complex, scalar 2
Aµ massless, spin-1 vector 2

L in h, Â
h real, scalar 1

Âµ massive, spin-1 vector 3
This acquiring of a mass by a spin-1 vector boson is also what happens to the photons
belonging external fields in superconductors: Since the propagation of the massive photons
is exponentially suppressed, the field is correspondingly excluded (Meißner-Ochsenfeld
effect).

11.9 Gauge boson masses in SU(2)L × U(1)Y
For constructing a gauge invariant Lagrangian, we define the covariant derivative in
SU(2)L × U(1)Y :

Dµ = ∂µ − ig
1

2
#»τ · # »

W µ − ig′
1

2
Y Bµ. (11.40)

The corresponding Lagrangian for a complex scalar field reads

L = [iDµφ]†[iDµφ]− µ2φ†φ− λ[φ†φ]2 (11.41)

where φ is an SU(2) doublet (choose to arrange fields such that Y = 1):

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
=

(
φ+

φ0

)
. (11.42)
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This is also called a Higgs doublet.

Again let us consider the case µ2 < 0 and λ > 0. We may choose the following vacuum
state: φ1 = φ2 = φ4 = 0 and φ3 = v and expand, which, up to a phase, yields

v2 = −µ
2

λ
φ =

1√
2

(
0

v + h(x)

)
. (11.43)

This choice of vacuum breaks the SU(2)L and U(1)Y gauge symmetries, since it is hy-
percharged. The U(1)Q symmetry of electromagnetism, though, is conserved, because
Qφ = (T3+Y/2)φ = 0 and the photon remains massless. What is the particle spectrum for
this theory, given the vacuum expectation value chosen above? Inserting φ0 = 1/

√
2(0, v)T

into the relevant term of the Lagrangian in Eq. (11.41), [Dµφ]†[Dµφ], gives the answer:

∣∣∣∣
(
−ig

2
#»τ · # »

W µ − i
g′

2
Bµ

)
φ

∣∣∣∣
2

=
1

8

∣∣∣∣
(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −gW 3

µ + g′Bµ

)(
0
v

)∣∣∣∣
2

=
1

8
v2g2

∣∣(W 1)2 + (W 2
µ)2
∣∣+

1

8
v2(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ)

=

(
1

2
vg

)2

W+
µ W

−µ +
1

8
v2(g′Bµ − gW 3

µ)2

which, using Zµ = (gW 3
µ − g′Bµ)/

√
g2 + g′2,

= M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ

where

MW =
1

2
vg MZ =

1

2
v

√
g2 + g′2 . (11.44)

Using g′/g = tan θw yields the following relation between the W and the Z mass:

MW

MZ

= cos θw . (11.45)

Finally, knowing the W mass, we can use Fermi’s constant to obtain an estimate for the
vacuum expectation value v:

GF =

√
2g2

8M2
W

=
1√
2v2
→ v = 246 GeV .
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11.10 Fermion masses

The usual mass term for quarks and leptons (we focus on the T3 = −1
2

fermions, i.e. down
quarks and electrons) takes the form,

Lm− = −mψ̄ψ = −m
(
ψ̄RψL + ψ̄LψR

)
,

where ψL is a component of the SU(2)L-doublet χL, and ψR is an SU(2)L-singlet. Because
of its form, this mass term cannot be invariant under the action of the gauge group SU(2)L
(ψR transforms trivially, whereas ψL necessarily changes).

The solution consists in pairing ψL with an adjoint doublet, the Higgs doublet, that we
have already introduced earlier to give masses to the vector bosons by means of sponta-
neous symmetry breaking. A gauge invariant mass term is obtained by coupling to the
Higgs doublet, e.g. for the electron (also valid for all T3 = −1

2
fermions):

Lm− = −Ge

[(
ν̄e ē

)
L

(
φ+

φ0

)
eR + ēR

(
φ̄+ φ̄0

)( νe
e

)

L

]

= −G
ev√
2

(ēLeR + ēReL)− Ge

√
2
h (ēLeR + ēReL) , (11.46)

where Ge denotes the Yukawa coupling of the electron, and we used,
(
φ+

φ0

)
=

1√
2

(
0

v + h(x)

)
.

We can now read out of Eq. (11.46),

me =
Gev√

2
, (11.47)

and the coupling of the electron to the Higgs field,

�h
e−

e−

= −ime

v
.

Since me = 511 keV and v = 246 GeV, this vertex factor is very small for the electron. In
the case of the top, mt = 172 GeV and the vertex factor is much bigger. In the event the
Higgs mass is big enough (mh > 2mt), thus kinematically allowing this decay mode, the
branching ratio,

BR(h→ tt̄) =
Γ(h→ tt̄)

Γ(h→ anything)
,
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would be significant.

The vacuum is charged under both SU(2)L and U(1)Y but not electrically. Because of
this, the photon stays massless, even after SU(2)L × U(1)Y has been broken. Therefore
the vacuum expectation value (VEV) of the Higgs fields concentrates on the neutral
component of the doublet, i.e. the second component having T3 = −1

2
(otherwise the

vacuum would also be charged electrically, giving a mass to the photon). Up to now, we
have been able to give a gauge invariant mass term to the charged leptons and d-type
quarks (d, s, b) all having T3 = −1

2
. It appears that we are not able to give a mass term

to the neutrinos (neutral leptons) and u-type quarks (u, c, t) having T3 = +1
2

without
introducing another Higgs doublet 5.

In the case of SU(2) (but not in general), we are allowed to use at this end the charge
conjugate of the Higgs doublet,

φc = iτ2φ
† =

(
φ̄0

−φ̄+

)
→ 1

2

(
v + h(x)

0

)
, (11.48)

which has Y = −1, because φ and φc are equivalent, i.e. can be connected by a unitary
transformation.

Example For quarks we get,

Lm− + Lm+ =−Gd

[(
ū d̄

)
L

(
φ+

φ0

)
dR + d̄R

(
φ̄+ φ̄0

)( u
d

)

L

]

−Gu

[(
ū d̄

)
L

(
φ0

−φ+

)
uR + ūR

(
φ̄0 −φ̄+

)( u
d

)

L

]

=−mdd̄d−
md

v
hd̄d−muūu−

mu

v
hūu. (11.49)

We conculde by emphasising that all fermion masses are generated in a gauge invariant
way through coupling of the field to the Higgs VEV v. The coupling of each fermion to the
Higgs boson h is proportional to the mass of the particle. The origin of mass is reduced
to a Yukawa coupling of the different fermions to the Higgs field.

11.11 Lagrangian of the electroweak standard model

The theory of the electroweak interaction was formulated between 1961 and 1967 by
Sheldon Lee Glashow, Abdus Salam and Steven Weinberg. All three received the Physics
Nobel Prize in 1979 although the W± and Z0 had not yet been observed directely. Deep
inelastic scattering of spin-polarized electrons off nuclei gave evidence for a minute parity

5This is the case in extensions of the standard model, e.g. for the minimal supersymmetric standard
model (MSSM), where we have a Higgs doublet for each value of T3.
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violating interaction (all interactions except the weak interaction conserve parity). The
first evidence for neutral currents (mediated by the Z0 boson) were found in 1973 in
the bubble chamber Gargamelle at CERN. Direct observation of both W± and Z0 was
achieved in 1983 by the experiments UA1 also at CERN, leading to the Physics Nobel
Prize of 1984 for Carlo Rubbia and Simon van der Meer.

The Lagrangian of the electroweak theory can be decomposed as,

LEW = Lgauge + Lmatter + LHiggs + LY ukawa,

with,

Lgauge = −1

4

# »

Wµν ·
# »

W µν − 1

4
BµνB

µν (11.50)

W i
µν = ∂µW

i
ν − ∂νW i

µ − igεijkW j
µW

k
ν

Bµν = ∂µBν − ∂νBµ,

Lmatter =
∑

L

L̄γµ
(
i∂µ + g

1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)
L+

∑

R

R̄γµ
(
i∂µ + g′

Y

2
Bµ

)
R,

(11.51)

LHiggs =

∣∣∣∣
(
i∂µ + g

1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)
φ

∣∣∣∣
2

− V (φ), (11.52)

V (φ) = −µ2φ†φ+ λ(φ†φ)2

LY ukawa = −
∑

f−
Gf
−(L̄φR + R̄φ̄L)−

∑

f+

Gf
+(L̄φcR + R̄φ̄cL), (11.53)

where L denotes a left-handed fermion doublet, R a right-handed fermion singlet, Gf
± the

fermion Yukawa coupling for T3 = ±1
2
. All terms in LEW are invariant under SU(2)L and

U(1)Y gauge transformations.

After the spontaneous symmetry breaking, we have,

φ(x) =
1√
2

(
0

v + h(x)

)
,

yielding the masses through the Higgs mechanism:

MW = 2gv = 80.4 [GeV] (11.54)

MZ =
MW

cos θw
= 91.19 [GeV] (11.55)

Mf =
Gfv√

2
me = 511 [keV], . . . ,mt = 172 [GeV] (11.56)

Mh = v
√

2λ > 114 [GeV] (LEP) (11.57)

We now classify the vertices of the electroweak Lagrangian (V : vector boson, f : fermion,
H : Higgs boson):
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�V ff : �V V V : �V V V V :

�Hff : �HHH: �HHHH:

�HV V : �HHV V :

Care must be taken in choosing the fields as for example photon can interact with W
bosons because they carry an electric charge, but not with the Z boson. All diagrams not
involving a Higgs bosons have been observed experimentally so far.

11.12 Properties of the Higgs boson

The decay width of the Higgs boson Γ = 1
τ

for a two particle final state is (see Eq. (3.15),
p. 22),

ΓH =
1

2MH

1

(2π)2

∑

f

∫
d3p1

2E1

d3p2

2E2

δ(4)(pf − pH)|MfH |2,

where f denotes the final state : bb̄, tt̄,W+W−, Z0Z0, τ+τ−, . . . and m1 = m2 = mf .

|MfH |2 cannot depend on individual components of p1 or p2, and we can hence factorize
the phase space,

R2 =

∫
d3p1

2E1

d3p2

2E2

δ(4)(pf − pH) =
π

2M2
H

√
λ
(
M2

H ,m
2
f ,m

2
f

)
=
π

2

√
1−

4m2
f

M2
H

,

and hence,

ΓH =
1

16πMH

∑

f

√
1−

4m2
f

M2
H

|MfH |2 =
∑

f

ΓH→f . (11.58)

We now look at the different final states separately :
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Decay into fermions Leptons :

|MlH |2 =
∑

s,f

∣∣∣∣∣∣∣∣∣∣∣
�

f̄

f

−imf
v

∣∣∣∣∣∣∣∣∣∣∣

2

=
m2
f

v2
Tr
(

(/pf +mf )(/pf̄ −mf )
)

=
4m2

f

v2

(
M2

H

2
− 2m2

f

)
,

where s denotes the spin and f the flavour.

Quarks :

|MqH |2 =
∑

c

|MlH |2 = 3|MlH |2,

where c denotes the color.

Plugging these into Eq. (11.58), we get the partial widths,

ΓH→l+l− =
1

8π2v2
m2
fMH

(
1−

4m2
f

M2
H

) 3
2

(11.59)

ΓH→qq̄ =
3

8π2v2
m2
qMH

(
1− 4m2

q

M2
H

) 3
2

. (11.60)

We remark at this point that the dominant decay mode (corresponding to the largest
partial width) is always into the heaviest kinematically allowed fermion. In the case of a
light Higgs boson (MH < 2MW,Z), the dominant channels would be into bb̄ and τ+τ−.

The partial width for a decay into fermions is proportional to the mass of the Higgs boson,
so there is no upper limit to MH .

Decay into gauge bosons The relevant vertices are,

�H
W−
ν

W+
µ

= igMWgµν , �H
Z0
ν

Z0
µ

=
igMZ

cos θw
gµν ,
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Summing the moduli squared over the polarizations, we get,

∑

λ

∣∣∣∣∣∣∣∣∣∣∣
�H

W−

W+∣∣∣∣∣∣∣∣∣∣∣

2

= g2M2
W

(
−gµρ +

pµ1p
ρ
2

M2
W

)(
−gµρ +

p1µp2ρ

M2
W

)

=
g2M4

H

4M2
W

(
1− 4

M2
W

M2
H

+ 12
M4

W

M4
H

)
,

and an analogous result for the decay H → Z0Z0. The partial widths are then, respec-
tively,

ΓH→W+W− =
1

16πv2
M3

H

(
1− 4M2

W

M2
H

) 1
2
(

1− 4
M2

W

M2
H

+ 12
M2

W

M4
H

)
(11.61)

ΓH→Z0Z0 =
1

32πv2
M3

H

(
1− 4M2

Z

M2
H

) 1
2
(

1− 4
M2

Z

M2
H

+ 12
M2

Z

M4
H

)
, (11.62)

where the factor 1
2

in the second line is a symmetry factor for identical bosons.

In the case of a decay into gauge bosons, the partial width is proportional to the third
power of the Higgs mass. This implies that for a heavy Higgs boson (MH > 2MW,Z), the
decay into gauge bosons will be dominant over the decay into fermions, the only competing
fermionic decay being H → tt̄ (for MH ≈ 2mt). Fig. 10.42(a) and (b), show the different
branching ratios and total width as a function of MH .

Due to this power dependence, one remarks by plugging the known values of MW , MZ

and v that if MH ≈ 1 TeV, ΓH ≈ MH and the interpretation of the Higgs particle as a
resonance of the S-matrix is no longer possible. This yields an upper bound for the Higgs
mass in the framework of the standard model. A mass of the order of 1 TeV would imply
a coupling λ ≈ 1 requiring some non-perturbative approach (as in QCD for Q ≈ ΛQCD).

11.13 Tests of electroweak theory

In the previous sections the theory of electroweak interactions was discussed, in particular
it was shown how massive gauge bosons emerge; in this section we discuss experimental
tests of the theory, including the consistency of the standard model parameters, the W
and Z boson discovery and measurements of the width. We discuss the forward-backward
asymmetries, as well as examples of Higgs boson searches. An introduction to the latter
topic is given in Sect. 10.9, here we focus on a specific case study, namely searches for
heavy Higgs decaying into W boson pairs.
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11.13.1 Parameters of the standard model and historical back-
ground

A summary6 of the experimental values of the standard model parameters is shown in
Fig. 10.1. The stated deviations are a measure for the consistency of the standard model.
As can be seen from the bars, which visualize the deviation of the measured from the
best fitting values, assuming the standard model to be correct, in units of measurement
standard deviations, the majority of the measured parameters is compatible within 1σ. A
notable exception is the variable A0,b

fb , an asymmetry measured in the b sector.

Electroweak unification was accomplished theoretically in the sixties by Glashow, Salam
and Weinberg. The predictions derived from this theory were consistent with the observed
charged current interactions (flavor-changing exchange of W± bosons, see e. g. Fig. 1.1(b)).
However, as we have seen in Sect. 11.5, the theory also predicts neutral current interactions
(via Z0 exchange and γ/Z0 interference) which had never been observed up to that time.
In fact, until 1973 all observed weak interactions were consistent with the existence of
only charged bosons W±. The first neutral current interaction was observed at CERN in
1973 with the “Gargamelle” experiment in the following reaction:

νµ + nucleus→ νµ + p+ π− + π0

which can be explained by a flavor conserving weak interaction, i. e. a weak neutral current.
This discovery made urgent the question of how to observe W and Z bosons directly to
test electroweak predictions.

11.13.2 W and Z boson discovery, mass and width measure-
ments

Electroweak theory predicted bosons with masses MW ∼ 83 GeV and MZ ∼ 93 GeV.
Therefore, to produce W and Z bosons, a particle collider was needed capable of producing
particles with mass ∼ 100 GeV. A the time, two candidates were available at CERN. The
ISR with

√
s = 61 GeV was too weak and also the SPS, which consisted of a 400 GeV

proton beam against a fixed target, did not provide sufficient center of mass energy (recall
that for fixed target experiments

√
s =
√

2mE, see Sect. 4.1.1).

This problem was solved by the Spp̄S machine, designed by Rubbia and van der Meer,
a proton-antiproton collider at

√
s = 540 GeV. It had a luminosity of 5 · 1027 cm−2s−1,

achieved with three against three bunches with ∼ 1011 particles per bunch. The first
collisions took place in 1981.

LEP, which later on delivered part of the precision data discussed in this chapter was
an electron-positron collider, while Spp̄S was a hadron collider.7 Figure 11.6 shows the

6http://lepewwg.web.cern.ch/LEPEWWG/
7A general comparison of these types of colliders can be found in Sect. 10.1.2.
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�
e−

e+

Z

(a)

� νe

e−

e+

W−

W+

(b)

Figure 11.6: Z (a) and W (b) boson production at electron-positron colliders.

relevant production diagrams for e+e− colliders while Fig. 11.7 shows a hadron collider
production diagram along with the dominant background diagram (see also Fig. 10.14).
In the electron-positron case, beam energies of about MZ/2 are sufficient to produce Z
bosons (see Fig. 11.6(a)), while W± bosons can only be produced in pairs, requiring a
higher center of mass energy (see Fig. 11.6(b)). Now compare this to the hadron collider
case shown in Fig. 11.7(a): To produce a Z boson, flavor conservation is required such that
processes like uū→ Z0 and dd̄→ Z0 contribute. The production of W± bosons involves
quarks of different flavors, such as ud̄ → W+ and dū → W−. What has been said so far
concerns production of W and Z bosons, what about their detection? Consider first the
decay into quark-antiquark pairs: The cross section of “usual” two-jet production, e. g.
via gluon exchange (see Fig. 11.7(b)) is much larger than the one of hadronic vector boson
decays. In other words, the cross section for W production is small compared to the total
cross section:

σ(p̄p→ WX → eνX)

σT (pp̄)
' 10−8.

Therefore, it is preferred to look for W and Z decays into leptons, where the background
is smaller:8

W± → e±
(−)
νe , µ

± (−)
νµ , τ

± (−)
ντ

Z0 → e+e−, µ+µ−, τ+τ−.

11.13.2.1 W discovery and mass measurement

The UA1 experiment at the Spp̄S collider was an hermetic particle detector optimized
for the W± → e±νe/ν̄e measurement. It featured for the first time the general design
principles of collider detectors (see also Sect. 4.3.3): tracking devices inside a magnetic

8The Z0 boson may also decay into neutrino-antineutrino pairs, which makes it possible to determine
the number of neutrino families with mν < MZ/2, see below.
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�θ

f̄

q̄ q

f

W/Z

(a)

�
q̄

q

q̄′ → jet

q′ → jet

(b)

Figure 11.7: (a) Sketch of the kinematics of W and Z boson production at hadron colliders
and diagram of a process leading to two jets (b).

13

The UA1 Detector

• all-purpose detector
• Excellent hermeticity (i.e.

very few gaps) - good for
missing E! measurement

• tracker and electromagnetic
calorimeter immersed in
magnetic field

• Magnet return yoke =
hadronic calorimeter

• 8-layer muon detector
(a) (b)

Figure 11.8: UA1 experiment. A cross section along the beam line, featuring the impor-
tant components of collider experiment detectors is shown in (a), while (b) shows the
electromagnetic and hadronic calorimeters. Source: [14, p. 305].

field, followed by electromagnetic calorimeters, hadron calorimeters and muon chambers
(see Fig. 11.8(a)). Since MW ∼ 80 GeV, the electromagnetic calorimeter resolution is
optimized for 40 GeV electrons to ±500 MeV(1%). Because the photomultipliers had to
be placed outside the magnetic field of the coil, the hadron calorimeter is sandwiched in
the return yoke (see Fig. 11.8(b)): Showering in the lead layers, the particles then produce
light in the szintillator layers which is transferred to the photomultipliers via light-guides.

To understand how to search for the W decay in the data, we look at the final-state
kinematics. Since the neutrino cannot be detected, there is no direct information on its
momentum. However, due to momentum conservation one can write

#»p⊥(ν) = − #»p⊥(H)− #»p⊥(e)

where #»p⊥(ν) is the neutrino transverse momentum while #»p⊥(H) and #»p⊥(e) denote the
total hadron transverse momentum and the electron transverse momentum, respectively.
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Figure 11.9: Transverse momenta in a leptonic W decay. On the LHS one sees a sketch
of the electron and neutrino transverse momenta. ~p⊥‖e is the component of the neutrino
transverse momentum parallel to ~p⊥(e). The correlation between these momenta is shown
in the RHS Subfig. Source: [14, p. 305].

Momenta are considered in the transverse plane to avoid leakage along the beam lines.
Since the W boson is not always produced at rest and the detector resolution is finite, the
neutrino transverse momentum #»p⊥(ν) is not exactly anti-parallel to the electron trans-
verse momentum (see Fig. 11.9). Nevertheless, there is still a strong correlation between
#»p⊥(e) and the neutrino transverse momentum projected along the electron transverse
momentum #»p⊥(ν)‖e (see Fig. 11.9).

We discuss now how to measure the W boson mass using the electron transverse mo-
mentum spectrum (see also exercises). Electron emission is assumed to be isotropic
(dN/d cos θ = const) and detector effects are emulated with Monte Carlo simulation.
One can rewrite the spectrum as

dN

dp⊥
=

dN

d cos θ

d cos θ

dp⊥
= const

d cos θ

dp⊥

where θ is the electron polar angle. Using the kinematics of Sect. 2.1 and | #»p⊥| = | #»p | sin θ,
we have

p⊥ =
MW

2
sin θ =

MW

2

√
1− cos2 θ,

which yields

dp⊥
d cos θ

=
MW

2

cos θ

sin θ
=
MW

2

√
1− sin2 θ

sin θ
=

(
MW

2

)2

√
1− 4p2⊥

M2
W

p⊥
.
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Figure 11.10: Momentum distribution of the electron perpendicular to the beam (43 events).
The histogram shows the data while the continuous and dashed lines show the Monte Carlo
expectation for a two-body decay and three-body decay scenarios, respectively. Source:
[14, p. 306].

We thus find

dN

dp⊥
∝ p⊥√

M2
W − 4p2

⊥
. (11.63)

The denominator vanishes at MW = 2p⊥, which allows to determine the W boson mass
from a measurement of the electron transverse momentum spectrum (see Fig. 11.10).

A summary of experimental results for the W boson mass is shown in Fig. 11.11.

11.13.2.2 W and Z width

Using the kinematics discussed Chap. 3, one can calculate the partial width of the W
boson. From Eq. (3.15) we have

Γ =
1

2MW

1

(2π)2

∫
dR2|Mfi|2

and Eq. (3.29) reads

dR2 =
1

8s

√
λ(s,m2

e,m
2
ν)dΩ.

Combining these results yields

dΓ

dΩ
=

1

64π2MW

|Mfi|2.
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Figure 11.11: Summary of the current W boson mass measurements. Source: [17].

Using the following result for the matrix element:

|Mfi|2 =
g2M2

W

4
(1− cos θ),

where θ is the electron polar angle in the center of mass frame, and integrating over θ,
one finds for MW = 80 GeV

Γ(W → eν) =
g2MW

48π
=
GF√

2

M3
W

6π
= 224 MeV. (11.64)

To obtain the total width (for the W− case) from the partial widths, we consider the
following points:

1. All leptonic decays (e, µ, τ) have the same width.

2. ūd and c̄s are similar to the leptonic channels (cos θc ∼ 1).

3. The other hadronic decays (ūs, c̄d, ūb, c̄b) with quarks of different families are
Cabibbo-suppressed.

Keeping these facts in mind, we have to sum over three lepton currents and two quark
currents to find the total width ΓT . Each quark current can be realized in three colors,
therefore:

ΓT (W ) = 3 lepton currents + (3 colors × 2 quark currents) (11.65)

= 9Γ(W → eν) = 2.02 GeV. (11.66)
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We now consider the Z boson decay. The Z resonance in the hadronic cross section for
e+e− annihilation can be used to count the number of neutrino families with mν < MZ/2.
One way to accomplish this is to derive a standard model prediction for the Z decay
widths as a function of the number of neutrino families Nν which can be compared to the
experimental data.

First we calculate the partial width of the Z boson decaying into neutrino pairs (see also
exercises for the explicit calculation). It can be obtained from the W boson case with some
substitutions: Using the Feynman rules given in Sect. 11.7, one finds, since cνV = cνA = 1/2,
that substituting

g → g√
2 cos θw

, MW →MZ

in the partial W width in Eq. (11.64) does the trick:

Γ(Z → νν̄) =
g2MZ

96π cos2 θw
=
GF√

2

M3
Z

12π
= 165 MeV, (11.67)

assuming MZ = 91 GeV. To obtain the total width of the Z boson, one has to sum over
all partial widths, originating from all the allowed decays into quarks and leptons. Solving
exercise sheet 99 we showed that for the general fermionic case the Z partial width is

Γ(Z → ff̄) =
g2

48π cos2 θw

√
M2

Z − 4m2
f

{
[cfV ]2

(
1 +

2m2
f

M2
Z

)
+ [cfA]2

(
1−

4m2
f

M2
Z

)}
.

Neglecting mf , one finds that the total Z width is proportional to the sum

fermions∑

mf<MZ/2

(
[cfV ]2 + [cfA]2

)

which can be calculated using Tab. 11.3. Note that only the following fermionic final states
contribute:

• three neutrino pairs: νeν̄e, νµν̄µ, ντ ν̄τ ;

• three other halves of the doublets: e+e−, µ+µ−, τ+τ−;

• two quark pairs with T3 = +1/2: uū, cc̄ and finally

• three quark pairs with T3 = −1/2: dd̄, ss̄, bb̄.

Assuming sin2 θw = 0.23, the total Z width is

ΓT (Z) =
g2MZ

48π cos2 θw

fermions∑

mf<MZ/2

(
[cfV ]2 + [cfA]2

)
= 2.41 GeV.
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(a) (b)

Figure 11.12: ALEPH event displays of Z decays and Z jets cross-section as function of√
s. Subfigure (a) shows typical events in the ALEPH detector. Starting in the top left cor-

ner and proceeding in clockwise order, one has e+e− → hadrons, e+e− → e+e−, e+e− →
µ+µ− and e+e− → τ+τ−. Source: [15, p. 15]. The Z cross section fit is shown in (b). The
dots show the measurement while the expectation from scenarios with different number
of neutrino families are shown by the continuous and dashed lines. Source: [14, p. 312].

One can measure the hadronic cross section for e+e− annihilation around the Z peak as
a function of

√
s to constrain the number of neutrino families. This is done by a fit to a

modified Breit-Wigner distribution,

σ(s) =
12πΓ(e+e−)Γ(ff̄)

M2
Z

s

(s−M2
Z)2 +M2

ZΓ2
T (Z)

, (11.68)

for the Z resonance. One also has to take into account γ/Z interference, the 1/s dependent
QED contribution, and quite substantial corrections due to initial and final state radiation.
To measure the relevant cross sections, one selects (e. g. hadronic) events, which is done
using on their basic properties, such as number of tracks (see Fig. 11.12(a)). Since the cross
section is given by σ = N/(εLint), the precision of the result depends on the precision of
the integrated luminosity measurement, as well as the trigger and its efficiency. A best fit
to the hadronic cross section yields for the number of light neutrino families

Nν = 2.994± 0.012

(see Fig. 11.12(b)). Note that because of the kinematics of 1 → 2 decay, this does not
exclude heavy (mν > MZ/2) quark and neutrino families.

As we have seen, since the cross section is inversely proportional to the integrated luminos-
ity, the luminosity error propagates into the cross section error. Therefore, it is essential

9http://www.itp.uzh.ch/~pfmonni/PPPII_FS10/sheet9.pdf
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Figure 11.13: Luminosity measurement in ALEPH using the Bhabha scattering. On the
left a small angle electron-positron scattering event is shown. (a) shows a cut including
the beam direction and (b) is a view along the beam of the two luminosity calorimeters.
A comparison of measured and simulated polar angle of the scattered electron is shown
on the right. Source: [15, p. 20].

to determine the luminosity with high accuracy. This is done by measuring the rate of
Bhabha scattering, which can be precisely calculated. As we have seen in Sect. 6.2.4,
the corresponding cross section is divergent as the electron polar angle goes to zero (see
also Fig. 11.13). This procedure yields a final precision of about 3% for the luminosity
measurement.

Selecting leptonic events, one can perform the same measurement as the one shown for
the hadronic case (see Fig. 11.14(a); note that the cross sections are considerably smaller).
This delivers the partial widths Γ(ll̄) and thus allows for a test of lepton universality.
Remembering our discussion of the total Z width, one finds for the leptonic widths (e. g.
for muons) the following prediction:

Γ(µ+µ−)

ΓT
=

[cµV ]2 + [cµA]2

∑fermions
mf<MZ/2

(
[cfV ]2 + [cfA]2

) = 3.4%.

The corresponding experimental result is

Γ(µ+µ−)

ΓT
= (3.366± 0.007)%.

A summary of the LEP results for the Z boson width is shown in Fig. 11.14(b). To conclude
this section, let us put our discussion into an historic and energetic context: Figure 11.15
shows the cross section for e+e− → hadrons as measured by various experiments at center
of mass energies up to 200 GeV. For center of mass energies smaller than about 50 GeV, the
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(a) (b)

Figure 11.14: Cross sections for electron-positron annihilation into leptons around the Z
pole measured by ALEPH (a) and LEP summary of the Z width measurements (b). Source:
[15, p. 24].

cross section agrees with the 1/s prediction obtained by QED alone (quark mass effects
included, see Sect. 8.1). Around 90 GeV the Z resonance is the dominant contribution.
The figure shows also the cross section for W production from e+e− → W+W−.

11.13.3 Forward-backward asymmetries

As we have begun to discuss in Sect. 6.2.5, the weak contributions to electron-positron
annihilation cross sections result in forward-backward asymmetries (in the angle between
the outgoing fermion and the incident positron), which are not predicted by QED alone
(see e. g. Fig. 6.17). Solving exercise sheet 810, we showed that the differential cross section
for e+e− → ff̄ , obtained by squaring the sum of the γ and the Z exchange diagram, can
be written as

dσf
dΩ

=
α2N f

c

4s

[
F1(s)(1 + cos2 θ) + 2F2(s) cos θ

]
(11.69)

where

F1(s) = Q2
f − 2vevfQfReχ+ (v2

e + a2
e)(v

2
f + a2

f )|χ|2

F2(s) = −2aeafQfReχ+ 4veaevfaf |χ|2

10http://www-theorie.physik.unizh.ch/~pfmonni/PPPII_FS10/sheet8.pdf
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Figure 11.15: Summary of the e+e− → hadrons cross section measurements as a function
of the center of mass energy

√
s.

with

χ =
s

s−M2
z + iMZΓT (Z)

the Breit-Wigner term (compare Eq. (11.68)) and

vf ≡
cfV

2 sin θw cos θw

af ≡
cfA

2 sin θw cos θw
.

To get a quantitative estimate of the forward-backward asymmetry, we define the following
quantity

AFB =
I(0, 1)− I(−1, 0)

I(0, 1) + I(−1, 0)
(11.70)

where we have defined the integral I(a, b) as

I(a, b) ≡
b∫

a

d cos θ
dσ

d cos θ
. (11.71)
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Figure 11.16: LEP results for forward-backward asymmetry AFB. (a) shows a plot of the
LEP data for AFB as a function of

√
s and (b) shows a summary of the numerical values

at
√
s = MZ and the combined result.

Thus forward-backward asymmetry means AFB 6= 0. In terms of F1, F2 defined above, we
have

AFB =
3

4

F2

F1

=
3veaevfaf

(v2
e + a2

e)(v
2
f + a2

f )
= 3

(v/a)e(v/a)f
[1 + (v/a)2

e][1 + (v/a)2
f ]
. (11.72)

Therefore, at the Z peak the asymmetry AFB is sensitive to the ratio of vector to axial
vector couplings v/a = cfV /c

f
A. Recalling the definition of cfV and cfA (see Sect. 11.7), we

see that in the electroweak theory the cV /cA ratio depends on sin2 θw:

cV /cA = 1− 4|Q| sin2 θw. (11.73)

Furthermore, rewriting Eq. (11.69) using Eq. (11.72) yields

dσ

d cos θ
∝ 1 + cos2 θ +

8

3
AFB cos θ (11.74)

(see Fig. 6.17). Figure 11.16(a) shows results for AFB by the four LEP experiments. The
corresponding numerical values are shown in Fig. 11.16(b). Combining these results gives

AFB = 0.0171± 0.0010

for the forward-backward asymmetry at
√
s = MZ .
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Figure 11.17: Feynman diagram for the decay of a heavy Higgs into a W+W− pair.

11.13.4 Searches for heavy Higgs decays into W pairs

Having studied extensively the observable consequences of non-vanishing gauge boson
masses, we now turn to the source of this phenomenon. In Sect. 11.12 we discussed prop-
erties of the Higgs boson, including its partial widths for decay into W and Z boson pairs.
Sect. 10.9 introduces the principles of Higgs production and searches; here we focus on
searches of heavy Higgs in the the H → W+W− channel.

Recall from Sect. 10.9 that for mH ' 140−175 GeV the important Higgs discovery channel
is H → W+W−, which yields two leptons and missing transverse energy in the final state
(see Fig. 11.17).

Figure 11.18 shows the orders of magnitude of various production cross sections at Teva-
tron. Note the difference of about ten orders of magnitude between the production cross
sections for heavy flavors and Higgs bosons. In addition, also the production cross sections
for Z/γ? and standard model W+W− pair production not involving Higgs boson exchange
are orders of magnitude larger than the Higgs production cross section.

How does one select events in the desired final states? To reduce the background as much
as possible, the following cuts are applied:

• Total missing energy larger than 20 GeV.
This requirement reduces the Z/γ? → leptons background.

• Invariant mass of two leptons larger than 15 GeV.
This requirement reduces the background from semi-leptonic decays of heavy quarks.

The remaining background is due to standard model W pair production not involving
Higgs bosons (see Fig. 11.19). Therefore, the remaining task is to reject this kind of elec-
troweak background obscuring the H → W+W− signal. To achieve this aim, one can
exploit the fact that the standard model Higgs is a scalar (i. e. it has spin 0). W bosons,
on the other hand, have spin 1. To conserve angular momentum, the two decay leptons
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Figure 11.18: Various production cross sections at Tevatron. Note that the scale is loga-
rithmic.

are almost collinear. Therefore, it is convenient to measure the opening angle between the
lepton pair in the transverse plane, ∆φl+l− . This allows to select only events with small
opening angle: ∆φ < 2 rad. Figure 11.20 shows plots for the ee, µµ and eµ case: The left
column shows the signal plus a considerable amount of background by various processes
unrelated to Higgs production. The right column shows ∆φ after all cuts but the ∆φ < 2
cut are applied (the ∆φ cut is indicated by arrows). If no event survives all cuts, it is
possible to set an exclusion limit on the Higgs mass. A combined Tevatron (DØ and CDF)
result using an amount of data corresponding to Lint ∼ 5 fb−1 excluding the mass range
from 162 to 166 GeV at 95% CL is shown in Fig. 11.21. The current combined Tevatron
and LEP standard model Higgs mass fit and excluded regions11 are shown in Fig. 10.2.

11http://lepewwg.web.cern.ch/LEPEWWG/
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Figure 11.19: Examples of W+W− production diagrams at hadron colliders not involving
Higgs boson exchange.
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are MH dependent [10]. Six Higgs boson masses from
100 GeV to 200 GeV have been studied.

In all three channels, two leptons originating from the
same vertex are required to be of opposite charge, and
must have transverse momenta pT > 15 GeV for the lead-
ing lepton and pT > 10 GeV for the trailing one (Cut 1).
Figure 1 shows the good agreement between data and
Monte Carlo simulation (MC) in distributions of the az-
imuthal opening angle ∆φ!!′ between the two leptons for
the ee (a), the µµ (c) and the eµ channel (e) after apply-
ing the lepton transverse momentum cuts.

In all cases, the background is largely dominated by
Z/γ∗ production which is further suppressed by requiring
E/T > 20 GeV in all three channels (Cut 2). Background
events are also removed if the E/T has a large contribution
from the mis-measurement of jet energy. The fluctuation
in the measurement of jet energy in the transverse plane
can be approximated by ∆Ejet · sin θjet where ∆Ejet is
proportional to

√
Ejet. The opening angle ∆φ (jet, E/T )

between this projected energy fluctuation and the miss-
ing transverse momentum provides a measure of the con-
tribution of the jet to the missing transverse energy. The
scaled missing transverse energy defined as

E/
Sc
T =

E/T√∑
jets (∆Ejet · sin θjet · cos∆φ (jet, E/T ))

2
(1)

is required to be greater than 15 (Cut 3).
The charged lepton system and the neutrinos are emit-

ted mostly back–to–back, so the invariant mass for the
leptons from the Higgs decay is restricted to MH/2.
Thus, the invariant mass m!! is required to be m!! <
MH/2 (Cut 4). In the ee channel the cut is altered to
mee < min(80 GeV, MH/2). In the µµ channel a lower
cut boundary with mµµ > 20GeV is required to remove
events from J/ψ, Υ and Z/γ∗ production. The sum of
the pT of the leptons and E/T is required to be in the range

MH/2 + 20 GeV < p!1
T + p!2

T + E/T < MH for the ee and

eµ channel and MH/2 + 10 GeV < p!1
T + p!2

T + E/T < MH

for the µµ channel (Cut 5). The transverse mass, defined

as m!!′
T =

√
2p!!′

T E/T (1 − cos∆φ(p!!′
T , E/T )), with the di-

lepton transverse momentum p!!′
T , should be in the range

MH/2 < m!!′
T < MH − 10 GeV (Cut 6). The latter two

cuts reject events from W+jet/γ and WW production
and further reduce backgrounds from Z/γ∗ production.
Finally, to suppress the background from tt̄ production,
the scalar sum of the transverse energies of all jets with
Ejet

T > 20 GeV and |η| < 2.5, HT , is required to be less
than 100 GeV (Cut 7). Remaining Z boson and multi-jet
events can be rejected with a cut on the opening angle,
∆φ!!′ < 2.0 (Cut 8), since most of the backgrounds ex-
hibit a back–to–back topology. This is not the case for
Higgs boson decays because of the spin correlations in the
decay. Figure 1 shows the distributions of the azimuthal
opening angle ∆φ!!′ between the two leptons for the ee
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FIG. 1: Distribution of the opening angle ∆φ!!′ after ap-
plying the initial transverse momentum cuts in the (a) ee,
(c) µµ and (e) eµ channel. Figures (b), (d) and (f) show
the ∆φ!!′ distributions after the final selection except for the
∆φ!!′ criterion for the ee, µµ, and eµ channel, respectively.
The arrows indicate the cut values. The QCD contribution is
negligible in Figs. (c) and (d).

(b), the µµ (d) and the eµ channel (f) before applying
the final cut on ∆φ!!′ .

To maximize the sensitivity, the selection in the µµ
channel is slightly changed for Higgs boson masses MH=
140 and 160 GeV. For a better Z/γ∗ background sup-
pression cuts 4, 5 and 6 are replaced by the following
cuts: the invariant mass mµµ should be in the range
20 GeV < mµµ < 80 GeV (Cut 4). Since the momentum
resolution is degraded for high pT tracks, an additional
constrained fit is performed to reject events compatible
with Z boson production (Cut 5). The sum of the muon
transverse momenta and the missing transverse energy
should be pµ1

T + pµ2
T + E/T > 90 GeV (Cut 6).

The efficiency for H → WW (∗) → &ν &′ν′ signal events
to pass the acceptance and selection criteria is deter-
mined using the pythia 6.2 [11] event generator followed
by a detailed geant-based [12] simulation of the DØ de-
tector. All trigger, reconstruction and identification effi-

Figure 11.20: Distribution of the opening angle ∆φll′ after applying the initial transverse
momentum cuts (a), (c), (e) and after all cuts, except for the ∆φ cut (b), (d), (f). Source:
[18].
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9

and 4 described below.
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FIG. 2: (color online). Distributions of LLR as functions of
the Higgs boson mass. We display the median values of the
LLR distribution for the b-only hypothesis (LLRb), the s+b
hypothesis (LLRs+b), and for the data (LLRobs). The shaded
bands indicate the 68% and 95% probability regions in which
the LLR is expected to fluctuate, in the absence of signal.

We extract limits on SM Higgs boson production in
pp̄ collisions at

√
s = 1.96 TeV in the mH = 130-200 GeV

mass range. We present our results in terms of Rlim, the
ratio of the limits obtained to the rate predicted by the
SM, as a function of the Higgs boson mass. We assume
the production fractions for WH , ZH , gg→H , and VBF,
and the Higgs boson decay branching fractions, are those
predicted by the SM. A value of Rlim less than or equal
to one indicates a Higgs boson mass that is excluded at
the 95% C.L.

The ratios of the expected and observed limits to the
SM cross section are shown in Fig. 3 as a function of mH .
The observed and median expected ratios are listed in Ta-
ble I, with observed (expected) values for the Bayesian
method of 1.04 (0.92) at mH = 160 GeV, 0.93 (0.87) at
mH = 165 GeV, and 1.26 (1.04) at mH = 170 GeV. We
use piecewise linear interpolations to display the combi-
nation results in Figs. 2–4, and to quote the observed
and expected excluded mass ranges. We exclude the
SM Higgs boson in the mass range 162 to 166 GeV. The
Bayesian calculation, chosen a priori, was used for this
exclusion. The corresponding expected exclusion, from
159 to 169 GeV, encompasses the observed exclusion.
The CLs calculation yields similar results, as shown in
Fig. 4. The 1-CLs distribution, which can be directly
interpreted as the level of exclusion of our search, is dis-
played as a function of the Higgs boson mass. For in-
stance, our expected limit shows that in the absence of
signal the median 1-CLs value with which we expect to
exclude a SM Higgs boson of mass 165 GeV is 97%.

In summary, we present the first combined Teva-
tron search for the SM Higgs boson using the
H→W+W− decay mode. No significant excess of can-
didates is found above the background expectation for
130<mH<200 GeV. We exclude the mass range from

1

10

130 140 150 160 170 180 190 200

1

10

mH(GeV)

R lim CDF + D0 Run II
L=4.8-5.4 fb-1 Expected

Observed

Expected ±1!
Expected ±2!

SM=1

FIG. 3: (color online). Observed and expected (median, for
the background-only hypothesis) 95% C.L. upper limits on
SM Higgs boson production. The shaded bands indicate the
68% and 95% probability regions in which Rlim is expected
to fluctuate, in the absence of signal. The limits displayed in
this figure are obtained with the Bayesian calculation.
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FIG. 4: (color online). Distribution of 1-CLs as a function
of the Higgs boson mass obtained with the CLs method. The
shaded bands indicate the 68% and 95% probability regions
in which the LLR is expected to fluctuate, in the absence of
signal.

162 to 166 GeV at the 95% C.L. This is the first di-
rect constraint on the mass of the Higgs boson beyond
that obtained at LEP.
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Chapter 12

Flavor physics

Quarks and leptons can be ordered in flavour doublets, each column being called a family,

Quarks:

(
u
d

) (
c
s

) (
t
b

)
Q = 2

3

Q = −1
3

,

Leptons:

(
νe
e

) (
νµ
µ

) (
ντ
τ

)
Q = 0
Q = −1

.

These arrangements correspond to an approximate flavor SU(6) symmetry. The isospin
SU(2) of p, n (Sect. 7, p. 125) or the flavor SU(3) symmetry of u, d, s (Sect. 7.3, p. 131) are
much better fulfilled since the mass differences between the different particles are much
smaller than the masses themselves.

12.1 Cabibbo angle

The structure of the charged currents,

j±µ = χ̄Lγµτ±χL,

allows transitions within a single doublet, e.g. d → u, c → s, t → b, but not between
different doublets. This would imply that the lightest particle of each doublet should be
stable (the electromagnetic and strong interactions do not allow flavor changing processes,
since photons and gluons do not carry any flavor quantum numbers), a fact which is in
contradiction with the observation that our universe is composed almost exclusively of
particles of the first family, consisting of the lightest particles.

Assuming that the weak eigenstates of the d-type quarks 1 are linear combinations of the
mass eigenstates one can reproduce the observed phenomenology. Let us first consider the

1Some authors prefer to rotate the u-type quarks. We follow here the most common version.
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case of two quark families for simplicity. We have the weak eigenstate doublets,

(
u
d′

) (
c
s′

)
,

and we assume that the weak eigenstates |d′〉 and |s′〉 are linear combinations of the mass
eigenstates |d〉 and |s〉,

|d′〉 = cos θc |d〉+ sin θc |s〉
|s′〉 = − sin θc |d〉+ cos θc |s〉 , (12.1)

where θc is called the Cabibbo angle.

Since decaying particles and decay products are mass eigenstates, this trick allows tran-
sitions between different families. Using Eq. (12.1), we can write vertex factors between
mass eigenstates,

�W+

d

u

∝ cos θc �W+

s

c

∝ cos θc,

called Cabibbo preferred decays, and,

�W+

s

u

∝ sin θc �W+

d

c

∝ − sin θc,

called Cabibbo suppressed decays. If the weak and mass eigenstates would be the
same, θc = 0 and the second series of decay could not occur. The kaons are unstable but
have a relatively long lifetime, since the decay of the s quark is Cabibbo supressed.

The introduction of the Cabibbo angle also destroys the universality of the Fermi constant,

Gn→pe−ν̄e
F = cos θcG

µ−→e−νµν̄e
F , (12.2)

with the experimentally measured value,

cos θc ≈ 0.974. (12.3)
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We can now rewrite the interaction Lagrangian for the charged current coupling to quarks,

iLW±,qint =− i g√
2

(
ū c̄

)
γµ

1− γ5

2
U

(
d
s

)
W+µ

− i g√
2

(
d̄ s̄

)
UTγµ

1− γ5

2

(
u
c

)
W−µ, (12.4)

with,

U =

(
cos θc sin θc
− sin θc cos θc

)
∈ U(2). (12.5)

We remark at this point, that U = U∗ or in other words U ∈ O(2) implying that U † = UT .

12.2 Cabibbo-Kobayashi-Maskawa matrix

In 1973, before the observation of c, b and t quarks, the existence of three families and its
implications were already hypothesised.

Analogously to Eq. (12.4), we write for three families,

iLW±,qint =− i g√
2

(
ū c̄ t̄

)
γµ

1− γ5

2
V




d
s
b


W+µ

− i g√
2

(
d̄ s̄ b̄

)
V †γµ

1− γ5

2




u
c
t


W−µ, (12.6)

where V ∈ U(3).

Recall that for a matrix V ∈ U(N):

• V contains N2 real parameters (2N2 entries minus N2 from the unitarity condition
V †V = 1),

• 2N − 1 relative phases can be factorized by a phase redefinition of the quantum
fields.

Thus V contains N2 − (2N − 1) = (N − 1)2 independent real parameters. On the other
hand, a matrix O ∈ O(N) is determined by 1

2
N(N − 1) independent real parameters

(Euler angles).

Comparing V and O, we have, Na = 1
2
N(N − 1) real angles and Np = (N − 1)2 −Na =

1
2
(N − 1)(N − 2) complex phases. It then easy to see that we always have complex phases

for N ≥ 3, implying V ∗ 6= V .
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Looking at the vertex factors connected through a CP -transformation,

�W+

i

j

∝ Vji 6= �W−

j

i

∝ V ∗ij ,

we conclude that the weak interaction violates CP invariance for N ≥ 3 through complex
phases in the CKM matrix V .

12.3 Neutrino mixing

Literature:

• Fukugita/Yanagida [20]

As in the case of d-type quarks, one can consider the phenomenology implied by neutrinos
whose mass eigenstates (ν1, ν2 and ν3) are not the same as the weak eigenstates (νe, νµ
and ντ ). The interaction Lagrangian becomes,

iLW±,lint =− i g√
2

(
ν̄1 ν̄2 ν̄3

)
U †γµ

1− γ5

2




e
µ
τ


W+µ

− i g√
2

(
ē µ̄ τ̄

)
γµ

1− γ5

2
U




ν1

ν2

ν3


W−µ, (12.7)

with U the unitary neutrino mixing matrix, also called Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix. As in the case of quarks, the existence of three neutrino
families would let room for a CP violation in the neutrino sector . Up to now, it has not
been possible to observe it experimentally.

In order to treat neutrino oscillations, it is important to remember the following facts
about neutrinos:

• They are always produced as eigenstates of the weak interaction, e.g. π− → µ−ν̄µ,

• They are always detected as eigenstates of the weak interaction, e.g. νµp→ µ−X,

• But they propagate in the vacuum as mass eigenstates.
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Assuming two lepton families (e, µ), we write the weak eigenstates as,

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉 . (12.8)

The time evolution of the mass eigenstates is given by,

|νi, t〉 = e−iEit |νi, 0〉 , (12.9)

such that the evolution of the weak eigenstates is given by,

|να, t〉 =
∑

i

Uαie
−iEit |νi, 0〉 . (12.10)

Since we know experimentally that mνi < eV, keV � E ≈ MeV, we can safely assume
that they are ultrarelativistic and make the approximation,

Ei =
√

#»p 2 +m2
i ≈ | #»p |+

m2
i

2| #»p | = | #»p |+ m2
i

2E
(| #»p | � mi) (12.11)

Inserting this in Eq. (12.9) we get,

|να, t〉 = e−i|
#»p |t


U


 e−i

m2
1t

2E 0

0 e−i
m2

2t

2E


U †



αβ

|νβ, t〉

≈ e−i|
#»p |t
(
U

[
1− im2

1t

2E
0

0 1− im2
2t

2E

]
U †
)

αβ

|νβ, t〉 ,

and, using,

U †m†mU = m2
Diag =

(
m2

1 0
0 m2

2

)
,

we obtain (reexpressing 1 + iX = eiX),

|να, t〉 = e−i|
#»p |t
(

e−i
m†m
2E

t
)
αβ
|νβ, 0〉 . (12.12)

We can interpret Eq. (12.12) as the solution of the Schrödinger equation,

i
d

dt
|να, t〉 =

(
| #»p |δαβ +

(m†m)αβ
2E

)
|νβ, t〉 . (12.13)
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We now compute the m†m matrix,

m†m = Um2
DiagU

† =

(
m2

1 cos2 θ +m2 sin2 θ 1
2
(m2

2 −m2
1) sin 2θ

1
2
(m2

2 −m2
1) sin 2θ m2

1 sin2 θ +m2
2 cos2 θ

)

=
m2

1 +m2
2

2
1 +

∆m2

2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
,

with ∆m2 = m2
2 −m2

1. The term proportional to the identity does not induce a mixing
and corresponds to a trivial phase factor. Inserting this result in Eq. (12.13) and dropping
the diagonal term, we get,

i
d

dt

(
|νe, t〉
|νµ, t〉

)
=

∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)(
|νe, t〉
|νµ, t〉

)

= Hvac

(
|νe, t〉
|νµ, t〉

)
,

with solution,
(
|νe, t〉
|νµ, t〉

)
= e−iHvact

(
|νe, 0〉
|νµ, 0〉

)
.

Writing,

e−iHvact =

(
Aee(t) Aeµ(t)
Aµe(t) Aµµ(t)

)
,

and using,

Hvac =
∆m2

2E
(sin(2θ)σ1 − cos(2θ)σ3) ,

we get,

e−iHvact = cos

(
∆m2

2E
t

)
1− i sin

(
∆m2

2E
t

)
(sin(2θ)σ1 + cos(2θ)σ3) . (12.14)

We finally get the transition amplitude from the projection of |νe, t〉 onto 〈νe| :

〈νe|νe, t〉 = Aee(t) = cos

(
∆m2

2E
t

)
− i sin

(
∆m2

2E
t

)
cos 2θ,

and the transition probability,

Pνe→νe(t) = |〈νe|νe, t〉|2 = 1− sin2(2θ) sin2

(
∆m2

2E
t

)
(12.15)

Pνe→νµ(t) = |〈νµ|νe, t〉|2 = sin2(2θ) sin2

(
∆m2

2E
t

)
(12.16)

A useful formula to estimate the distance over which full oscillations take place is (since
the neutrino is ultrarelativistic L = t),

∆m2L

4E
≈ 1.27

∆m2[eV2]L[m]

E[MeV]
. (12.17)
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(a) (b)

Figure 12.1: Neutrino production and detection. During a sufficiently long journey, the
neutrinos may change character (b). Source: B. Kayser.

12.4 Neutrino physics

In the previous sections we have seen that neutrino oscillation can be accounted for by
assuming that neutrino flavor eigenstates are not identical to the mass eigenstates. Here
we will again take a look at the two-neutrino case, discuss what can be measured in
experiment and extend the theoretical treatment of oscillation to the three-neutrino case.
Based on these results, we will proceed to the discussion of phenomenological aspects. It
will become clear that to measure absolute neutrino masses, different experiments than
the ones documenting neutrino oscillations are necessary. Their discussion will conclude
this section.2

12.4.1 Neutrino oscillation theory revisited

Consider the charged-current interaction or W boson decay W → eνe (see Fig. 12.1(a)).
Since the electron (positron) produced together with its anti-neutrino (neutrino) can be
detected and identified, the neutrino flavor at the time of production is fixed and in
principle known (see also [24]). Detection of the neutrino proceeds via the inverse process,
by lepton number conservation producing again an electron (positron), if the flavor is
conserved while the neutrino travels from its place of production to the detector. The
analogue holds for µ and τ .

However, if neutrinos have mass, it is possible for them to change their flavor, given the
journey to the detector is long enough (see Fig. 12.1(b)). As we have seen, a difference in
the mass eigenvalues δm 6= 0 is a necessary condition for oscillation to occur. Recently,
a first candidate for a direct observation of the flavor change νµ → ντ was reported.3

2This section is heavily based on lectures by E. Lisi at the CHIPP PhD school, Jan. 2010 [21, 22, 23].
3http://operaweb.lngs.infn.it/IMG/pdf/OPERA_press_release_May_2010_english-5.pdf
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At Detection (L=ct):
mixure of  flavour eigen-states

+ = = +
ν1

ν2

να

νβ

(b)

Figure 12.2: Neutrino mixing in the two-neutrino case.

In Sect. 12.4.2 we will discuss further experimental evidence that such flavor oscillations
actually occur. This means that neutrino flavor is not a constant of motion. From elec-
troweak theory we know that left-handed neutrinos νl are produced together with the
corresponding lepton l in charged-current interactions (see Sect. 11.5). Recall that the
right-handed neutrino carries neither SU(2)L nor U(1)Y charge and thus decouples from
the electroweak interactions. Recent experiments, probing probabilities P (να → νβ), have
found that flavor is not conserved over macroscopic distances, especially in the so-called
disappearance mode:

P (νe → νe) < 1

P (νµ → νµ) < 1

means that one finds less events than expected from the production rate, i. e. individual
lepton number is not conserved.

These phenomena can be explained by neutrino mixing: For neutrinos, flavor eigenstates
{να} are not identical to mass eigenstates {νi} and thus they can be expressed as linear
combinations of each other. For the left-handed fields this reads, in analogy to the CKM
matrix,

ναL =
3∑

i=1

UαiνiL (12.18)

for α = e, µ, τ . Here U = U † is called PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix
with U → U∗ for ν → ν̄.

So, how does this setup bring about neutrino mixing? At production we start out with a
pure flavor eigenstate να which is according to Eq. (12.18) a certain superposition of mass
eigenstates, say ν1 and ν2 (see Fig. 12.2(a)). If the eigenvalues of the mass eigenstates are
different, so are their energies: E1 6= E2. Thus the free time evolution operator introduces
different phases and the superposition changes while traveling the distance L ' ct. Now,
neutrino detection is a projection to one flavor eigenstate, such that, depending on the
mixing angle θ and the mass difference δm2, the number of produced neutrinos of flavor α
may differ from the number of detected neutrinos of this flavor (see Fig. 12.2(b)). Recall
that for the two-neutrino case the superpositions can be written as

(
να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
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where θ is the mixing angle. This ansatz predicts the phenomena of “disappearance”,

P (να → να) = P (νβ → νβ) = P (ν̄α → ν̄α) = P (ν̄β → ν̄β) = 1− sin2 2θ sin2 ∆12

2
,

and “appearance”,

P (να → νβ) = P (νβ → να) = P (ν̄α → ν̄β) = P (ν̄β → ν̄α) = sin2 2θ sin2 ∆12

2

where ∆12 ≡ ∆m2t/(2E) ' ∆m2L/(2E). Stating the above in another way, we can say
that in the two-neutrino case the transition probability is

P (να → νβ) = sin2 2θ sin2 ∆m2L

4E

where

∆m2L

4E
= 1.27

(
∆m2

eV2

)(
L

km

)(
GeV

E

)
.

Let us define the oscillation wavelength

λosc =
4πE

∆m2

and rewrite the transition probability accordingly:

P (να → νβ) = sin2(2θ)︸ ︷︷ ︸
mixing term

sin2

(
π
L

λosc

)

︸ ︷︷ ︸
oscillation term

. (12.19)

The LHS of Eq. (12.19) is determined in experiment by counting events and normalizing.
Since the mixing angle θ is fixed, so is the mixing term on the RHS. However the os-
cillation term can be influenced by the experimental design: Although ∆m2 is fixed, the
experimenter is free to choose the source-detector distance L and can, by selecting the
production process, influence the neutrino energy E and thus λosc. We now discuss the
behavior of Eq. (12.19) for different sizes of L/λosc.

A) L/λosc � 1. E. g. this is realized for ∆m2 ∼ 10−5 eV2 and E ∼ 1 MeV which is
the energy scale of nuclear reactions; at the same time L needs to be small, e. g.
L ∼ 1 km. Since the argument of the oscillation term is small, it can be approximated
by the first term of the Taylor series:

sin2

(
π
L

λosc

)
'
(
π
L

λosc

)2

.

Therefore the transition probability is small and the effect might be very difficult
to measure, depending on the experimental resolution.
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B) πL/λosc ' 1. E. g. consider the case that L and E are such that πL/λosc '
π/2, i. e. the oscillation term is at its first maximum. Possible numbers are:
∆m2 ' 10−3 eV2, E = 1 GeV (energy scale of accelerators and cosmic rays) and
L ' 1000 km. In this case

1.27∆m2 L

E
' 1.3 ' π

2

such that the sensitivity to the mixing term is maximized.

C) L/λosc � 1: For instance, this is the case if ∆m2 ' 10−5 eV2, L =
distance earth-sun ∼ 150 · 106 km, E ∼ 1 MeV. Therefore, fast oscillation is taking
place which leads to a measurement of the average due to uncertainties in E and L:

〈
sin2

(
π
L

λosc

)〉
=

1

2
⇒ P (να → νβ) =

1

2
sin2(2θ).

To conclude this comment on orders of magnitude, let us take a look at the detector sizes
needed in neutrino experiments. The number of events is given by the product of cross
section and integrated luminosity:

Nevents = ΦσνpTNp (12.20)

where Φ ∼ 1010−12 m−2s−1 is the flux of incoming neutrinos, σνp ∼ 10−45 m−2 is the cross
section4 of neutrino-proton scattering, T ∼ 1y ' 107 s is the observation time and Np is
the number of protons in the target. One can see that, although one can try to increase
the flux or measure longer, the main problem is the small cross section σνp. The only
parameter left to tune is the number of protons Np: To find a reasonable number of
events, one has to choose e. g. Np > 1030 which corresponds to about 107 mol, i. e. we are
talking about detector sizes of tons and kilotons.

Having discussed the behavior of the oscillation term, we can think about what an ex-
periment may be sensitive to. As we have seen, for fast oscillations (large ∆m2) the sin2

is averaged over and there is, due to uncertainty in E and L no sensitivity on the mass
difference (see Fig. 12.3). If the experiment does not find an oscillation signal, one can ex-
clude the RHS region of the curve. To constrain the parameter space, various experiments
with different sensibilities are needed.

To attack the case of three light neutrinos, we have to consider a 3 × 3 mixing matrix.
One possible parametrization is (Γδ = diag(1, 1, eiδ))

U = O23ΓδO13Γ†δO12

=




1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23






cos θ13 0 sin θ13e
−iδ

0 1 0
− sin θ13e

iδ 0 cos θ13






cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


 .

4This is only a rough estimate.
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Figure 12.3: Oscillation experiment sensitivity. Source: [25].

Experiment shows that sin2 θ23 ∼ 0.5 which means almost maximal mixing, sin2 θ13 .
few %, δ = ? (small) and sin2 θ12 ∼ 0.3. This structure is very different from the CKM
case, where the diagonal elements are dominant. What about mass differences in the three-
neutrino case? We do not know the absolute ν masses, but they roughly fulfill mi . 1 eV.
For ultrarelativistic neutrinos in vacuum we may expand the energy as

E =
√

#»p 2 +m2
i ' | #»p |+

m2
i

2E
.

Since the oscillation phase is caused by ∆E ∝ ∆m2
ij, this is what oscillation experiments

probe. For three neutrinos there are two independent mass differences. For historical
reasons the small splitting δm2 is called “solar” mass2 splitting:

δm2 ' 7.7 · 10−5 eV2,

for the same reason the large splitting is called “atmospheric” mass2 splitting:

∆m2 ' 2.4 · 10−3 eV2.

Note that, because δm2/∆m2 ' 1/30, it is very difficult to be sensitive to both mass
splittings in the same experiment (L/E is fixed). The absolute masses mi are unknown,
and thus it is possible to arrange the mass eigenstates in two ways, corresponding to the
labeling convention

δm2 = m2
2 −m2

1 > 0

|∆m2| = |m2
3 −m2

1,2|
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Figure 12.4: Normal and inverted mass hierarchies for the three-neutrino case. Source:
[25].

(see Fig. 12.4).

To find simple expressions for the oscillation probabilities in the three-neutrino case, we
apply two approximations: We neglect the complex phase (δ = 0) and we assume that
only one mass scale is relevant:

|δm2| � |∆m2| and |δm2| � E

L
.

This simplified three-neutrino oscillation is described by three parameters only: the mass
difference ∆m2, and the mixing angles θ13 and θ23. This allows to write the oscillation
probabilities as follows [26]:

P (νe → νe) = 1− sin2 2θ13 sin2 ∆m2L

4E
(12.21)

P (νe → νµ) = sin2 2θ13 sin2 θ23 sin2 ∆m2L

4E
(12.22)

P (νµ → ντ ) = sin2 2θ13 sin2 θ23 sin2 ∆m2L

4E
(12.23)

P (νe → ντ ) = sin2 2θ13 cos2 θ23 sin2 ∆m2L

4E
(12.24)

P (νµ → ντ ) = cos4 θ13 sin2 2θ23 sin2 ∆m2L

4E
. (12.25)

Note that the last equation gives the oscillation probability measured at the OPERA
experiment (mentioned above). Not neglecting the CP violating phase δ, one has

P (να → νβ) = δαβ − 4
∑

i<j

ReJ ijαβ sin2

(
∆m2

ijL

4E

)
− 2

∑

i<j

ImJ ijαβ sin

(
∆m2

ijL

2E

)
(12.26)

where ∆mij = m2
i −m2

j and J ijαβ = UαiU
∗
βiU

∗
αjUβj. CP violation would be caused by the

imaginary part in Eq. (12.26); if it indeed existed, there would be CP violation not only
in the quark sector, but also in the lepton sector.
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Figure 12.5: Action of CP and T transformations on the να → νβ process from source (S)
to detector (D). Source: [25].

Let us now take a closer look at the justification of the oscillation probabilities in
Eq. (12.21) to (12.25). First consider the influence of symmetries. Figure 12.5 shows the
action of CP and T transformations on the να → νβ process from source (S) to detector
(D). CP mirrors the setup and trades particles for antiparticles while T reverses the flow
of time. This can be summarized as follows:

CP invariance P (να → νβ) = P (ν̄α → ν̄β) (ν ↔ ν̄)

T invariance P (να → νβ) = P (νβ → να) (α↔ β)

P (ν̄α → ν̄β) = P (ν̄β → ν̄α)

CPT invariance P (να → νβ) = P (ν̄β → ν̄α) (ν ↔ ν̄)&(α↔ β)

Looking at Eq. (12.26), one sees that (α ↔ β) or (ν ↔ ν̄) amount to (U ↔ U∗). There-
fore, CP invariance requires U = U∗, while CPT invariance holds in any case. If the
experiments are such that the two approximations used to obtain Eq. (12.21) to (12.25)
are valid, the corresponding expressions read

P (να → να) = 1− 4|Uα3|2(1− |Uα3|2) sin2

(
∆m2L

4E

)

P (να → νβ) = 4|Uα3|2|Uβ3|2 sin2

(
∆m2L

4E

)
α 6= β.

Using |Ue3|2 = sin2 θ13, |Uµ3|2 = cos2 θ13 sin2 θ23, |Uτ3|2 = cos2 θ13 cos2 θ23, one recovers
Eq. (12.21) to (12.25). Measurements based on these results are neither sensitive to the
type of mass hierarchy nor to CP violation. Also there is no sensitivity to δm2 and θ12.
Finally, there is no difference between the expressions for ν and ν̄. Table 12.1 shows a sum-
mary of the experiments for which the said approximation, ∆m2L/(4E) ' 1, holds. These
include atmospheric neutrino experiments (ATM), long-baseline accelerator experiments
(LBL) and short-baseline reactor experiments (SBR). Note that the first two oscillation
probabilities reduce to the two-neutrino form for θ13 → 0 and the second two are constant
for θ13 → 0.

At the other side of the mass spectrum, there are experiments mainly sensitive to δm2
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Experiment Measurement

OPERA (LBL) P (νµ → ντ ) ' c4
13 sin2 2θ23 sin2(∆m2L/(4E))

K2K, MINOS (LBL),
atmospheric

P (νµ → νµ) ' 1− 4c2
13s2

23(1− c2
13s2

23) sin2(∆m2L/(4E))

ATM, LBL P (νµ → νe) ' s2
23 sin2 2θ13 sin2(∆m2L/(4E))

CHOOZ (SRB) P (νe → νe) ' 1− sin2 2θ13 sin2(∆m2L/(4E))

Table 12.1: Summary of neutrino experiments with ∆m2L/(4E) ' ∞. s2
ij = sin2 θij and

c2
ij = cos2 θij.

where

δm2L

4E
' O(1) (12.27)

∆m2L

4E
� 1. (12.28)

In this case

P (νe → νe) ' cos4 θ13

[
1− sin2 2θ12 sin2

(
δm2L

4E

)]
+ sin4 θ13 (12.29)

which holds e. g. for the KamLAND long-baseline reactor experiments. Note that also in
this case there is no dependence on hierarchy, neutrino-antineutrino interchange and CP
violation.

To conclude the theory part, let us summarize the above discussion. We have worked out
approximate oscillation probabilities as a function of dominant mass mixing parameters
for different classes of experiments (see Fig. 12.6). Furthermore, we have seen that the
smallness of θ13 and of δm2/∆m2 make it difficult to probe CP violation and the hierarchy
via oscillations in current experiments. Finally [27, p. 215], matter effects can occur if the
neutrinos under consideration experience different interactions by passing through matter.
In the Sun and the Earth νe can have neutral-current and charged-current interactions
with leptons because of the existence of electrons, while for νµ and ντ only neutral-current
interactions are possible. This is not being discussed any further here, see e. g. [27].

12.4.2 Phenomenology – experiments and current knowledge

Figure 12.7 shows combined results of neutrino experiments. In the excluded regions,
no oscillations are observed; note that the (more or less) symmetric shape in the upper
part of the plot is because for the three-neutrino case (and because of matter effects) the
dependence is not only on sin2 2θ, such that octant symmetry, P (θ) = P (π/2 − θ), (see
also Fig. 12.3) does not hold in general and the second octant has to be unfolded (see
Fig. 12.8). In any case, one realizes that there are many experimental results available.
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Figure 12.6: Summary of experimental sensitivities to the neutrino mixing matrix. Source:
[25].

Figure 12.7: Summary of neutrino oscillation experiments. Source: Particle Data Group
2009.
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Figure 12.8: Oscillation experiment sensitivity as a function of θ, rather than sin2 2θ.
Source: [25].

Their three-neutrino interpretation is summarized in Fig. 12.9; the numerical values (with
one digit accuracy) read:

δm2 ∼ 8 · 10−5 eV2

∆m2 ∼ 3 · 10−3 eV2

mν < O(1) eV

sign(∆m2) = ?

sin2 θ12 ∼ 0.3

sin2 θ23 ∼ 0.5

sin2 θ13 ∼ few %

δ(CP ) = ?.

Figure 12.10 gives an overview of which type of experiment contributed to the individual
parts of the present knowledge on neutrino mass properties. In the following we discuss
how such information is constrained by the following types of experiments:

• Short-baseline reactor;

• Atmospheric;

• Long-baseline accelerator and

• Solar.

The short-baseline reactor experiment CHOOZ. Figure 12.11 shows the general
setup of the CHOOZ experiment. Nuclear fission in a reactor produces antineutrinos via
neutron decay: n→ p+ e− + ν̄e, leading to production rates as high as ∼ 6 · 1020 s−1, the
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Figure 12.9: Summary of the current knowledge on neutrino oscillations. Source: [25].

Figure 12.10: Origin of the current knowledge on neutrino oscillations. Source: B. Kayser.
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Figure 12.11: Setup of short-baseline reactor experiments. Source: [25].

Figure 12.12: Neutrino detection via inverse beta decay.
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energy being of the order of MeV. Detection is accomplished by inverse β-decay: ν̄e+p→
e+ +n; n+p→ d+γ, i. e. an incoming antineutrino hits a proton in the scintillator which
acts both as target and detector, producing a positron and a neutron (see Fig. 12.12).
In the scintillator, the positron annihilates with an electron to produce two photons,
both at 511 keV. Some 210µs later the neutron is captured, producing an excited state,
which decays emitting a photon of about 2.2 MeV. Taken together, due to their energy
and temporal pattern, the three photons produced in total constitute a clear signature. In
particular, the fact that the third γ is delayed allows for good background rejection. What
does one expect assuming that there are no oscillations visible with this setup? The reactor
antineutrino spectrum is shown in Fig. 12.13(a) together with the cross section for inverse
β-decay. Convoluting both distributions yields the observed spectrum. However, if there
are oscillations the picture changes (see Fig. 12.13(b)). As one can see in Fig. 12.13(c),
the CHOOZ results are in agreement (within a few % error) with the assumption that
there are no oscillations happening. Based on the one-mass scale dominance interpretation
discussed above, one uses the disappearance formula in Tab. 12.1 to produce the exclusion
plot shown in Fig. 12.13(d). To reduce systematics (by using a second close detector), there
is worldwide activity to build a new reactor experiment with higher θ13 resolution.

Atmospheric neutrinos: the Super-Kamiokande breakthrough. Figure 12.14(a)
shows the zenith angle dependence of the number of events in the 50 kt Super-Kamiokande
detector. One observes that there is a deficit in µ-like events in the up-going direction,
whereas the electron-like events follow more or less the expectations. Atmospheric neu-
trinos with electron or muon flavor are produced as secondary (anti)particles in decays
of mesons produced by cosmic rays hitting the atmosphere (see Fig. 12.15(b)). Although
the primary flux is affected by large normalization uncertainties, the neutrino flavor ratio
(about twice as much µ neutrinos than electron-neutrinos) is robust within a few per-cent.
As we have seen, the idea is to look up and down, since the neutrino flux from opposite
directions is the same, because for the opposite side the increased flux dilution (∼ 1/r2)
is compensated by the larger production surface (∼ r2) (see Fig. 12.14(b)). The actual
detection employs again charged-current interactions in the target. It is possible to distin-
guish the muonic from the electronic final state by means of the Cherenkov ring sharpness:
Producing showers in the target, the electron/positron smears out its Cherenkov ring (see
Fig. 12.16). This method does not allow for charge discrimination and τ events are not
reconstructed. A summary of the zenith distributions at Super-Kamiokande is shown in
Fig. 12.17. One can observe that the distribution of electronic events is more or less in
agreement with the expectation for no mixing, while there is a deficit in muonic events
from below, compared to the expectation for no oscillation. Observations over several
decades of L/E show the same results. How to interpret them? In terms of oscillations
this means that the channel νµ → νe is non-existing or subdominant (in agreement with
CHOOZ) and that the channel νµ → ντ is dominant. Recall that the one-mass scale
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(a) (b)

(c) (d)

Figure 12.13: Results of the short-baseline reactor experiment CHOOZ.
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Figure 12.14: Zenith angle dependence of µ-like events in the Super-Kamiokande experi-
ment. Source: T. Kajita at Neutrino ’98, Takayama.

approximation for θ13 = 0 reads

P (νµ → ντ ) = sin2 2θ23 sin2

(
∆m2L

4E

)
. (12.30)

The results are consistent with other atmospheric experiments using different techniques
(MACRO, Soudan2) but with lower statistics. Performing a dedicated L/E analysis in
Super-Kamiokande, it is even possible to “see” one half-period of the oscillation (dis-
torted by convolution with resolution, see Fig. 12.18(a)). Overall, the Super-Kamiokande
measurement yields strong constraints on the parameters ∆m2 and θ23 (see Fig. 12.18(b)).

Long-baseline neutrino experiments. With long-baseline experiments it is possible
to reproduce atmospheric µ-neutrino physics under controlled conditions (known flux
etc.). Sketches of such experiments in the US, Japan and Europe are shown in Fig. 12.19.
An example of neutrino beam production is shown in Fig. 12.20. Protons hitting a fixed
target produce pions which in turn decay into muons and muon neutrinos. To obtain a
focussed beam, the pions have to be focussed in the first place. This is achieved with
magnetic lenses, so called “horns”. Due to the production mode via pion decay, there is a
small contamination by electron neutrinos. Far detection of the neutrinos is achieved by
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(a) (b)

Figure 12.15: Production of atmospheric neutrinos. The absolute value of the primary flux
is not known precisely (a), but the flavor ratio is robust within a few percent (b).

14 

Detection in SK 
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Figure 12.16: Detection in Super-Kamiokande. Parent neutrinos are detected via charged-
current interactions in the water target.
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Figure 12.17: Super-Kamiokande results on atmospheric neutrinos.
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Figure 12.18: Super-Kamiokande results on oscillation period (a) and constraints on the
parameters ∆m2 and θ.
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19 

         Long-baseline neutrino experiments  
             (K2K, MINOS, OPERA) 

“Reproducing atmospheric !! physics” in controlled conditions  

Figure 12.19: Examples of long-baseline neutrino experiments. Source: [25].

the Cherenkov technique at Super-Kamiokande (K2K and T2K) or by a steel/scintillator
detector in the case of MINOS. Both experiments are supplemented by near detectors to
control the flux of muon neutrinos for normalization. Once more the dominant probability
is P (νµ → ντ ) = sin2 2θ23 sin2(∆m2L/4E) such that the results can be compared to the
atmospheric results. Combining the corresponding exclusion plots, one finds the oscillation
parameters to be consistent among the experiments (see Fig. 12.21). The OPERA detector
searches for dominant oscillations via τ appearance. This is done using a hybrid of emulsion
layers and scintillator trackers: If the tracker indicates a candidate event, the layers are
scanned to document tau decays (see Fig. 12.22).

Figure 12.20: Muon-neutrino beam production at hadron accelerators.
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Figure 12.21: Long-baseline neutrino experiments combination and consistency check with
atmospheric results.

Figure 12.22: Sketch of the OPERA detector (LHS) and of a reconstructed event (RHS).
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pp (+CNO) cycle 

Figure 12.23: Production of solar neutrinos in the pp cycle.
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Solar neutrinos. We now turn to experiments sensitive to the small mass splitting δm2.
Solar neutrino production proceeds via the pp (and CNO) cycles (see Fig. 12.23), where
the energy spectrum of the neutrinos varies with the stage of their production. There
are different ways to detect “solar neutrinos”. In the radiochemical method, one counts
the decays of unstable final-state nuclei. Advantageous is the low energy threshold of this
method. Problematic is, though, the loss/integration of the energy and time information.
Possible reactions for detection are

37Cl + νe → 37Ar + e− (CC) Homestake
71Ga + νe → 71Ge + e− (CC) GALLEX/GNO, SAGE.

The second detection possibility for solar neutrinos is elastic scattering:

νx + e− → νx + e− (NC,CC) SK, SNO, Borexino

where events are detected in real time with either a high energy threshold (Cherenkov,
directional) or with a low threshold (scintillators). Thirdly, there is the possibility to
detect solar neutrinos via interactions with deuterium, where the charged current events
are detected in real time and the neutral current events are separated statistically and
using neutron counters. The corresponding reactions read:

νe + d→ p+ p+ e− (CC) SNO

νx + d→ p+ n+ νx (NC) (Sudbury Neutrino Observatory).

All CC-sensitive results on solar neutrinos indicated a νe deficit, when compared to solar
model expectations (see Fig. 12.24(a)). Interpreting the results in terms of neutrino oscil-
lations yielded solar constraints on δm2 and θ12 (see Fig. 12.24(b)). A crucial role in this
development was played by the Sudbury Neutrino Observatory. As we have seen, at SNO
deuterium was used as target. In deuterium one can separate CC events (induced by νe
only) from NC events (induced by νe, νµ, ντ ), and double check via elastic scattering
events (due both to NC and CC). In terms of flux this means

CC

NC
' Φ(νe)

Φ(νe) + Φ(νµ,τ )
.

Therefore

CC

NC
< 1⇒ Φ(νµ,τ ) > 0⇒ P (νe → νµ,τ ) 6= 0

since solar neutrinos are produced exclusively as electron neutrinos. It was found that
CC/NC ∼ 1/3 < 1 and the solar model turned out to be adequate. Note also that since
CC/NC ∼ P (νe → νe) ∼ 1/3 < 1/2 this is also evidence of three-neutrino like mixing and
of matter effects. A summary of neutrino mass differences and mixing parameters with
their nσ ranges from a global three-neutrino analysis is shown in Fig. 12.25.
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30 

Results 

All CC-sensitive results indicated a !e deficit…  

…as compared to solar model expectations  
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Figure 12.24: Electron neutrino deficit in solar neutrino measurements as compared to
standard solar model (a) and parameter constraints from interpretation in terms of mixing
(b).

Figure 12.25: Synopsis of neutrino mass splitting and mixing parameters.
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What are the next experimental steps in determining these parameters? First of all it is
important to know θ13 more precisely. Since sin2 θ13 = |Ue3|2, this is the small νe part of ν3.
Thus what is needed is an experiment with L/E sensitive to ∆m (L/E ∼ 500 km/GeV),
and involving νe. One possibility is disappearance of ν̄e produced by a reactor while
traveling L ∼ 1.5 km. This process depends on θ13 alone (recall Eq. (12.21)):

P (ν̄e disappearance) = sin2 2θ13 sin2 ∆m2L

4E
.

Another interesting possibility is the measurement of P (νµ → νe) for νµ produced by
accelerators with L several hundred kilometers. This process depends on θ13, θ23, on
whether the hierarchy is normal or inverted and on whether CP is violated (δ).

12.4.3 Absolute masses

As we have seen, neutrino oscillations constrain neutrino mixings and mass splittings but
not the absolute mass scale. E. g., one can choose the lightest neutrino mass as a free
parameter. However, the lightest neutrino mass cannot be directly observed. There are
three realistic observables to attack neutrino masses:

1. β decay. A non-vanishing neutrino mass can affect the spectrum endpoint in β decay.

2. Neutrinoless double beta decay. This is only possible for Majorana neutrinos, we
will not discuss this possibility here.

3. Cosmology. Non-vanishing neutrino masses can affect large scale structures in the
standard model of cosmology, constrained by CMB and other data. Again, we will
not go into detail here.

One can use the high energy end of a beta decay spectrum like the one shown in Fig. 11.1(a)
to search for neutrino masses. Since beta decay is essentially emission and decay of a W
boson, the matrix element squared is proportional to G2

F . Thus the decay rate reads
dΓ ∝ G2

F × (phase space factor). The energy spectrum can be written as

dΓ

dEe
∝
{
G2
FpeEe(Q− Ee)2 (mν = 0)

G2
FpeEe(Q− Ee)

√
(Q− Ee)2 +m2

ν (mν > 0)

where Q is the high energy endpoint of the electron spectrum. Tritium is well suited for
this experiment, since Q (18.57 keV) and half life (12.32 y) are low. The reaction reads as
follows:

3H→ 3He + e− + ν̄e.

Figure 12.26 shows a close-up of the spectrum around its endpoint. Note that only a very
small fraction of all events lies in the region sensitive to the neutrino mass. To detect its
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effect, good energy resolution is needed. In fact, E0 is not Q, but the end point value
corrected by a recoil contribution which can be assumed to be constant in the region of
interest (Erec = 1.72 eV): E0 = Q− Erec (see [28, 29] for details).

There are three mass eigenstates whose eigenvalues cannot be individually resolved by
this experiment: Beta-decay produces electron neutrinos; as we have seen, these are su-
perpositions of the three mass eigenstates νi. Therefore, the experiment is sensitive to the
sum of the masses mi, weighted by the squared mixing coefficients |Uei|2:

mβ =
√

c2
13c2

12m
2
1 + c2

13s2
12m

2
2 + s2

13m
2
3

which is called “effective electron neutrino mass”. Note that the mass eigenstate with the
largest electron flavor component is ν1, |Ue1|2 ' cos2 θ12 ' 0.7, and it cannot be excluded
that ν1 is nearly massless (in the normal hierarchy, see Fig. 12.4). A historical summary of
the mass limits obtained by the beta-decay method is shown in Fig. 12.27. Latest bounds
are at the level of 2 eV.

The significant improvement in the neutrino mass sensitivity at the Troitsk and the Mainz
experiments (compared to the older ones) is due to so-called MAC-E-Filters (Magnetic
Adiabatic Collimation with an Electrostatic Filter) [28, p. 17]. Figure 12.28 shows the
main features of the MAC-E-Filter. β electrons emitted by the tritium source in the
LHS solenoid into the forward hemisphere are guided magnetically on a cyclotron motion
along the magnetic field lines into the spectrometer, resulting in an accepted solid angle
of nearly 2π. On their way into the center of the spectrometer the magnetic field B
drops adiabatically by several orders of magnitude keeping the ratio of cyclotron energy
and magnetic field constant: E⊥/B = const. Therefore, nearly all cyclotron energy E⊥ is
transformed into longitudinal motion giving rise to a broad beam of electrons flying almost
parallel to the magnetic field lines. Finally, the parallel beam of electrons is energetically
analyzed by applying an electrostatic barrier. The KATRIN experiment, currently under
construction, is expected to improve the mass limit by one order of magnitude to about
0.2 eV.

Neutrino physics is a vast field, accordingly important topics like Majorana neutrinos,
neutrino-less double-beta decay, cosmological bounds on the neutrino mass and future
perspectives in neutrino physics are not discussed here (see lecture on neutrino physics
by Prof. Rubbia5).

5http://neutrino.ethz.ch/Vorlesung/HS2009/
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Figure 4: Expanded β spectrum around its endpoint E0 for m(νe) = 0 (red
line) and for an arbitrarily chosen neutrino mass of 1 eV (blue line). In the
case of tritium, the gray-shaded area corresponds to a fraction of 2 · 10−13 of
all tritium β decays.

numerical calculation of the final states of the T2 molecule. The transition to
the electronic ground state of the 3HeT+ daughter ion is not a single state,
but broadened due to rotational-vibrational excitation with a Gaussian stan-
dard deviation of σ = 0.42 eV. Secondly the first group of excitated states
starts at around Vj = 25 eV. More recent calculations agree to these results
[25].

The neutrino mass influences the β spectrum only at the upper end below
E0, where the neutrino is non-relativistic and can exhibit its massive char-
acter. The relative influence decreases in proportion to m2(νe)/ε

2 (see figure
4) leading far below the endpoint to a small constant offset proportional to
−m2(νe).

Figure 4 defines the requirements of a direct neutrino mass experiment
which investigates a β spectrum: The task is to resolve the tiny change of
the spectral shape due to the neutrino mass in the region just below the
endpoint E0, where the count rate is going to vanish. Therefore, high energy
resolution is required combined with large source strength and acceptance as

12

Figure 12.26: Close-up of the high-energy end of the beta decay spectrum. In the case of
tritium the shaded area corresponds to a fraction of about 2 · 10−13 events. Source: [28,
p. 12].

Figure 6: Recent results of tritium β decay experiments on the observable
m2(νe).The experiments at Los Alamos, Zürich, Tokyo, Beijing and Liver-
more [36, 37, 38, 39, 40] used magnetic spectrometers, the tritium experi-
ments at Mainz and Troitsk [41, 42, 43, 44] are using electrostatic spectrom-
eters of the MAC-E-Filter type (see text).

Livermore National Laboratory and Beijing. The sensitivity on the neutrino
mass have improved a lot but the values for the observable m2(νe) populated
the unphysical negative m2(νe) region. In 1991 and 1994 two new experi-
ments started data taking at Mainz and at Troitsk, which used a new type of
electrostatic spectrometer, so-called MAC-E-Filters, which were superior in
energy resolution and luminosity with respect to the previous magnetic spec-
trometers. However, even their early data were confirming the large negative
m2(νe) values of the LANL and Livermore experiments when being analyzed
over the last 500 eV of the β spectrum below the endpoint E0. But the large
negative values of m2(νe) disappeared when analyzing only small intervals
below the endpoint E0. This effect, which could only be investigated by the
high luminosity MAC-E-Filters, pointed towards an underestimated or miss-
ing energy loss process, seemingly to be present in all experiments. The only
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Figure 12.27: Recent results of tritium beta decay experiments on the effective electron
neutrino mass. Source: [28, p. 15].
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Figure 7: Principle of the MAC-E-Filter. Top: experimental setup, bot-
tom: momentum transformation due to adiabatic invariance of the orbital
magnetic momentum µ in the inhomogeneous magnetic field.

3.1 MAC-E-Filter

The significant improvement in the neutrino mass sensitivity by the Troitsk
and the Mainz experiments are due to MAC-E-Filters (Magnetic Adiabatic
Collimation with an Electrostatic Filter). This new type of spectrometer
– based on early work by Kruit [46] – was developed for the application
to the tritium β decay at Mainz and Troitsk independently [47, 48]. The
MAC-E-Filter combines high luminosity at low background and a high energy
resolution, which are essential features to measure the neutrino mass from
the endpoint region of a β decay spectrum.

The main features of the MAC-E-Filter are illustrated in figure 7: two su-
perconducting solenoids are producing a magnetic guiding field. The β electrons,
starting from the tritium source in the left solenoid into the forward hemi-
sphere, are guided magnetically on a cyclotron motion along the magnetic

17

Figure 12.28: Sketch of the MAK-E-Filter. Source: [28, p. 17].
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