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Chapter 1

Introduction

Literature:

• Halzen/Martin [1]

• Aitchison/Hey [2] (rigorous)

• Seiden [3] (experimental, up to date)

• Nachtmann [4] (difficult to purchase)

Elementary particles are the smallest constituents of matter. Therefore the notion “ele-
mentary” changes with scientific progress (cf. Tab. 1.1).

We can define “elementary” as “having no resolvable inner structure”. This also means
that there can be no excited states. Elementary particles interact in a well-defined way
through fundamental interactions. These are

• gravity,

• electromagnetic interaction,

• weak interaction, and

• strong interaction,

where only the last three are relevant, at the elementary particle level, at energies currently
available. Range of phenomena:

• structure of matter

• stability of matter

1
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1869 Mendeleev/Meyer periodic system atom
1890 J. Thomson electron
1910 Bequerel/Curie radioactivity atomic nucleus & electron

Rutherford scattering
1932 Chadwick neutron proton, neutron, electron

Anderson positron & their antiparticles
1947 Blackett/Powell pion, muon “particle zoo”
1956 Cowan/Reines neutrino
1967 Glashow/Weinberg/Salam electroweak

theory
1968 SLAC deep inelastic quarks & leptons

scattering
1972 Fritzsch/Gell-Mann/Leutwyler quantum

chromodynamics
1974 SLAC/BNL c quark, τ lepton
1979 DESY gluon
1977 Fermilab b quark
1983 CERN W , Z bosons
1995 Fermilab t quark, ντ

Table 1.1: Historical outline of the concept of “elementarity”

• instability of matter, radioactivity: decay of elementary particles

• scattering of elementary particles

• production of new particles

• indirect implications

– early history of the universe

– fuel cycle in stars

– astrophysical phenomena: supernovae, very high energy cosmic rays

1.1 Units

The Planck constant

~ =
h

2π
= 1.0546 · 10−34 Js (1.1)

has dimension of action and angular momentum. Another important physical constant is
the speed of light

c = 2.998 · 108 m

s
. (1.2)



1.1. Units 3

Because we are dealing with constants, Eq. (1.1) and (1.2) establish a relationship among
the units for energy, time, and length. Using so-called natural units, i. e. setting ~ = c = 1,
we find

[c] = [length] · [time]−1 = [L][T ]−1 ⇒ [L] = [T ] (1.3)

[~] = [energy] · [time] = [M ][L]2[T ]−1 ⇒ [M ] = [L]−1 (1.4)

⇒ [M ] = [L]−1 = [T ]−1 and [E] = [M ]. (1.5)

This raises the question of a suitable fundamental unit for energy. One electron volt is
the energy acquired by an electron passing a potential difference of 1 V :

1 eV = 1.602 · 10−19 J

keV = 103 eV

MeV = 106 eV

GeV = 109 eV

TeV = 1012 eV.

Examples of some orders of magnitude are

me = 511 keV

mp = 938 MeV

mn = 939 MeV

Ee(LEP) = 104.5 GeV

Ep(Tevatron) = 980 GeV

Ep(LHC) = 7 TeV.

Converting the units for energy, time, and length into each other yields, in agreement
with Eq. (1.5),

~ = 6.58 · 10−25 GeV · s !
= 1⇒ 1 GeV−1 ' 6.58 · 10−25 s , (1.6)

(recall lifetime τ = 1
Γ

with Γ the resonance width), and

c = 2.998 · 108 m

s
!

= 1⇒ 1 fm = 10−15 m ' 1

200 MeV
. (1.7)

Cross sections have dimensions of area:

[σ] = [L]2 = [M ]−2 =
1

(eV)2
. (1.8)

As unit we choose

1

(1 GeV)2
= 389379 nb = 389379 · 10−9 b
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with 1 b : 1 barn = 10−24 cm2 the typical scale of nuclear absorption.

The unit of electrical charge can be defined in different ways. The dimensionless fine
structure constant α is accordingly expressed differently in terms of e in different systems
of units,

α =
e2

4πε0~c

∣∣∣∣∣
SI

= 7.2972 · 10−3 ' 1

137

=
e2

~c

∣∣∣∣∣
CGS

=
e2

4π~c

∣∣∣∣∣
Heaviside-Lorentz

,

and determines the strength of the electromagnetic interaction. Therefore, in Heaviside-
Lorentz units, the electron charge is fixed to be

e =
√

4πα
∣∣∣
HL
. (1.9)

1.2 Elementary interactions

Gravitation. Since

Gm2
p ≈ 10−39

and because of the fact that gravity’s range is infinite, it is relevant for macroscopic
systems (and can be neglected here).

Electromagnetic interaction. Recall that α ' 1
137
. The range of the electromagnetic

interaction is infinite and typical lifetimes of particles decaying through electromagnetic
interactions range from τΣ0→Λ0γ = 10−20 s to τπ0→γγ = 10−16 s. Typical cross sections are of
order σep→ep = 1µb. QED’s (quantum electrodynamics’) predictions have been tested to
high theoretical and experimental precision. Consider for example the anomalous magnetic
moment of the electron:

µQED
e =

e

2me

g

2
=

e

2me

{
1︸︷︷︸

Dirac

+
1

2

α

π︸︷︷︸
Schwinger

− 0.388
α2

π2︸ ︷︷ ︸
Petermann

+ 1.18
α3

π3︸ ︷︷ ︸
Laporta/Remiddi

}

=
e

2me

{
1.0011596521465(270)

}

µexp.
e =

e

2me

{
1.0011596521883(42)

}
,

where the experimental value was obtained by Van Dyck, Schwinberg and Dehmelt.
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�n

ν̄e

e−

p

(a)

�n

ν̄e

e−

p

gW

gWW−W−

(b)

Figure 1.1: Beta decay of neutron. Depicted as a point like process, as described by Fermi’s
constant (a) and via W− boson exchange (b).

Weak interaction. As an example for weak interactions consider β decay: n→ peν̄e: see
Fig. 1.1(a). The range is about 1 fm and for the coupling we have

GFm
2
p ≈ 10−5.

The lifetimes go from 10−10 s to 103 s and cross sections are of order σ ≈ 1 fb. Theoretically,
the process is explained by W− boson exchange, see Fig. 1.1(b), which yields for Fermi’s

constant GF = g2w
8M2

W
.

Strong interaction. At the nuclear level, the Yukawa theory of pion exchange (see
figures 1.2(a) and 1.2(b)) is still used. It explains the bonding of protons and neutrons
by exchange of massive pions: mπ = 130 MeV ⇒ range ' 1

mπ
= 1

130 MeV
' 1.4 fm. QCD

(quantum chromodynamics) states that particles like p, n, and π consist of quarks which
interact through gluons. Gluons (in contrast to photons) carry themselves the charges
they are coupling to which influences the strong interaction’s potential, see fig.1.3. The
QCD coupling constant is approximately given by αs ' 0.12.
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�π+

n
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p

n

(a)

�
u
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u

u
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u
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u

d
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d

(b)

Figure 1.2: Yukawa theory. Interaction by pion exchange (a) and exchange of quark and
anti-quark (b).

q q q q

V(r)

r

~1/r

~r
~1fm

Figure 1.3: Potential of the strong interaction.



Chapter 2

Relativistic kinematics

Literature:

• Nachtmann [4]

• Hagedorn [5]

• Byckling/Kajantie [6]

We state some notation concerning special relativity:

xµ = (x0 = t, x1, x2, x3) = (t, #»x ) contravariant four-vector (2.1)

xµ = (t,− #»x ) covariant four-vector (2.2)

gµν = gµν =




1
−1

−1
−1


 metric tensor (2.3)

τ 2 = t2 − #»x 2 = gµνx
µxν = xµxµ = x2 Lorentz invariant (2.4)

dτ = dt

√
1−

(d #»x

dt

)2

=
dt

γ
proper time. (2.5)

Combining Eq. (2.1) and (2.5) we arrive at the four-velocity

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γ(1, #»v ).

Since

u2 = γ2(1− #»v 2) = 1 > 0,

7
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u is a time-like four-vector. The four-momentum is then defined as

pµ = muµ = mγ(1, #»v ) = (p0 = E, #»p ).

By calculating the corresponding Lorentz invariant,

p2 = m2u2 = m2 = E2 − #»p 2,

we find the energy-momentum relation

E =
√
m2 + #»p 2. (2.6)

A particle is said to be relativistic if #»p 2 6� m2. Conversely, for a non-relativistic particle,
#»p 2 � m2, and therefore

E =
√
m2 + #»p 2 = m

(
1 +

1

2

#»p 2

m2
+ . . .

)
= m+

1

2

#»p 2

m
+ . . .

so that we recover the expression for | #»v | � 1 of Newtonian mechanics.

2.1 Particle decay

The decaying particle’s four-momentum is, in the rest frame, given by p = (M, 0, 0, 0),
see Fig. 2.1. The decay time (lifetime) is

dτ 2 = dt2(1− #»v 2)

where dt2 is the lifetime in the laboratory frame:

dt = γdτ > dτ. (2.7)

The result stated in equation (2.7) has been verified experimentally:

τπ+→µ+νµ = 2.6 · 10−8 s

Eπ = 20 GeV, γ =
Eπ
mπ

= 143⇔ v = 0.9999

⇒ t′π
tπ

= 143.

Constraints are (i) conservation of energy and momentum, p = p1 + p2 (4 equations), and
(ii) the mass-shell condition, p2

i = m2
i :

p2 = M2 p2
1 = m2

1 p2
2 = m2

2

p = (M,
#»
0 ) p1 = (E1,

#»p 1) p2 = (E2,
#»p 2).
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�p

p2

p1

Figure 2.1: Particle decay. Dynamics will be discussed later on; at the moment we are
dealing with kinematics.

It therefore follows that

p · pi = MEi ⇒ Ei =
1

M
p · pi =

1

M
(p1 · pi + p2 · pi).

And, by using p1 · p2 = 1
2
[(p1 + p2)2 − p2

1 − p2
2] = 1

2
[M2 −m2

1 −m2
2], we find

E1 =
1

M
(p2

1 + p1 · p2) =
1

2M
(M2 +m2

1 −m2
2)

E2 =
1

2M
(M2 −m2

1 +m2
2).

By using equation (2.6) and #»p 1 + #»p 2 = 0, the absolute value of the three-momenta,

#»p 2
1 = E2

1 −m2
1 =

1

4M2

(
M4 − 2M2(m2

1 +m2
2) + (m2

1 −m2
2)2
)

= #»p 2
2,

is also fixed. This means that only the directions of #»p 1 and #»p 2 remain unknown, while
the energies and the absolute values of the momenta can be calculated directly.

2.2 Two-particle scattering

For a visualisation of the process see Fig. 2.2(a). Once again, the constraints are

p2
i = m2

i (i = 1, . . . , 4)

p1 + p2 = p3 + p4.

We talk of elastic scattering if m1 = m3 and m2 = m4. Consider the Lorentz invariants

p2
i = m2

i and p1 · p2, p1 · p3, p1 · p4, p2 · p3, p2 · p4, p3 · p4︸ ︷︷ ︸
6 invariants, 2 linearly independent, 4 linearly dependent

.
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�
p2

p1

p3

p4

(a)

�s
t

2

1

4

3

uu

(b)

Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum
conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom
in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum
transfer squared (negative). Note also that s+ t+ u =

∑4
i=1m

2
i .

The center of mass frame is defined by

#»p 1 + #»p 2 = 0 = #»p 3 + #»p 4. (2.8)

One usually denote variables in this frame with an asterisk: (cm., pi = p∗i ). The laboratory
frame is defined by #»p 2 = 0 (fixed target) and variables are labelled with an L : (lab.,
pi = pLi ). In deep inelastic scattering the Breit system (pi = pBi ) is used, which is defined
by #»p 1 + #»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation
(2.8) leads to

#»p ∗1 = − #»p ∗2 = #»p
#»p ∗3 = − #»p ∗4 = #»p ′

p1 =
(
E∗1 =

√
#»p 2 +m2

1,
#»p
)

p2 =
(
E∗2 =

√
#»p 2 +m2

2,− #»p
)

p3 = (E∗3 ,
#»p ′)

p4 = (E∗4 ,− #»p ′).
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�
#»p − #»p

#»p ′

− #»p ′

Θ∗

4

1 2

3

Figure 2.3: Two-particle scattering in center of mass frame. For the constraints on the
scattering angle Θ∗ see section 2.2.1.

The sum

p1 + p2 = (E∗1 + E∗2︸ ︷︷ ︸√
s

,
#»
0 )

is no Lorentz invariant, whereas

s = (p1 + p2)2 = (E∗1 + E∗2)2

is one. Now we can express E∗i , | #»p |, and | #»p ′| in terms of s (see exercise sheet 1):

E∗1,3 =
1

2
√
s

(s+m2
1,3 −m2

2,4) (2.9)

#»p 2 = (E∗1)2 −m2
1 =

1

4s
λ(s,m2

1,m
2
2), (2.10)

where we have used the Källén function (triangle function) which is defined by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc

=
[
a− (

√
b+
√
c)2
][
a− (

√
b−√c)2

]

= a2 − 2a(b+ c) + (b− c)2.

We can see that the Källén function has the following properties:

• symmetric under a↔ b↔ c and

• asymptotic behavior: a� b, c : λ(a, b, c, )→ a2.
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This enables us to determine some properties of scattering processes. From #»p 2, #»p ′2 > 0
it follows that

smin = max
{

(m1 +m2)2, (m3 +m4)2
}
≥ 0

is the threshold of the process in the s-channel. In the high energy limit (s� m2
i ) Eq. (2.9)

and (2.10) simplify because of the asymptotic behavior of λ and one obtains:

E∗1 = E∗2 = E∗3 = E∗4 = | #»p | = | #»p ′| =
√
s

2
.

2.2.1 Scattering angle

In the center of mass frame, the scattering angle Θ∗ is defined by

#»p · #»p ′ = | #»p | · | #»p ′| cos Θ∗.

We also know that

p1 · p3 = E∗1E
∗
3 − | #»p ∗1|| #»p ∗3| cos Θ∗

t = (p1 − p3)2 = m2
1 +m2

3 − 2p1p3 = (p2 − p4)2

and can derive cos Θ∗ = function(s, t,m2
i ) :

cos Θ∗ =
s(t− u) + (m2

1 −m2
2)(m2

3 −m2
4)√

λ(s,m2
1,m

2
2)
√
λ(s,m2

3,m
2
4)

.

This means that 2→ 2 scattering is described by two independent variables:
√
s and Θ∗ or

√
s and t.

2.2.2 Elastic scattering

We now consider the case of elastic scattering. This means that m1 = m3 and m2 = m4

(e. g. ep→ ep). Therefore Eq. (2.9) and (2.10) simplify:

E∗1 = E∗3 , E
∗
2 = E∗4

| #»p |2 = | #»p ′|2 =
1

4s

(
s− (m1 +m2)2

)(
s− (m1 −m2)2

)

and we find for the scattering angle (in the case of elastic scattering)

t = (p1 − p3)2 = −( #»p 1 − #»p 3)2 = −2 #»p 2(1− cos Θ∗)

⇒ cos Θ∗ = 1 +
t

2| #»p |2 .

Restriction to the physically valid region yields

−1 ≤ cos Θ∗ ≤ 1
#»p 2 ≥ 0

}
⇔
{
−4| #»p |2 ≤ t ≤ 0
s ≥ (m1 +m2)2 .
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2.2.3 Angular distribution

Finally, we find for the angular distribution (bearing in mind that the distribution is
rotationally invariant with respect to the “ #»p -axis” such that

∫
dφ = 2π)

dΩ∗ = 2πd cos Θ∗

dΩ∗

dt
=

4πs√
λ(s,m2

1,m
2
2)
√
λ(s,m2

3,m
2
4)

=
π

| #»p || #»p ′| . (2.11)

2.2.4 Relative velocity

At this point, we introduce the relative velocity, which we will see to be of relevance in
defining the particle flux and hence the collider construction,

v12 = | #»v 1 − #»v 2| =
∣∣∣∣

#»p 1

E1

−
#»p 2

E2

∣∣∣∣ =

∣∣∣∣
#»p ∗1
E∗1
−

#»p ∗2
E∗2

∣∣∣∣ =
| #»p ∗1|
E∗1E

∗
2

(E∗1 + E∗2)︸ ︷︷ ︸√
s

, (2.12)

from which we get,

v12E
∗
1E
∗
2 =
√
s| #»p ∗1| =

√
s
√
E∗21 −m2

1

=
√
s

√
1

4s
(s+m2

1 −m2
2)2 −m2

1

=
√

(p1 · p2)2 −m2
1m

2
2, (2.13)

the so called Møller flux factor. In going from the first line to the second, we used the
definition of the Källén function and in going to the third the fact that s = m2

1+m2
2+2p1·p2.

We stress here that v12E
∗
1E
∗
2 is a frame independent quantity. It appears in the definition

of the incoming particle flux, an thus in the cross section. It also plays an important role
in the normalization issues, since the classical volume element is not Lorentz invariant.

2.2.5 Center of mass and laboratory systems

For the center of mass and the laboratory systems respectively, we have,

CM : s = (E∗1 + E∗2)2 = (total energy)2

L : s = m2
1 +m2

2 + 2m2E
L
1

EL1�m1,m2−→ 2m2E
L
1 .

As an example for the difference, we look at the two operating modes of the Tevatron at
Fermilab (Figure 2.4). The energy of the beam particles is Ebeam = 980 GeV.
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p

p
p

fixed target
m2= mp

Figure 2.4: Sketch of the Tevatron accelerator at Fermilab.

�
2

1

3

4

Ts

Figure 2.5: s-channel.

Used in the pp̄-mode, the collision is head on and we are allowed to consider the problem
in the center of mass frame and,

√
spp̄(Collider) = 1960 GeV,

which is ideal for discovering new phenomena with the highest possible energy.

If on the other hand, the pN -mode is chosen (N is a nucleus in the target), we need to
consider the laboratory frame and we get

√
spN(Fixed target) = 42.7 GeV < mW .

Although this mode is less energetic, it is then possible to create a secondary beam. With
this method, the existence of ντ could be proven.

2.3 Crossing symmetry

The 2 → 2 scattering process has some underlying symmetries, which we shall explore
now.

Example When we exchange p3 and p4, s is not affected but t and u interchange their
roles.

We take now a look at the reaction (Figure 2.5), 1+2→ 3+4, for which the 4-momentum
is conserved :

p1 + p2 = p3 + p4.
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�
p1 −p2

−p3

p4

3

1

4

2

Tt

�

= �
p1 p̄2

p̄3

p4

3

1

4

2

Tt

Figure 2.6: t-channel.

It is called “s-channel” reaction, because the only positive Mandelstam variable is s. Ts
describes the scattering dynamics of the process and will be treated later. It depends
on the three Mandelstam variables and is predicted by theoretically (QED, QCD, EW,
SUSY,...),

Ts(s, t, u) = T (s, t, u)|s>0,t≤0,u≤0. (2.14)

T can then be extended analytically to the whole range s, t, u ∈ R. Depending on the
region, it can then describe different crossed reactions.

For instance, suppose we exchange p2 and p3, we then get naively (Figure 2.6),

p1 + (−p3) = (−p2) + p4.

We now make the interpretation
−pn = pn̄,

in which n̄ stands for the antiparticle of the particle n, leading to the expression (Fig-
ure 2.6),

p1 + p3̄ = p2̄ + p4.

Since 1 and 3̄ are the incoming particles, we speak of the “t-channel” process. One has

Tt(s, t, u) = T (s, t, u)|s≤0,t>0,u≤0. (2.15)

2.3.1 Interpretation of antiparticle-states

As stated above, we interpret particles with 4-momentum −p to be antiparticles with
4-momentum p. The reason for that becomes clear when we look at the 4-current,

jµ
ED
=

(
ρ
#»
j

)
QM
= −e︸︷︷︸

electron charge

i(ϕ∗∂µϕ− ϕ∂µϕ∗).︸ ︷︷ ︸
probability density︸ ︷︷ ︸

charge density

(2.16)
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�
p1

−p2

−p4

p3

4

1

2

3

�

≡ �p4

p1 p3

p2

4̄

1

2̄

3

Figure 2.7: Emission of a positron and absorption of an electron. The emission of a positron
with energy +E is equivalent to the absorption of an electron with energy −E.

Inserting the wave function of the free electron,

ϕ = Ne−ip·x, (2.17)

in the definition of the 4-current Eq. (2.16), one gets

e− with 4-momentum + pµ : jµ(e−) = −2e|N |2pµ = −2e|N |2
(

+E
+ #»p

)
,

e+ with 4-momentum + pµ : jµ(e+) = +2e|N |2pµ = −2e|N |2(−p)µ,

e− with 4-momentum− pµ : jµ(e−) = −2e|N |2(−p)µ = −2e|N |2
(
−E
− #»p

)
,

and hence the rule,

jµ(e+) = jµ(e−) with the subsititution pµ → −pµ . (2.18)

We stress here the fact that the whole 4-vector pµ takes a minus sign, and not only the
spatial part #»p .

What we effectively used here is the fact that in the phase of Eq. (2.17) we can flip the
signs of both pµ and xµ without changing the wave function. There is no place here for
particle travelling backwards in time!

A particle with 4-momentum −pµ is a representation for the corresponding antiparticle
with 4-momentum pµ. Alternatively, one can say that the emission of a positron with
energy +E corresponds to the absorption of an electron with energy −E. Figure 2.7
restates the last sentence as a Feynman diagram.

The three reactions (s-, t- and u-channels) are described by a single function T (s, t, u)
evaluated in the relevant kinematical region (s ≥ 0 or t ≥ 0 or u ≥ 0).

In order to represent the situation, one usually refers to the Dalitz plot 1 (Figure 2.8).

1or equilateral coordinates
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t = tmin

s = sminu = umin

t-channel

u-channel s-channel

s = 0

t = 0

u = 0

t

s
u

p.

.

Figure 2.8: Dalitz plot of s-, t-, and u-channels.

�p2

p1 p3

p4

e−

e−

e−

e−

(a)

�
p1

p2

p4

p3

e+

e−

e+

e−

(b)

Figure 2.9: Møller scattering (a) and Bhabha scattering (b).

Example We take a look at the Møller scattering,

e−e− → e−e−,

which is the s-channel of the reaction depicted on Figure 2.9(a). By crossing, we get as
u-channel reaction the Bhabha scattering,

e+e− → e+e−,

which is the reaction depicted on Figure 2.9(b).

The considerations of this chapter enable us to derive constraints on the possible dynamics
but are not sufficient to decide on the dynamics. To “get” the dynamics we must calculate
and compare to experiments decay rates and scattering cross-sections.
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Chapter 3

Lorentz invariant scattering cross
section and phase space

In particle physics, there are basically two observable quantities :

• Decay rates,

• Scattering cross-sections.

Decay:

�

|i〉�a

p1

p2

pn �

|f〉

Scattering:

�

|i〉�b
a

p1

p2

pn �

|f〉

19
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3.1 S-operator

In both cases |i〉 denotes the initial state, |f〉 denotes a multiparticle final state in a Fock
space and the box represents the dynamics/interactions and is called the S-operator.
The last is predicted by the theory describing the interaction.

Example In QM I/II, S ∝ H ′(t) ∝ V (t) in the first order perturbation theory of the
Schrödinger equation.

S is usually a very complicated object : it contains the information about all possible
transitions |i〉 → |f〉. Another way to state this is to remark that S contains all the
dynamics of the process.

In experiments one does not get/need/want the full S-operator. Instead, one restricts
oneself to specific |i〉 and |f〉 e.g. by choosing the beam particles (muon beam,...) for the
first and looking only at specific outcomes (3-jets events,...) for the latter.

One represents the S-operator by looking at its matrix elements,

∑

f ′

|f ′〉 〈f ′|
︸ ︷︷ ︸

1

S |i〉 =
∑

f ′

|f ′〉 Sf ′i (3.1)

where

Sf ′i = 〈f ′| S |i〉 (3.2)

To isolate a specific outcome |f〉, one multiplies Eq. (3.1) by 〈f |, and gets,

〈f |
∑

f ′

|f ′〉 Sf ′i =
∑

f ′

〈f |f ′〉︸ ︷︷ ︸
=δff ′

Sf ′i = Sfi. (3.3)

Hence, the probability for the process |i〉 → |f〉 is,

P (|i〉 → |f〉) = |Sfi|2 (3.4)

In general we can write,

Sfi = δfi︸︷︷︸
no int.

+ i(2π)4δ(4)(pf − pi)︸ ︷︷ ︸
4-momentum cons.

· Tfi︸︷︷︸
scat. amplitude

, (3.5)

or using a shorthand notation

S = 1 + iT ,
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in Feynman diagrams:

� �

=� �

+�
In the discussion of particle physics, a frequently used quantity is the transition probability
per unit time,

wfi =
|Sfi|2
T

. (3.6)

3.2 Fermi’s golden rule

From Eqs. (3.4) and (3.5), we see that we must address the issue of defining the value of a
squared Dirac δ-function. To do this we use the rather pragmatic approach due to Fermi:

[
2πδ(p0

f − p0
i )
]2

=

∫
dt ei(p

0
f−p0i )t · 2πδ(p0

f − p0
i )

= T · 2πδ(p0
f − p0

i ) (3.7)

[
(2π)3δ(3)( #»p f − #»p i)

]2
=

∫∫∫
d3x ei(

#»p f− #»p i)· #»x · (2π)3δ(3)( #»p f − #»p i)

= V · (2π)3δ(3)( #»p f − #»p i) (3.8)

⇒ wfi =
|Sfi|2
T

= V · (2π)4δ(4)(pf − pi) · |Tfi|2 (3.9)

To talk about the transition rate, we look at a Fock-space with a fixed number of particles.

Experimentally, the angle and energy-momentum is only accessible up to a given accuracy.
We therefore use differential cross-sections in angle dΩ and energy-momentum dp near Ω, p
respectively.

Motivating example In a cubic box of volume V = L3 with infinitely high potential
wells, the authorized momentum-values are discretely distributed.

p =
2π

L
n⇒ dn =

L

2π
dp⇒ d3n =

(
L

2π

)3

d3p,

and hence,

dwfi = V · (2π)4δ(4)(pf − pi) · |Tfi|2 ·
nf∏

f=1

V

(2π)3
d3pf , (3.10)
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where nf stands for the number of particles in the final state.

In order to get rid of normalization factors, we define a new matrix element Mfi by,

Tfi !
=

(
ni∏

i=1

1√
2EiV

)(
nf∏

f=1

1√
2EfV

)
Mfi. (3.11)

At first sight, the apparation of the energies of both the initial and final states might be
surprising. It is however needed in order to compensate the noninvariance of the volume,
so that EV is a Lorentz invariant quantity. From now on we will always normalize our
states to 2E (instead of 1 as is usually the case in nonrelativistic quantum mechanics).

We now substitute the definition (3.11) in Eq. (3.10) to get the fundamentally important
expression,

dwfi =
V 1−ni

(2π)3nf−4
δ(4)(pf − pi) · |Mfi|2 ·

ni∏

i=1

1

2Ei

nf∏

f=1

d3pf
2Ef

. (3.12)

We can then specify this result for the two cases of interest, as we do in the following
subsections.

3.2.1 Total decay rate

In the case where ni = 1, we view wfi as a decay rate for the reaction,

a→ 1 + 2 + · · ·+ nf .

We have

Γa→{nf} = w{f}a (decay width), (3.13)

τa→{nf} =
1

Γa→{nf}
(lifetime), (3.14)

where {nf} stands for the nf -particle final state 1 + 2 + · · ·+ nf .

The next step is the definition of the total decay width,

Γa =
∑

{nf}
Γa→{nf} =

1

2Ea

1

(2π)3nf−4
·
∫
d3p1

2E1

· · · d
3pnf

2Enf
δ(4)(pf − pi)|Mfi|2 , (3.15)

and the lifetime

τa =
1

Γa
(3.16)

We remark that since Ea is not a Lorentz invariant quantity, Γa also depends on the
reference frame. The quantity stated under the name “lifetime” in particle physics listings
is always the lifetime as measured in the rest frame of the particle and is hence always
the shortest one.
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Example Without relativistic time dilation, one would expect the µ leptons generated
by cosmic rays in the high atmosphere and traveling almost at the speed of light to be able
to travel cτµ ≈ 600 m before decaying, making their detection on the earth surface almost
impossible. When one takes time dilation into account, the distance becomes cτµ ≈ 10 km,
which is in accordance with the observed µ leptons number reaching the earth. This was
actually for long the only available test of special relativity.

3.2.2 Scattering cross section

We now analyze the case of ni = 2, i.e. the case of two particles interacting via the
reaction,

a+ b→ 1 + 2 + · · ·+ nf ,

thus getting the scattering cross section σ(a+ b→ 1 + 2 + · · ·nf ) defined by,

σ =
# of transitions a+ b→ 1 + 2 + · · ·nf per unit time

# of incoming particles per unit surface and time
=

wfi
incoming flux

. (3.17)

The denominator can also be stated as,

incoming flux = (number density) · (relative velocity) =
vab
V
.

Using Eqs. (2.12) and (3.17) we then find,

σi→{nf} =
1

4F

1

(2π)3nf−4

∫ ( nf∏

f=1

d3pf
2Ef

)
δ(4)

(
nf∑

f=1

pf − pa − pb
)
|Mfi|2 , (3.18)

in which we see once more the Lorentz invariant Møller flux factor,

F = EaEbvab =
√

(pa · pb)2 −m2
am

2
b

=
1

2

√
(s− (ma +mb)2)(s− (ma −mb)2)

s�m2
a,m

2
b−→ s

2
. (3.19)

From the form of (3.18), we see that the total cross section is manifestly a Lorentz invariant
quantity, since it only depends on Lorentz invariants.

3.2.3 Invariant phase space for nf-particles

We have already seen that the scattering angle is related to the Mandelstam t-variable
(Section 2.2.2).
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In order to make the same statement for multiparticle final states, we define the nf -
particles phase space,

Rnf =

∫
dRnf =

∫
d3p1

2E1

· · · d
3pnf

2Enf
δ(4)

(
nf∑

f=1

pf −
ni∑

i=1

pi

)
. (3.20)

We now prove that Rn is a Lorentz invariant quantity.

d3pi
2Ei

=

∞∫

0

dEiδ(p
2
i −m2

i )d
3pi (3.21)

=

∞∫

−∞

d4pi︸︷︷︸
L.I.

δ(p2
i −m2

i︸ ︷︷ ︸
L.I.

) θ(Ei)︸ ︷︷ ︸
Ei>0 is L.I.

. (3.22)

3.2.4 Differential cross section

In order to get the differential cross section, we define,

tjk := (pj − pk)2 = f(∠( #»p j,
#»p k)), (3.23)

and write

dσ

dtjk
=

1

4F

1

(2π)3nf−4

∫
dRnf |Mfi|2δ(tjk − (pj − pk)2). (3.24)

Starting from this expression, one can deduce differential distributions in all other kine-
matical variables (energies, angles) by expressing those through the tjk’s.

3.3 2→ 2 scattering cross section

Next we turn our attention towards the very important special case of 2→ 2 scattering,
ni = nf = 2:

a+ b→ 1 + 2.

3.3.1 Phase space

First, we take a look at the phase space R2, we see that there are 6 integration variables
and 4 constraints, i.e. we are left with only 2 free parameters. The goal of the next steps
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will be to get rid of the δ-functions.

R2 =

∫
d3 #»p 1

2Ẽ1

d3 #»p 2

2Ẽ2

δ(4)(p1 + p2 − pa − pb)

(3.26)
=

∫
d4p1δ(p

2
1 −m2

1)d4p2δ(p
2
2 −m2

2)θ(E1)θ(E2)δ(4)(p1 + p2 − pa − pb)
(3.27)
=

∫
d4p1δ(p

2
1 −m2

1)δ((pa + pb − p1)2 −m2
2)θ(E1)θ(Ea + Eb − E1)

=

Ea+Eb∫

0

dE1

∞∫

0

| #»p 1|2d| #»p 1|dΩδ(E2
1 − #»p 2

1 −m2
1)δ((pa + pb − p1)2 −m2

2)

(3.28)
=

Ea+Eb∫

0

dE1dΩ

√
E2

1 −m2
1

2︸ ︷︷ ︸∫∞
0 | #»p 1|2δ(E2

1− #»p 2
1−m2

1)d| #»p 1|

δ
(
s− 2(pa + pb) · p1 +m2

1 −m2
2

)
(3.25)

where we have used,

1

2Ẽ1

=

∫
dE1δ(E

2
1 − #»p 2

1 −m2
1)θ(E1), Ẽ1 =

√
m2

1 + #»p 2
1 (3.26)

1 =

∫
d4p2δ

(4)(p1 + p2 − pa − pb), (3.27)

δ(E2
1 − #»p 2

1 −m2
1) =

1

2| #»p 1|


δ
(
| #»p 1| −

√
E2

1 −m2
1

)
+ δ

(
| #»p 1|+

√
E2

1 −m2
1

)

︸ ︷︷ ︸
=0, since | #»p 1|≥0


 . (3.28)

We did not make any assumption about the reference frame up to this point. We now
specify our calculation for the center of mass frame,

#»p a + #»p b = 0⇒ Ea + Eb =
√
s,

bringing Eq. (3.25) into,

R2 =

√
s∫

0

dE∗1dΩ∗
| #»p ∗1|

2
δ(s− 2

√
sE∗1 +m2

1 −m2
2)

=

∫
dΩ∗
| #»p ∗1|
4
√
s

⇒ dR2 =
1

8s

√
λ(s,m2

1,m
2
2)dΩ∗. (3.29)

For the last steps we used Eq. (2.10) and the fact that,

δ(s− 2
√
sE∗1 +m2

1 −m2
2) =

1

2
√
s
δ

(
E∗1 −

1

2
√
s

(s+m2
1 −m2

2)

)
.
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A last step of the calculation can be made if the integrand has no angular dependency:
since we are in the center of mass frame, we then have manifestly a 4π-symmetry and
the scattering angle can take any value, the only restriction being that the two scattered
particles are flying back-to-back in the center of mass frame. Therefore R2 is then simply
the integrand multiplied with the volume of the unit sphere, i.e.

R2 =

∫
dR2 =

π

2s

√
λ(s,m2

1,m
2
2). (3.30)

This simplification always applies for a 1→ 2 decay, but usually not for a 2→ 2 scattering
reaction, where the incoming beam direction breaks the 4π-symmetry.

3.3.2 Differential cross section

Using Eq. (2.11) and (3.24) for nf = 2, we get,

dσ

dΩ∗
=
dσ

dt

dt

dΩ∗
=

| #»p ∗1|
64π2F

√
s
|Mfi|2, (3.31)

resulting in the differential cross section,

dσ

dΩ∗
=

1

64π2s

| #»p ∗1|
| #»p ∗a|
|Mfi|2 , (3.32)

since from Eq. (2.12) F =
√
s| #»p ∗a|.

For the special case of elastic scattering | #»p ∗1| = | #»p ∗a|, we get,

dσel.

dΩ∗
=

1

64π2s
|Mfi|2 . (3.33)

Finally, we write here the invariant differential cross section of a+ b→ 1 + 2 in terms of
invariants for future references,

dσ

dt
=

1

16πλ(s,m2
a,m

2
b)
|Mfi|2

s�m2
1,m

2
2−→ 1

16πs2
|Mfi|2. (3.34)

3.4 Unitarity of the S-operator

We can compute the transition probability from the matrix elements for the transition
|i〉 → |f〉,

|Sfi|2 = | 〈f | S |i〉 |2, (3.35)
∑

f

|Sfi|2 = 1, (3.36)
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where
∑

f stands for

∑

spins, particle types, quantum numbers

∫ ∏

f

(
V

(2π)3
d3pf

)
.

Developing and using the completeness relation,

∑

f

|f〉 〈f | = 1,

we obtain

1 =
∑

f

〈i| S† |f〉 〈f | S |i〉 = 〈i| S†S |i〉 ∀ |i〉

⇒ S†S = 1 , (3.37)

in other words S is a unitary operator.

This important fact has profound implications. We state here two of them.

First, for two orthogonal states |i〉 and |j〉, we have,

〈j| S†S |i〉 = 〈j|i〉 = δij.

The other implication concerns the expression introduced in Eq. (3.5),

Sfi = δfi + i(2π)4δ(4)(pf − pi) · Tfi. (3.38)

For a free theory, Tfi = 0 and hence Sfi = δfi. On the other hand, for an interacting
theory ImSfi 6= 0.

An obvious comparison of the real and imaginary parts of Sfi, tells us that,

Re Tfi ; ImSfi (virtual contribution),

Im Tfi ; ReSfi (absorbtive contribution).

Taking a closer look at the absorbtive contribution, we get,

2iIm Tfi = Tfi − T ∗fi = i(2π)4δ(4)(pf − pi)
∑

n

TfnT ∗in,

where n denotes an intermediate state.

The special case of elastic forward scattering (|f〉 = |i〉 ,Θ∗ = 0) yields the surprising
optical theorem,

ImMii =
√
λ(s,m2

a,m
2
b)σtot , (3.39)
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relating a very specific element of Sfi with the total cross section for the transition |i〉 →
|f〉, which is a measure for the probability for this transition to occur at all.

We can rewrite it symbolically with Feynman diagrams:

Im �
b

a ∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ=0

=
∑

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣�
b

a

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

The computation of the matrix elements Mfi will be treated from Chapter 5 on.



Chapter 4

Accelerators and collider
experiments

This chapter gives an introduction to particle accelerators and detectors as well as to
data analysis tools relevant in this context. This involves the definition and application
of concepts based on the kinematics developed in Chap. 2. Basic principles of particle
accelerators are discussed as well as fixed target and beam collider experiments. The
concepts of center of mass energy, luminosity, cross section, and event rates are introduced,
followed by the basic building blocks of particle physics experiments. In order to be able
to analyze the data gathered with collider experiments, we will introduce the concepts
of rapidity, transverse and missing momentum (applications of momentum conservation)
and invariant mass.

Modern techniques in experimental particle physics can be classified according to their
use of accelerators. Non-accelerator-based experiments (e. g. the setup in Fig. 4.1) include
measurements based on cosmic rays, solar and atmospheric neutrinos, and searches for
dark matter. The latter, together with dark energy, could account for 95% of the universe.
In the case of cosmic rays we can study high energy particles without having to accelerate
them. Advances in neutrino physics have been achieved using large targets of (heavy)
water surrounded by photomultipliers (e. g. Super-Kamiokande: neutrino oscillations).
Accelerator-based experiments, on the other hand, include fixed target experiments and
particle colliders, which are the topic of this chapter. As an example for particle colliders,
the Large Hadron Collider (LHC) is shown in Fig. 4.2 with its four collision sites.

4.1 Particle accelerators: motivations

Particle accelerators are a fundamental tool for research in physics. Their importance
and fields of use can be understood when one considers their main parameter, the beam
energy. If we intend to use accelerators as large “microscopes”, the spatial resolution
increases with beam energy. According to the de Broglie equation, the relation between

29
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Figure 4.1: Example of a non-accelerator-based experiment. Heavy water targets can be
protected from radiation background by installing them in deep-underground facilities.
The target is surrounded by photomultipliers.

Figure 4.2: The Large Hadron Collider at CERN with its four experiments CMS, ATLAS,
LHCb, and ALICE.
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momentum | #»p | and wavelength λ of a wave packet is given by

λ =
h

| #»p | . (4.1)

Therefore, larger momenta correspond to shorter wavelengths and access to smaller struc-
tures. In addition, it is possible to use accelerators to produce new particles. As we have
seen in Chap. 2, this requires the more energy the heavier the particles are. Because beams
are circulated for several hours accelerators are based on beams of stable particles and
antiparticles, such as e+, e− or p, p̄ or e, p (Deutsches Elektronen-Synchrotron, DESY).
There are two possibilities as to what to collide a beam of accelerated particles with:

1. collision with another beam;

2. collision with a fixed target.

In both cases one can study the resulting interactions with particle detectors. By using
a fixed target, one can furthermore produce a beam of secondary particles that may be
stable, unstable, charged or neutral, solving the impossibility of accelerating unstable or
neutral particles directly.

In the search for new sub-structures, Eq. (4.1) is the fundamental relation. It tells us that
the resolution increases as we go to higher energies. For instance the resolution of 1 GeV/c
and 103 GeV/c are:

| #»p | = 1
GeV

c
→ λ = 1.24 · 10−15 m ' size of a proton

| #»p | = 103 GeV

c
→ λ = 1.24 · 10−18 m ' size of proton substructures, e. g. quarks.

Consider now the second scenario mentioned above, namely the search for new particles
with high mass. For a collision of a particle with mass m1 and momentum #»p 1 with another
particle m2,

#»p 2 the energy in the laboratory frame is given by1

EL =
√

#»p 2
1c

2 +m2
1c

4 +
√

#»p 2
2c

2 +m2
2c

4

| #»pL| = | #»p 1 + #»p 2|
E2
L − #»p 2

Lc
2 = E∗2 − #»p ∗2︸︷︷︸

=0

c2

⇒ E∗ =
√
E2
L − #»p 2

Lc
2.

The production energy threshold for particles produced at rest is therefore:

E∗ =
∑

i

mic
2, while Ekin = 0

1Recall that we asterisk quantities given in the center of mass frame. See Sect. 2.2 for labeling con-
ventions.
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where mi is the mass of the i-th particle of the final state. We can conclude that, since
the center of mass energy E∗ grows with the energy in the laboratory frame EL, we can
produce higher masses if we have higher energies at our disposal. This allows to produce
particles not contained in ordinary matter.

Example: As an example, consider inelastic proton collisions. Imagine we want to pro-
duce three protons and one antiproton by colliding a proton beam against a proton target
(e. g. a hydrogen target). The corresponding reaction is

pp→ p̄ppp

where conservation of the baryon number requires the presence of one antiproton in the
final state. What is the minimum momentum of the proton beam for the reaction to take
place? Since particles and antiparticles have the same mass and the target is at rest in
the laboratory frame, we find

m1 = m2 = m = 0.9383
GeV

c2

| #»pL| = | #»p 1|, | #»p 2| = 0

at threshold: E∗ = 4mc2 = 3.7532 GeV

⇒ | #»p 1| = 6.5
GeV

c
.

4.1.1 Center of mass energy

As we have seen, the center of mass energy E∗ is the energy available in collision ex-
periments. We therefore want to compare fixed target and colliding beam experiments
concerning their available energy. In the case of beam-target collision, E∗ is determined
by (with m the mass of both the beam and target particles)

EL =
√

#»p 2
Lc

2 +m2c4 +mc2

E∗2 = M2c4 = E2
L − #»p 2

Lc
2 = 2m2c4 + 2mc2

√
#»p 2
Lc

2 +m2c4.

Setting | #»pL| = pinc and neglecting the mass of the target we get:

E∗ =
√

2mc2pincc = 1.37
√

GeV
√
pincc = 1.37

√
GeV

√
Einc.

This means that, in the case of a fixed target experiment, the center of mass energy grows
only with square root of Einc (see Fig. 4.3).

However, in beam-beam collisions, we find E∗ = ECM = 2Einc. Therefore, it is much more
efficient to use two beams in opposite directions, as the following examples demonstrate
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Figure 4.3: Center of mass energy of the colliding beam for a fixed target experiment. The
energy increases with the square root of the beam energy.

(target is for instance hydrogen):

−−−−→
22 GeV +

←−−−−
22 GeV has the same ECM as

−−−→
1 TeV +mtarget;

−−−→
1 TeV +

←−−−
1 TeV has the same ECM as

−−−−−→
103 TeV +mtarget.

The concept of colliding beams naturally leads to large circular accelerators. But for them
to work properly some technical problems have to be solved. For instance, the particle
density in a beam is much lower than in a solid or liquid target (see also the concept
of luminosity in Sect. 4.3.2). Therefore, one tries to cross the beams many times and
maximize the beam intensities (number of particle bunches per beam). As mentioned
before, this approach only works with stable particles or antiparticles. Furthermore, in
order to avoid beam-gas interactions (unintended fixed target collisions), a high vacuum
is needed in the beam-pipe (about 10−9 Pa). Two beam lines are needed in the particle-
particle case, whereas in the particle-antiparticle case one beam line is sufficient, with the
two beams circulating in opposite directions. Finally, electronics represent another crucial
part of the setup. At a rate of about 40 · 106 collisions per second a fast electronic system
is necessary to decide what collisions to select.

4.2 Acceleration methods

Bearing in mind that an electric field
#»

E produces an accelerating force
#»

F on a charge q,

#»

F = q
#»

E,
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Figure 4.4: Sketch of a circular (left) and linear (right) accelerator. A circular machine
needs to have one acceleration cavity, while a linear machine needs several cavities in
series in order to reach high energies.

one could use an electrostatic field to accelerate charged particles. Since the maximal
available potential difference (cf. Van de Graaff accelerator) is about 10 MV, one can
accelerate particles up to 10 MeV. However, the fact that the electrostatic field is con-
servative (

∮ #»

E · d #»

l = 0) implies that the energy transfer only depends on the potential
difference and not on the path. Therefore, circulating the beam in an electrostatic field
does not lead to an increasing acceleration. The problem is solved by using several times
a small but variable potential difference. This can be done using circular or linear ma-
chines. In a circular accelerator, one can use several times the same acceleration cavity
(see Fig. 4.4, left), whereas in a linear accelerator several cavities in series are needed to
reach high energies (see Fig. 4.4, right). In the case of a circular accelerator, the particles
will receive a certain amount of energy at every turn, provided they are in phase with the
accelerating potential. Because of the inertia principle, one further needs a magnetic field
providing the centripetal force to keep particles on a circular path. An outline of historical
developments in particle accelerators is given in Tab. 4.1. In the following sections, we will
take a more detailed look at two types of accelerators: cyclotrons and synchrotrons.

4.2.1 Cyclotron

The sketch of a cyclotron is shown in Fig. 4.5. Particles are injected in the center and
accelerated with a variable potential while a magnetic field

#»

B keeps them on spiral tra-
jectories. Finally, particles are extracted and used in experiments. Cyclotrons are rather
compact, as one can also see in Fig. 4.6. The maximal energy is of order 20 MeV for cy-
clotrons and up to 600 MeV for synchro-cyclotrons. For a particle moving in the cyclotron
the centripetal and Lorentz forces are balanced:

m
v2

ρ
= qvB (4.2)
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Figure 4.5: Sketch of a cyclotron accelerator. Source: [8, p. 108].

Figure 4.6: A first prototype of a cyclotron (by Lawrence) and the 590 MeV isochronous
cyclotron at PSI.
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Year Accelerator Beam energy
1921 “Kaskadengenerator” (Greinacher)
1924–1928 Concept and first prototype of linear accelerator

(Ising / Wideröe)
1932 First nuclear reaction induced by cascade particle 400 keV protons

accelerator, p7Li→ 2α (Cockroft / Walton)
1930 First Van de Graaff accelerator 1.5 MV
1930–1932 First cyclotron (concept: Lawrence) 1.5 MeV

Upgraded cyclotrons (Synchrocyclotron) 300− 700 MeV
1953 First synchrotron at Brookhaven lab—Cosmotron 3 GeV

(concept: Oliphant / Veksler / McMillan)
1958 Proton Syncrotron (CERN) 28 GeV
1983 Tevatron (Fermilab) 1000 GeV
1990 HERA (DESY): first and only electron-proton collider
2008 Large Hadron Collider (CERN) up to 7000 GeV

Table 4.1: Evolution timeline in particle accelerators (q. v. [7, pp. 9]).

where v is the velocity of the particle, m the mass, q the charge, and ρ the trajectory
radius. This yields for the cyclotron frequency ω

v = ωρ (4.3)

⇒ ω =
qB

m
. (4.4)

The alternating high voltage used to accelerate the particles (see Fig. 4.5) matches the
cyclotron frequency, such that the particles are accelerated when passing the capacitor
between the two half disks, also called as “D’s”. We can also conclude that the radius
of the particle trajectory grows linearly with its momentum. For relativistic particles,
Eq. (4.4) has to be modified:

ω′ =
qB

γm

where γ = 1/
√

1− v2/c2. This modification has, for example, the following effect on the
revolution frequency:

v

c
= 50%⇒ γ = 1.155⇒ ω′ = 0.86ω

v

c
= 99%⇒ γ = 7.1⇒ ω′ = 0.14ω.

Isochronous cyclotrons compensate for the variation in frequency by increasing the mag-
netic field (rather than changing the frequency) with the radius.
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Figure 4.7: Sketch of a synchrotron accelerator. High frequency cavities are used to accel-
erate the particles. Dipole magnets keep them on circular trajectories. Linear accelerators
are used for pre-acceleration and injection. Source: [8, p. 110].

Figure 4.8: Magnets used in synchrotrons. Dipole magnets (left) keep the beam on a
circular path, while quadrupole magnets (right) focus particles in the vertical or horizontal
plane. Source: [8, p. 111].

4.2.2 Synchrotron

In the case of the synchrotron, the trajectory radius is kept constant. This is achieved
by dipole magnets (see Fig. 4.8), while high frequency cavities are used to accelerate
the particles (see Fig. 4.7). The problem of reducing the cross section to increase the
particle density is solved by using quadrupole magnets (see Fig. 4.8). Their focussing and
defocussing properties can be combined in a way as to lead to an overall focussing of the
beam. Starting from Eq. (4.2), we have for the radius ρ

ρ =
p

qB
.
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This yields, setting q = ze (with e the unit charge),

cp[eV] = czBρ = 3 · 108 m

s
zB[T]ρ[m] (4.5)

⇒ p

[
GeV

c

]
= 0.3zB[T]ρ[m] (4.6)

for the momentum.

Example: As an example, we consider the LHC at CERN: With a circumference of
27 km, yielding a radius of 4.3 km, an average magnetic field of 5.4 T is needed to keep
protons with momentum 7 TeV/c on circular trajectories. Magnetic fields of this magni-
tude require very large currents and therefore superconductors which only work at low
temperatures (about 2◦K). The superconducting cables are therefore cooled with liquid
helium.

Particle beams are injected into the vacuum pipe at relatively low energy with the mag-
netic field at its minimal value. Because the particles traverse acceleration cavities at
every turn, the momentum grows accordingly. Since the beam has to be kept on the same
radius, the magnetic filed also has to grow. On the other hand, rising velocity means
changing revolution frequency and the frequency of the potential differences must be kept
in phase with the particles. When maximum momentum is reached the accelerating cavi-
ties are switched off and the beam can be extracted to be used in experimental areas (see
Fig. 4.9) or to be injected in larger synchrotrons (see Fig. 4.10). If the beam remains in
the synchrotron ring it can be steered to cross other beams in collision points.

Another possible application of synchrotrons is to use the synchrotron radiation emit-
ted by circulating beams. For this purpose one uses electrons, since they produce more
synchrotron radiation than hadrons because of their smaller mass. The highly energetic
photons emitted are used for measurements in solid state physics and protein research.
An example is the Swiss Light Source at the Paul Scherrer Institute (Villigen, Switzer-
land), where electrons are pre-accelerated by a 100 MeV linear accelerator, injected into a
synchrotron of 288 m circumference, kept on track by 36 dipole magnets with 1.4 T field,
focussed by 177 quadrupole magnets, for a total beam energy of 2.8 GeV.

4.3 Particle physics experiments

In the following sections we introduce or recapitulate some basic concepts in particle
physics experiments.
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Figure 4.9: Schematic view of a synchrotron. Beams can be extracted and used in several
experimental areas.

Figure 4.10: Accelerator system at CERN. Beams accelerated in linear machines and small
synchrotrons are injected into larger synchrotron rings. Source: [8, p. 113].
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4.3.1 Cross section

For a detailed introduction to the concept of cross section see Sect. 3.2.2. We recall that
cross sections have dimension of area (cm2). The common unit is barn, defined as

1 b = 10−24 cm2.

Until now, we have used the total cross section σ. This is a sum of contributions by many
final states:

σtot =
∑

i

σi.

Example: Results of total cross section measurements for pp and pp̄ collisions are shown
in Fig. 4.11.

4.3.2 Luminosity

While cross sections characterize the scattering process, the luminosity characterizes an
accelerators performance. With cross section σ and number of events per second R, the
luminosity L is given by

R = Lσ. (4.7)

Because the dimension of the cross section is a surface, the units of luminosity are cm−2s−1.

The meaning of luminosity can be illustrated considering e. g. an e+e− accelerator with
N particles per beam, revolving f times per second. We assume a Gaussian shaped beam
with dimensions sx and sy, which yields a transverse size of 4πsxsy. In one turn, one
electron crosses N/(4πsxsy) positrons. Because there are N particles revolving in each
beam f times per second the number of collisions per second is

L =
fN2

4πsxsy
. (4.8)

From Eq. 4.7, the number of events per second is

R =
σfN2

4πsxsy
. (4.9)

From Eq. (4.8) we notice that the luminosity can be increased by reducing the cross
section of the beam, by increasing the number of particles in the beam or by increasing
the revolution frequency.

In general, the luminosity of an accelerator gradually increases over time, while acceler-
ator physicists learn how to operate the machine and to squeeze the beam size at the
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Figure 40.11: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum

and total center-of-mass energy. Corresponding computer-readable data files may be found at

http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, August 2005)

6

Figure 4.11: Total and elastic cross sections for pp and pp̄ collisions as a function of
laboratory beam momentum and total center of mass energy. Source: [9].
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Figure 4.12: Instantaneous luminosity at Tevatron as a function of time (2001 – 2009).
Note that the target luminosity for LHC is 1034 cm−2s−1.

intersection point. For example, the evolution of instantaneous luminosity over time at
Tevatron is shown in Fig. 4.12.

The integral of the delivered luminosity over time is called integrated luminosity and is a
measure of the collected data size. The integrated luminosity delivered by Tevatron until
early 2009 is shown in Fig. 4.13.

Example: Consider an accelerator ring with the following properties:

• Ring length = 100 m;

• Revolution frequency = 3 · 106 Hz = 3 MHz;

• N = 1010 particles;

• sx = 0.1 cm, sz = 0.01 cm.

Using Eq. (4.9), we can calculate L = 1029 cm−2s−1. If we are interested in a rare process,
for example e+e− → pp̄ (the cross section is σ = 1 nb = 10−33 cm2) and have ECM ∼
2− 3 GeV we only expect R = 10−4 events per second or about 0.35 events per hour.
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Figure 4.13: Integrated luminosity at Tevatron as function of time.

4.3.3 Particle detectors

To gather data from experiments carried out at accelerators, we need particle detectors.
They are disposed around the interaction region and detect (directly or indirectly) the
reaction products. Typically, the following measurements are performed on final state
particles:

• Spatial coordinates and timing of final state;

• Momentum;

• Energy;

• Type of particle (particle ID).

Because of kinematical constraints, for fixed target experiments the production of final
states is mainly in the forward direction. Therefore, the detector has to cover only a
small solid angle (see Fig. 4.14). In colliding beam experiments, on the other hand, cylin-
drically symmetric detectors with hermeticity down to small angles are preferred (see
Fig. 4.15). A collider physics experiment has in general tracking detectors in a solenoidal
field surrounded by calorimeters and particle ID detectors (e. g. muon ID). To allow the
momentum measurements, a solenoidal magnetic field is applied parallel to the colliding
beams. The particles trajectories in the magnetic field are measured in the inner layers by
silicon pixel and silicon strip tracking devices. They are surrounded by calorimeters mea-
suring the particles’ energy. The general structure of such a detector, shown in Fig. 4.15,
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Figure 4.14: Schematic view of an experimental setup for a fixed target experiment.

Figure 4.15: Schematic view of a detector for colliding beam experiments.

is also visible in the Compact Muon Solenoid (CMS) experiment at LHC. A sketch of the
CMS experiment is given in Fig. 4.16.

In high energy experiments the momentum measurement is based on the deflection of
charged particles in a magnetic field. Consider a simple case involving a dipole magnet
(Fig. 4.17(a)). One can measure the track direction before and after the bending influence
of the magnetic field to obtain the angle θ. The momentum is derived from Eq. (4.6):

p = 0.3BR

length = l = 2R sin

(
θ

2

)
∼ Rθ

⇒ θ =
length

R
=

0.3Bl

p

⇒ p =
0.3Bl

θ
.

In collider experiments the B field is parallel to the beams, which means that curvature
only happens in the transverse plane (Fig. 4.17(b)). The momentum resolution is given
by

σ(pT)

pT

=
σrφpT

0.3Bl2R

[
720

n+ 4

]− 1
2
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Figure 4.16: The CMS experiment at the LHC.

(a) (b)

Figure 4.17: Momentum measurement in collider experiments using a magnetic field. The
magnetic field is parallel to the beams (orthogonal to the page).
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(a) (b)

Figure 4.18: Axes labelling conventions (a) and definition of transverse momentum (b).
Source: [10].

where σrφ is the error on each measurement point, lR the radial length of the track, and
n the number of equidistant points.

4.4 Kinematics and data analysis methods

In this section we describe the data analysis tools used in collider particle physics experi-
ments discussed in Sect. 4.3. We introduce variables in the laboratory frame and methods
based on momentum conservation and invariant mass. Momentum conservation leads to
the concepts of transverse momentum and missing mass. As examples, we discuss two-
and three-jet events as well as the W boson discovery.

4.4.1 Pseudorapidity and transverse momentum

Consider the collision of two beams in the laboratory frame. The axes labelling conventions
are given in Fig. 4.18(a) (pp̄ scattering). The momentum of each particle produced in a
collision can be decomposed in a component parallel to the beams (longitudinal, along the
z direction) and one perpendicular to the beams (transverse, in the xy plane) as shown
in Fig. 4.18(b). The transverse component of the momentum is given by (Θ∗ ≡ θCM)

pT = p sin(θCM)

and spans an angle φ with the x axis. To measure the longitudinal angle of the emerging
particle jet one usually uses a variable called pseudorapidity η. It is defined by

η = − ln

[
tan

(
θCM

2

)]

and is Lorentz invariant under longitudinal boosts (see Fig. 4.19(a)). Momenta in the
transverse plane are also invariant under longitudinal relativistic transformations. There-
fore, the distance between single particles or jets of particles is usually measured in the
ηφ plane, as shown in Fig. 4.19(b).
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(a) (b)

Figure 4.19: Definition of the longitudinal scattering angle θCM (a) and definition of par-
ticle distance in the η-φ plane (b). Source: [10].
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Figure 4.20: Pseudorapidity as a function of θCM (a) and pseudorapidity for various values
of θCM (b). Source (b): [11].

Particles produced at θCM = 90◦ have zero pseudorapidity. As visualized by Fig. 4.20(a)
and 4.20(b), high |η| values are equivalent to very shallow scattering angles. Typical
coverage of central detectors extends to |η| ∼ 3. Coverage of high rapidities (θCM < 5◦)
can be achieved with detectors placed at large z positions.

4.4.2 Momentum conservation in particle jets

Experiments in hadron colliders usually deal with particles at high transverse momentum.
This is because the incoming particles collide head-on and have no transverse momentum
before scattering and therefore, the final state particles must have zero total transverse
momentum. Processes involving large momentum transfer produce particles in the center
of the detector (small pseudorapidity). An example of such a process is given in Fig. 4.21.
The experimental signature of a two jet event is shown in Fig. 4.22. The calorimeter
measures the deposited energy in cells of the η-φ plane. Both charged and neutral particles
are detected. The histogram shows the energy measured in each cell. Note that the main
signals are symmetric in azimuth and at about zero pseudorapidity. The momentum of
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Figure 4.21: Two jet event production at hadron colliders. Source: [12].

Figure 4.22: Two jet event, reconstructed in the tracking chamber (b) and calorimeter
signals (a) of the DØ experiment.
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Figure 4.23: Two- and three-jet events in e+e− collisions. The rightmost sketch shows the
tracks reconstructed in the central tracking detector.

each charged particle in a jet is measured by the central tracking chamber. Low momentum
components yield smaller bending radii and the total transverse momentum has to be zero.

Electron-positron pairs can annihilate producing quark pairs (see Fig. 4.23(a)). This was
studied for example at the Large Electron-Positron Collider (LEP). In some cases, a gluon
can be radiated from one of the outgoing quarks (see Fig. 4.23(b)). In the latter case one
observes three particle jets in the final state: two quark jets and one gluon jet. If no particle
escapes the detector the three jets must have total transverse energy equal to zero. In the
next section we discuss the case of particles escaping the experiment undetected. This
topic is discussed more thoroughly in Chap. 8.

4.4.3 Missing mass method

A collision is characterized by an initial total energy and momentum (Ein,
#»p in). In the

final state we have n particles with total energy and momentum given by:

E =
n∑

i

Ei, (4.10)

#»p =
n∑

i

#»p i. (4.11)

Sometimes an experiment may measure E < Ein and #»p 6= #»p in. In this case one or more
particles have not been detected. Typically this happens with neutral particles, most often
neutrinos, but also with neutrons, π0, or K0

L. The latter have a long lifetime and may decay
outside the sensitive volume. To quantify this process, we introduce the concept of missing
mass:

missing mass× c2 =
√

(Ein − E)2 − ( #»p in − #»p )2c2. (4.12)

The missing mass is measured for every collision and its spectrum is plotted. If the spec-
trum has a well-defined peak one particle has escaped our detector.
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Figure 4.24: Production and decay of a W+ boson in a pp̄ collision.Volume 122B, number 1 
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Fig. 6. The digitization from the central detector for the tracks in two of the events which have an identified, isolated, well-mea- 
sured high-PT electron: (a) high-multiplicity, 65 associated tracks; (b) low-multiplicity, 14 associated tracks. 

pected number of  events with a "single" e + with PT 
> 20 GeV/c is 0.2 P0 (GeV'), largely independent of  
the composition of  the EM component; P0 is the ef- 
fective momentum below which the low-energy leg of  
the pair becomes undetectable. Very conservatively, 
we can take P0 = 200 MeV/c (curvature radius 1.2 m) 
and conclude that this background is negligible. 

(3) Heavy quark associated production, followed 
by pathological fragmentation and decay configuration, 
such that Q1 -> e(vX) with the electron leading and the 
rest undetected, and Q2 -> v(£X), with the neutrino 
leading and the rest undetected. In 5 nb -1 we have 
observed one event in which there is a muon and an 
electron in separate jets, with p(U) = 4.4 GeV/c and 

112 

Figure 4.25: Event with a W boson decay candidate via W+ → e+ + νe. The event was
recorded by the UA1 experiment (CERN). Source: [13, p. 112].

Example: Consider the decay of W bosons. They can be produced in proton-anti-
proton collisions mainly via the process shown in Fig. 4.24; a u quark collides with an
anti-d quark producing a W+ boson. The W+ then decays into a neutrino-lepton pair.
The muon is detected and its momentum can be measured. The neutrino escapes the
detector undetected. The total sum of the transverse momenta is therefore not zero! In
other words, the experimental signature of the neutrino in the experiment is the missing
transverse momentum. One of the first events [13, p. 112] attributed to production and
decay of a W+ boson is shown in Fig. 4.25. The arrow shows the lepton (e+) and the
missing momentum is compatible with the e+ transverse momentum.

4.4.4 Invariant mass method

The invariant mass is a characteristic of the total energy and momentum of an object or a
system of objects that is the same in all frames of reference. When the system as a whole
is at rest, the invariant mass is equal to the total energy of the system divided by c2. If
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Figure 4.26: Event distribution for invariant mass of the pion pair in the process pp →
ppπ+π−. The sparse pions’ (left) distribution is broad and can be predicted using simula-
tion techniques. The invariant mass of the pion pairs stemming from ρ0 decay (center) is
peaked around mρ. All pions contribute to the recorded events (right).

the system is one particle, the invariant mass may also be called the rest mass:

m2c4 = E2 − #»p 2c2.

For a system of N particles we have

W 2c4 =

( N∑

i

Ei

)2

−
( N∑

i

#»p ic

)2

(4.13)

where W is the invariant mass of the decaying particle. For a particle of Mass M decaying
into two particles, M → 1 + 2, Eq. 4.13 becomes:

M2c4 = (E1 + E2)2 − ( #»p 1 + #»p 2)2c2 = m2
1c

4 +m2
2c

4 + 2(E1E2 − #»p 1 · #»p 2c
2) = (p1 + p2)2.

Example: Particles like ρ, ω, φ have average lifetime of 10−22−10−23 s. How do we know
of their existence if they live so shortly? Consider, for example, the reaction pp→ ppπ+π−.
We identify all four particles in the final state and measure their momentum. Let’s focus
on the pion pair, the total energy and momentum of the pair are:

E = E+ + E−
#»p = #»p+ + #»p−.

The corresponding invariant mass is

Mc2 =
√
E2 − #»p 2c2.

The event distribution for the variable M will look like the plot in Fig. 4.26. The peak in
the event rate at mρ is evidence for ρ production.
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Figure 4.27: Z0 boson discovery at the UA1 experiment (CERN). The Z0 boson decays
into a e+e− pair, shown as white dashed lines.

Example: Another example illustrating this point is the Z discovery in 1984. Fig. 4.27
shows an event where the Z boson, after production by proton-proton collision decays
into an e+e− pair (white dashed lines). The invariant mass of the pair is about 92 GeV.

Example: Consider now the π0 reconstruction. Neutral pions decay in photon pairs in
about 99% of the cases. By measuring the angle and energy of the emitted photons (see
Fig. 4.28) one can reconstruct the mass of the decaying pion (see Fig. 4.29).

Figure 4.28: π0 decay in two photons. Σ denotes the laboratory frame (left) and Σ∗ denotes
the pion rest frame (right). Source [8, p. 95].
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Figure 4.29: Invariant mass spectrum for photon pairs. The π0 appears as a peak at the
pion mass.

Example: In case of three body decays, R→ 1 + 2 + 3, one can define three invariant
masses:

m2
12c

4 ≡ (p1 + p2)2

m2
13c

4 ≡ (p1 + p3)2

m2
23c

4 ≡ (p2 + p3)2.

This yields

m2
12 +m2

13 +m2
23 = m2

1 +m2
2 +m2

3 + (p1 + p2 + p3)2 1

c4

= m2
1 +m2

2 +m2
3 +M2.

This means that there are only two independent invariant masses.

As an example, let’s study the reaction:

K−p→ Λπ+π− (Λ→ π−p).

We can measure two invariant masses:

m12 ≡ m(Λπ−) and m13 ≡ m(Λπ+).

The so-called “Dalitz plot” given in Fig. 4.30 shows the relation between m2
13 and m2

12.
The Σ± resonances appear as two bands in the Dalitz plot around 1.4 GeV.
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Figure 4.30: Dalitz plot for K−p→ π+π−Λ (Λ→ π−p). Source: [8, p. 200].



Chapter 5

Elements of quantum
electrodynamics

5.1 Quantum mechanical equations of motion

In quantum mechanics I & II, the correspondence principle played a central role. It is in
a sense the recipe to quantize a system whose Hamiltonian is known. It consists in the
following two substitution rules :

#»p 7−→ −i∇ (momentum), (5.1)

E 7−→ i∂t (energy). (5.2)

For nonrelativistic quantum mechanics we get the celebrated Schrödinger equation,

i∂tψ = Hψ, with H = − 1

2m
4+ V ( #»x ), (5.3)

whose free solution (V ( #»x ) ≡ 0) is,

ψ( #»x , t) = Ce−i(Et−
#»p · #»x ) with E =

#»p 2

2m
.

The relativistic version of the energy-momentum relationship is however,

E2 = #»p 2 +m2, (5.4)

from which we get, using again the correspondence principle Eq. (5.1),

−∂2
t ψ = (−4+m2)ψ. (5.5)

55
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At this point we define some important symbols which will follow us troughout the rest
of this lecture,

∂µ := (∂t,∇), (5.6)

∂µ := gµν∂ν = (∂t,−∇), (5.7)

� := ∂µ∂
µ = ∂2

t −4. (5.8)

With this notation we can then reformulate Eq. (5.5) to get the Klein-Gordon equation,

(
�+m2

)
ψ = 0 , (5.9)

with solutions,

ψ( #»x , t) = Ce−i(Et−
#»p · #»x ) with E = ±

√
#»p 2 +m2.

We see that in this case it is possible to have negative energy eigenvalues, a fact not
arising with the nonrelativistic case.

As in the case of the Schrödinger equation (5.3) we can formulate a continuity equation. To
do so we multiply the Klein-Gordon equation (5.9) by the left with ψ∗ and its conjugate,
(�+m2)ψ∗ = 0, by ψ and then subtract both equations to get,

0 = ψ∗∂µ∂µψ − ψ∂µ∂µψ∗
= ∂µ(ψ∗∂µψ − ψ∂µψ∗)
⇒ ∂t(ψ

∗∂tψ − ψ∂tψ∗) +∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0. (5.10)

We would like to interpret ψ∗∂tψ − ψ∂tψ∗ in Eq. (5.10) as a probability density, or more
exactly,

ρ = i(ψ∗∂tψ − ψ∂tψ∗),

which is not a positive definite quantity (as we can convince ourselves by computing ρ for
the plane wave solution), and hence cannot be interpreted as a probability density as it
was the case in QM.

When computing the continuity equation for the Schrödinger equation, where such a
problem does not arise, we see that the problem lies essentially in the presence of a second
order time derivative in the Klein-Gordon equation.

We now make a big step, by imposing that our equation of motion only contains a first
order time derivative. Since we want a Lorentz invariant equation of motion, we conclude
that only a linear dependence on ∇ is allowed. Following Dirac’s intuition, we make the
ansatz,

(iγµ∂µ −m)ψ = (iγ0∂t + i #»γ · ∇ −m)ψ = 0. (5.11)
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Turning back to the correspondence principle we remark that,

(γ0E − #»γ · #»p −m)ψ = 0 (5.12)

⇒ (γ0E − #»γ · #»p −m)2ψ = 0,

which must stay compatible with the mass-shell relation, E2 = #»p 2 +m2.

This implies that the γµ’s cannot be numbers since it would then be impossible to satisfy,

( #»γ · #»p )2 =

(
3∑

i=1

γipi

)2

!∝ #»p 2,

so we let them be n× n matrices, for an n which is still to be determined.

We now derive relations that the γµ’s must fullfill, so that the mass-shell relation remains
true. From Eq. (5.12), and again with the correspondence principle, we must have,

i∂t︸︷︷︸
E

=(γ0)−1 #»γ · (−i∇)︸ ︷︷ ︸
#»p

+(γ0)−1m

⇒ −∂2
t︸︷︷︸

E2

=−
3∑

i,j=1

1

2

(
(γ0)−1γi(γ0)−1γj + (γ0)−1γj(γ0)−1γi

)
∂i∂j (5.13)

− i ·m
3∑

i=1

(
(γ0)−1γi(γ0)−1 + (γ0)−1(γ0)−1γi

)
∂i (5.14)

+m2(γ0)−1(γ0)−1 (5.15)

!
=(∂i∂i +m2) (5.16)

=(−4︸︷︷︸
#»p 2

+m2).

Comparing Eqs. (5.16) and (5.15) we conclude that,

(γ0)−1(γ0)−1 !
= 1⇒ (γ0)−1 = γ0. (5.17)

Defining {a, b} := ab+ ba and comparing Eq. (5.16) and Eq. (5.14) we get

γ0γi(γ0)−1 !
= 0⇒ {γi, γ0} = 0. (5.18)

Finally, comparing Eq. (5.16) and Eq. (5.13), we have,

−1

2

(
(γ0)−1γi(γ0)−1γj + (γ0)−1γj(γ0)−1γi

) !
= δij ⇒ {γi, γj} = −2δij. (5.19)
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We can summarize Eqs. (5.17), (5.18) and (5.19) in the Clifford algebra of the γ-
matrices,

{γµ, γν} = 2gµν1 , (5.20)

where g00 = 1, gii = −1 and all the other elements vanish.

Important facts : The eigenvalues of γ0 can only be ±1 and those of γi ±i and the
γ-matrices have vanishing trace :

Tr γi = Tr (γ0γ0γi) = −Tr (γ0γiγ0) = −Tr γi ⇒ Tr γi = 0,

Tr γ0 = Tr (γ0γi(γi)−1) = −Tr (γiγ0(γi)−1) = −Tr (γ0)⇒ Tr γ0 = 0.

The eigenvalue property of γ0 implies with the last equation that the dimension n of the
γ-matrices must be even.

For n = 2 there are no matrices satisfying Eq. (5.20), as can be checked by direct compu-
tation.

For n = 4 there are many possibilities. The most common choice in textbooks is the
Dirac-Pauli representation :

γ0 = 1⊗ σ3 =

(
1 0
0 −1

)
, γi = σi ⊗ (iσ2) =

(
0 σi

−σi 0

)
, (5.21)

with the Pauli matrices,

σ0 = 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and the Kronecker product of 2× 2-matrices,

A⊗B =

(
b11A b12A
b21A b22A

)
.

Looking at the Dirac equation

(iγµ∂µ −m)ψ = 0 (5.22)

we see that ψ is no longer a function but a vector, called (4-)spinor,

ψ =




ψ1

ψ2

ψ3

ψ4


 .

For 4-spinors, there are two types of adjoints, namely,
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• the hermitian adjoint ψ† = (ψ∗1, ψ
∗
2, ψ

∗
3, ψ

∗
4), and

• the Dirac adjoint ψ̄ := ψ†γ0 = (ψ∗1, ψ
∗
2,−ψ∗3,−ψ∗4).

Note that ψ̄ satisfies a dirac equation of its own,

i∂µψ̄γ
µ +mψ̄ = 0. (5.23)

We now focus our attention on the continuity equation for the Dirac field. From Eqs. (5.22)
and (5.23),

iψ†(∂tψ) =
(
−iψ†γ0γi∂i + ψ†γ0m

)
ψ,

and its hermitian conjugate,

−i(∂tψ†)ψ =
(
i(∂iψ

†)γ0γi + ψ†γ0m
)
ψ,

we get the difference,

∂t(ψ
†ψ) = −

[
(∂iψ

†)γ0γiψ + ψ†γ0γii(∂iψ)
]
,

∂t(ψ̄γ
0ψ) = −∂i(ψ̄γiψ). (5.24)

We identify the components as,

ρ = ψ̄γ0ψ,
#»
j = ψ̄ #»γ ψ,

or interpreting them as components of a 4-vector as in classical electrodynamics,

jµ = ψ̄γµψ, (5.25)

we see that Eq. (5.24) can be reexpressed in the manifestly covariant form,

∂µj
µ = 0 . (5.26)

5.2 Solutions of the Dirac equation

Before we look at the solutions of the free Dirac equation, we introduce the slash notation
for contraction with the γ-matrices : /a := γµaµ. The Dirac equation then reads (i/∂−m)ψ =
0.
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5.2.1 Free particle at rest

In the rest frame of a particle, the Dirac equation reduces to,

iγ0∂tψ = mψ,

for which we find four linearly indepedent solutions, namely,

ψ1 = e−imt




1
0
0
0


 , ψ2 = e−imt




0
1
0
0


 , E = m (particles)

ψ3 = e+imt




0
0
1
0


 , ψ4 = e+imt




0
0
0
1


 , E = −m (antiparticles).

5.2.2 Free particle

In order to preserve the Lorentz invariance of a solution, it must only depend on Lorentz
scalars – quantities which are invariant under Lorentz transformations – like p ·x = pµx

µ.
We make the ansatz,

ψ1,2 = e−ip·xu±(p), p0 > 0

ψ3,4 = e+ip·xv∓(−p), p0 < 0.

Pluging those ansatz in the Dirac equation, we get,

(/p−m)u±(p) = ū±(/p−m) = 0, (5.27)

(/p+m)v±(p) = v̄∓(/p+m) = 0, (5.28)

where we replaced −p 7→ p in the second equation, having thus p0 > 0 in both cases now.

5.2.3 Explicit form of u and v

As checked in the exercices, the explicit form for the u and v functions are,

u±(p) =
√
p0 +m

(
χ±

#»σ · #»p
p0+m

χ±

)
, (5.29)

v±(p) =
√
p0 +m

( #»σ · #»p
p0+m

χ∓
χ∓

)
, (5.30)
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where χ+ =

(
1
0

)
corresponds to a “spin up” state and χ− =

(
0
1

)
to a “spin down”

state.

We note on the way that the application,

#»p 7−→ #»σ · #»p = σipi =

(
p3 p1 − ip2

p1 + ip2 −p3

)
,

defines an isomorphism between the vector spaces of 3-vectors and hermitian 2 × 2-
matrices.

5.2.4 Operators on spinor spaces

Hamiltonian The Hamiltonian is defined by i∂tψ = Hψ. Isolating the time derivative
in the Dirac equation, Eq. (5.22), we read out,

H = −iγ0γi∂i + γ0m =

(
m1 #»σ · #»p

#»σ · #»p −m1

)
. (5.31)

Helicity The helicity is the compenent of the spin in the direction of motion #̂»p :=
#»p
| #»p | ,

and is defined by,

h =
1

2
#»σ · #̂»p ⊗ 1 =

1

2

(
#»σ · #̂»p 0

0 #»σ · #̂»p

)
. (5.32)

By direct computation, one can check that [H, h] = 0, and thus there exist a set of eigen-
functions diagonalizing H and h simultaneously. The eigenvalues of h are then constants
of the motion and hence good quantum numbers to label the corresponding states.

This quantum number λ can take two values,

λ =

{
+1

2
positive helicity ! #»s �� #»p ,

−1
2

negative helicity ! #»s �� #»p .
(5.33)

We stress here that helicity/handedness is not a Lorentz invariant quantity for massive
particles.

Consider #»p in the z-direction, then,

1

2
#»σ · #̂»p χ± =

1

2
σ3χ± = ±1

2
χ±.

From the last argumentative steps, we are not surprised with the statement that the Dirac
equation describes spin-1

2
particles.
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Chirality Consider the Dirac equation for the case of massless particles. This is a good
approximation for E � m, which is often the case in accelerator experiments. Setting
m = 0 simplifies Eq. (5.22) leading to

iγµ∂µψ = 0.

Eq. (5.29) and (5.30) change accordingly. We consider for now the particle solutions u±:

u±(p) =
√
| #»p |
(

χ±
#»σ · #»p
| #»p | χ±

)
=
√
| #»p |
(
χ±
±χ±

)
. (5.34)

It is convenient to define the so-called chirality matrix γ5:

γ5 = iγ0γ1γ2γ3

which in the Dirac-Pauli representation reads

γ5 =

(
0 1

1 0

)
.

Using that the γ-matrices fulfill {γµ, γν} = 2gµν (see Eq. (5.20)), one can show that

{γ5, γ
µ} = 0 and (5.35)

γ2
5 = 1. (5.36)

These properties of γ5 imply that if ψ is a solution of the Dirac equation then so is γ5ψ.
Furthermore, since γ2

5 = 1 the eigenvalues of the chirality matrix are ±1:

γ5ψ± = ±ψ±

which defines the chirality basis ψ±.

Let us apply the γ5 matrix to the spinor part of particle solutions of the free Dirac equation
given in Eq. (5.34):

γ5u±(p) =

(
0 1

1 0

)√
| #»p |
(
χ±
±χ±

)
=
√
| #»p |
(
±χ±
χ±

)
(5.37)

= ±
√
| #»p |
(
χ±
±χ±

)
= ±u±(p). (5.38)

A similar calculation shows that for the antiparticle solutions

γ5v±(p) = ∓v±(p). (5.39)

Therefore, the helicity eigenstates for m = 0 are equivalent to the chirality eigenstates.
Results (5.38) and (5.39) lead to the notion of handedness (which is borrowed from chem-
istry):
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• u+ describes a right handed particle:
−−→
spin �� #»p e− and

• v+ describes a left handed antiparticle:
←−−
spin �� #»p e+

where the converse holds for u− and v−.

Exploiting the eigenvalue equations (5.38) and (5.39), one can define the projectors

PR
L

=
1

2
(1± γ5). (5.40)

They project to u±, v± for arbitrary spinors. For example we have

PLu± =
1

2
(1− γ5)u± =

1

2
(1∓ 1)u± =

{
0
1u−

.

To show that Eq. (5.40) indeed defines projectors, we check (using Eq. 5.36) for idempo-
tence,

P 2
R
L

=
1

4
(1± γ5)(1± γ5) =

1

4
(1± 2γ5 + γ2

5) =
1

2
(1± γ5) = PR

L

,

orthogonality,

PRPL =
1

4
(1 + γ5)(1− γ5) =

1

4
(1− γ2

5) = 0,

and completeness,

PR + PL = 1.

Note that the projectors PL and PR are often used to indicate the chirality basis:

uL,R = PL,Ru

vL,R = PL,Rv.

What has been derived so far rests on the assumption that the mass be zero. In this
case, chirality is equivalent to helicity which is also Lorentz invariant. If, on the other
hand m 6= 0, chirality and helicity are not equivalent: In this case chirality, while Lorentz
invariant, is not a constant of the motion,

[γ5, HDirac] 6= 0,

and therefore not a good quantum number. Helicity though is a constant of the motion,
but, since spin is unaffected by boosts, it is not Lorentz invariant for non-vanishing mass:
For every possible momentum #»p in one frame of reference there is another frame in
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L transformation
�p �p

Figure 5.1: Helicity for the case of non-vanishing mass.

Chirality Helicity

γ5 = iγ0γ1γ2γ3 h( #̂»p ) = 1
2

#»σ · #̂»p ⊗ 1

m = 0
Constant of motion
Lorentz invariant

3

3

3

3

m 6= 0
Constant of motion
Lorentz invariant

7

3

3

7

Table 5.1: Chirality and helicity.

which the particle moves in direction − #»p /| #»p | (see Fig. 5.1). A comparison of chirality
and helicity is given in Tab. 5.1.

Although chirality is not a constant of the motion for m 6= 0, it is still a useful concept
(and becomes important when one considers weak interactions). A solution of the Dirac
equation ψ can be decomposed:

ψ = ψL + ψR

where ψL and ψR are not solutions of the Dirac equation. The W vector boson of the
weak interaction only couples to ψL.

As for the normalization of the orthogonal spinors (5.29) and (5.30), the most convenient
choice is:

ūs(p)us′(p) = 2mδss′

v̄s(p)vs′(p) = −2mδss′

where s, s′ = ±.
Using ψ̄ = ψ†γ0, one can show that the following completeness relations (or polarization
sum rules) hold:

∑

s=±
us(p)ūs(p) = /p+m (5.41)

∑

s=±
vs(p)v̄s(p) = /p−m. (5.42)

Comparing these polarization sums with, for instance, the Dirac equation for u, Eq. (5.27),
one sees that /p+m projects on the subspace of particle solutions.
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5.3 Field operator of the Dirac field

The spinors

us(p)e
−ip·x, eigenvalues Ep = +

√
| #»p |2 +m2, and

vs(−p)eip·x, eigenvalues Ep = −
√
| #»p |2 +m2,

are eigenfunctions of the Dirac Hamiltonian and therefore solutions of the Dirac equation.
From these solutions we can deduce the field operator of the Dirac field (which fulfills the
Dirac equation) 1:

ψ(x) =

∫
d3p

(2π)3

1√
2p0

∑

s=±

{
as(

#»p )us(p)e
−ip·x + b†s(

#»p )vs(p)e
ip·x
}

(5.43)

ψ̄(x) =

∫
d3p

(2π)3

1√
2p0

∑

s=±

{
a†s(

#»p )ūs(p)e
ip·x + bs(

#»p )v̄s(p)e
−ip·x

}
(5.44)

where

a†s(
#»p ) : creation operator of particle with momentum #»p

b†s(
#»p ) : creation operator of antiparticle with momentum #»p

as(
#»p ) : annihilation operator of particle with momentum #»p

bs(
#»p ) : annihilation operator of antiparticle with momentum #»p .

In advanced quantum mechanics we have seen that field operators create or annihilate po-
sition eigenstates. The field operator in Eq. (5.44) does the same thing while furthermore
consistently combining the equivalent possibilities for particle creation and antiparticle an-
nihilation: a†s(

#»p ) creates individual particle momentum eigenstates from which a weighted
superposition is formed, the integral over bs(

#»p ) on the other hand, annihilates a weighted
superposition of antiparticles. Since the creation of a particle at position x is equivalent
to the annihilation of its antiparticle at position x, both terms have to appear in the field
operator ψ̄(x). Because we have to consider particles and antiparticles, here the energy
spectrum is more complicated than in the pure particle case. The creation terms come
with a positive-sign plane wave factor eip·x while the annihilation terms contribute e−ip·x.
The equivalence of particle creation and antiparticle annihilation is to be understood in
the sense that they lead to the same change in a given field configuration.

The Dirac field is a spin-1/2 field. Therefore, the Pauli exclusion principle must hold,
imposing anti-commutation relations on the field operators:

{ψ( #»x , t), ψ( #»x ′, t)} = {ψ̄( #»x , t), ψ̄( #»x ′, t)} = 0

{ψ( #»x , t), ψ̄( #»x ′, t)} = γ0δ3( #»x − #»x ′).

1The normalization is chosen to avoid an explicit factor 2p0 in the anticommutators of the fields and
of the creation and annihilation operators.
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Because of Eq. (5.43) and (5.44), this implies for the creation and annihilation operators

{a†r( #»p ), a†s(
#»p ′)} = {ar( #»p ), as(

#»p ′)} = 0

{b†r( #»p ), b†s(
#»p ′)} = {br( #»p ), bs(

#»p ′)} = 0

{ar( #»p ), a†s(
#»p ′)} = δrs(2π)3δ3( #»p − #»p ′)

{br( #»p ), b†s(
#»p ′)} = δrs(2π)3δ3( #»p − #»p ′).

As an example for the relation of field operator and ladder operator anti-commutation
relations, we calculate {ψ( #»x , t), ψ̄( #»x ′, t)}, assuming anti-commutation relations for the
creation and annihilation operators:

{ψ( #»x , t), ψ̄( #»y , t)}

=

∫
d3pd3 #»q

(2π)6

1√
2p02q0

∑

r,s

[
eip·xe−iqyvr(p)v̄s(q){b†r( #»p ), bs(

#»q )}

+ e−ip·xeiqyur(p)ūs(q){ar( #»p ), a†s(
#»q )}

]

=

∫
d3p

(2π)3

1

2p0

[
e−i

#»p ( #»x− #»y )
∑

s

vs(p)v̄s(p) + ei
#»p ( #»x− #»y )

∑

s

us(p)ūs(p)
]

which, using the completeness relations, Eq. (5.41) and (5.42),

=

∫
d3p

(2π)3

1

2p0

[
e−i

#»p ( #»x− #»y )(p0γ0

︸︷︷︸
even

− #»p · #»γ︸ ︷︷ ︸
odd

−m) + ei
#»p ( #»x− #»y )(p0γ0

︸︷︷︸
even

− #»p · #»γ︸ ︷︷ ︸
odd

+m)
]

= γ0

∫
d3p

(2π3)
ei

#»p ( #»x− #»y ) = γ0δ3( #»x − #»y ).

However, in the laboratory one prepares in general (to a first approximation) momentum
eigenstates, rather than position eigenstates. Therefore, we give the expression2 for the
momentum operator:

P µ =

∫
d3k

(2π)3
kµ
∑

s

(
a†s(

#»

k )as(
#»

k ) + b†s(
#»

k )bs(
#»

k )
)

which is just the momentum weighted with the number operator N = a†a+b†b. Using the
anti-commutation relations for the ladder operators, one can show that the momentum
operator fulfills the following useful commutation relations:

[P µ, a†s(
#»p )] = pµa†s(

#»p )

[P µ, b†s(
#»p )] = pµb†s(

#»p )

[P µ, as(
#»p )] = −pµas( #»p )

[P µ, bs(
#»p )] = −pµbs( #»p ).

2This expression is obtained from Noether’s theorem using the technique of normal ordering. These
topics are discussed in text books on quantum field theory, e. g. by Peskin/Schroeder [14].
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Vacuum state The vacuum state is denoted by |0〉 and has the property 3,

P µ |0〉 = 0, (5.45)

i.e. the vacuum has no momentum.

Using the commutation relations stated above and the property (5.45), we conclude that,

P µa†s(
#»p ) |0〉 = pµa†s(

#»p ) |0〉 , (5.46)

in other words, the state a†s(
#»p ) |0〉 is an eigenstate of P µ with momentum pµ.

With this fact in mind, we define the following states,

∣∣e−(p, s)
〉

=
√

2E #»p a
†
s(

#»p ) |0〉 , (5.47)
∣∣e+(p, s)

〉
=
√

2E #»p b
†
s(

#»p ) |0〉 , (5.48)

of a particle respectively antiparticle with momentum eigenstate p and spin s.

The factor
√

2E #»p is there in order to ensure a Lorentz invariant normalization,

〈e−(q, r)|e−(p, s)〉 = 2
√
E #»qE #»p 〈0| ar( #»q )a†s(

#»p ) |0〉
= 2
√
E #»qE #»p 〈0|

{
ar(

#»q ), a†s(
#»p )
}
− a†s( #»p ) ar(

#»q ) |0〉︸ ︷︷ ︸
=0

= δrs2E #»p (2π)3δ(3)( #»q − #»p ).

The definition of states (5.47) and (5.48) corresponds to a continuum normalization in
infinite volume. From the above equation, it can be seen that the dimensionality of the
one-particle norm 〈e−(p, s)|e−(p, s)〉 is,

(energy)

(momentum)3
= (energy) · (volume),

meaning that we have a constant particle density of 2E particles per unit volume. To
obtain single particle states in a given volume V , one must therefore multiply |e−(p, s)〉
with a normalization factor 1/

√
2EV :

∣∣e−(p, s)
〉

single-particle
=

1√
2EV

∣∣e−(p, s)
〉

(5.49)

∣∣e+(p, s)
〉

single-particle
=

1√
2EV

∣∣e+(p, s)
〉

(5.50)

3After applying the nontrivial concept of normal ordering, here only motivated by the number inter-
pretation in the operator Pµ.
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Figure 5.2: Integration paths for Dirac propagator.

5.4 Dirac propagator

In order to solve general Dirac equations, we want to apply a formalism similar to the
one used in classical electrodynamics, namely Green’s functions.

We introduce the scalar propagator,

∆±(x) = ±1

i

∫
d3p

(2π)32p0
e∓ip·x

= ±1

i

∫
d4p

(2π)3
δ(p2 −m2)e∓ip·x, (5.51)

which satisfies the Klein-Gordon equation,

(�+m2)∆±(x) = 0.

Representation as a contour integral

∆±(x) = −
∫

C±

d4p

(2π)4

e−ip·x

p2 −m2
, (5.52)

where the paths C± are depicted in Fig. 5.2.
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Figure 5.3: Deformed integration paths and +iε convention.

5.4.1 Feynman propagator

To get a “true” Green’s function for the operator �+m2, we need to introduce a discon-
tinuity, and define the Feynman propagator

∆F (x) = θ(t)∆+(x)− θ(−t)∆−(x), (5.53)

where we deform the paths of Fig. 5.3 according to the sign of t = x0 to get convergent
integrals over the real line (details can be found in a complex analysis book, see e.g.
Freitag & Busam [15]) :

• x0 > 0, Im p0 < 0⇒ e−ip
0x0 R→∞−→ 0 : C+,

• x0 < 0, Im p0 > 0⇒ e−ip
0x0 R→∞−→ 0 : C−.

+iε convention Instead of deforming the integration path, one can also shift the two
poles and integrate over the whole real p0-axis, without having to worry about the poles,

p0 = ±
√

#»p 2 +m2 −→ ±(
√

#»p 2 +m2 − iη),
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yielding

∆F (x) = lim
ε→0+

∫
d4p

(2π)4

e−ip·x

p2 −m2 + iε
, (5.54)

the Green’s function of the Klein-Gordon equation,

(�+m2)∆F (x) =

∫
d4p

(2π)4
e−ip·x

−p2 +m2

p2 −m2
= −δ(4)(x). (5.55)

Propagator A propagator is the transition amplitude of a particle between creation
at xµ and annihilation at x′µ (or vice-versa). It is a fundamental tool of quantum field
theory.

After getting the Feynman propagator for the Klein-Gordon field (spin 0), we want to
focus on the propagator for fermions (spin 1/2).

We compute the anticommutation relations for the field in this case getting,

{ψ(x), ψ̄(x′)} =

∫
d3pd3p′

(2π)6
√

2p0
√

2p′0

∑

r,s

[
ei(p·x−p

′·x′)vr(p)v̄s(p
′){b†r(p), bs(p′)}

e−i(p·x−p
′·x′)ur(p)ūs(p

′){ar(p), a†s(p′)}
]

=

∫
d3p

(2π)32p0

[
eip·(x−x

′)(/p−m) + e−ip·(x−x
′)(/p+m)

]

=(i/∂ +m)

∫
d3p

(2π)32p0

(
e−ip·(x−x

′) − eip·(x−x
′)
)
, (5.56)

where we made use of the completeness relations (5.41) and (5.42) in going from the first
to the second line.

We now define the Feynman fermion propagator,

iS(x− x′) ≡ (i/∂ +m)(∆+(x− x′) + ∆−(x− x′)). (5.57)

Splitting ψ and ψ̄ in their creation ψ−, ψ̄ − and annihilation ψ+, ψ̄ + parts (looking only
at the operators a†s, b

†
s and as, bs respectively), we get the comutation relations,

{ψ+(x), ψ̄ −(x′)} = (i/∂ +m)∆+(x− x′) = iS+(x− x′), (5.58)

{ψ−(x), ψ̄ +(x′)} = (i/∂ +m)∆−(x− x′) = iS−(x− x′). (5.59)

S±(x− x′) can as well be represented as contour integrals,

S±(x) =

∫

C±

d4p

(2π)4
e−ip·x

/p+m

p2 −m2
=

∫

C±

d4p

(2π)4
e−ip·x

1

/p−m
, (5.60)
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which is well defined because (/p+m)(/p−m) = (p2 −m2)1.

We take a look at the time ordered product of fermion operators,

T (ψ(x)ψ̄(x′)) =

{
ψ(x)ψ̄(x′), t > t′

−ψ̄(x′)ψ(x), t′ > t

= θ(t− t′)ψ(x)ψ̄(x′)− θ(t′ − t)ψ̄(x′)ψ(x).

The Feynman fermion propagator is then the vacuum expectation value of this time
ordered product,

iSF (x− x′) = 〈0|T (ψ(x)ψ̄(x′)) |0〉 . (5.61)

Remembering the destroying effect of annihilation operators on the vacuum, we can skip
some trivial steps of the calculation. We look separately at both time ordering cases,
getting,

〈0|ψ(x)ψ̄(x′) |0〉 = 〈0|ψ+(x)ψ̄ −(x′) |0〉 = 〈0| {ψ+(x), ψ̄ −(x′)} |0〉 = iS+(x− x′),
〈0| ψ̄(x′)ψ(x) |0〉 = 〈0| ψ̄ +(x′)ψ−(x) |0〉 = 〈0| {ψ̄ +(x′), ψ−(x)} |0〉 = iS−(x− x′),

yielding,

SF (x) = θ(t)S+(x)− θ(−t)S−(x) = (i/∂ +m)∆F (x), (5.62)

or, as a contour integral,

SF (x) =

∫

CF

d4p

(2π)4
e−ip·x

1

/p−m
= lim

ε→0+

∫
d4p

(2π)4
e−ip·x

/p+m

p2 −m2 + iε
. (5.63)

We then see that the fermion propagator is nothing else than the Green’s function of the
Dirac equation,

(i/∂ −m)SF (x) =

∫
d4p

(2π)4
e−ip·x

(/p−m)(/p+m)

p2 −m2
= δ(4)(x)1. (5.64)

The interpretation of SF is then similar to the one of the Green’s function in classical
electrodynamics:

t > t′ t′ > t

�

x′ creation

x annihilation

�

x creation

x′ annihilation

We can ask ourselves why the time ordering procedure is important. In scattering pro-
cesses both orderings are not distinguishable (see Fig. 5.4) in experiments, so that we can
understand as a sum over both time ordering possibilities.
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�
iS+(x− x′)

x

x′ �−iS−(x− x′)
+

x

x′ �iSF (x− x′)=

x

x′

Figure 5.4: Sum of both time orderings

5.5 Photon field operator

After being able to describe free scalar fields (Klein-Gordon, spin 0) and free fermion fields
(Dirac, spin 1/2), we go on to vector fields (spin 1) like the one describing the photon.
The photon field will be shown to have a fundamental importance in QED since it is the
interaction field between fermions.

To start, we recall the photon field operator of advanced quantum mechanics, which reads
in Coulomb gauge,

#»

A(x) =
∑

α=1,2

∫
d3k

(2π)3

1√
2ωk

(
aα(

#»

k ) #»ε α(
#»

k )e−ik·x + a†α(
#»

k ) #»ε ∗α(
#»

k )eik·x
)
. (5.65)

In Eq. (5.65), a†α(
#»

k ) creates a photon of momentum
#»

k and polarization α, and aα(
#»

k )
destroys the same.

Since we are dealing with a bosonic field, we impose the commutation relations,

[aα(
#»

k ), a†β(
#»

k ′)] = −gαβ(2π)3δ(3)(
#»

k − #»

k ′), (5.66)

[aα(
#»

k ), aβ(
#»

k ′)] = [a†α(
#»

k ), a†β(
#»

k ′)] = 0. (5.67)

Supposing that the photon propagates in the z-direction (kµ = (k, 0, 0, k)>), we have the
following possibilites for the polarization vectors :

• linear : εµ1 = (0, 1, 0, 0)>, εµ2 = (0, 0, 1, 0)>,

• circular : εµ+ = 1√
2
(εµ1 + iεµ2) = 1√

2
(0, 1, i, 0)>, εµ− = 1√

2
(εµ1 − iεµ2) = 1√

2
(0, 1,−i, 0)>.

These vector sets satisfy the completness relation,

Πµν =
∑

λ = ±
(or λ = 1, 2)

ε∗µλ ε
ν
λ =




0
1

1
0


 . (5.68)



5.5. Photon field operator 73

By applying a well chosen boost to Πµν we can easily check that it is in general not
Lorentz invariant. We have to choose a specific gauge depending on the reference frame,
parametrized by a real number n.

To do so we define a auxiliary vector nµ = n(1, 0, 0,−1)> satisfying nσk
σ = 2kn and get

the “axial gauge”,

Πµν = −gµν +
nµkν + kµnν

nσkσ
. (5.69)

For n = 1, we recover the Coulomb gauge,

Πµν =




−1
1

1
1


+




1
0

0
−1


 =




0
1

1
0


 .

In physical processes, the photon field couples to an external current,

jµ(x) = jµ(k)eik·x,

and we have the current conservation,

∂µj
µ = 0,

which yields in Fourier space,

kµj
µ = 0,

and thus,

jµΠµν = jνΠ
µν = 0,

i.e. the nµkν + kµnν term vanishes when contracted with external currents, such that we
are left with an effective polarization sum,

pµνeff = −gµν . (5.70)

We now look at the time ordered product of photon field operators,

T (Aµ(x)Aν(x
′)) =

{
Aµ(x)Aν(x

′), t > t′

Aν(x
′)Aµ(x), t′ > t

. (5.71)

Repeating the same steps as in the fermion case, we get the photon propagator,

iDF,µν(x− x′) = 〈0|T (Aµ(x)Aν(x
′)) |0〉 (5.72)

= −igµν∆F (x− x′) (5.73)

= −igµν lim
ε→0+

∫
d4k

(2π)4

e−ik·x

k2 + iε
. (5.74)

Finally, we see that the photon propagator is the Green’s function of the wave equation,

�DF,µν(x) = gµνδ
(4)(x). (5.75)
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5.6 Interaction representation

In the previous sections, we have gained an understanding of the free fields occurring in
QED. The next step is to introduce a way to handle interactions between those fields.

Idea: decompose the Hamiltonian in the Schrödinger representation,

HS = H0,S +H ′S,

and define states and operators in the free Heisenberg representation,

ψI = eiH0,StψS

OI = eiH0,StOSe−iH0,St,

and you get the interaction representation (also called Dirac representation).

We have, in particular,

H0,I = H0,S = H0, (5.76)

and the time evolution of ψI respectively OI becomes,

i∂tψI = H ′IψI , (5.77)

i∂tOI = −H0OI +OIH0 = [OI , H0], (5.78)

i.e. ψI is influenced only by the “true” interaction part; the “trivial” time evolution (free
part) has been absorbed in the operators OI .

Comparison The Schrödinger, Heisenberg, and interaction representations differ in the
way they describe time evolution:

• Schrödinger representation: states contain time evolution, operators are time inde-
pendent;

• Heisenberg representation: states are time independent, operators contain time evo-
lution;

• Interaction representation: time dependence of states only due to interactions, free
(also called “trivial”) time evolution for operators.

This comparison shows that the interaction representation is a mixture of both other
representations.
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5.6.1 Time evolution operator

In preparation for time-dependent perturbation theory, we consider the time evolution
operator U(t, t0) in the interaction representation:

ψI(t) = U(t, t0)ψI(t0). (5.79)

The time evolution operator in Eq. (5.79) can be written in terms of the free and in-
teraction Hamiltonians, Eq. (5.76), in the Schrödinger representation by using the time
evolution properties:

ψI(t) = eiH0tψS(t) = eiH0te−iHS(t−t0)ψS(t0) = eiH0te−iHS(t−t0)e−iH0t0ψI(t0).

Comparing this result with Eq. (5.79) yields

U(t, t0) = eiH0te−iHS(t−t0)e−iH0t0 . (5.80)

An interaction picture operator is related by

OH(t) = U †(t, t0)OIU(t, t0)

to its Heisenberg picture equivalent.

Because of Eq. (5.80) the time evolution operator has the following properties:

• U(t0, t0) = 1,

• U(t2, t1)U(t1, t0) = U(t2, t0),

• U−1(t0, t1) = U(t1, t0), and

• U †(t1, t0) = U−1(t1, t0) = U(t0, t1).

5.6.2 Time ordering

To find the time evolution operator, the time evolution (Schrödinger) equation

i
∂

∂t
U(t, t0) = H ′IU(t, t0) (5.81)

has to be solved. This is equivalent to the integral equation

U(t, t0) = 1 + (−i)
t∫

t0

dt1H
′
I(t1)U(t1, t0)
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which can be iterated to give the Neumann series

U(t, t0) = 1+(−i)
t∫

t0

dt1H
′
I(t1) (5.82)

+(−i)2

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2) (5.83)

+ . . . (5.84)

+(−i)n
t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtnH
′
I(t1) . . . H ′I(tn). (5.85)

This is not yet satisfactory since the boundary of every integral but the first depends
on the foregoing integration. To solve this problem, one uses time ordering. Let us first
consider the following identities:

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2) =

t∫

t0

dt2

t∫

t2

dt1H
′
I(t1)H ′I(t2)

=

t∫

t0

dt1

t∫

t1

dt2H
′
I(t2)H ′I(t1)

where in the first line the integration domains are identical (see Fig. 5.5) and in going to
the second line the variable labels are exchanged. We can combine these terms in a more
compact expression:

2

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2)

=

t∫

t0

dt2

t∫

t2

dt1H
′
I(t1)H ′I(t2) +

t∫

t0

dt1

t∫

t1

dt2H
′
I(t2)H ′I(t1)

=

t∫

t0

dt1

t∫

t0

dt2

(
H ′I(t1)H ′I(t2)θ(t1 − t2) +H ′I(t2)H ′I(t1)θ(t2 − t1)

)

=

t∫

t0

dt1

t∫

t0

dt2T
(
H ′I(t1)H ′I(t2)

)
.
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t1

t

t

t

2

t0

t0

Figure 5.5: Identical integration domains.

All terms of the Neumann series can be rewritten in this way. For the n-th term in
Eq. (5.85) we have

n!

t∫

t0

dt1 . . .

tn−1∫

t0

dtnH
′
I(t1) . . . H ′I(tn)

=

t∫

t0

dt1 . . .

t∫

t0

dtnT
(
H ′I(t1) . . . H ′I(tn)

)
.

We therefore obtain the following perturbation series4 for the time evolution operator:

U(t, t0) =
∞∑

n=0

1

n!
(−i)n

t∫

t0

dt1 . . .

t∫

t0

dtnT
(
H ′(t1) . . . H ′(tn)

)
. (5.86)

Defining the time ordered exponential, Eq. (5.86) can be written as

U(t, t0) = T exp

(
− i

t∫

t0

dt′H ′(t′)

)
. (5.87)

4We are working in the interaction picture and drop the index I for simplicity.
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We check that this result indeed solves the time evolution equation (5.81):

i
∂

∂t
U(t, t0) = i

∞∑

n=1

1

n!
(−i)nn

t∫

t0

dt1 . . .

t∫

t0

dtn−1

T
(
H ′(t0) . . . H ′(tn−1)H ′(t)

)

= H ′(t)
∞∑

n=1

1

(n− 1)!
(−i)n−1

t∫

t0

dt1 . . .

t∫

t0

dtn−1

T
(
H ′(t0) . . . H ′(tn−1)

)

= H ′(t)U(t, t0).

5.7 Scattering matrix

Our overall aim is to develop a formalism to compute scattering matrix elements which
describe the transition from initial states defined at t → −∞ to final states observed
at t → +∞. To this end, we split up the Hamiltonian into a solvable free part which
determines the operators’ time evolution and an interaction part responsible for the time
evolution of the states. Now we investigate how the time ordered exponential that is the
time evolution operator, see Eq. (5.87), relates to the S-matrix.

The scattering matrix element 〈f | S |i〉 is the transition amplitude for |i〉 → |f〉 caused
by interactions. The state of the system is described by the time dependent state vector
|ψ(t)〉 . The above statement about asymptotically large times can now be recast in a
more explicit form: The initial state is given by

lim
t→−∞

|ψ(t)〉 = |φi〉

where |φi〉 is an eigenstate of the free Hamilton operator and t → −∞ is justified since
the interaction timescale is about 10−15 s. The scattering matrix element Sfi is given by
the projection of the state vector |ψ(t)〉 onto a final state |φf〉:

Sfi = lim
t→+∞

〈φf |ψ(t)〉 = 〈φf | S |φi〉 .

Using the time evolution operator (and its action on a state, see Eq. (5.79)), this can be
expressed as

Sfi = lim
t2→+∞

lim
t1→−∞

〈φf |U(t2, t1) |φi〉 .

We can therefore conclude that

S = U(+∞,−∞) =
∞∑

n=0

1

n!
(−i)n

∞∫

−∞

dt1 . . .

∞∫

−∞

dtnT
(
H ′(t1) . . . H ′(tn)

)
. (5.88)
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As an instructive example, we consider 2→ 2 scattering:

k1 + k2 → k3 + k4.

The scattering matrix element is given by

Sfi = 〈f | S |i〉 = 〈0| a(k4)a(k3)︸ ︷︷ ︸
〈φf |

|S| a†(k1)a†(k2) |0〉︸ ︷︷ ︸
|φi〉

.

The S-operator itself consists of further creation and annihilation operators belonging
to further quantum fields. By evaluation of the creators and annihilators in S (using
commutation or anticommutation relations), it follows that there is only one single non-
vanishing contribution to Sfi being of the (“normally ordered”) form

f(k1, k2, k3, k4)a†(k3)a†(k4)a(k2)a(k1).

Note that in the above expression, the annihilation operators stand on the right hand
side, while the creation operators are on the left. Such expressions are said to be in
normal order and are denoted by colons, : ABC : . Since the aim is to find the non-
vanishing contributions, a way has to be found how time ordered products can be related
to products in normal order. For instance, consider the time ordered product of two Boson
field operators (where A+, B+ are annihilators and A−, B− creators)5

T
(
A(x1)B(x2)

)∣∣∣
t1>t2

= A(x1)B(x2)

= A+(x1)B+(x2) + A−(x1)B+(x2)

+ A+(x1)B−(x2)︸ ︷︷ ︸
not in normal order

+A−(x1)B−(x2).

5The ± sign is motivated by the decomposition of field operators in positive and negative frequency
parts:

φ(x) = φ+(x) + φ−(x).

Consider for example the Klein-Gordon field where

φ(x) =

∫
d3p

(2π)3
1√
2p0

(
a(p)e+i

#»p · #»x + a†(p)e−i
#»p · #»x

)

and therefore

φ+(x) =

∫
d3p

(2π)3
1√
2p0

a(p)e+i
#»p · #»x

φ−(x) =

∫
d3p

(2π)3
1√
2p0

a†(p)e−i
#»p · #»x .
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One can observe that only one of the above terms is not in normal order while the other
three would vanish upon evaluation in 〈0| · |0〉 . Using

A+(x1)B−(x2)︸ ︷︷ ︸
not in normal order

= B−(x2)A+(x1)︸ ︷︷ ︸
in normal order

+ [A+(x1), B−(x2)]︸ ︷︷ ︸
c-number

,

we rewrite

[A+(x1), B−(x2)] = 〈0| [A+(x1), B−(x2)] |0〉
= 〈0|A+(x1)B−(x2) |0〉
= 〈0|T (A(x1)B(x2)) |0〉 .

Since the same holds for t1 < t2, we draw the conclusion

T
(
A(x1)B(x2)

)
= :A(x1)B(x2) :+ 〈0|T (A(x1)B(x2)) |0〉 .

An analogous calculation for fermion operators yields the same result.

The next step towards Feynman diagrams is to formalize this connection between time
and normal ordered products. We first define the following shorthand

φA(x1)φB(x2) = 〈0|T (φA(x1)φB(x2)) |0〉

which is called contraction of operators. This allows to state the following in compact
notation.

Wick’s theorem: The time ordered product of a set of operators can be decomposed
into the sum of all corresponding contracted products in normal order. All combinatorially
allowed contributions appear:

T (ABC . . .XY Z) = :ABC . . .XY Z :

+:AB C . . .XY Z :+ · · ·+:ABC . . .XY Z :+ · · ·+:ABC . . .X Y Z :

+:AB CD . . .XY Z :+:ABCD . . .XY Z :+ . . .

+:threefold contractions :+ . . . .

5.8 Feynman rules of quantum electrodynamics

The Lagrangian density of QED is given by

L = LDirac
0 + Lphoton

0 + L′
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where the subscript 0 denotes the free Lagrangian densities and ′ denotes the interaction
part. In particular, we have

LDirac
0 = ψ̄(i/∂ −m)ψ (5.89)

Lphoton
0 = −1

4
FµνF

µν (5.90)

L′ = −eψ̄γµψAµ = −jµAµ (5.91)

where F µν = ∂µAν − ∂νAµ. Note that from Lphoton
0 the free Maxwell’s equations can be

derived using the Euler-Lagrange equations. Using Lphoton
0 +L′ yields Maxwell’s equations

in the presence of sources and LDirac
0 + L′ does the same for the Dirac equation. The

interaction term L′ describes current-field interactions and therefore couples the fermions
described by the Dirac equation to photons described by Maxwell’s equations.

Using Eq. (5.91), one finds the quantized interaction Hamiltonian density

H′ = −L′ = eψ̄γµψA
µ.

Integrating the interaction Hamiltonian density over all space yields the interaction Hamil-
tonian,

H ′ =

∫
d3 #»xH′,

and, in the integral representation of S given in Eq. (5.88), this leads to integrations over
space-time:

S =
∞∑

n=0

1

n!
(−ie)n

∫
d4x1 . . . d

4xnT
(
ψ̄(x1)γµ1ψ(x1)Aµ1 . . . ψ̄(xn)γµnψ(xn)Aµn

)
. (5.92)

Since e =
√

4πα (see Eq. (1.9)), the coupling constant appears in the interaction term and
n-th order terms are suppressed with en. This means that we found an expansion of S in
the small parameter e which is the starting point for perturbation theory. The structure
of the n-th term in the perturbation series in Eq. (5.92) is

S(n) =
1

n!

∫
d4x1 . . . d

4xnSn (5.93)

where

Sn =
∑

contractions

K(x1, . . . , xn) : . . . ψ̄(xi) . . . ψ(xj) . . . A(xn) : . (5.94)

For a specific scattering process, the relevant matrix element is

Sfi = 〈f |︸︷︷︸
∼a

S |i〉︸︷︷︸
∼a†
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� � � � �
� � �

Figure 5.6: First order contributions S(1). These processes violate energy-momentum con-
servation and are therefore unphysical.

which means that only terms in S matching 〈f | · |i〉 yield contributions to the transition
amplitude. The following field operators, which constitute the Feynman rules in position

space, are contained in S (
−−−→
time ).

ψ+(x) absorption of electron at x �
x

ψ̄+(x) absorption of positron at x �
x

ψ̄−(x) emission of electron at x �
x

ψ−(x) emission of positron at x �
x

A+(x) absorption of photon at x �
x

A−(x) emission of photon at x �
x

ψ(x2)ψ(x1)

= iSF (x2 − x1)
Fermion propagator �

x1 x2

Aµ(x2)Aν(x1)

= iDµν
F (x2 − x1)

photon propagator �
x1 x2

−ieψ̄(x)γµψ(x)Aµ(x)
= −ieγµ · vertex at x

vertex at x �
x

The S-operator at order n is examined using Wick’s theorem. At fist order, this yields
(remembering Eq. (5.92) while ignoring disconnected contributions from Wick’s theorem)
the following 23 = 8 contributions:

S(1) = −ie
∫
d4xT (ψ̄(x)γµψ(x)Aµ(x)) = −ie

∫
d4x : ψ̄(x)γµψ(x)Aµ(x) : .

There is a total of 8 possible combinations, since Aµ creates or annihilates a photon, ψ̄
creates an electron or annihilates a positron, and ψ creates a position or annihilates an
electron. Fig. 5.6 shows the corresponding Feynman diagrams.

However, all these processes are unphysical because they violate energy-momentum con-
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servation:

± pe+ ± pe− ± pγ 6= 0

which is because free particles fulfill

p2
e+ = m2

e p2
e− = m2

e p2
γ = 0.

To find physical contributions to the interaction Hamiltonian, we turn to the second order
contributions to S (see Eq. (5.92)):

S(2) =
1

2!
(−ie)2

∫
d4x1d

4x2T
(
ψ̄(x1)γµ1ψ(x1)Aµ1(x1)ψ̄(x2)γµ2ψ(x2)Aµ2(x2)

)
.

Application of Wick’s theorem yields contraction terms. We first note that contractions
of the form

ψ(x1)ψ(x2) ψ(x1)ψ(x2)

vanish because they contain creators and annihilators, respectively, for different particles
and thus

〈0|T (ψ(x1)ψ(x2)) |0〉 = 0.

The remaining terms read, using shorthands like ψ̄(x1) = ψ̄1,
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S(2) = (−ie)2
2!

∫
d4x1d

4x2

{

: ψ̄1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (a)

+: ψ̄1γµ1 ψ1ψ2 γµ2ψ2A
µ1
1 A

µ2
2 : �x2

x1

(b)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1

x2

(c)

+: ψ̄1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1 x2

(d)

+: ψ̄1γµ1 ψ1ψ2 γµ2ψ2A
µ1
1 A

µ2
2 : �x2

x1

(e)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1

x2

(f)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (g)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (h)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (i)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (j)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 :
}
. � (k)
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It follows a discussion of the contributions (a) through (k).

(a) Independent emission or absorption. These diagrams violate energy-momentum con-
servation.

(b)&(c) Processes involving two electrons or positrons and two photons.

1. Compton scattering: γe− → γe−, γe+ → γe+

� �
2. Electron-positron pair annihilation: e+e− → γγ

�
e+

e−

Aµ2

Aµ1

�
e+

e−

Aµ2

Aµ1

3. Electron-positron pair creation: γγ → e+e−

�
Aµ2

Aµ1

e+

e−

�
Aµ2

Aµ1

e+

e−

(d) Processes involving four electrons or positions.

1. Møller scattering: e−e− → e−e−, e+e+ → e+e+

�
e−

e−

e−

e−

�
e−

e−

e−

e−

2. Bhabha scattering: e+e− → e+e−

�
e−

e+

e+

e−

�
e−

e+

e−

e+
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(e)&(f) No interaction between external particles. No scattering takes place, these terms are
corrections to the fermion propagator.

(g) Correction to photon propagator.

(h)&(i) Corrections to fermion propagator, vanishing.

(j)&(k) Vacuum → vacuum transitions, disconnected graphs.

This constitutes a list of all known processes (for practical purposes) in S(2); in general,
we can find all processes by examining all orders of the scattering matrix operator S.
The S-matrix elements are defined as matrix elements between single-particle states.
Consequently, we need to apply the norm (5.49) repectively (5.50) to external states. The
invariant amplitudesMfi, which are derived from the S-matrix elements according to Eq.
(3.11) properly account for this normalization factor, and are evaluated for continuum
states as defined in Eq. (5.47) and Eq. (5.48).

The contractions of the field operators (see Eq. (5.43) and (5.44)) with external momentum
eigenstates (as given in Eq. (5.49) and (5.50)) are for electrons

ψ(x)
∣∣e−(p, s)

〉
single-particle

=
1√

2EpV

∫
d3k

(2π)3

1√
2Ek

∑

r

ar(k)ur(k)e−ik·x
√

2Epa
†
s(p) |0〉

=
1√

2EpV
e−ip·xus(p) |0〉

〈
e−(p, s)

∣∣
single-particle

ψ̄(x) =
1√

2EpV
e+ip·x 〈0| ūs(p),

for positrons

ψ̄(x)
∣∣e+(p, s)

〉
single-particle

=
1√

2EpV
e−ip·xv̄s(p) |0〉

〈
e+(p, s)

∣∣
single-particle

ψ(x) =
1√

2EpV
e+ip·x 〈0| vs(p),

and for photons

Aµ(x) |γ(k, λ)〉 =
1√

2EkV
e−ik·xελµ(k)

〈γ(k, λ)|Aµ(x) =
1√

2EkV
e+ik·xε∗λµ (k).
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Example We treat the case of Møller scattering e−e− → e−e− as a typical example for
the application of the Feynman rules.

We first define our initial and final states,

|i〉 =
∣∣e−(p1, s1)

〉
single-particle

⊗
∣∣e−(p2, s2)

〉
single-particle

=
√

2E12E2
1√

2E1V 2E2V
a†s1(p1)a†s2(p2) |0〉 ,

〈f | =
〈
e−(p3, s3)

∣∣
single-particle

⊗
〈
e−(p4, s4)

∣∣
single-particle

=
√

2E32E4
1√

2E3V 2E4V
〈0| as4(p4)as3(p3).

The transition matrix element Sfi is then,

Sfi = 〈f | S |i〉 =
(−ie)2

2!

∫
d4x1d

4x2

√
16E1E2E3E4 〈0| as4(p4)︸ ︷︷ ︸

E

as3(p3)︸ ︷︷ ︸
D

: ψ̄(x1)︸ ︷︷ ︸
D

γµ ψ(x1)︸ ︷︷ ︸
C

ψ̄(x2)︸ ︷︷ ︸
E︸ ︷︷ ︸

=
B
−ψ̄(x2)ψ(x1)

γν ψ(x2)︸ ︷︷ ︸
A

:Aµ(x1)Aν(x2) a†s1(p1)︸ ︷︷ ︸
A

a†s2(p2)︸ ︷︷ ︸
C

|0〉 , (5.95)

yielding 2× 2 = 4 Feynman graphs in position space (of which 2! are topologically iden-
tical). In Fig. 5.7, we labeled the last Feynman graph according to Eq. (5.95).

�
p2

p1

p3

p4

x1

x2

�
p2

+

p1

p3

p4

x2

x1

�
p2

−

p1

p4

p3

x1

x2

�A
C

E

D

p2

−B

p1

p4

p3

x2

x1

Figure 5.7: Feynman graphs associated with the Møller scattering.

We recall that each ordering of ψ, ψ̄ corresponds to a Feynman diagram. The anticom-
mutation relations are responsible for the relative sign changes.
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With the photon propagator in momentum space,

iDµν
F (q) = −ig

µν

q2
, (5.96)

we get,

Sfi =(−ie)2(2π)4δ(4)(p3 + p4 − p1 − p2)
1√

16E1E2E3E4V 2
[
ūs4(p4)γµus2(p2)iDµν

F (p3 − p1)ūs3(p3)γµus1(p1)

− ūs4(p4)γµus1(p1)iDµν
F (p3 − p2)ūs3(p3)γµus2(p2)

]
. (5.97)

We now define the invariant amplitudeMfi (see Eq. (3.11)) via,

Sfi = δfi + i(2π)4δ(4)(p3 + p4 − p1 − p2)
1√

16E1E2E3E4V 2
Mfi. (5.98)

Mfi can then be computed using the Feynman rules in momentum space.

Application of the Feynman rules

• Momentum conservation at each vertex

• Fermion number conservation at each vertex (indicated by the direction of the ar-
rows)

• All topologically allowed graphs contribute

• Exchange factor (−1) when interchanging two external fermions with each other

• Each closed fermion loop yields a factor (−1), e.g. �x1 x2 coming from the
contraction :ψ(x1)ψ(x1)ψ(x2)ψ(x2) :

• graphs in which the ordering of the vertices along a fermion line is different are not
topologically equivalent, and must be summed, eg.

�S(2) : �6=

�S(4) : �6=
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External states

incoming electron �p, s us(p)

outgoing electron �p, s ūs(p)

incoming positron �p, s v̄s(p)

outgoing positron �p, s vs(p)

incoming photon �λ, µ, p (ελ)
µ(p)

outgoing photon �λ, µ, p (ε∗λ)
µ(p)

Propagators

electron �p
i(/p+m)

p2−m2+iε

photon �k

µ ν
−igµν
k2+iε

Vertex

electron-photon-electron �

µ

qe
−ieqeγµ

Table 5.2: Feynman rules in momentum space.
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5.9 Trace techniques for γ-matrices

Cross sections are proportinal to |Mfi|2 ∝ |ūsf (pf )Γusi(pi)|2, where Γ denotes an arbitrary
product of γ-matrices.

In many experiments – but not all! –, the spin states of the initial and final states are not
observed. This is for example the case at the CMS and ATLAS experiments of LHC. We
then need to follow the following procedure :

• If the spin state of the final state particles cannot be measured, one must sum over
the final state spins :

∑
sf
| · · · |2,

• If the initial states particles are unpolarized, one must average over the initial state
spins : 1

2

∑
si
| · · · |2.

Then, remembering that ū = u†γ0, we can write,

1

2

∑

si,sf

|ūsf (pf )Γusi(pi)|2 =
1

2

∑

si,sf

ūsf (pf )Γusi(pi)u
†
si

(pi)γ
0γ0Γ†γ0usf (pf )

=
1

2

∑

si,sf

ūsf (pf )Γusi(pi)ūsi(pi)Γ̄usf (pf )

=
1

2

∑

si,sf

(ūsf (pf ))αΓαβ(usi(pi))β(ūsi(pi))γΓ̄γδ(usf (pf ))δ

(5.41)
=

1

2
Γαβ(/pi +m)βγΓ̄γδ(/pf +m)δα

=
1

2

(
Γ(/pi +m)Γ̄(/pf +m)

)
αα

=
1

2
Tr
(

Γ(/pi +m)Γ̄(/pf +m)
)
,

where the indices α, β, γ and δ label the matrix element, and Γ̄ := γ0Γ†γ0.

We thus get the important result,

1

2

∑

si,sf

|ūsf (pf )Γusi(pi)|2 =
1

2
Tr
(

Γ(/pi +m)Γ̄(/pf +m)
)
, (5.99)

and its analogon for antiparticles,

1

2

∑

si,sf

|v̄sf (pf )Γvsi(pi)|2 =
1

2
Tr
(

Γ(/pi −m)Γ̄(/pf −m)
)
, (5.100)

i.e. the Clifford algebra of γ-matrices is taking care of the spin summation for us.

We now compute Γ̄ for an arbitrary number of γ-matrices.
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• For Γ = γµ, (γ0)† = γ0, (γi)† = −γi hence (γµ)† = γ0γµγ0 ⇒ γ̄µ = γµ. For later use,
note that γ̄5 = −γ5.

• For Γ = γµ1 · · · γµn , Γ† = (γµ1 · · · γµn)† = γ0γµn · · · γµ1γ0 ⇒ Γ̄ = γµn · · · γµ1 . In
other words, to get Γ̄, we just need to read Γ in the inverse ordering.

We finally want to compute some traces for products of γ-matrices, since they appear
explicitly (Γ, Γ̄) and implicitely (/p = γµpµ) in the formulas (5.99) and (5.100). In doing
this, one should remember that the trace is cyclic (Tr(ABC) = Tr(BCA)) and the Clifford
algebra of γ-matrices.

• 0 γ-matrix : Tr1 = 4.

• 1 γ-matrix : Tr γµ = 0, Tr γ5 = 0. The last one is shown using the fact that
{γ5, γµ} = 0.

• 2 γ-matrices : Tr(γµγν) = 1
2
Tr(γµγν + γνγµ) = 4gµν ⇒ Tr(/a/b) = 4a · b, where · is

the scalar product of 4-vectors.

• 4 γ-matrices :

Tr(γµγνγργσ) = Tr(γνγργσγµ) = −Tr(γνγργµγσ) + 2gµσTr(γνγρ)

= Tr(γνγµγργσ) + 8gµσgνρ − 8gµρgνσ

= −Tr(γµγνγργσ) + 8gµσgνρ − 8gµρgνσ + 8gµνgρσ

⇒ Tr(γµγνγργσ) = 4(gµνgρσ + gµσgνρ − gµρgνσ)

⇒ Tr(/a1/a2/a3/a4) = 4 [(a1 · a2)(a3 · a4) + (a1 · a4)(a2 · a3)− (a1 · a3)(a2 · a4)] .

and in general,

Tr(/a1 · · · /an) =(a1 · a2)Tr(/a3 · · · /an)− (a1 · a3)Tr(/a3/a4 · · · /an)

+ · · · ± (a1 · an)Tr(/a2 · · · /an−1),

which implies inductivly that the trace of a string of γ-matrices is a real number.

• n γ-matrices (n odd) :

Tr(γµ1 · · · γµn) = Tr(γµ1 · · · γµn γ5γ5

︸︷︷︸
=1

) = Tr(γ5γµ1 · · · γµnγ5)

= (−1)nTr(γµ1 · · · γµn)⇒ Tr(γµ1 · · · γµn) = 0.

• n γ-matrices (n even) :

Tr(γµ1 · · · γµn) = Tr((γµ1 · · · γµn)†) = Tr(γ0γµn · · · γµ1γ0) = Tr(γµn · · · γµ1).
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• γ5 and 2 γ-matrices : Tr(γ5γµγν) = 0. To show this identity, we remark that
γ5γµγν is a rank-2 tensor, which does not depend on any 4-momenta. Therefore,
Tr(γ5γµγν) = cgµν . We contract with gµν to get Tr(γ5γµγµ) = cgµνgµν = 4c, but
since γµγµ = 41 we get c = Tr γ5 = 0.

• γ5 and 4 γ-matrices : Tr(γ5γµγνγργσ) = −4iεµνρσ.

• Contractions :

γµγµ = 41 (5.101)

γµ/aγµ = −2/a (5.102)

γµ/a/bγµ = 4(a · b)1 (5.103)

γµ/a/b/cγµ = −2/c/b/a (5.104)

5.10 Annihilation process : e+e− → µ+µ−

In this section, we compute the differential cross section of the simplest of all QED process,
the reaction

e−(p1)e+(p2)→ µ−(p3)µ+(p4),

illustrated on Fig. 5.8. The simplicity arises frome the fact that e− 6= µ−, and hence only
one diagram contributes (the e+e−-pair must be annihilated).

�
p1

p4p2
p1 + p2

p3

e+

e−

µ+

µ−

Figure 5.8: Annihilation process e+e− → µ+µ−

We recall the Mandelstam variables for this process,

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2.

We make the following assumptions (very common for QED processes),
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• Unpolarized leptons : 1
2

∑
si,sf

,

• High energy limit : me,mµ = 0⇔ √s� me,mµ.

Using the Feynman rules of Table 5.2 for the diagram depicted in Fig. 5.8, we get,

−iMfi = ūs3(p3)ieγµvs4(p4)
−igµν

(p1 + p2)2
v̄s2(p2)ieγνus1(p1)

|Mfi|2 =
1

2

∑

s1

1

2

∑

s2

∑

s3

∑

s4

|Mfi|2

=
1

4

e4

s2
Tr(γµ/p4

γν/p3
)Tr(γµ/p1

γν/p2
)

=
1

4

e4

s2
16 [2(p1 · p3)(p2 · p4) + 2(p1 · p4)(p2 · p3)] .

Since we are working in the high energy limit, we have p2
i = 0 and hence t = −2p1 · p3 =

−2p2 · p4 and u = −2p1 · p4 = −2p2 · p3. Using the identity s+ t+ u = 2m2
e + 2m2

µ = 0 to

get rid of the Mandelstam u-variable and with α = e2

4π
we have,

|Mfi|2 = 32π2α2 t
2 + (s+ t)2

s2
. (5.105)

Considering the center of mass frame, we have s = 4(E∗)2, t = − s
2
(1− cos Θ∗) and with

the help of Eq. (3.34), this yields,

dσ

dt
=

1

16πs2
|Mfi|2 =

πα2

s2
(1 + cos2 Θ∗), (5.106)

or using,

dσ

dt
=
dΩ∗

dt

dσ

dΩ∗
=

4π

s

dσ

dΩ∗
,

we get the differential cross section for e+e− → µ+µ− in the center of mass frame,

dσe
+e−→µ+µ−

dΩ∗
=
α2

4s
(1 + cos2 Θ∗) . (5.107)

This differential cross section (see Fig. 5.9) has been very well measured and is one of the
best tests of QED at high energies.
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Π

2
Π

Q*

dΣ

dW
*

Figure 5.9: Differential cross section for e+e− → µ+µ− in the center of mass frame.

Using this result, we can calculate the total cross-section by integration over the solid
angle:

σ =

∫
dσ

dΩ∗
dΩ∗ =

α2

4s

π∫

0

(1 + cos2 Θ∗) sin Θ∗dΘ∗︸ ︷︷ ︸
d cos Θ∗

2π∫

0

dφ

︸ ︷︷ ︸
2π

(5.108)

=
α2

4s
2π

8

3
(5.109)

⇒ σe
+e−→µ+µ− =

4πα2

3s
=

86.9 nb

s [GeV2]
(5.110)

where 1 nb = 10−33 cm2. If one considers non-asymptotic energies, s ' m2
µ (but s� m2

e),
one finds a result which reduces to Eq. (5.110) for m2

µ = 0 :

σe
+e−→µ+µ− =

4πα2

3s

(
1 + 2

m2
µ

s

)√
1− 4m2

µ

s
.

5.11 Compton scattering

Let us now consider Compton scattering:

γ(k) + e−(p)→ γ(k′) + e−(p′).
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The diagrams corresponding to this process have been introduced in Sect. 5.8.

�
k + p =
k′ + p′

s-channel

p

k, λ, ν

p′

k′, λ′, µ

�

+ �
p− k′ =
p′ − k
u-channel

p

k, λ, ν

p′

k′, λ′, µ

This yields the amplitude

−iMfi = ε∗µ(k′, λ′)εν(k, λ)ū(p′)


ieγ

µ i

/p+ /k −mieγν

︸ ︷︷ ︸
LHS diagram

+ ieγν
i

/p− /k′ −m
ieγµ

︸ ︷︷ ︸
RHS diagram


u(p)

where the on-shell conditions read

k2 = k′2 = 0 p2 = p′2 = m2

and the photons are transversal:

k · ε(k) = k′ · ε(k′) = 0.

It is instructive to check that the invariant amplitude is indeed also gauge invariant.
Consider the gauge transformation

Aν(x)→ Aν(x) + ∂νΛ(x)

which leaves Maxwell’s equations unaltered. In the photon field operator this can be
implemented by

εν(k, λ)→ εν(k, λ) + βkν , β ∈ R arbitrary.

We observe the change of the matrix element for transformation of one of the photons:

−iMfi(εν → kν) = −ie2ε∗µ(k′, λ′)ū(p′)

[
γµ

1

/p+ /k −m/k + /k
1

/p− /k′ −m
γµ

]
u(p).

In simplifying this expression, we use

1

/p+ /k −m/ku(p) =
1

/p+ /k −m(/k + /p−m)u(p) = 1u(p)
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where we added a zero since (/p−m)u(p) = 0 and analogously

ū(p′)/k
1

/p− /k′ −m
= ū(p′)(/k − /p′ +m)

1

/p′ − /k −m
= −ū(p′)1.

Putting the terms together, we therefore find

−iMfi(εν → kν) = −ie2ε∗µ(k′, λ′)ū(p′)(γµ1− 1γµ)u(p) = 0.

The result is the same for the transformation ε∗µ → ε∗µ + βk′µ.

It is generally true that only the sum of the contributing diagrams is gauge invariant.
Individual diagrams are not gauge invariant and thus without physical meaning.

Recall that the aim is to find the differential cross section and therefore the squared matrix
element. Since there are two contributing diagrams, one has to watch out for interference
terms. Applying the trace technology developed in Sect. 5.9 yields

|Mfi|2 =
1

2

∑

λ

1

2

∑

s

∑

λ′

∑

s′

|Mfi|2

= 2e4

[
m2 − u
s−m2

+
m2 − s
u−m2

+ 4

(
m2

s−m2
+

m2

u−m2

)
+ 4

(
m2

s−m2
+

m2

u−m2

)2
]
.

(5.111)

Bearing in mind that s+ t+ u = 2m2, this yields the unpolarized Compton cross-section

dσ

dt
=

1

16π(s−m2)2
|Mfi|2 (5.112)

which is a frame independent statement.

Head-on electron-photon collision is rather uncommon; usually photons are hitting on a
target. Therefore it is useful to consider the electron’s rest frame (laboratory frame):

�
ΘL

k

p′

k′

With ω = | #»k | = EL
γ , ω

′ = | #»k ′| = E ′Lγ , and p = (m,
#»
0 )T one finds

s−m2 = 2mω (5.113)

u−m2 = −2p · k′ = −2mω′ (5.114)

t = −2ωω′(1− cos ΘL). (5.115)
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One of the three variables can be eliminated using s+ t+ u = 2m2:

ω′ =
1

2m
(s+ t−m2) = ω − ωω′

m
(1− cos ΘL) (5.116)

⇒ 1

ω′
− 1

ω
=

1

m
(1− cos ΘL) (5.117)

⇒ ω′ =
ω

1 + ω
m

(1− cos ΘL)
. (5.118)

We continue calculating the differential cross-section. Eq. (5.115) yields

dt =
ω′2

π
2πd cos ΘL =

ω′2

π
dΩL.

Furthermore, we can use Eq. (5.117) to simplify Eq. (5.111):

m2

s−m2
+

m2

u−m2
=

m2

2mω
+

m2

−2mω′
=
m

2

(
1

ω
− 1

ω′

)
= −1

2
(1− cos ΘL).

Using these results and remembering Eq. (5.112), we obtain

dσγe→γe

dΩL

=
dt

dΩL

dσ

dt
=
ω′2

π

1

16π(2mω)2
2e2

[
2mω′

2mω
+
−2mω

−2mω′
− sin2 ΘL

]
(5.119)

=
ω′2

π

2 · 16π2α2

16π4m2ω2

[
ω′

ω
+
ω

ω′
− sin2 ΘL

]
(5.120)

⇒ dσγe→γe

dΩL

=
α2

2m2

(
ω′

ω

)2 [
ω′

ω
+
ω

ω′
− sin2 ΘL

]
(5.121)

which is called the Klein-Nishima formula.

It follows a discussion of important limiting cases.

• Classical limit: ω � m⇒ ω′ ' ω
In the classical limit, Eq. (5.121) simplifies to the classical Thomson cross-section
(which was used to measure α)

dσγe→γe

dΩL

=
α2

2m2

[
1 + cos2 ΘL

]
,

yielding the total cross-section

σγe→γe =
α2

2m2

16π

3
.
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• Asymptotic limit: s� m2 ⇒ ω � m
In this case, the so-called leading log approximation holds:

σγe→γe =
2πα2

m2

m2

s

[
ln

s

m2
+

1

2
+O

(
m2

s

)]
' 2πα2

s
ln

s

m2
.

• In general we can conclude that

σγe→γe ∼ α2

m2
' 10−25 cm2

from which one can infer the “classical electron radius”

rclassical
e ∼ √σThomson ∼

α

m
= 2.8 · 10−13 cm.

5.12 QED as a gauge theory

Recall the QED Lagrangian

LQED = ψ̄(iγµ∂µ −m)ψ − eqeψ̄γµψAµ −
1

4
FµνF

µν

= LDirac
0 + L′ + Lphoton

0

introduced in Sect. 5.8 which includes the following observables:

• Fermions: components of ψ̄γµψ = jµ

• Photons: components of F µν :
#»

E and
#»

B field.

Neither ψ nor Aµ as such are observables. In particular, the phase of ψ cannot be observed.
This means that QED must be invariant under phase transformations of ψ:

ψ(x)→ ψ′(x) = eieqeχ(x)ψ(x)

which is a unitary one-dimensional i. e. U(1) transformation. Observe first the action on
the Dirac Lagrangian:

LDirac
0 → ψ̄′(iγµ∂µ −m)ψ′

= ψ̄e−ieqeχ(x)eieqeχ(x)(i/∂ −m)ψ − ψ̄γµ(∂µeqeχ(x))ψ

= LDirac
0 − eqeψ̄γµψ(∂µχ(x)).

Therefore, the free Dirac field Lagrangian alone is not invariant under this transformation.
In order for the extra term to vanish, Aµ has to be transformed, too:

Aµ → A′µ = Aµ − ∂µχ(x)
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QED photon U(1)
Weak interaction W±, Z0 SU(2)

QCD gluon SU(3)

Table 5.3: Summary of gauge theories.

such that F µν = F ′µν since F µν = ∂µAν − ∂νAµ. This means that we are dealing with the
gauge transformation known from classical electrodynamics. Because we have

−eqeψ̄γµψAµ → −eqeψ̄γµψAµ + eqeψ̄γ
µψ(∂µχ)

the complete Lagrangian LQED is invariant under U(1) gauge transformations. This mo-
tivates the definition of the gauge covariant derivative

Dµ = ∂µ + ieqeAµ

which contains the photon-electron interaction.

In summary, the requirement of gauge invariance uniquely determines the photon-electron
interaction and QED is a U(1) gauge theory.

This suggests a new approach on theory building: start from symmetries instead of finding
them in the final Lagrangian:

local symmeties
(gauge invariance)

→ existence of vector fields
(gauge fields)

→ gauge interactions .

A summary of gauge theories with the corresponding gauge fields and gauge groups is
given in Tab. 5.3.
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Chapter 6

Tests of QED

In the previous chapter elements of the quantum electrodynamics theory are discussed. We
now turn to precision tests of the theory which usually consist in the measurement of the
electromagnetic fine structure constant α in different systems. Experimental results are
compared with theoretical predictions. The validation process requires very high precision
in both measurements and theoretical calculations. QED is then confirmed to the extent
that these measurements of α from different physical sources agree with each other. The
most stringent test of QED is given by the measurement of the electron magnetic moment.
However, several other experimental tests have been performed in different energy ranges
and systems:

• Low energy range, accessible with small experiments;

• High energy range, accessible with particle colliders (e.g. e+e− colliders);

• Condensed matter systems (quantum Hall effect, Josephson effect).

As we will see, the achieved precision makes QED one of the most accurate physical
theories constructed so far.

6.1 Measurement of the electron anomalous mag-

netic moment

6.1.1 Electron magnetic moment

A rotating electrically charged body creates a magnetic dipole. In classical analogy, this
is also the case for the spinning electron. External magnetic fields exert a torque on the
electron magnetic moment. Electrons have an intrinsic magnetic moment µ, related to

101
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their spin s:

µ = −g e

2m
s = −g

2

e

2m
(6.1)

where e is the unit charge and m the electron mass. In the case of electrons the magnetic
moment is anti-parallel to the spin. The g-factor is equal to 2, as calculated from Dirac’s
equation:

a ≡ g − 2

2
= 0.

Corrections to the g-factor are given by higher order QED contributions as well as hadronic
and weak interactions. There could be additional contributions from physics beyond the
Standard Model (SM):

g

2
= 1 + aQED(α) + ahadronic + aweak + anew.

When adding the corrections we usually talk of the anomalous magnetic moment of the
electron.

6.1.2 QED: higher order corrections

The one-loop corrections to the magnetic moment are due to vacuum fluctuation and
polarization effects. A corresponding diagram is for example

� photon

lepton

The textbook calculation of the one-loop corrections gives corrections ∼ 10−3 (see [14,
pp. 189]):

a =
α

2π
≈ 0.0011614.

Hadronic and weak interactions are calculated (within the SM) to be very small and
negligible, respectively.

As we will see, the precision achieved by experimental results needs QED predictions with
α4 precision.
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Figure 6.1: Most accurate measurements of the electron g/2. Source: [16, p. 177].

6.1.3 g/2 measurements

Nowadays the precision of the g/2 measurements is below 10−12 as is shown in Fig. 6.1.
The latest measurements are 15 times more precise than the previous result which stood
for about 20 years. As one can see in Fig. 6.1, the latest value is shifted by 1.7 standard
deviations with respect to the previous result from 1987.

So, how did we get to this astonishing precision?

6.1.3.1 Experiment

The main ingredients of the experiment are:

• Single-electron quantum cyclotron
A Penning trap suspends and confines the electron in an atom-like state.

• Fully resolved cyclotron and spin energy levels
Accurate measurements of the resonant frequencies of driven transitions between
the energy levels of this homemade atom—an electron bound to the trap—reveals
the electron magnetic moment in units of Bohr magnetons, g/2.

• Detection sensitivity sufficient to detect one quantum transitions
Frequency detection sensitivity in the radio and microwave region.

The Penning trap confines electrons by using a strong vertical magnetic field B for radial
confinement and a quadrupole electric field for axial confinement (see Fig. 6.2(a)). The
magnetic field is produced by a solenoid while the electric field is produced by three
electrodes: one ring and two endcaps. A sketch of the electron trajectory is shown in
Fig. 6.2(b). The trajectory in the radial plane is characterized by two frequencies: The
magneton frequency ω− and the modified cyclotron frequency ω+. The cyclotron frequency
is then ω = ω+ +ω−. Since there is also a low-frequency oscillation in the z-direction, the
overall trajectory has the shown form.
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(a) (b)

Figure 6.2: Sketch of the fields and the electron trajectory in a Penning trap. Confinement
is achieved by a vertical magnetic field and a quadrupole electric field. Source: [17]. (a)
The magneton frequency ω− and the modified cyclotron frequency ω+ contribute to the
electron trajectory as well as a low-frequency oscillation in z-direction. (b)

A non-relativistic electron in a magnetic field has the following energy levels:1

E(n,ms) =
g

2
hνcms +

(
n+

1

2

)
hνc (6.2)

depending on the cyclotron frequency

νc =
eB

2πm
(6.3)

and on the spin frequency

νs =
g

2
νc =

g

2

eB

2πm
. (6.4)

Here n is the principal quantum number and ms the spin quantum number. Eq. (6.4)
yields

g

2
=
νs
νc

= 1 +
νs − νc
νc

≡ 1 +
νa
νc
.

Since νs and νc differ only by one part per 103, measuring νa and νc to a precision of one
part per 1010 gives g/2 to one part per 1013.

This technique of measuring g/2 has two main advantages:

1See e. g. [18, § 112].
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Figure 6.3: Lowest cyclotron and spin levels of an electron in a Penning trap. Source: [16,
p. 180, modified].

1. One can measure the ratio of two frequencies to very high precision.

2. Since the B field appears in both numerator and denominator (see Eq. (6.4)), the
dependence on the magnetic field cancels in the ratio.

Including the relativistic corrections, Eq. (6.2) is modified and the energy levels are given
by:

E(n,ms) =
g

2
hνcms +

(
n+

1

2

)
hν̄c −

1

2
hδ

(
n+

1

2
+ms

)2

︸ ︷︷ ︸
relativistic correction term

where ν̄c denotes the cyclotron frequency, shifted due to the Penning trap. Higher states
are excited via microwave radiation. The experiment measures the following transition
frequencies (see Fig. 6.3):

f̄c ≡ ν̄c −
3

2
δ, corresponding to (n,ms) = (1, 1/2)→ (0, 1/2) and

ν̄a ≡
g

2
νc − ν̄c, corresponding to (0, 1/2)→ (0,−1/2)

with the cyclotron frequency νc ∼ 150 GHz.

A sketch of the experimental setup is shown in Fig. 6.4(a) and 6.4(b). A Penning trap is
used to artificially bind the electron in an orbital state. For confinement, a high voltage
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refrigerator

cryogen
reservoirs

microwave
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Fig. 6.4. The apparatus includes a trap electrodes near the central axis, surrounded by
a superconducting solenoid. The trap is suspended from a dilution refrigerator.

the interior volume of the trap cavity. A large dewar sitting on top of the
solenoid dewar provides the helium needed around the dilution refrigerator
below. The superconducting solenoid is entirely self-contained, with a bore
that can operate from room temperature down to 77 K. It possesses shim
coils capable of creating a field homogeneity better than a part in 108 over
a 1 cm diameter sphere and has a passive “shield” coil that reduces fluctua-
tions in the ambient magnetic field [18, 19]. When properly energized (and
after the steps described in the next section have been taken) it achieves
field stability better than a part in 109 per hour. We regularly observe
drifts below 10−9 per night.

6.2.4. Stabilizing the Energy Levels

Measuring the electron g/2 with a precision of parts in 1013 requires that
the energy levels of our homemade atom, an electron bound to a Penning
trap, be exceptionally stable. The energy levels depend upon the magnetic
field and upon the the potential that we apply to the trap electrodes. The

(a)
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nickel rings

microwave inlet
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0.5 cm

Fig. 6.3. Cylindrical Penning trap cavity used to confine a single electron and inhibit
spontaneous emission.

uniform magnetic field (Bẑ). The potential (about 100 V) applied between
the endcap electrodes and the ring electrode provides the basic trapping
potential and sets the axial frequency ν̄z of the nearly harmonic oscillation
of the electron parallel to the magnetic field. The potential applied to the
compensation electrodes is adjusted to tune the shape of the potential, to
make the oscillation as harmonic as possible. The tuning does not change
ν̄z very much owing to an orthogonalization [11, 30] that arises from the
geometry choice. What we found was that one electron could be observed
within a cylindrical Penning trap with as good or better signal-to-noise
ratio than was realized in hyperbolic Penning traps.

Table 6.1. Properties of the trapped electron.

Cyclotron frequency ωc/(2π) 150 GHz

Trap-modified cyc. freq. ω+/(2π) 150 GHz

Axial frequency ωz/(2π) 200 MHz

Magnetron frequency ω−/(2π) 133 kHz

Cyclotron damping (free space) τ+ 0.09 s

Axial damping τz 30 ms

Magnetron damping τ− 109 yr

The principle motivation for the cylindrical Penning trap is to form a
microwave cavity whose radiation properties are well understood and con-
trolled – the best possible approximation to a perfect cylindrical trap cav-
ity. (Our calculation attempts with a hyperbolic trap cavity were much less
successful [12].) The modes of the electromagnetic radiation field that are

(b)

Figure 6.4: Sketch of the experimental setup. Overview of experimental apparatus. Source:
[16, p. 185]. (a) The Penning trap cavity is used to confine a single electron and to inhibit
spontaneous emission. Source: [16, p. 182]. (b)

(100 V) is applied between the cylindric and endcap contacts. Since νc ∝ B (see Eq. (6.3)),
a high magnetic field (5 T) is necessary to increase the spacing between the cyclotron
energy levels. And finally, because the probability to occupy the orbital ground state is
proportional to the Boltzmann factor,

exp

(
− hν̄c
kBT

)
,

very low temperatures (100 mK) are needed.

In analyzing the results of Penning trap measurements, one has to correct for the fre-
quency shifts due to the cavity. This can be done by measuring at various frequencies (see
Fig. 6.5(a)). The result for g/2 given in [16] is

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.5)

6.1.3.2 Theoretical predictions

The QED calculations provide the prediction for g/2 up to the fifth power of α:

g

2
= 1 + C2

(α
π

)
+ C4

(α
π

)2

+ C6

(α
π

)3

+ C8

(α
π

)4

+ C10

(α
π

)5

+ · · ·+ ahadronic + aweak

(6.6)
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quencies for which the uncertainty is the largest. Fig. 6.10. shows the good
agreement attained between the four measurements when the cavity shifts
are applied.

cyclotron frequency / GHz
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Fig. 6.10. Four measurements of g/2 without (open) and with (filled) cavity-shift cor-

rections. The light gray uncertainty band shows the average of the corrected data. The

dark gray band indicates the expected location of the uncorrected data given our result

in Eq. 6.23 and including only the cavity-shift uncertainty.

6.5. Results and Applications

6.5.1. Most Accurate Electron g/2

The measured values, shifts, and uncertainties for the four separate mea-
surements of g/2 are in Table 6.2.. The uncertainties are lower for mea-
surements with smaller cavity shifts and smaller linewidths, as might be
expected. Uncertainties for variations of the power of the ν̄a and f̄c drives
are estimated to be too small to show up in the table. A weighted average of
the four measurements, with uncorrelated and correlated errors combined
appropriately, gives the electron magnetic moment in Bohr magnetons,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.23)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 mea-
surements, and 2300 times smaller than has been achieved for the heavier
muon lepton [41].

(a)
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8.1. Introduction

The fundamental and dimensionless fine structure constant α is defined (in
SI units) by

α =
1

4πε0

e2

!c
. (8.1)

The well known value α−1 ≈ 137 is not predicted within the Standard
Model of particle physics.

The most accurate determination of α comes from a new Harvard mea-
surement [7, 8] of the dimensionless electron magnetic moment, g/2, that
is 15 times more accurate than the measurement that stood for twenty
years [9]. The fine structure constant is obtained from g/2 using the theory
of a Dirac point particle with QED corrections [10–15]. The most accurate
α, and the two most accurate independent values, are given by

α−1(H08) = 137.035 999 084 (51) [0.37 ppb] (8.2)

α−1(Rb08) = 137.035 999 45 (62) [4.5 ppb] (8.3)

α−1(Cs06) = 137.036 000 0 (11) [8.0 ppb]. (8.4)

Fig. 8.1. compares the most accurate values.

Harvard g!2 2008
Harvard g!2 2006

Rb 2008
Rb 2006

UW g!2 1987

Cs 2006

599.80 599.85 599.90 599.95 600.00 600.05 600.10

!10 !5 0 5 10 15

"Α
!1
!137.03#!10!5

ppb

Fig. 8.1. The most precise determinations of α.

The uncertainties in the two independent determinations of α are within
a factor of 12 and 21 of the α from g/2. They rely upon separate mea-
surements of the Rydberg constant [16, 17], mass ratios [18, 19], optical
frequencies [20, 21], and atom recoil [21, 22]. Theory also plays an impor-
tant role for this method, to determine the Rydberg constant (reviewed in
Ref. 23) and one of the mass ratios [24].

(b)

Figure 6.5: g/2 and fine structure constant. Four measurements of g/2 without (open) and
with (filled) cavity-shift corrections. The light gray uncertainty band shows the average of
the corrected data. The dark gray band indicates the expected location of the uncorrected
data given the result in Eq. (6.5) and including only the cavity-shift uncertainty. Source:
[16, p. 201]. (a) The most precise determinations of α. Source: [19, p. 264]. (b)

where

C2 = 0.500 000 000 000 00 (exact)

C4 = −0.328 478 444 002 90 (60)

C6 = 1.181 234 016 827 (19)

C8 = −1.914 4 (35)

C10 = 0.0 (4.6)

ahadronic = 1.682(20) · 10−12.

From Eq. (6.6) and the theoretical predictions we can on the one hand measure the cou-
pling constant α (see Fig. 6.5(b)):

α−1 = 137.035 999 084 (33) (39) [0.24 ppb][0.28 ppb]

= 137.035 999 084 (51) [0.37 ppb]

and on the other hand, we can compare the measured g/2 with the expectation using α
from other measurements

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt] (measured)

g(α)/2 = 1.001 159 652 177 60 (520) [5.2 ppt] (predicted).
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6.2 High energy tests

6.2.1 e+e− colliders

In addition to the low-energy experiments, QED has been tested also in high energy e+e−

collisions [20, 21, 22].

We discuss here the following reactions:

• Bhabha scattering : e+e− → e+e−

• Lepton pair production : e+e− → µ+µ−, τ+τ−

• Hadronic processes : e+e− → qq̄ → hadrons

The energy range 12 GeV ≤ √s ≤ 47 GeV was investigated with the PETRA accelerator
at DESY (Hamburg). High energy ranges (90 GeV ≤ √s ≤ 200 GeV) were covered by the
LEP collider at CERN (Geneva). However, electroweak contributions to the cross-sections,
like the one shown in Fig. 6.6, become considerable at these energies. Intermediate energies
were covered by TRISTAN and SLC. Table 6.1 gives an overview of the e+e− colliders.

� Z0

e−

e+

µ+

µ−

Figure 6.6: Electroweak contribution to Mfi(e
+e− → µ+µ−) at high energies.

The PETRA collider is shown in Fig. 6.7 as an example.

As an example for a typical detector we take a look at JADE (Figs. 6.8 and 6.9), using
the same numbering as in the figure.

1. Beam pipes counters.

2. End plug lead glass counters.

3. Pressure tank.
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Accelerator Experiment(s)
√
s [GeV] Lint [pb−1]

SPEAR SPEAR 2-8 -
PEP ASP, DELCO, HRS, 0-29 300

MARK II, MAC
PETRA JADE, MARK J, 12-47 20

PLUTO, TASSO, CELLO
TRISTAN TRISTAN 50-60 20
SLC MARK II, SLD 90 25
LEP ALEPH, DELPHI, 90-200 200

OPAL, L3 700

Table 6.1: Table of e+e− colliders

Figure 6.7: PETRA storage ring

4. Muon chambers. Detect muons.

5. Jet chambers. Records the trajectories of the produced particles.

6. Time of flight counters. Measure the time necessary for the particle to get from the
collision center and thus its velocity.

7. Coil. Produces a magnetic field of 0.5 [T] parallel to the beam in the central re-
gion to measure the momentum of the particles by providing the curvature of their
trajectories.

8. Central lead glass counters.

9. Magnet yoke.

10. Muon filter.

11. Removable end plug.
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12. Beam pipe.

13. Tagging counter.

14. Mini beta quadrupole. Focus the beam to increase the luminosity of the beam in the
experiment.

15. Moving devices.

~

Example: The JADE Detector

Figure 6.8: JADE detector : schematics

6.2.2 Detector elements

In order to help identify the particles produced in a collision (or their decay product) we
can determine their charge and invariant mass using the methods presented in chapter
4. This measurement proceeds mostly in the inner part of the detector, see Fig. 4.15, by
means of drift chambers or silicon trackers. If some of the produced particles are long
living (i.e. are stable or decay weakly), this setup gives also the possibility to detect a
decay vertex.

Further away from the beam axis are the calorimeters, whose function is to stop the
particles and measure the energy they deposit. There are mostly two types of calorimeters:
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Figure 6.9: JADE detector

electromagnetic and hadronic. The angular resolution is limited by the size of each detector
cell. Calorimeters are also able to measure neutral particles while the tracking devices
described above can only detect charged particles.

Electromagnetic calorimeters stop and measure the energy of electrons, positrons
and photons. All electromagnetically interacting particles leave at least a part of their
energy in this detector part.

Hadronic calorimeters stop and measure the energy of hadrons, e.g. protons, neutrons
and pions. Muons and antimuons are not stopped but leave some energy. Most modern
experiments are also surrounded by muon detectors in order to distinguish the energy
deposit of low energetic hadrons from the one of muons. Since it is practically impossible
to stop muons, this last detector records the direction of passage of muons and, eventually,
their momentum.

Fig. 6.10 shows the schematic view of the different signal hits for different types of particles.
The energy deposit is usually depicted by a histogram.

• Electron signature. Eletrons leave a curved trace in the inner tracking detector and
deposit all their energy in the electromagnetic calorimeter, where they are com-
pletely stopped. There is hence no signal stemming from electrons in detectors fur-
ther away from the collision point.

• Hadron signature. Charged hadrons leave a trace in the inner detector (curved by
the magnetic field), – whereas uncharged hadrons do not –, deposit a part of their
energy in the electromagnetic calorimeter and the rest of their energy in the hadronic
calorimeter.
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• Muon signature. Muons leave a curved trace in the inner detector and deposit some
energy in the electromagnetic and hadronic calorimeters whitout being stopped, and
then leave a signal in the muon detector.

• Photon signature. Photons do not leave a trace in the inner detector and are stopped
in the electromagnetic calorimeter.

Figure 6.10: Event reconstruction principle

6.2.3 Cross section measurement

To measure a cross section we divide the measured number of events N by the integrated
luminosity at that energy L(s),

σ(s) =
N

L(s)
. (6.7)

The last one is measured by counting the events occurring at small scattering angles and
using the relation,

σtheo
ee,γγ =

N(1− b)
(εA) · L , (6.8)

where A and b depend on the detector geometry, while ε is the efficiency (the probability
to measure a particle, if it hits the detector).

Fig. 6.11 shows a typical integrated luminosity spectrum over the energy range 0−47 GeV.
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Figure 6.11: Integrated luminosity for the JADE experiment at PETRA

Reminder : e+e− kinematics One can write the differential cross section as,

dσQED

dΩ
=
dσ0

dΩ
(1 + δrad), (6.9)

where δrad stands for the radiative corrections, i.e. terms coming form diagrams with more
vertices (proportional to α in the case of QED). These include emission of further low
energy exchange bosons and loop corrections.

6.2.4 Bhabha scattering

Leading order We first treat the leading order term, the one yielding dσ0/dΩ.

The following two diagrams contribute to the invariant amplitude :

� +

s-channel

�
t-channel
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Using Eq. (3.32) and the trace theorems of section 5.9, we get,

dσ0

dΩ
=
α2

4s


t

2 + s2

u2︸ ︷︷ ︸
t-channel

+
2t2

us︸︷︷︸
interference

+
t2 + u2

s2︸ ︷︷ ︸
s-channel




=
α2

4s

(
3 + cos2 ϑ

1− cosϑ

)2

. (6.10)

Note that it is divergent for ϑ → 0. Fig. 6.12 shows the cosϑ-dependence of each com-
ponent in Eq. (6.10). We remark that the differential cross section is dominated by the
t-channel component at all angles, and that the s-channel is almost constant, when com-
pared to the last. The interference term is always negative. It is small in magnitude
for large scattering angles (ϑ ∼ π ⇔ cosϑ ∼ −1) and diverges in the case of forward
scattering (ϑ = 0⇔ cosϑ = 1).

Fig. 6.13 shows the typical trace left in the electronic calorimeter by a scattered e+e−-pair.
Fig. 6.14 shows σe

+e−→e+e− measured as a function of cosϑ for different center of mass    Bhaba Scattering [e+e– ! e+e–]

2

2

Interference
Term

Sum

d#

cos !

Cross section 
diverges for ! ! 0

Figure 6.12: Relative magnitude of the different terms in dσ0/dΩ.

energies. It decreases following a 1/s-dependence.

Radiative corrections The diagrams contributing to the cross section and propor-
tional to higher powers of α (or e) are shown in Table 6.2.
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Figure 6.13: Typical event display of a Bhabha scattering event recorded by the Opal ex-
periment. The length of the blue histogram corresponds to the amount of energy deposited
in the electromagnetic calorimeter.

Figure 6.14: Energy and angle dependence of the cross section measured at TASSO and
compared to leading order calculations.
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�e3 : � � � � � � �

�e4 : � � � � � � �

� e� µ� τ� e � µ � τ

Table 6.2: Diagrams of radiative and loop corrections up to e4

Because of momentum conservation, the diagrams of the e3-order imply that the electron-
positron pair is no longer back-to-back after the collision. This effect is called acollinear-
ity. The acollinearity angle is the angle ξ = π − φ, where φ is the angle between the
direction of the scattered electron and the scattered positron; for a back-to-back flight
there is no acollinearity, thus ξ = 0. This angle has been measured at the JADE experi-
ment and confirms higher order QED corrections in a very impressive way (see Fig. 6.15).

6.2.5 Lepton pair production

Muon pair production Looking at different final states gives also different results.
We illustrate this by looking at the process e+e− → µ+µ−. This is the simplest process of
QED and is often used to normalize cross sections of other processes.

There is only one leading order Feynman diagram, namely,

� γ

e−

e+

µ−

µ+
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Figure 6.15: Comparison of measured acollinearity at JADE with the QED prediction.

and the leading order differential cross section is,

dσ0

dΩ
=
α2

4s

(
t2 + u2

s2

)
=
α2

4s
(1 + cos2 ϑ), (6.11)

which is shown in Fig. 5.9.

Fig. 6.16 shows an event candidate: low energy deposits in the electromagnetic calorimeter
and hits in the muon chambers.

Muon pair production : Z0 exchange Since only s-channel contributes to the
muon pair production, the diagram containing a Z0 boson instead of a photon 2,

2This contribution is also present in the case of Bhabha scattering, yet since the t-channel dominates
over the s-channel, the effect is virtually invisible.
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Figure 6.16: Typical event display of a muon pair production event recorded by the Opal
experiment.

� Z0

e−

e+

µ−

µ+

becomes comparable with the photon term (approx. 10%), even at leading order. This
leads to a the modified cross section,

dσEW
0

dΩ
=
α2

4s
(1 + cos2 ϑ+ A cosϑ). (6.12)

This is illustrated in Fig. 6.17 comparing the QED and electroweak predictions to the
data.

As an easy integration of Eq. (6.12) shows, the total cross section is not sensitive to the
effects of electroweak interaction and we have a very good agreement with the QED value
(Fig. 6.18).

For the
√
s-range measured at PETRA, electroweak corrections are small. In the case of

LEP they are instead quite important, especally in the range around the Z0 resonance,
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86.8 nb/s(GeV2)

Figure 6.17: Comparison of e+e− → µ+µ− differential cross section measured at PETRA
with the QED and electroweak predictions.

√
s ∼ mZ ≈ 90 [GeV].

Muon Pair Production (Exp.)

Standard Model: V. Experimental Tests of QED

J. Pawlowski / U. Uwer
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Figure 6.18: Comparison of measured total cross section at PETRA with the QED pre-
diction.

Tau pair production At high enough energy (
√
s ≥ 2mτ ≈ 3.6 [GeV]) the production

of τ+τ−-pair – which is very similar to the case of muon pair production – is possible:



120 Chapter 6. Tests of QED

� γ

e−

e+

τ−

τ+

The final state of a tau pair production event observed in the detector can contain hadrons,
since the lifetime of τ is very short (ττ = 2.9 · 10−13 [s]) and it is the only lepton with
sufficiently high mass to produce qq̄-pairs.

Fig. 6.19 shows an event where one of the two tau survived long enough, e.g. because of
a large energy and thus a longer lifetime γττ in the laboratory frame, to hit the electro-
magnetic calorimeter, while the other one decayed in three pions which then left traces
in the electromagnetic and hadronic calorimeters.

e–

e+

jet

jet

e+e– ! qq

+

+

e+e– ! %+%–

+

+ e–

e+

%–

%+

Experimental Signatures

Opal

Signature:

Figure 6.19: Typical event display of a tau pair production event recorded by the Opal
experiment.
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6.2.6 Hadronic processes

The production of quark-antiquark qq̄ pair is another possible final state in e+e− annihi-
lation.

When a bound qq̄ state is produced, we speak of a resonance because the e+e− cross
section looks like the amplification curve of a periodic system such as a pendulum or
an RLC circuit near the resonant frequency. A famous resonance is the J/ψ resonance
corresponding to a bound state of cc̄.

Away from the resonances, there is in general no visible bound state, and the produced
quarks hadronize in jets due to the confinement of the strong interaction : quarks cannot
be seen as free particles.

e–

e+

jet

jet

e+e– ! qq

+

+

Experimental Signatures

Opal

Signature:

Figure 6.20: Typical display of jet production event recorded by the Opal experiment.

Due to the strength of strong interaction at low energy, the radiative effects (this time
the radiated bosons are gluons),

� γ

g

e−

e+

q

q̄
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take a much more dramatic form than in QED : Since gluons also have a color charge,
they hadronize and for each emitted gluon one observes one more jet (Fig. 6.21).

Figure 6.21: Typical event display of a 3-jets production.

6.2.7 Limits of QED

In this section, one addresses the question : what do we expect if QED is not the only
theoretical model involved in the scattering processes discussed so far?

Suppose there is an energy scale Λ (equivalent to a length scale Λ−1) at which QED does
not describe the data anymore.

We would have changes of the various quantities, for instance, the potential, photon
propagator and total cross section would be modified as follows :

1

r
→ 1

r

(
1− e−Λr

)
(potential)

− 1

q2
→ − 1

q2

(
1 +

q2

Λ2

)
(propagator)

σe
+e−→µ+µ− → 4πα2

3s

(
1± s

Λ2 − s

)2

(cross section).
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The form of the potential is typical of a Yukawa coupling of a fermion with a massive
spin 0 field. Since this particle is imagined as heavy – the energy available is smaller or
similar to the production threshold Λ – we can treat thie particle as spinless since spin
effect are only significant in the relativistic case. This type of ansatz is thus standard in
the sense that any new heavy particle that can be produced from an e+e−-annihilation will
have the same effect on the potential, regardless of it being a scalar or a vector particle.
The other quantities are then directly related to the change in the potential.

We have seen the electroweak effects to the QED cross section at the end of the previous
subsection. This corresponds to Λ ≈ mZ0 (Fig. 6.22).B. Naroska, e~ephysics with the JADE detector at PETRA 95

I I I I I I I I I I I I I I I I I I I I I I I

R JADE
• ee—4L~r

1.5 - 0 ee—.tt -

Standard

Model

1.0 -_____________

QED

0.5- -

I II II II I III I I I I I II II I I

0.0 500 1000 1500 2000 2500

s(GeV
2l

Fig. 2.15. Total cross-section ratio for e ~e- —~p.~p. and e~e- —* r T compared with the predictions from QED (full line) and standard model
(dashed line).

results assuming e—p. or e—-r universality are shown in lines 2 and 3 of table 2.5. Finally a common fit
was made of all data, assuming e—p. —‘r universality; the results are shown in the last line of table 2.5.
The prediction of the standard model for the axial—vector coupling constant is confirmed with an error
of 8%.

The weak coupling constants have also been determined in neutrino scattering off electrons, which is
also a purely leptonic process [53].There, two sets of solutions exist, one of which is excluded by the
e~e measurements. The remaining solution is [52]:

ae = 2g~= —0.990 ±0.052, ~e = 2g~= —0.076 ±0.094

in good agreement with the e+ e - values assuming lepton universality.

2.4.2. Determination of sin2 Ow and M~

We have compared the predictions of the standard model for the charge asymmetry A and the
normalised cross-sectionR (eqs. (2.7) and (2.10)) with the measured muon and tau asymmetries and R
values using the parameterization of x as in eq. (2.8) with M~and sin2 ~ as free parameters. The
contours of 68% and 95% CL. are shown for p. pairs in fig. 2.16. The limit at 95% C.L. is also shown
for a combined fit to p.- and\-r-pair data. The contour extends along the prediction of the standard
model, its “width” is related to the errors of the measured angular asymmetry and the “length” (and

Table 2.5

Coupling constants from 2-parameter fits and results for sin2 Ow

Input la I mel sin2 Ow

e~e 0.96~~ 0.30±0.33 0.26±0.10
1.11±0.11 0.36±0.50 0.16i~

* 0.88~~ 0.50±0.31 —

+ — + ..- + — +0.14 *0.03e e , p. p. , s r 1.02 ±0.08 0.3502, O.200.02

Rµµ = σmeas

σQED

Muon Pair Production (Exp.)

Z0

! ~ MZ

"s < 50 GeV 
PETRA:

Figure 6.22: Comparison of measured total cross section at PETRA with the QED pre-
diction for muon and tau pair production.

Fig. 6.23 shows the ratio,

Rµµ =
σe

+e−→µ+µ−
meas

σe
+e−→µ+µ−

QED

,

as measured at PETRA and TRISTAN. By comparing data and theory and varying Λ
within the experimental error one can infer that – if any – new physics can only be brought
in with a mass scale Λ ≥ 200 [GeV].
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Muon Pair Production (Exp.)

Tristan

Petra

$s ( 55 GeV 
Tristan:

Z0

'± = 200 GeV

'-exclusion limits
up to 250 GeV
[after correcting for EW effects]

Figure 6.23: Comparison of measured total cross section at PETRA and TRISTAN with
the QED prediction for muon pair production.



Chapter 7

Unitary symmetries and QCD as a
gauge theory

Literature:

• Lipkin [23] (group theory concepts from a physicist’s point of view)

• Lee [24], chapter 20 (extensive treatment of Lie groups and Lie algebras in the
context of differential geometry)

Interactions between particles should respect some observed symmetry. Often, the proce-
dure of postulating a specific symmetry leads to a unique theory. This way of approach
is the one of gauge theories. The usual example of a gauge theory is QED, which
corresponds to a local U(1)-symmetry of the Lagrangian :

ψ → ψ′ = eieqeχ(x)ψ, (7.1)

Aµ → A′µ = Aµ − ∂µχ(x). (7.2)

We can code this complicated transformation behavior by replacing in the QED La-
grangian ∂µ by the covariant derivative Dµ = ∂µ + ieqeAµ.

7.1 Isospin SU(2)

For this section we consider only the strong interaction and ignore the electromagnetic
and weak interactions. In this regard, isobaric nuclei (with the same mass number A) are
very similar. Heisenberg proposed to interpret protons and neutrons as two states of the
same object : the nucleon:

|p〉 = ψ(x)

(
1
0

)
,

|n〉 = ψ(x)

(
0
1

)
.
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We note the analogy to the spin formalism of nonrelativistic quantum mechanics, which
originated the name isospin.

In isospin-space, |p〉 and |n〉 can be represented as a two-component spinor with I = 1
2
.

|p〉 has then I3 = +1
2

and |n〉 has I3 = −1
2
.

Since the strong interaction is blind to other charges (electromagnetic charge, weak hy-
percharge), the (strong) physics must be the same for any linear combinations of |p〉 and
|n〉. In other words, for,

|p〉 → |p′〉 = α |p〉+ β |n〉 ,
|n〉 → |n′〉 = γ |p〉+ δ |n〉 ,

for some α, β, γ, δ ∈ C, or,

|N〉 =

(
ψp
ψn

)
→ |N ′〉 = U |N〉 , (7.3)

for some 2×2 matrix U with complex entries, the (strong) physics does not change if we
switch from |N〉 to |N ′〉 to describe the system.

We remark at this point that this symmetry is only an approximate symmetry since it is
violated by the other interactions, and is hence not a symmetry of nature.

First we require the conservation of the norm 〈N |N〉 which we interpret as the number
of particles like in quantum mechanics. This yields,

〈N |N〉 → 〈N ′|N ′〉 = 〈N |U †U |N〉 !
= 〈N |N〉

⇒ U †U = UU † = 1⇒ U ∈ U(2). (7.4)

A general unitary matrix has 4 real parameters. Since the effect of U and eiϕU are the
same, we fix one more parameter by imposing,

detU
!

= 1⇒ U ∈ SU(2), (7.5)

the special unitary group in 2 dimensions. This group is a Lie group (a group which is
at the same time a manifold). We use the representation,

U = eiαj Îj , (7.6)

where the αj’s are arbitrary group parameters (constant, or depending on the spacetime

coordinate x), and the Îj’s are the generators of the Lie group.

We concentrate on infinitesimal transformations, for which αj � 1. In this approximation
we can write

U ≈ 1 + iαj Îj. (7.7)
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The two defining conditions of SU(2), Eq. (7.4) and (7.5), imply then for the generators,

Î†j = Îj (hermitian), (7.8)

Tr Îj = 0 (traceless). (7.9)

In order for the exponentiation procedure to converge for noninfinitesimal αj’s, the gen-
erators must satisfy a comutation relation, thus defining the Lie algebra su(2) of the
group SU(2).

Quite in general, the commutator of two generators must be expressible as a linear com-
bination of the other generators 1. In the case of su(2) we have,

[Îi, Îj] = iεijkÎk, (7.10)

where εijk is the totally antisymmetric tensor with ε123 = +1. They are characteristic of
the (universal covering group of the) Lie group (but independent of the chosen represen-
tation) and called structure constants of the Lie group.

The representations can be characterized according to their total isospin. Consider now
I = 1/2, where the generators are given by

Îi =
1

2
τi

with τi = σi the Pauli spin matrices (this notation is chosen to prevent confusion with
ordinary spin):

τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)

which fulfill [σi, σj] = 2iεijkσk. The action of the matrices of the representation (see
Eq. (7.6)) is a non-abelian phase transformation:

|N ′〉 = ei
#»α · #»τ

2 |N〉 .

For SU(2), there exists only one diagonal matrix (τ3). In general, for SU(N), the following
holds true:

• Rank r = N − 1: There are r simultaneously diagonal operators.

• Dimension of the Lie algebra o = N2 − 1: There are o generators of the group and
therefore o group parameters. E. g. in the case of SU(2)/{±1} ∼= SO(3) this means
that there are three rotations/generators and three angles as parameters.

1Since we are working in a matrix representation of SU(2) this statement makes sense. The difference
between the abstract group and its matrix representation is often neglected.
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I3

Figure 7.1: The nucleons |n〉 and |p〉 form an isospin doublet.

Isospin particle multiplets (representations) can be characterized by their quantum num-
bers I and I3: There are 2I + 1 states. Consider for example once again the case I = 1/2.
There are two states, characterized by their I3 quantum number:

(∣∣I = 1
2
, I3 = +1

2

〉
∣∣I = 1

2
, I3 = −1

2

〉
)

=

(
|p〉
|n〉

)
.

This is visualized in Fig. 7.1, along with the action of the operators τ± = 1/2(τ1 ± iτ2):

τ− |p〉 =

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
= |n〉

τ+ |n〉 = |p〉
τ− |n〉 = τ+ |p〉 = 0.

This is the smallest non-trivial representation of SU(2) and therefore its fundamental
representation.

Further examples for isospin multiplets are

I multiplets I3

1
2

(
p
n

) (
K+

K0

) (
3
2He
3
1H

)
+1

2

−1
2

1



π+

π0

π−




+1
0
−1

3
2




∆++

∆+

∆0

∆−




+3
2

+1
2

−1
2

−3
2

where m∆ ≈ 1232 MeV and mp,n ≈ 938 MeV.

All I > 1 representations can be obtained from direct products out of the fundamental
I = 1/2 representation 2 where “2” denotes the number of states. In analogy to the
addition of two electron spins where the Clebsch-Gordan decomposition reads rep.1/2 ⊗
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rep.1/2 = rep.0⊕ rep.1 and where there are two states for the spin-1/2 representation, one
state for the spin-0 representation, and three states for the spin-1 representation, we have

2⊗ 2︸ ︷︷ ︸
I=| 1

2
± 1

2
|=0,1

= 1︸︷︷︸
isosinglet, I=0

⊕ 3︸︷︷︸
isotriplet, I=1

. (7.11)

However, there is an important difference between isospin and spin multiplets. In the latter
case, we are considering a bound system and the constituents carrying the spin have the
same mass. On the other hand, pions are not simple bound states. Their structure will be
described by the quark model.

7.1.1 Isospin invariant interactions

Isospin invariant interactions can be constructed by choosing SU(2) invariant interaction
terms L′. For instance, consider the Yukawa model, describing nucleon-pion coupling,
where

L′πN = igN̄ #»τ N · #»π = igN̄ ′ #»τ N ′ · #»π ′ (7.12)

which is an isovector and where the second identity is due to SU(2) invariance. Infinites-
imally, the transformation looks as follows:

N ′ = UN U = 1 +
i

2
#»α · #»τ (7.13)

N̄ ′ = N̄U † U † = 1− i

2
#»α · #»τ = U−1 (7.14)

#»π ′ = V #»π V = 1 + i #»α · #»
t . (7.15)

The parameters
#»
t can be determined from the isospin invariance condition in Eq. (7.12):

N̄τjNπj = N̄U−1τiUNVijπj.

With Vij = δij + iαk(tk)ij (cp. Eq. (7.15)) and inserting the expressions for U and U †, this
yields

τj =

(
1− i

2
αkτk

)
τi

(
1 +

i

2
αkτk

)

︸ ︷︷ ︸
= τi + i

2
αk[τi, τk] +O(α2

k)

= τi + i
2
αk2iεiklτl +O(α2

k)

(
δij + iαk(tk)ij

)

= τj + iαk {iεjklτl + τi(tk)ij}
= τj + iαkτi {iεjki + (tk)ij}︸ ︷︷ ︸

!
=0

⇒ (tk)ij = −iεkij.
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This means that the 3 × 3 matrices tk, k = 1, 2, 3, are given by the structure constants
(see Eq. (7.10)). For the commutator we therefore have

[tk, tl]ij = −εkimεlmj + εlimεkmj = εklmεmij = iεklm(−iεmij) = iεklm(tm)ij (7.16)

where the second identity follows using the Jacobi identity. This means that the matrices
tk fulfill the Lie algebra

[tk, tl] = iεklmtm.

The tks form the adjoint representation of SU(2).

7.2 Quark model of hadrons

It is experimentally well established that the proton and the neutron have inner structure.
The evidence is:

• Finite electromagnetic charge radius

〈rp,n〉 = 0.8 · 10−15 m

(The neutron is to be thought of as a neutral cloud of electromagnetically interacting
constituents.)

• Anomalous magnetic moment

#»µ = g
q

2m
#»s gp = 5.59 gn = −3.83

• Proliferation of strongly interacting hadronic states (particle zoo)

p, n, Λ, ∆−, Ξ, Σ, Ω, . . .

The explanation for these phenomena is that protons and neutrons (and the other
hadrons) are bound states of quarks:

|p〉 = |uud〉
|n〉 = |udd〉

}
3 quark states.

The up quark and the down quark have the following properties

|u〉 : q = +
2

3
, I =

1

2
, I3 = +

1

2
, S =

1

2
;

|d〉 : q = −1

3
, I =

1

2
, I3 = −1

2
, S =

1

2
.
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Quarks Charge Baryon number

Up
1.5− 3 Mev

Charm
1270 MeV

Top
171 000 MeV

+2/3 e 1/3

Down
3.5− 6 MeV

Strange
105 MeV

Bottom
4200 MeV

−1/3 e 1/3

Leptons Charge Lepton number

e− µ− τ− − e 1
νe νµ ντ 0 1

Table 7.1: Quarks and leptons.

Thus, |u〉 and |d〉 form an isospin doublet and combining them yields the correct quantum
numbers for |p〉 and |n〉. There are also quark-antiquark bound states: The pions form an
isospin triplet while the |η〉 is the corresponding singlet state (see Eq. (7.11)):

|π+〉 =
∣∣ud̄
〉

|π0〉 = 1√
2

(
|uū〉 −

∣∣dd̄
〉)

|π−〉 = |dū〉



 triplet states, I = 1

|η〉 = 1√
2

(
|uū〉+

∣∣dd̄
〉)}

singlet state, I = 0.

There are in total three known quark doublets:
(
|u〉
|d〉

)

︸ ︷︷ ︸
up/down

(
|c〉
|s〉

)

︸ ︷︷ ︸
charm/strange

(
|t〉
|b〉

)

︸ ︷︷ ︸
top/bottom

(
q = +2

3
, I3 = +1

2

q = −1
3
, I3 = −1

2

)
.

These quarks can be combined to give states like, e. g., |Λ〉 = |uds〉 .

7.3 Hadron spectroscopy

7.3.1 Quarks and leptons

Experimental evidence shows that, in addition to the three quark isospin doublets, there
are also three families of leptons, the second type of elementary fermions (see Tab. 7.1).
The lepton families are built out of an electron (or µ or τ) and the corresponding neutrino.
The summary also shows the large mass differences between the six known quarks. All of
the listed particles have a corresponding antiparticle, carrying opposite charge and baryon
or lepton number, respectively.

Stable matter is built out of quarks and leptons listed in the first column of the family
table. Until now, there is no evidence for quark substructure and they are therefore con-
sidered to be elementary. Hadrons, on the other hand, are composite particles. They are
divided in two main categories as shown in the following table:
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Quarks Flavor Other numbers

Up, Down — S = C = B = T = 0
Charm C = +1 S = B = T = 0
Strange S = −1 C = B = T = 0

Top T = +1 S = C = B = 0
Bottom B = −1 S = C = T = 0

Table 7.2: Additional quantum numbers for the characterization of unstable hadronic
matter. Antiquarks have opposite values for these quantum numbers.

Type Matter Antimatter

Baryons qqq q̄q̄q̄
Mesons qq̄

Bound states such as |qq〉 or |qqq̄〉 are excluded by the theory of quantum chromodynamics
(see Sect. 7.4).

Unstable hadronic matter is characterized by the following additional flavor quantum
numbers: Charm (C), Strangeness (S), Beauty (B), and Topness (T ) (see Tab. 7.2). It is
important to remember that in strong and electromagnetic interactions both baryon and
flavor quantum numbers are conserved while in weak interactions only baryon quantum
numbers are conserved. Therefore, weak interactions allow heavy quarks to decay into the
stable quark family. The quark decay channels are shown in the following table:

Quark → Decay products

u, d stable
s uW−

c sW+

b cW−

t bW+

As we have seen, protons and neutrons are prominent examples of baryons. Their general
properties can be summarized as follows:

Proton Neutron

Quarks |uud〉 |udd〉
Mass 0.9383 GeV 0.9396 GeV
Spin 1/2 1/2
Charge e = 1.6 · 10−19 C 0 C
Baryon number 1 1
Lifetime stable: τ ≥ 1032 years unstable: τn→pe−ν̄e = 887± 2 s

Production
gaseous hydrogen: ionization
through electric field

under 1 MeV: nuclear reactors;
1− 10 MeV: nuclear reactions

Target for ex-
periments

liquid hydrogen liquid deuterium
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The respective antiparticles can be produced in high-energy collisions, e. g.

pp→ ppp̄p with |p̄〉 =
∣∣ūūd̄

〉
or

pp→ ppn̄n with |n̄〉 =
∣∣ūd̄d̄

〉
.

Recall that in Sect. 4.1 we calculate the energy threshold for the reaction pp→ ppp̄p and
find that a proton beam colliding against a proton target must have at least | #»p | = 6.5 GeV
for the reaction to take place.

7.3.2 Strangeness

We now take a more detailed look at the strangeness quantum number. In 1947, a new
neutral particle, K0, was discovered from interactions of cosmic rays:

π−p
s→ K0Λ, with consequent decays: K0 w→ π+π−, Λ

w→ π−p. (7.17)

This discovery was later confirmed in accelerator experiments. The processes in Eq. (7.17)
is puzzling because the production cross section is characterized by the strong interaction
while the long lifetime (τ ∼ 90 ps) indicates a weak decay. In this seemingly paradoxical
situation, a new quantum number called “strangeness” is introduced. A sketch of produc-
tion and decay of the K0 is shown in Fig. 7.2. As stated before, the strong interaction
conserves flavor which requires for the production ∆S = 0. The decay, on the other hand,
proceeds through the weak interaction: The s quark decays via s→ uW−.

Baryons containing one or more strange quarks are called hyperons. With three consti-
tuting quarks we can have, depending on the spin alignment, spin-1/2 (|↑↓↑〉) or spin-3/2
(|↑↑↑〉) baryons (see Tab. 7.3).2 There are 8 spin-1/2 baryons (octet) and 10 spin-3/2
baryons (decuplet). Octet and decuplet are part of the SU(3) multiplet structure (see
Sect. 7.4).3 All hyperons in the octet decay weakly (except for the Σ0). They therefore
have a long lifetime of about 10−10 s and decay with |∆S| = 1, e. g.

Σ+ → pπ0, nπ+

Ξ0 → Λπ0.

The members of the decuplet, on the other hand, all decay strongly (except for the Ω−)
with |∆S| = 0. They therefore have short lifetimes of about 10−24 s, e. g.

∆++(1230)→ π+p

Σ+(1383)→ Λπ+.

2The problem that putting three fermions into one symmetric state violates the Pauli exclusion prin-
ciple is discussed in Sect. 7.4.

3However, this “flavor SU(3)” is only a sorting symmetry and has nothing to do with “color SU(3)”
discussed in Sect. 7.4.
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Figure 7.2: Sketch of the reaction π−p → K0Λ and the decays of the neutral K0 and Λ.
Tracks detected in a bubble chamber (a). Feynman diagrams for the production and the
Λ decay (b). Notice that S(K0) = 1, |K0〉 = |ds̄〉 and S(Λ) = −1, |Λ〉 = |uds〉 . Source:
[8, p. 140].

Spin-1/2: Octet Spin-3/2: Decuplet

Baryon State Strangeness Baryon State Strangeness

p(938) |uud〉 0 ∆++(1230) |uuu〉 0
n(940) |udd〉 0 ∆+(1231) |uud〉 0

Λ(1115) |(ud− du)s〉 −1 ∆0(1232) |udd〉 0
Σ+(1189) |uus〉 −1 ∆−(1233) |ddd〉 0
Σ0(1192) |(ud+ du)s〉 −1 Σ+(1383) |uus〉 −1
Σ−(1197) |dds〉 −1 Σ0(1384) |uds〉 −1
Ξ0(1315) |uss〉 −2 Σ−(1387) |dds〉 −1
Ξ−(1321) |dss〉 −2 Ξ0(1532) |uss〉 −2

Ξ−(1535) |dss〉 −2
Ω−(1672) |sss〉 −3

Table 7.3: Summary of the baryon octet and decuplet.
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Figure 7.3: Bubble chamber photograph (LHS) and line diagram (RHS) of an event showing
the production and decay of Ω−. Source: [25, p. 205].

The quark model, as outlined so far, predicts the hyperon |Ω−〉 = |sss〉 as a member of
the spin-3/2 decuplet. Therefore, the observation of the production,

K−p→ Ω−K+K0,

and decay,

Ω− → Ξ0π−, Ξ0 → Λπ0, Λ→ pπ−,

of the Ω− at Brookhaven in 1964 is a remarkable success for the quark model. A sketch
of the processes is given in Fig. 7.3. Note that the production occurs via a strong process,
∆S = 0, while the decay is weak: |∆S| = 1.

7.3.3 Strong vs. weak decays

Generally speaking, strong processes yield considerably shorter lifetimes than weak pro-
cesses. Consider, for instance, the following two decays,

∆+ → p+ π0 Σ+ → p+ π0

τ∆ = 6 · 10−24 s τΣ = 8 · 10−11 s

|uud〉 → |uud〉+
1√
2

(
|uū〉+

∣∣dd̄
〉)

|uus〉 → |uud〉+
1√
2

(
|uū〉 −

∣∣dd̄
〉)

(strong) (weak).
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Mesons

The bound qq state can have either spin=0 (singlet) or =1 (triplet)
Radial vibrations are characterized by the quantum number n
Orbital angular momentum is characterized by the quantum number l
States are represented in spectroscopic notation

11

10.2 Aufbau des Hadronenspektrums
Die Bestandteile der Hadronen (q, q, g) werden Partonen genannt. Die Valenzquarks
tragen im Quarkmodell die totale Ladung und den Spin des Hadrons und bilden in erster
Ordnung die Struktur des Hadrons (qq, qqq...)74. Ausserdem können Seequarks (virtu-
elle qq-Paare) von Gluonen erzeugt werden. Gluonen und Seequarks tragen zur Masse
des Hadrons bei75. Wir stellen das Spektrum der Hadronen mit den Valenzquarks auf,
zunächst mit drei Quarks, u, d, s.

n
q q

s = 1!

s = 0!
Abbildung 117: Für jedes qq-Paar existiert ein Spin-Triplett (parallele Spins) und ein Spin-Singulett (anti-
parallele Spins). Ausserdem existieren orbitale Anregungen � (Rotation) und radiale Anregungen n (Vibra-
tionen).

10.2.1 Mesonen

Das qq-System befindet sich entweder im Spin-Singulett- (s = 0) oder im Spin-Triplett- (s
= 1) Zustand. Mit drei Flavours und drei Antiflavours können wir somit je neun Mesonen
aufbauen. Schaltet man zusätzlich Bahndrehimpuls � ein (Abb. 117a), dann können wei-
tere Nonetts von Mesonen aufgebaut werden, die sog. orbitalen Anregungen. Radiale
Anregungen (entgegengesetzte Schwingungen) werden durch die radiale Quantenzahl n
gekennzeichnet (n ≥ 1) und bilden weitere Nonetts. Somit entsteht ein Spektrum, ähnlich
dem Wasserstoffspektrum. Der Spin des Mesons setzt sich aus dem Spin und dem Dreh-
impuls zusammen ( �J = �s + ��) und wir bekommen für die Quantenzahl J

|�− s| ≤ J ≤ �+ s. (407)

Wir bezeichnen die Nonetts mit der spektroskopischen Notation76

n2s+1�J (� = 0 : S, � = 1 : P, � = 2 : D, ...) (408)

74Aus dem sog. “naiven” Quarkmodell können zahlreiche Voraussagen gemacht werden, wie z.B. die
magnetischen Momente der Baryonen. Die genauen Beiträge der Valenzquarks, Seequarks und Gluonen zu
den Spins der Hadronen sind noch unklar und werden gegenwärtig experimentell untersucht.

75In der e.m. Wechselwirkung, z.B. beim H-Atom, tragen Photonen auch zur Masse bei (Bindungsener-
gie), allerdings ist der relative Beitrag viel kleiner als für Gluonen bei der starken Wechselwirkung.

76In der Literatur findet man auch anstatt n die Zahl ν = n + � (z.B. beim H-Atom), also z.B.
1S, 2P, 3D... anstatt 1S, 1P, 1D... für die niedrigsten Zustände bei vorgegebenem �.

141

10.2 Aufbau des Hadronenspektrums
Die Bestandteile der Hadronen (q, q, g) werden Partonen genannt. Die Valenzquarks
tragen im Quarkmodell die totale Ladung und den Spin des Hadrons und bilden in erster
Ordnung die Struktur des Hadrons (qq, qqq...)74. Ausserdem können Seequarks (virtu-
elle qq-Paare) von Gluonen erzeugt werden. Gluonen und Seequarks tragen zur Masse
des Hadrons bei75. Wir stellen das Spektrum der Hadronen mit den Valenzquarks auf,
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Figure 7.4: Sketch of the possible spin configurations for quark-antiquark bound states.
The qq̄ pair is characterized by orbital excitations l (rotation) and radial excitations n
(vibration). Source: [8, p. 141].

The final state is identical in both decays but the lifetime is much longer for the weak
process. Since the final state is equal, this difference in lifetime must come from a difference
in the coupling constants. For τ ∼ 1/α2 where α is a coupling constant:

αweak

αstrong

∼
√
τ∆

τΣ

= 2.7 · 10−7.

7.3.4 Mesons

Mesons are quark-antiquark bound states: |qq̄〉 . In analogy to the spin states of a two-
electron system (and not to be confused with the isospin multiplets discussed on p. 128),
the |qq̄〉 bound state can have either spin 0 (singlet) or spin 1 (triplet) (see Fig. 7.4). Radial
vibrations are characterized by the quantum number n while orbital angular momentum
is characterized by the quantum number l. The states are represented in spectroscopic
notation:

n2s+1lJ

where l = 0 is labeled by S, l = 1 by P and so on. A summary of the n = 1, l = 0 meson
states is shown in Tab. 7.4. A summary of the states with l ≤ 2 can be found in Fig. 7.5.

7.3.5 Gell-Mann-Nishijima formula

Isospin is introduced in Sect. 7.1. The hadron isospin multiplets for n = 1, l = 0 are shown
in Fig. 7.6. This summary leads to the conclusion that the charge Q of an hadron with
baryon number B and strangeness S is given by

Q = I3 +
B + S

2
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Abbildung 118: Spektrum der qq-Mesonen (u-, d-, s-Quarks), eingereiht in Nonetts n2s+1�J (approxima-
tive Massenskala). Viele radiale und orbitale Anregungen sind noch nicht identifiziert worden. Die grau-
en Nonetts gelten als klar und eindeutig. Die äquivalente Bezeichnung JPC wird in Kap. 11.4 und 11.7
erläutert.

Für die zwei weiteren Mesonen liegt der Mischungswinkel im Bereich θ ∼ −10◦ bis
−20◦ [13, 47]. Für kleine θ bekommt man in grober Näherung aus (412)

η(547) ∼ 1√
6
|uu + dd− 2ss�,

η�(958) ∼ 1√
3
|uu + dd + ss�,

deren Zusammensetzung stark von der idealen Mischung abweicht.
Man stellt fest, dass die Spin-Triplett-Mesonen (z.B. ρ) schwerer sind als die Spin-

Singuletts (z.B. π). Der Grund liegt in der Hyperfeinaufpaltung (Spin-Spin-Wechselwir-
kung der Quarks), die mit dem Gluonenaustausch wesentlich grösser ist als bei dem Pho-
tonenaustausch der e.m. Wechselwirkung80.

Abb. 118 zeigt das Spektrum der qq Mesonen. Einzelheiten findet man in Ref. [13].

78Man spricht von “idealer” Mischung.
79Für diese üblichen Mesonen schreibt man normalerweise die Massen nicht.
80Beim Wasserstoffatom liegt der 11S0-Zustand 5.9× 10−6 eV unterhalb des 13S1, ein winziger Unter-
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Mesons from u, d, s quarks

Cells marked with grey are 
well established

Figure 7.5: Summary of mesons from u, d s quarks for l ≤ 2. Cells shaded in grey are well
established states. Source: [8, p. 143].
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Mesons (n = 1, l = 0)

11S0 (spin 0) 13S1 (spin 1)
π+(140)

∣∣ud̄
〉

ρ+(770)
∣∣ud̄
〉

π−(140) |ūd〉 ρ−(770) |ūd〉
π0(135) 1/

√
2
∣∣dd̄− uū

〉
ρ0(770) 1/

√
2
∣∣dd̄− uū

〉

K+(494) |us̄〉 K∗+(892) |us̄〉
K−(494) |ūs〉 K∗−(892) |ūs〉
K0(498) |ds̄〉 K∗0(896) |ds̄〉
K̄0(498)

∣∣d̄s
〉

K̄∗0(896)
∣∣d̄s
〉

η(547) ∼ 1/
√

6
∣∣uū+ dd̄− 2ss̄

〉
φ(1020) = ψ1 − |ss̄〉

η′(958) ∼ 1/
√

3
∣∣uū+ dd̄+ ss̄

〉
ω(782) = ψ2 1/

√
2
∣∣uū+ dd̄

〉

Table 7.4: Summary of n = 1, l = 0 meson states.

which is called Gell-Mann-Nishijima formula. As an example, consider the Ω− hyperon
where 0 + (1− 3)/2 = −1.

7.4 Quantum chromodynamics and color SU(3)

The quark model, as discussed so far, runs into a serious problem: Since the quarks have
half-integer spin, they are fermions and therefore obey Fermi-Dirac statistics. This means
that states like

∆++ =
∣∣u↑u↑u↑

〉
, S =

3

2

where three quarks are in a symmetric state (have identical quantum numbers) are for-
bidden by the Pauli exclusion principle.

The way out is to introduce a new quantum number that allows for one extra degree of
freedom which enables us to antisymmetrize the wave function as required for fermions:

∆++ = N
∑

ijk

εijk

∣∣∣u↑iu↑ju↑k
〉

where N is some normalization constant and the quarks come in three different “colors”:4

|q〉 → |q1,2,3〉 =



|q1〉
|q2〉
|q3〉


 .

Since color cannot be observed, there has to be a corresponding new symmetry in the
Lagrangian due to the fact that the colors can be transformed without the observables

4The new charge is named “color” because of the similarities to optics: There are three fundamental
colors, complementary colors and the usual combinations are perceived as white.
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Abbildung 120: SU(3)-Multipletts der Hadronen im Grundzustand (n = 1, � = 0).

Wir können jetzt die Hadronen-Multipletts durch Diagramme darstellen85, in welchen
jedes Hadron durch seine Koordinaten (Strangeness S, i3) gekennzeichnet wird (Abb.
120). Für � = 0 bekommen wir die zwei Mesonen-Nonetts 11S0 und 13S1 mit J = 0
bzw. J = 1, s. (409, 414), das Baryonen-Oktett (J = 1/2), s. (415) und das Baryonen-
Dekuplett (J = 3/2), s. (416). Weitere Multipletts lassen sich mit � > 0 und n > 1
aufbauen.

Für Hadronen und für Quarks gilt die Gell-Mann-Nishijima-Formel86

Q = i3 + B+S
2

. (427)

Beachten Sie, dass die Hadronen auf einer Diagonalen in Abb. 120 stets die gleiche La-
dung haben. Zum Beispiel bekommen wir für das u-Quark oder das Ω−:

u :
2

3
=

1

2
+

1
3

2
, Ω− : −1 = 0 +

1− 3

2
. (428)

85Gewichtsdiagramme der SU(3)-Symmetrie-Gruppe [46].
86Die Verallgemeinerung zu 6 Quarks lautet

Q = i3 +
B + S + B� + C + T

2
. (426)

Die Quantenzahlen S(s) = −1, B�(b) = −1, C(c) = +1, T (t) = +1 und S(s) = 1, B�(b) = 1,
C(c) = −1, T (t) = −1 sind so gewählt, dass ihre Vorzeichen mit den Ladungsvorzeichen der Quarks
übereinstimmen.
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Figure 7.6: Summary of hadron isospin multiplets. n = 1, l = 0. Source: [8, p. 147].

being affected. In the case of our new charge in three colors the symmetry group is SU(3),
the group of the special unitary transformations in three dimensions. The Lie algebra of
SU(3) is

[
T a, T b

]
= ifabcT c

where, in analogy to Eq. (7.10), fabc denotes the structure constants and where there are
8 generators T a (recall that o = N2 − 1 = 8, see p. 127) out of which r = N − 1 = 2 are
diagonal.

The fundamental representation is given by the 3 × 3 matrices T a = 1
2
λa with the Gell-

Mann matrices

λ1 =




τ1︷ ︸︸ ︷
0 1
1 0

0
0

0 0 0


 λ2 =




τ2︷ ︸︸ ︷
0 −i
i 0

0
0

0 0 0


 λ3 =




τ3︷ ︸︸ ︷
1 0
0 −1

0
0

0 0 0


 λ4 =




0 0 1
0 0 0
1 0 0




λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0


 λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

One can observe that these matrices are hermitian and traceless,

λ†a = λa Trλa = 0.



140 Chapter 7. Unitary symmetries and QCD as a gauge theory

Furthermore, one can show that

Tr
(
λaλb

)
= 2δab

and

λaijλ
a
kl = 2

(
δilδkj −

1

3
δijδkl

)
(Fierz identity).

The structure constants of SU(3) are given by

fabc =
1

4i
Tr ([λa, λb]λc)

and are antisymmetric in a, b, and c. The numerical values are

f123 = 1

f458 = f678 =

√
3

2

f147 = f156 = f246 = f257 = f345 = f367 =
1

2
fabc = 0 else.

As in the case of SU(2), the adjoint representation is given by the structure constants
which, in this case, are 8× 8 matrices:

(ta)bc = −ifabc.
The multiplets (again built out of the fundamental representations) are given by the direct
sums

3⊗ 3̄ = 1⊕ 8 (7.18)

where the bar denotes antiparticle states and

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (7.19)

The singlet in Eq. (7.18) corresponds to the |qq̄〉 states, the mesons (e. g. π), while the
singlet in Eq. (7.19) is the |qqq〉 baryon (e. g. p, n). The other multiplets are colored and
can thus not be observed.’Working out theSU(3) potential structure, one finds that an
attractive QCD potential exists only for the singlet states, while the potential is repulsive
for all other multiplets.

The development of QCD outlined so far can be summarized as follows: Starting from the
observation that the nucleons have similar properties, we considered isospin and SU(2)
symmetry. We found that the nucleons n and p correspond to the fundamental repre-
sentations of SU(2) while the π is given by the adjoint representation. To satisfy the
Pauli exclusion principle, we had to introduce a new quantum number and with it a new
SU(3) symmetry of the Lagrangian. This in turn led us to multiplet structures where the
colorless singlet states correspond to mesons and baryons.
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Construction of QCD Lagrangian We now take a closer look at this SU(3) trans-
formation of a color triplet,

|q〉 =




q1

q2

q3


→ |q′〉 =




q′1
q′2
q′3


 = eigsαaT

a




q1

q2

q3


 = U |q〉 , (7.20)

where gs ∈ R is used as a rescaling (and will be used for the perturbative expansion) of
the group parameter α introduced previously. The reason of introducing it becomes clear
in the context of gauge theories.

In analogy to the QED current,

jµQED = eqeq̄γ
µq,

we introduce the color current 5, which is the conserved current associated with the
SU(3) symmetry,

jµa = gsq̄iγ
µT aijqj a = 1 · · · 8. (7.21)

In the same spirit, by looking at the QED interaction,

Lint
QED = −jµQEDAµ = eqeq̄γ

µqAµ,

yielding the vertex,

�

Aµ

q q

where we can see the photon – the electrically uncharged U(1) gauge boson of QED –, we
postulate an interaction part of the QCD Lagrangian of the form,

Lint
QCD = −jµaAaµ = gsq̄iγ

µT aijqjA
a
µ, (7.22)

which translates in the vertex (which is not the only one of QCD as we shall see),

5The Einstein summation convention still applies, even if the color index i and j are not in an upper and
lower position. This exception extends also to the color indices a, b, ... of the gauge fields to be introduced.
There is no standard convention in the literature, and since there is no metric tensor involved, the position
of a color index, is merely an esthetic/readability problem.
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�

Aaµ

qj qi

Now there are 8 SU(3) gauge bosons Aaµ for QCD : one for each possible value of a. They
are called gluons and are themselves colored.

Continuing with our analogy, we define the covariant derivative of QCD 6,

Dµ = ∂µ1 + igsT
aAaµ, (7.23)

and state that the QCD Lagrangian should have a term of the form,

L̃QCD = q̄(i /D −m)q. (7.24)

Up to this point, both QED and QCD look nearly identical. Their differences become
crucial when we look at local gauge symmetries. Such a transformation can be written,

|q(x)〉 → |q′(x)〉 = eigsαa(x)Ta |q(x)〉 , (7.25)

and we impose as before that the Lagrangian must be invariant under any such transfor-
mation. This is equivalent of imposing,

D′µ |q′(x)〉 !
= eigsαa(x)TaDµ |q(x)〉
⇔ 〈q̄′(x)| i /D′ |q′(x)〉 = 〈q̄(x)| i /D |q(x)〉 .

For αa(x)� 1, we can expand the exponential and keep only the first order term,

D′µ |q′(x)〉 =
(
∂µ + igsT

cA′cµ
)

(1 + igsαa(x)T a) |q(x)〉
!

= (1 + igsαa(x)T a)
(
∂µ + igsT

cAcµ
)

︸ ︷︷ ︸
Dµ

|q(x)〉 .

Making the ansatz A′cµ = Acµ+δAcµ where |δAcµ| � |Acµ| and expanding the former equation
to first order in δAcµ (the term proportional to αa(x)δAcµ has also been ignored), we get,

igsT
cδAcµ + igs(∂µαa(x))T a + i2g2

sT
cAcµαa(x)T a

!
= i2g2

sαa(x)T aT cAcµ

⇒ T cδAcµ
!

= −(∂µαa(x))T a + igs[T
a, T c]αa(x)Acµ,

6Note that Dµ acts on color triplet and gives back a color triplet; ∂µ does not mix the colors, whereas
the other summand does (T a is a 3×3 matrix).



7.4. Quantum chromodynamics and color SU(3) 143

or, renaming the dummy indices and using the Lie algebra su(3),

T aδAaµ = −(∂µαa(x))T a − gsfabcT aαb(x)Acµ ∀T a

⇒ A′aµ = Aaµ − ∂µαa(x)︸ ︷︷ ︸
like in QED

− gsfabcαb(x)Acµ︸ ︷︷ ︸
non-abelian part

. (7.26)

Eq. (7.26) describes the (infinitesimal) gauge transformation of the gluon field.

In order for the gluon field to become physical, we need to include a kinematical term
(depending on the derivatives of the field). Remember the photon term of QED,

Lphoton
QED = −1

4
FµνF

µν Fµν = ∂µAν − ∂νAµ,

where the last is gauge invariant. As we might expect from Eq. (7.26), the non-abelian
part will get us into trouble. Let’s look at,

δ(∂µA
c
ν − ∂νAcµ) = −∂µ∂ναa + ∂ν∂µαa − gsfabcαb(∂µAcν − ∂νAcµ)

− gsfabc
(
(∂µαb)A

c
ν − (∂ναb)A

c
µ

)
.

We remark that the two first summands cancel each other and that the third looks like
the SU(3) transformation under the adjoint representation.

We recall that,

qi → q′i = (δij + igsαaT
a
ij)qj (fundamental representation)

Ba → B′a = (δac + igsαbt
b
ac)Bc (adjoint representation)

respectively, where,

tbac = −ifbac = ifabc.

Hence, if F a
µν transforms in the adjoint representation of SU(3), we should have,

δF a
µν

!
= −gsfabcαbF c

µν .

We now make the ansatz,

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (7.27)

and prove that it fulfills the above constraint.

δF a
µν =δ(∂µA

a
ν − ∂νAaµ)− gsfabcδ(AbµAcν)

=− gsfabcαb(∂µAcν − ∂νAcµ)− gsfabc
(
(∂µαb)A

c
ν − (∂ναb)A

c
µ

)

− gsfabc
(
−(∂µαb)A

c
ν + (∂ναb)A

c
µ

)
− gsfabc

(
−gsfbdeαdAeµAcν − gsfcdeαdAbµAeν

)
,
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Using,

fabcfbdeαdA
e
µA

c
ν = fabefbdcαdA

c
µA

e
ν = facefcdbαdA

b
µA

e
ν ,

and

faecfdbc − facbfdec = (iT aec)(iT
d
cb)− (iT dec)(iT

a
cb) =

[
T a, T d

]
eb

= ifadcT
c
eb,

we get the desired result.

We check finally that a kinematic term based on the above definition of F a
µν is gauge

invariant :

δ
(
F a
µνF

µν
a

)
= 2F µν

a δF a
µν = −2gs fabc︸︷︷︸

=−fcba

αb F
µν
a F c

µν︸ ︷︷ ︸
=Fµνc Faµν

= 0.

Finally, we get the full QCD Lagrangian,

LQCD = −1

4
F a
µνF

µν
a + q̄(i /D −mq)q, (7.28)

with /D and F a
µν definded by Eqs. (7.23) and (7.27) respectively.

This Lagrangian is per construction invariant under local SU(3) gauge transformations.
It is our first example of a non-abelian gauge theory, a so-called Yang-Mills theory.

Structure of the kinematic term From the definition of F a
µν , Eq. (7.27), we see that,

F a
µνF

µν
a =

(
∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν

)
(∂µAνa − ∂νAµa − gsfadeAµdAνe) ,

will have a much richer structure than in the case of QED.

First, we have – as in QED – a 2-gluon term
(
∂µA

a
ν − ∂νAaµ

)
(∂µAνa − ∂νAµa) corresponding

to the gluon propagator,

�

k

µ, a ν, b

= −g
µν

k2
δab. (7.29)

Then we have a 3-gluon term
(
−gsfabcAbµAcν

)
(∂µAνa − ∂νAµa) yielding a 3-gluon vertex

�
Aaµ(k1) Acλ(k3)

Abν(k2)

= gsfabc [gµν(k1 − k2)λ + gνλ(k2 − k3)µ + gλµ(k3 − k1)ν ] . (7.30)
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Finally we have also a 4-gluon term
(
−gsfabcAbµAcν

)
(−gsfadeAµdAνe) yielding the 4-gluon

vertex

�
Aaµ(k1)

Abν(k2)

Adρ(k4)

Acλ(k3)

= −ig2
s [fabefcde(gµλgνρ − gµρgνλ) + fadefbce(gµνgλρ − gµλgνρ) + facefbde(gµρgνλ − gµνgρλ)]

(7.31)

Unlike in QED, gluons are able to interact with themselves. This comes from the fact that
the theory is non-abelian. As a consequence, there is no superposition principle for QCD:
the field of a system of strongly interacting particles is not the sum of the individual
fields. Thence, there is no plane wave solution to QCD problems, and we cannot make
use of the usual machinery of Green’s functions and Fourier decomposition. Up to now
there is no known solution.

7.4.1 Strength of QCD interaction

In QED, when we take a term of the form,
∣∣∣∣∣∣∣∣∣ �

e e

∣∣∣∣∣∣∣∣∣

where the � denotes some other part of the Feynman diagram, the expression is pro-
portional to e2 = 4πα.

In the case of QCD, we have a few more possibilities. We look at the general SU(n) case.
The QCD result can be found by setting n = 3.

First, for the analogous process to the one cited above :
∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �i k

j j

a a

gsT
a
ij gsT

a
jk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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which is proportional to g2
sT

a
ijT

a
jk = 4παsCF δik, where

CF =
n2 − 1

2n
, (7.32)

is the color factor, the Casimir operator of SU(n). To find it, we used one of the Fierz
identities (see exercises), namely,

T aijT
a
jk =

1

2

(
δikδjj −

1

n
δijδjk

)

=
1

2

(
nδik −

1

n
δik

)
=
n2 − 1

2n
δik.

Next we look at,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �a b

i i

j j

gsT
a
ij gsT

b
ji

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is proportional to g2
sT

a
ijT

b
ji = 4παsTF δ

ab, where

TF =
1

2
. (7.33)

To find it, we used the fact that,

Tr
(
T aT b

)
=

1

2
δab.

Finally we investigate the case where,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �a d

b b

c c

gsfabc gsfdbc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is proportional to g2
sfabcfdbc = 4παsCAδ

ad, where

CA = n. (7.34)
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To find it, we used the relation,

fabc = −2iTr
([
T a, T b

]
T c
)
,

that we have shown in the beginning of this section.

In the case of QCD, CF = 4
3
, TF = 1

2
, CA = 3. From the discussion above, we can heuris-

tically draw the conclusion that gluons tend to couple more to other gluons, than to
quarks.

At this stage, we note two features specific to the strong interaction, which we are going
to handle in more detail in a moment :

• Confinement : At low energies (large distances), the coupling becomes very large,
so that the perturbative treatment is no longer valid, an the process of hadronization
becomes inportant. This is the reason why we cannot observe color directly.

• Asymptotic freedom : At high energies (small distances) the coupling becomes
negligible, and the quarks and gluons can move almost freely.

As an example, of typical QCD calculation, we sketch the calculation of the

Gluon Compton scattering

g(k) + q(p)→ g(k′) + q(p′).

There are at first sight two Feynman diagrams coming into the calculation,

�
k + p, l

p, i

k, a

p′, j

k′, b

�

+ �
p− k′, l′

p, i

k, a

p′, j

k′, b

which yields the following scattering matrix element,

−iMfi =− ig2
s

[
ū(p′)/ε∗(k′)

1

/p+ /k −m/ε(k)u(p)T bjlT
a
li

+ū(p′)/ε(k)
1

/p− /k′ −m
/ε∗(k′)u(p)T ajl′T

b
l′i

]
. (7.35)

We start by checking the gauge invariance (Mfi must vanish under the substitution
εµ(k)→ kµ):

−iM′
fi = −ig2

s ū(p′)/ε∗(k′)u(p)
(
T bjiT

a
li − T ajl′T bl′i

)
,
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where

T bjiT
a
li − T ajl′T bl′i =

[
T b, T a

]
ji

= ifbacT
c
ji 6= 0!

So we need another term, which turns out to be the one corresponding to the Feynman
diagram,

�p′ − p, c
p, i

k, a

p′, j

k′, b

The calculation of the gluon-gluon scattering goes analogously. We need to consider the
graphs,

� +� +� +�
.

7.4.2 QCD coupling constant

To leading order, a typical QED scattering process takes the form,

� γ(q)

e−(p) e−(p′)

with q2 = (p′ − p)2 ≤ 0.

In the Coulomb limit (long distance, low momentum transfer), the potential takes the
form,

V (R) = −α
R

R &
1

me

≈ 10−11 [cm]. (7.36)

When R ≤ m−1
e , quantum effects become important (loop corrections, also known as

vacuum polarization), since the next to leading order (NLO) diagram,
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� e+e−

starts to play a significant (measurable) role. This results in a change of the potential to,

V (R) = −α
R

[
1 +

2α

3π
ln

1

meR
+O(α2)

]
= − ᾱ(R)

R
, (7.37)

where ᾱ(R) is called the effective coupling.

We can understand the effective coupling in analogy to a solid state physics example : in
an insulator, an excess of charge gets screened by the polarization of the nearby atoms.
Here we create e+e− pairs out of the vacuum, hence the name vacuum polarization.

As we can see from Eq. (7.37), the smaller the distance R ≤ m−1
e , the bigger the observed

“charge” ᾱ(R). What we call the electron charge e (or the fine structure constant α) is the
limiting value for very large distances or low momentum transfer as shown in Fig. 7.4.2.

1/137

(R)

R

1/137

(Q2)

Q2

Figure 7.7: Evolution of the effective electromagnetic coupling with distance and energy
(Q2 = −q2).

For example the measurements done at LEP show that, ᾱ(Q2 = m2
Z) ≈ 1

128
> α.
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In the case of QCD, we have at NLO, the following diagrams,

� +� q̄q

screening

+�
antiscreening

+�
antiscreening.

We can picture the screening/antiscreening phenomenon as follows,

+ +

R↘⇒ αs(R)↗ R↘⇒ αs(R)↘

Figure 7.8: Screening and antiscreening.

For QCD, the smaller the distance R (or the bigger the energy Q2), the smaller the
observed coupling ᾱs(R). At large distances, ᾱs(R) becomes comparable with unity, and
the perturbative approach breaks down as we can see in Fig. 7.4.2. The region concerning
confinement and asymptotic freedom are also shown.

 (R)

R

(Q2)

Q2

s s

asymptotic
freedom

con"nement

asymptotic
freedom

      ≈ 200 MeVQCD

Figure 7.9: Evolution of the effective strong coupling with distance and energy (Q2 = −q2).
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The β-function of QCD In the renormalization procedure of QCD, we get a differen-
tial equation for αs(µ

2) where µ is the renormalization scale,

µ2 ∂αs
∂(µ2)

= β(αs) (7.38)

β(αs) = −αs
[
β0
αs
4π

+ β1

(αs
4π

)2

+ β2

(αs
4π

)3

+ · · ·
]
, (7.39)

with

β0 =
11

3
nc −

2

3
nf = 11− 2

3
nf (NLO) (7.40)

β1 =
17

12
n2
c −

5

12
ncnf −

1

4

(
n2
c − 1

2nc

)
nf , (NNLO) (7.41)

where nc is the number of colors and nf is the number of quark flavors. These two
numbers enter into the calculation through gluon respectively quark loop corrections to
the propagators.

We remark at this stage that unless 7 nf ≥ 17, we have β0 > 0, whereas in the case of
QED, we get,

βQED
0 = −4

3
< 0. (7.42)

This fact explains the completely different behavior of the effective couplings of QCD and
QED.

To end this chapter, we will solve Eq. (7.38) retaining only the first term of the power
expansion of β.

µ2 ∂αs
∂(µ2)

= − β0

4π
α2
s

∂αs
α2
s

= − β0

4π
∂(lnµ2)

αs(Q2)∫

αs(Q2
0)

dαs
α2
s

= − β0

4π

lnQ2∫

lnQ2
0

d(lnµ2),

and hence,

1

αs(Q2)
=

1

αs(Q2
0)

+
β0

4π
ln
Q2

Q2
0

. (7.43)

7As of 2009, only 6 quark flavors are known and there is experimental evidence (decay witdth of the
Z0 boson) that there are no more than 3 generations with light neutrinos.
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We thus have a relation between αs(Q
2) and αs(Q

2
0), giving the evolution of the effective

coupling.

A mass scale is also generated, if we set,

1

αs(Q2 = Λ2)
= 0⇒ αs(Λ

2) =∞.

Choosing Λ = Q0, we can rewrite Eq. (7.43) as,

αs(Q
2) =

4π

β0 ln Q2

Λ2

. (7.44)



Chapter 8

QCD in e+e− annihilations

Literature:

• Dissertori/Knowles/Schmelling [27]

• Ellis/Stirling/Webber [28]

• Bethke [29, 30]

• Particle Data Group [26]

• JADE, Durham, and Cambridge jet algorithms [31, 32, 33, 34]

• FastJet Package, Fast kT , SISCone [35, 36, 37]

In Chap. 7, QCD is introduced as an SU(3) gauge theory. Here we continue this discus-
sion and consider QCD processes following e+e− annihilations. The main focus is on the
definition and application of observables linking theoretical predictions with measurable
quantities: Jets and event shapes are discussed; the applications include measurements of
the parton spins, the strong coupling constant, and the QCD color factors. The chapter
is concluded by an outlook to hadronization and non-perturbative QCD.

Some examples of e+e− colliders and their energies are given in Tab. 6.1. Fig. 8.1(a) maps
the corresponding eras onto the available center of mass energies. A half-logarithmic plot
comparing σe

+e−→hadrons to σe
+e−→µ−µ+ is given in Fig. 8.1(b). Experimental milestones

include:

• SPEAR (SLAC): Discovery of quark jets.

• PETRA (DESY) & PEP (SLAC): First high energy (> 10 GeV) jets; discovery of
gluon jets (at the PETRA collider, see Fig. 8.2); many pioneering QCD studies.
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(a)
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(b)

Figure 8.1: Cross sections in e+e− annihilations. (a) Cross section for e+e− → hadrons as
a function of the center of mass energy. The ECM dependence is linear because the plot
is double-logarithmic. Source: [38]. (b) Comparison of cross sections for e+e− → hadrons
and for e+e− → µ−µ+. Both cross sections show the same 1/s dependence on the center
of mass energy squared, except at the Z resonance.
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(a) (b)

Figure 8.2: Gluon discovery at the PETRA collider at DESY, Hamburg. Event display (a)
and reconstruction (b).

• LEP (CERN) & SLC (SLAC): Large energies (small αs, see later) mean more re-
liable calculations and smaller hadronization uncertainties. Large data samples are
collected: ∼ 3 ·106 hadronic Z decays per experiment. This allows for precision tests
of QCD.

8.1 The basic process: e+e− → qq̄

In Sect. 5.10 we calculated the cross section for e+e− → µ+µ− and found

σe
+e−→µ+µ− =

4πα2
em

3s
=

86.9 nbGeV2

s
(8.1)

where the finite electron and muon masses have been neglected. Here, we consider the
basic process e+e− → qq̄. In principle, the same Feynman diagram contributes:

�
e+

e−

µ+

µ−

�
e+

e−

q̄

q
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The only differences are the fractional electric charges of the quarks and the fact that the
quarks appear in Nc = 3 different colors which cannot be distinguished by measurement.
Therefore, the cross section is increased by a factor Nc. For the quark-antiquark case one
thus finds (for mq = 0)

σe
+e−→qq̄

0 =
4πα2

em

3s
e2
qNc =

86.9 nbGeV2

s
e2
qNc. (8.2)

We assume
∑

q σ
e+e−→qq̄ = σe

+e−→hadrons, i. e. the produced quark-antiquark pair will
always hadronize.

With Eq. (8.1) and (8.2), neglecting mass effects and gluon as well as photon radiation,
we find the following ratio:

R =
σe

+e−→hadrons

σe+e−→µ+µ−
= Nc

∑

q

e2
q. (8.3)

The sum runs over all flavors that can be produced at the available energy. For ECM
below the Z peak and above the Υ resonance (see Fig. 8.3), we expect1

R = Nc

∑

q

e2
q = Nc



(

2

3

)2

︸ ︷︷ ︸
u

+

(
−1

3

)2

︸ ︷︷ ︸
d

+

(
−1

3

)2

︸ ︷︷ ︸
s

+

(
2

3

)2

︸ ︷︷ ︸
c

+

(
−1

3

)2

︸ ︷︷ ︸
b


 = Nc

11

9
.

This is in good agreement with the data for Nc = 3 which confirms that there are three
colors. At the Z peak one also has to include coupling to the Z boson which can be created
from the e+e− pair instead of a photon. The small remaining difference visible in the plot
is because of QCD corrections for gluon radiation (see later).

8.1.1 Singularities

In order to achieve a better prediction, we have to go beyond the basic QED prediction by
including QCD dynamics: Consider the production of a quark-antiquark pair along with
a gluon:

�
e+

e−

q̄

g

q

1Recall that the top quark mass is mt ≈ 171 GeV.
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G. Dissertori
ETH Zürich QCD in e+e- annihilations: Particle Physics Phenomenology I

The “R ratio”

Confirmation of  : Number of colours = 3 !

7

For ECM below the Z peak and above the Υ resonance we expect  (zf = eq):

Note : small remaining difference : because of QCD correction (gluon radiation) = 1 + αs /π

6 quarks, 
3 colours  ( 45/9)

5 quarks, 
3 colours  ( 33/9)

5 quarks, 
1 colour  ( 11/9)

At Z peak :

have to include also 
couplings to Z

Figure 8.3: Ratio R = σe
+e−→hadrons/σe

+e−→µ+µ− as a function of the center of mass
energy. As expected by Eq. (8.3), there is roughly no energy dependence besides various
resonances. The data confirm that there are three quark colors.

We define the kinematic variables

xi = 2
pi ·Q
Q2

=
E∗i
Ebeam

(8.4)

where Q = pe+ + pe− = pγ/Z and Q2 = s. Energy-momentum conservation (
∑

i pi = Q)
requires that, in this case,

xq + xq̄ + xg = 2 (8.5)

xi ≤ 1. (8.6)

One can calculate the differential cross section

d2σ

dxqdxq̄
= σ0

αs
2π
CF

x2
q + x2

q̄

(1− xq̄)(1− xq)
(8.7)

where CF = 4/3 is the color factor of the fundamental representation. Note that this
expression is singular for

• xq → 1, e. g. q̄‖g,

• xq̄ → 1, e. g. q‖g, and for

• (xq, xq̄)→ (1, 1), e. g. xg → 0.

Because of the kinematic constrains imposed by energy-momentum conservation (Eq. (8.5)
and (8.6)), the allowed region (part of which we have to integrate Eq. (8.7) over to find a
cross section) for a γ? → qq̄g event is of the form shown in Fig. 8.4.
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G. Dissertori
ETH Zürich QCD in e+e- annihilations: Particle Physics Phenomenology I

Singularity Structure: “Dalitz Plot”

9

from : G. Dissertori, I.K. Knowles, M. Schmelling
“Quantum Chromodynamic : High Energy Experiments and Theory”, Oxford University Press

q q̄

q q̄
q q̄

Dienstag, 22. Dezember 2009

Figure 8.4: A Dalitz plot showing the allowed region of the xq-xq̄ plane for a γ? → qq̄g
event with massless partons. The thick lines indicate the singularities where xq = 1 and
xq̄ = 1. Their intersection marks the position of the soft gluon singularity: xg = 0. The
concept of jets will be introduced later, but it is clear that there has to be at least a
certain angle between the gluon and the quarks if the jet in gluon direction is to be
detected separately. Source: [27, p. 74].

So, how does one deal with these singularities to find a meaningful expression for the cross
section to first order? Consider first the two-jet cross section. Two jets are detected when
the gluon is either very soft or almost parallel to the quarks such that only two energy
flows back-to-back can be measured. Including interference terms, the cross section in the
case of an unresolved gluon is given by (integration over two-jet region, see Fig. 8.4)

σtwo-jet(T ) =

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

︸ ︷︷ ︸
O(α0

s)

+

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

︸ ︷︷ ︸
O(α1

s)

+ 2Re


� ·�




︸ ︷︷ ︸
O(α1

s)

+O(α2
s)

= σ0

(
1 + αsf(T ) +O(α2

s)
)

where T stems from the criterion separating the two- and three-jet regions of the Dalitz
plot: max{xq, xq̄, xg} < T. The singularities of the second and third term cancel and the
result is a function of the parameter T. However, our problem is not yet resolved, since
limT→1 f(T ) = −∞.

If the gluon can be resolved, a three-jet event is detected and the integration is over the
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(a) (b)

Figure 8.5: Hadronization of quarks and gluons. Diagrams of the processes e+e− → qq̄ →
hadrons (a) and e+e− → qq̄g → hadrons (b). The RHS shows the situation in the center
of mass frame. Source: [39, p. 5 and 6].

three-jet region of Fig. 8.4:

σthree-jet(T ) =

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

+O(α2
s) = σ0αsg(T ) +O(α2

s)

where limT→1 g(T ) = +∞. Combining the two-jet and three-jet cross sections, one finds
that the dependence on T cancels yielding a finite result for the total cross section:

σtot = σtwo-jet + σthree-jet + · · · = σ0

(
1 + αs [f(T ) + g(T )] +O(α2

s)
)

= σ0

(
1 +

3

4
CF

αs
π

+O(α2
s)

)
.

8.2 Jets and other observables

We now focus on entities actually observable in experiment. We do not observe free quarks
but only colorless hadrons produced by the “hadronization/fragmentation” of quarks and
gluons. For instance, the processes discussed so far can be visualized as in Fig. 8.5.

The anatomy of the process e+e− → Z → hadrons is sketched in Fig. 8.6. The things that
we can do based on such a process include

• Measure αs,

• Measure the masses of (heavy) quarks,

• Measure gluon self-coupling,

• Study hadronization and particle correlations, and

• Study the transition between the non-perturbative and perturbative regime and the
properties of quark or gluon jets.
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Figure 8.6: The anatomy of the process e+e− → γ?, Z → hadrons. Source: [40, p. 13,
modified].

8.2.1 Jet algorithms

Let us turn to the question: What is a jet?

Fig. 8.7 shows a multi-jet event recorded by the ALEPH detector. A possible verbal defi-
nition of “jet” would be “cluster/spray of particles (tracks, calorimeter deposits) or flow
of energy in a restricted angular region”. Jets are the connection between the quarks and
gluons of QCD and the signals actually measured in the detectors. If we are to extract
this information from the data, we clearly need some kind of algorithmic definition of this
concept: In the “final state” of many interesting interactions there are quarks and gluons.
These are the fundamental particles of QCD. Confinement (see p. 148) means that in the
detector we see hadrons (together with leptons and photons), but not single quarks or
gluons. At energies much larger than ΛQCD(∼ 1 GeV) these hadrons appear confined into
jets. Our aim is to compare the predictions based on partons (quarks and gluons) with
the measurements on hadrons. Therefore, we need an algorithmic definition of a jet which

1. can be applied both to data and predictions and

2. gives a close relationship between partons and jets of hadrons.

The basic requirement for such an algorithm is applicability at all relevant levels of theory
and experiment: partons, stable particles, measured objects (calorimeter objects, tracks,
etc.) while always finding the same jet. Furthermore, the algorithm has to be independent
of the very details of the detector, e. g. the granularity of the calorimeter, the energy
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Figure 8.7: Multi-jet event in the ALEPH detector.

response, etc. Finally, it should also be easy to implement. In order that we can test
QCD predictions, there has to be a close correspondence between the jet momentum (i. e.
energy, momentum, and angle) at the parton level and at the hadron level.

NB: Other requirements might strongly depend on the specific applica-
tion/measurement being performed: For a precision test of QCD there may be
requirements which for an analysis of W decays or searches for new physics might not be
necessary (e. g. infrared safety).

Further requirements come from QCD: We want to compare perturbative calculations
with the data. Therefore, the algorithm has to be insensitive to “soft physics” which
requires infrared safety and collinear safety.

Infrared safety requires that the configuration must not change when adding a further
soft particle. This would be violated by the following behavior2:

Collinear safety means that the configuration does not change when substituting one
particle with two collinear particles. The problem is visualized in this figure:

2Source: [41, pp. 4].
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Infrared and collinear safety yield algorithms with the required insensitivity to soft physics:
They guarantee the cancellation (between real and virtual emission diagrams) of the
infrared and collinear divergencies in every order of perturbation theory.

8.2.1.1 Examples of jet algorithms

There are two classes of jet algorithms in use. Algorithms of the class “JADE” are used
mainly for e+e− annihilations (i. e. for the analysis of events with purely leptonic initial
states), but more recently, this class of jet algorithms is also used at hadron colliders. We
will concentrate on this class here. The second class of jet algorithms is called “CONE”
and is mainly used at hadron colliders with some applications also at e+e− colliders.

JADE class algorithms are characterized by

• a “metric” yij (measure of distance in momentum space),

• a criterion of resolution ycut, and a

• procedure of recombination.

The original definition of the metric from the JADE experiment at PETRA reads

yij =
2EiEj(1− cos θij)

E2
CM

≈ m2
ij

E2
CM

(8.8)

where mij is the invariant mass of the particle pair (i, j), see Fig. 8.8(a) Given this metric
and a pre-defined resolution ycut, the algorithm is:
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(a) (b)

Figure 8.8: Particle pair (a) and recombination of close particles (b).

Compute yij  !ij

min yij = ykl

ykl < ycut

combine
p(kl)  

and remove k,l

EXIT
{pJ} J=1,n

NoYes

First, all distances yij between pairs (i, j) are calculated. Then we search for the smallest
invariant mass: min(i,j) yij = ykl. The fact that ykl is the smallest distance in momentum
space of all pairs (of particles or, in the subsequent steps, also pseudo-particles) means
that the pair (k, l) is either nearly parallel, θkl = 0, or one or both of the particles are
very soft, see Fig. 8.8(b). If the distance cannot be resolved, ykl < ycut, the two particles
(k, l) are combined (clustered) into one new pseudo-particle with the combined momentum
p(kl) = pk+pl (i. e. momentum is conserved), see Fig. 8.9(a). This is the so-called E scheme.
Applying this algorithm will reduce complex events until there is a certain number of jets
left, as is sketched in Fig. 8.9(b).

The proposed algorithm has some very useful characteristics:

• Infrared safety,

yij → 0 for Ei or Ej → 0,

and collinear safety,

yij → 0 for θij → 0,
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ykl

Pkl

(a) (b)

Figure 8.9: Recombination of particle pair with small invariant mass (a) and reduction of
particle pattern to jets (b).

(in every order of perturbation theory, see p. 161 and Eq. (8.8)).

• All particles are assigned to one and only one jet.

• The algorithm’s sequence does not depend on ycut.

• The number of found jets is a monotonic function of ycut.

For the discussed algorithm there is no need to stick to the JADE metric of Eq (8.8);
alternative metrics can be introduced. For instance, the DURHAM metric is

yij =
2 min

(
E2
i , E

2
j

)
(1− cos θij)

E2
CM

≈ k2
⊥

E2
CM

(8.9)

where k⊥ is the transverse momentum of the less energetic particle with respect to the
more energetic one. The introduction of this metric was motivated by perturbative QCD
calculations: It allows for the resummation of large logarithms of the type lnm(ycut) in all
orders of perturbation theory (see e. g. [27, pp. 139]). These logarithms appear order-by-
order in the expressions for jet cross sections, jet rates, etc.

Now is a good time to recall the Dalitz plot of Fig. 8.4 where we separated a two-jet and a
three-jet region. The algorithmic jet definition we have developed enables us to define the
thee-jet region: Apply the jet algorithm until three jets are left. If the distance between
the jets can be resolved, min(i,j)(yij) > ycut, there are three jets, else it is a two-jet event.
The shape of the found three-jet region is somewhat different, since yij also depends on
the angle θij, see Fig. 8.10.

In order to compare the analyzed data to the predictions of QCD, we need perturbative
predictions for jet rates. For the reaction e+e− → hadrons the leading order predictions
are as follows. For the JADE algorithm we have

σLOthree-jet(ycut) = σ0CF
αs
2π

[
2 ln2 ycut + 3 ln ycut −

π2

3
+

5

2
− f(ycut)

]
(8.10)
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Figure 8.10: A Dalitz plot showing the allowed region of the xq-xq̄ plane for a γ? → qq̄g
event with massless partons. The three-jet region is determined using an algorithmic jet
definition.

where f(ycut)→ 0 for ycut → 0. The prediction for the DURHAM algorithm is the same,
except for the factor “2” in front of “ln2 ycut”. In simple terms, the logarithm terms arise
because the vertex where the gluon is radiated off contributes a factor proportional to
αs/Egluon to the integrand which upon integration yields

∫
ycut

dE/E.

Resummation3 with the DURHAM algorithm looks as follows. First, let

R2(ycut) =
σtwo-jet

σtot

.

One can show that

R2 = exp



−

s∫

sycut

dq2

q2

CFαs(q
2)

2π

[
ln

s

q2
− 3

2

]


≈ 1−
s∫

sycut

dq2

q2

CFαs(q
2)

2π
ln · · ·+ · · · ≈ 1− CFαs

2π
ln2 ycut + . . .

where R2(ycut → 0) = 0. This is an example of the characteristics an algorithm has to
have if you want to perform “high-precision” perturbative QCD calculations. Now there
also exists an algorithm of the kt (DURHAM) type for hadron colliders, see later.

To conclude this section, we turn to the comparison of jet algorithms. There is no such
thing as the best “benchmark” variable which allows to compare algorithms in a general
manner. The suitability and performance of an algorithm depends very strongly on the
performed analysis. Usually we would like to have a good resolution of energies and angles

3Resummation in QCD is analogous to the treatment of infrared divergencies in QED, see e. g. [14,
pp. 202]
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(a) (b)

Figure 8.11: Visualization of levels at which the algorithms have to deliver good resolution
(a) and comparison of jet algorithms (b). The mean number of jets is displayed as a
function of ycut. The parton level is denoted by squares and the hadron level by circles.
The results were obtained by HERWIG Monte Carlo simulation at ECM = Mz. Source:
[34, p. 28]. For details compare [34, pp. 7].

of the jets at the parton, hadron, and detector levels (see Fig. 8.11(a) for a visualization),
as well as a good efficiency and purity to find a certain number of jets at a certain
level. For some jet algorithms, the mean number of jets as a function of ycut at the
hadron and parton levels, as obtained by HERWIG (Hadron Emission Reactions With
Interfering Gluons) Monte Carlo simulation at ECM = MZ , is compared in Fig. 8.11(b).
Another comparison4 is shown in Fig. 8.12. The fraction of events with 2 jets which have
2, 3, 4, and 5 sub-jets is given as a function of ycut or r2, the radius fraction sqared,
respectively. The data stem from HERWIG Monte Carlo simulations at ECM = 1.8 TeV
with 75 GeV < Et(jet 2) < 100 GeV. Data from a kt algorithm are shown in Fig. 8.12(a)
while the results in Fig. 8.12(b) come from a CONE algorithm with radius R = 0.7.

8.2.2 Event shape variables

The introduced jet algorithms can be used as a starting point to define more refined
observables that capture the event topologies.

4More on kt and CONE algorithms can be found in [41].
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(a) (b)

Figure 8.12: Comparison of kt (a) and CONE (b) algorithms. Legend: —parton level,
· · · calorimeter level. The fraction of two-jet events with 2, 3, 4, and 5 sub-jets is given as
a function of ycut or r2. The data is generated by HERWIG Monte Carlo simulations at
ECM = 1.8 TeV with 75 GeV < Et(jet 2) < 100 GeV.

An example for an event shape variable is the differential two-jet rate. The definition goes
as follows: Apply the DURHAM algorithm until exactly three jets are left (in contrast
to the possibility to run the algorithm until a certain resolution is reached). Then take
the minimal distance yij of all pairs (i, j) and call it y23 (or y3): min(i,j) yij = y23 = y3.
This gives one value for each event. The distribution of these values for all events is an
“event-shape distribution”. Therefore, one can plot the differential cross section as in
Fig. 8.13. There is one histogram entry for each event. The data come from hadronic Z
decays at LEP. Observe that two-jet events are more likely than three-jet events. The
perturbative regime is limited to high gluon energies. Hadronization effects that have to
be phenomenologically modeled spoil the perturbative calculations at low y3 values.

As another example for an event-shape variable, let us consider thrust. It was invented
around 1978 and first used at PETRA. The idea is to select the axis that maximizes the
sum of the longitudinal momentum components:

The thrust of an event is then defined as

T = max
#»n

∑
i | #»p i · #»n |∑
i | #»p i|

where | #»n | = 1 and the sum runs over the three-momenta of all final states. The thrust
axis is defined by the vector #»nT for which the maximum is obtained. This definition
means that for T = 1 the event is perfectly back-to-back while for T = 1/2 the event is
spherically symmetric:
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Figure 8.13: Differential two-jet rate for hadronic Z decays at LEP.

This point is also illustrated with ALEPH data of Z decays in Fig. 8.14 where Fig. 8.14(a)
corresponds to T → 1 and Fig. 8.14(b) to T → 1/2. The corresponding event-shape
distribution is shown in Fig.8.15 (compare also the differential two-jet rate event-shape
distribution in Fig. 8.13).

There are further event-shape variables suitable for different purposes. Some examples are
given in the following.

• Thrust major Tmajor: The thrust major vector #»nMa is defined in the same way as
the thrust vector #»nT , but with the additional condition that #»nMa must lie in the
plane perpendicular to #»nT :

Tmajor = max
#»nMa⊥ #»nT

∑
i | #»p i · #»nMa|∑

i | #»p i|
.

• Thrust minor Tminor: The minor axis is perpendicular to both the thrust axis and
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(a) (b)

Figure 8.14: Event displays of Z decays recorded at ALEPH. The thrust is nearly 1 for (a)
and close to 1/2 for (b).

Figure 8.15: Thrust for hadronic Z decays at LEP. Observe that the two- and three-jet
events are indicated by thrust values close to 1 and 1/2, respectively. Again, in the non-
perturbative regime hadronization corrections from phenomenological models are needed.
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the major axis: #»nMi = #»nT × #»nMa. The value of the thrust minor is given by

Tminor =

∑
i | #»p i · #»nMi|∑

i | #»p i|
.

• Oblateness O: The oblateness is defined as the difference between thrust major and
thrust minor:

O = Tmajor − Tminor.

• Sphericity S: The sphericity is calculated from the ordered eigenvalues λi=1,2,3 of
the quadratic momentum tensor:

Mαβ =

∑
i p

α
i p

β
i∑

i | #»p i|2
, α, β = 1, 2, 3

λ1 ≥ λ2 ≥ λ3, λ1 + λ2 + λ3 = 1

S =
3

2
(λ2 + λ3).

The sphericity axis #»nS is defined along the direction of the eigenvector associated
to λ1, the semi-major axis #»n sMa is along the eigenvector associated to λ2.

• Aplanarity A: The aplanarity is calculated from the third eigenvalue of the quadratic
momentum tensor:

A =
3

2
λ3.

• Planarity P : The planarity is a linear combination of the second and third eigenvalue
of the quadratic momentum tensor:

P = λ2 − λ3.

• Heavy jet mass ρ: A plane through the origin and perpendicular to #»nT divides the
event into two hemispheres, H1 and H2 from which the corresponding normalized
hemisphere invariant masses are obtained:

M2
i =

1

E2
CM

(∑

k∈Hi
pk

)2

, i = 1, 2.

The larger of the two hemisphere masses is called the heavy jet mass,

ρ = max(M2
1 ,M

2
2 ),

and the smaller is the light jet mass ML,

ML = min(M2
1 ,M

2
2 ).
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• Jet mass difference MD: The difference between ρ and ML is called the jet mass
difference:

MD = ρ−ML.

• Wide jet broadening BW : A measure of the broadening of particles in transverse
momentum with respect to the thrust axis can be calculated for each hemisphere
Hi using the relation

Bi =

∑
k∈Hi |

#»p k × #»nT |
2
∑

j | #»p j|
, i = 1, 2

where j runs over all particles in the event. The wide jet broadening is the larger of
the two hemisphere broadenings,

BW = max(B1, B2),

and the smaller is called the narrow jet broadening BN ,

BN = min(B1, B2).

• Total jet broadening BT : The total jet broadening is the sum of the wide and the
narrow jet broadenings:

BT = BW +BN .

• C-parameter C: The C-parameter is derived from the eigenvalues of the linearized
momentum tensor Θαβ:

Θαβ =
1∑
i | #»p i|

∑

i

pαi p
β
i

| #»p i|
, α, β = 1, 2, 3.

The eigenvalues λj of this tensor define C by

C = 3(λ1λ2 + λ2λ3 + λ3λ1).

The discussed event-shape variables have been extensively used to analyze LEP data.
Examples are given in Fig. 8.16: Fig. 8.16(a) shows thrust predictions and measurements;
predictions and data for thrust, heavy jet mass, total jet broadening, wide jet broadening,
and the C-parameter are shown in Fig. 8.16(b).
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(a) (b)

Figure 8.16: Comparison of predictions and LEP data for some event-shape variables.
Thrust data are shown for several center of mass energies (a). The other analyses deal
with heavy jet mass, total jet broadening, wide jet broadening, and the C-parameter (b).

8.2.3 Applications

Examples for applications of the observables discussed above in this section are measure-
ments of the strong coupling constant αs (see later, Sect. 8.3), the discovery of quark and
gluon jets, measurements of the quark and gluon spin, the triple-gluon vertex, and jet
rates or the analysis of differences between quark and gluon jets.

Quark jets were discovered at the SPEAR storage ring (SLAC) [42]. The data are shown
in Fig. 8.17. For higher energies particles cluster around an axis and the Monte Carlo
simulation based on a jet model fits the data better than the simulation based on an
isotropic phase-space model. This is the first observation of a jet structure.

Gluon jets were discovered at PETRA (DESY) [43, 44, 45, 46]. Here, the relevant ob-
servable is oblateness (see p. 170). The first three-jet event seen by TASSO is shown in
Fig. 8.18(a). In Fig. 8.18(b) one can observe that events at ECM ∼ 30 GeV exhibit larger
oblateness (planar structure) than predicted by models without hard gluon radiation.

When it comes to parton spins the question is: How do you measure the spin of unob-
servable particles? For spin-1/2 fermions annihilating into a vector boson, conservation of
angular momentum predicts a distribution

dσ

d cos Θ∗
∼ 1 + cos2 Θ∗
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Figure 8.17: Discovery of quark jets at SPEAR (SLAC). Observed sphericity (see p. 170)
distributions for data, jet model (solid curves) and phase-space model (dashed curves) for
ECM = 3 GeV (LHS) and 7.4 GeV (RHS). Source: [42, 38, p. 1611].

(a) (b)

Figure 8.18: The first three-jet event seen by TASSO (a) and the distribution N−1dN/dO
as a function of oblateness, measured at MARK-J (b). In both figures of (b) the solid
curves are the predictions based on the qq̄g model and the dashed curve is based on the
standard qq̄ model. Source: [44, p. 832].
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(a) (b)

Figure 8.19: Measurements of quark (a) and gluon (b) spin by ALEPH. Source: [47].

if the final state particles have spin 1/2 and

dσ

d cos Θ∗
∼ 1− cos2 Θ∗ = sin2 Θ∗

for spin-0 particles in the final state. Therefore, the quark direction has to be measured
to measure the quark spin. At LEP energies the thrust axis in two-jet events to a very
good approximation aligns with the direction of the primary quarks. Thus, one can take
the thrust direction in two-jet events. The exact expression for the spin-1/2 case reads

dσ

d cos Θ∗
=
α2

eme
2
qπNc

2s

(
2− β∗2q + β∗2q cos2 Θ∗

)
β∗q

where β∗q =
√

1− 4m2
q/s → 1 for mq = 0. The resulting angular distribution found by

ALEPH [47] is shown in Fig. 8.19(a).The experimental data are compared to a Monte
Carlo simulation. The data are in perfect agreement with the spin-1/2 assignment for the
quarks while a spin-0 assignment is clearly excluded. The sharp drop in the distribution
around cos Θ∗ ∼ 0.8 is due to the finite detector acceptance.

Let us turn to the gluon spin. Hard gluon radiation leads to three-jet events. So, after
applying a jet algorithm to select the three-jet events, how do we know which one is the
gluon jet? Recall that the probability to radiate off a soft gluon is larger than to radiate
off a hard gluon. Therefore, for three jets
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with energies

Ei = ECM
sin θi∑
j sin θj

,

if ordered by energy, E1 > E2 > E3, jet 3 is the gluon jet in 75% of the events. Defining
the variable

Z =
1√
3

(x2 − x3)

(recall xi = 2Ei/ECM), the Dalitz plot looks like in Fig. 8.20. The arrow length is pro-
portional to the jet energy. The following cases have to be compared: In the spin-1 case
(“vector gluon”) the prediction reads

d2σv

dx1dx2

∝
[

x2
1 + x2

2

(1− x1)(1− x2)
+ permutations (1, 2, 3)

]

while for spin-0 (“scalar gluon”)

d2σs

dx1dx2

∝
[

x2
3

(1− x1)(1− x2)
+ permutations (1, 2, 3)− 10

∑
a2
q∑

a2
q + v2

q

]

where aq and vq are the axial-vector and vector couplings of the quarks to the intermediate
photon or Z boson and the sums run over all contributing quark flavors. For e+e− annihi-
lation via a photon only the vector coupling contributes, on the Z resonance both terms
have to be taken into account. The ALEPH data shown in Fig. 8.19(b) clearly indicate
that gluons have spin 1.

As we have seen before (see p. 144), the kinematic term of the QCD (SU(3), non-abelian,
gluon) Lagrangian contains a three-gluon term yielding a three-gluon vertex, a feature
not present in QED (U(1), abelian, photon). The splitting of a radiated gluon into two
gluons will lead to a four-jet event, just like the splitting into a quark-antiquark pair:

� 4

3

� 4

3
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Figure 8.20: Phase space as function of x1 and Z for energy-ordered jet configurations,
x1 > x2 > x3. The arrow length is proportional to the energy. Source: [47].

For gluon radiation off quarks one finds that the gluon is preferentially polarized in the
plane of the splitting process. On the other hand, for a gluon splitting into two gluons
there is a positive correlation between the plane spanned by the two new gluons and the
polarization of the branching one. Finally, in case a gluon splits into two quarks, the plane
defined by the momenta of the two quarks is anticorrelated with the polarization of the
splitting gluon. So we conclude that for four-jet events induced by a gluon splitting into
a qq̄ pair, the distribution of the angle between the plane defined by the two primary
quarks and the plane defined by the two secondary quarks should be enhanced around
90◦ (see Fig. 8.21). However, in a non-abelian theory we have contributions also from
the triple-gluon interaction, and in this case the favored angle between the two planes
spanned by the primary and secondary partons is rather small. Therefore, the shape of
the distribution of this angle is sensitive to the color factors (see Sect. 7.4.1). Like in
the three-jet case, it is difficult to distinguish between jets induced by the primary and
the secondary partons. However, because of the 1/E characteristic of radiated gluons we
expect the two secondary particles to be less energetic than the two primary quarks: If the
jets are ordered by energy, E1 > E2 > E3 > E4, jets 3 and 4 are more likely to come from
the radiated particles. So we arrive at the definition of the angular correlation variable
called Bengtsson-Zerwas angle

χBZ = ∠ [( #»p 1 × #»p 2), ( #»p 3 × #»p 4)] =
( #»p 1 × #»p 2) · ( #»p 3 × #»p 4)

|( #»p 1 × #»p 2)||( #»p 3 × #»p 4)|
where #»p i, i = 1, . . . , 4 are the energy-ordered momenta of the four partons (jets). In
Fig. 8.21 LEP measurements of χBZ are compared with the predictions by QCD on the
one hand and an abelian model with three quark colors but no three-gluon coupling on
the other. The data agree with QCD being an SU(3) gauge theory rather than an abelian
gauge theory.

At the end of our discussion of jet algorithms Fig. 8.12(a) is shown. It displays the fraction
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Figure 8.21: Distribution of χBZ measured by L3. The predictions for QCD and the abelian
model are shown as bands indicating the theoretical uncertainties. Source: [48, p. 233].

of 2-jet events with 2, 3, 4, and 5 sub-jets as a function of ycut. These predictions can
be tested comparing measurements at highest LEP energies to Monte Carlo simulations
which incorporate leading-order matrix elements for two-jet and three-jet production, plus
approximations for multiple soft or collinear gluon radiation. Fig. 8.22 shows the n-jet rate
according to the DURHAM (kt) algorithm as a function of ycut.

We conclude this section with a discussion of the differences between quark and gluon jets.
Quark and gluon jets have different coupling strengths to emit gluons (see Sect. 7.4.1 and
Fig. 8.23). Therefore, from couplings alone one expects a larger multiplicity in gluon jets
of the order CA/CF = 9/4, and a softening of the momentum distributions for particles
coming from the gluon jet. Thus gluon jets are more “soft” and “fat” than quark jets
(see Fig. 8.24). Also the scaling violations, i. e. change of multiplicities with energy and
momentum scale are different. In Fig. 8.24(d) the CONE algorithm is applied to data
of OPAL (LEP) and compared to CDF data. The variable r denotes the radius of the
considered cone fraction when R is the radius parameter of the cone algorithm:
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The ALEPH Collaboration: Studies of QCD at e+e− centre-of-mass energies between 91 and 209 GeV 467

ratio of distributions is shown in Fig. 6b. Scaling violations
induce a rise of the cross section at small xE and at a de-
crease at large xE with increasing

√
s. The data clearly

exhibit this property, and it is qualitatively reproduced by
the parametrisations; the predictions of the Monte Carlo
models are in better agreement with the data.

4 Jet rates

Jet rates are defined by means of the Durham clustering
algorithm [8] in the following way. For each pair of particles
i and j in an event the metric yij is computed

yij =
2 min(E2

i , E2
j )(1 − cos θij)

E2
vis

,

where Evis is the total visible energy in the event. The pair
of particles with the smallest value of yij is replaced by a
pseudo-particle (cluster). The four-momentum of the clus-
ter is taken to be the sum of the four momenta of particles
i and j, pµ = pµ

i + pµ
j (‘E’ recombination scheme). The

clustering procedure is repeated until all yij values exceed
a given threshold ycut. The number of clusters remaining
at this point is defined to be the number of jets. Alterna-
tively, the procedure is repeated until exactly three clusters
remain. The smallest value of yij in this configuration is
defined as y3. The distribution of y3 is sensitive to the
probability of hard gluon radiation leading to a three-jet
topology. It can therefore be used to determine αs (Sect. 6).

The n-jet rates were measured for n = 1, 2, 3, 4, 5 and
n ≥ 6. Detector correction factors were applied in the same
manner as for the inclusive distributions, but in this case
for each value of the jet resolution parameter ycut. Figure 7
shows the measured jet fractions as a function of ycut at
206 GeV. Good agreement with the Monte Carlo genera-
tor predictions is observed. However, in the region of the
peak of the three-jet fraction the generators, in particular
PYTHIA, lie above the data.

5 Event shapes

The various distributions describing the event shapes are
of interest because (i) most of the variables are predicted
to second order in QCD; and (ii) some resummed calcu-
lations to all orders in αs exist. By fitting the theoretical
predictions to these distributions the value of the strong
coupling constant may be determined. By comparing with
the direct predictions for the various Monte Carlo models,
the validity of each model is tested.

The primary objective is to observe the running of αs

with centre-of-mass energy. For this reason, the analyses at
each energy point have been carried out coherently and cor-
related systematic uncertainties are estimated. The event-
shape variables studied here are defined as follows.

– Thrust T : The thrust [26] axis nT maximises the quan-
tity

T = max
nT

( ∑
i |pi · nT |∑

i |pi|

)
,

where the sum extends over all particles in the event.
– Thrust Major Tmajor: The thrust major vector, nMa,

is defined in the same way as the thrust vector, but
with the additional condition that nMa must lie in the
plane perpendicular to nT ,

Tmajor = max
nMa⊥nT

( ∑
i |pi · nMa|∑

i |pi|

)
.

– Thrust Minor Tminor: The minor axis is perpendicular
to both the thrust axis and the major axis, nMi =
nT × nMa. The value of thrust minor is given by

Tminor =

∑
i |pi · nMi|∑

i |pi|
.

– OblatenessO: The oblateness is defined as the difference
between thrust major and thrust minor,

O = Tmajor − Tminor .

– Sphericity S: The sphericity is calculated from the
ordered eigenvalues λi=1,2,3 of the quadratic momen-
tum tensor

Mαβ =

∑
i pα

i pβ
i∑

i |pi|2
, α, β = 1, 2, 3 ;

λ1 ≥ λ2 ≥ λ3 , λ1 + λ2 + λ3 = 1 ;

S =
3

2
(λ2 + λ3) .
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Fig. 7. Measured n-jet fractions for n = 1, 2, 3, 4, 5 and n ≥ 6
and the predictions of Monte Carlo models, at a centre-of-mass
energy of 206 GeV

Figure 8.22: ALEPH measurements of the n-jet rate (DURHAM) as a function of ycut.

Figure 8.23: Comparison of quark and gluon jets. For a discussion of the difference in
coupling strength see Sect. 7.4.1.
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Ψ(r) denotes the energy in a fraction of the cone and Φ(r) is defined by Φ(r) = d/drΨ(r).

8.3 Measurements of the strong coupling constant

The QCD Lagrangian is introduced in Sect. 7.4:

THE QCD LAGRANGIAN 23

bosons carry the charge of the interaction, colour in case of QCD, and thus are
able to couple directly to themselves. The fermionic part of the Lagrangian is
a sum over all quark flavours, again featuring a free field term and a term for
the quark–gluon coupling. The triple-gluon and the quark–gluon coupling are
proportional to the gauge coupling gs, the four-gluon coupling is proportional to
g2

s . In addition the amplitudes associated with the individual couplings depend
on the detailed structure of the underlying symmetry group. Quark colours are
indexed by i, j = 1, 2, 3, gluon colours by a, b, c, d, e = 1, . . . , 8. The three-gluon
coupling between gluons of colour states a,b and c is proportional to the struc-
ture constant fabc, and the coupling between two quarks of colours i and j to a
gluon of type a is proportional to the matrix element T a

ij .

L
QCD

!ab

!ij

gs f abc

gsTij
a

gs
2f abef cde

a

i ij
j

a

ab
b

c c d

ba

flavours

Fig. 2.9. Pictorial respresentation of the QCD Lagrangian. Figure from
Schmelling(1995a).

The physics content of the QCD Lagrangian is further discussed in the follow-
ing chapter and in the problems Ex. (2-2) and Ex. (2-3) given below. It is shown
explicitly, that there is a full symmetry in all colours with respect to physics,
which is maybe not entirely obvious from the representation of the Gell-Mann
matrices or the numerical values of the structure constants. One finds that the
probability for gluon emission is the same for all quark colours, that the prob-
ability for gluon splitting into quark pairs is the same for all gluon states as is
the probability of a gluon splitting into secondary gluons. Denoting the relative
strengths of the splitting probabilities with CF , CA and TF for gluon radiation
off a quark, gluon splitting into two gluons and gluon splitting into two quarks,
respectively, QCD predicts

CF =
4

3
, CA = 3 and TF =

1

2
. (2.40)

Except for the quark masses, there is only one free parameter in it: the strong coupling
constant αs which is discussed in Sect. 7.4.2. Recall that the differential equation for the
strong coupling constant depending on the renormalization scale µ, αs(µ

2), is

µ2∂α
2
s(µ

2)

∂µ2
= β(αs(µ

2))
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(a) (b)

(c) (d)

Figure 8.24: Comparison of quark and gluon jets. Note that gluon jets are more “soft”
and “fat” than quark jets. The variable xE is the energy fraction of the particles with
respect to the jet energy (c). The variable r in (d) denotes the considered fraction of the
cone.
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which, retaining only the first term of the power expansion for β and absorbing the factor
of 4π into the coefficient β0, yields

αs(Q
2) ≡ g2

s(Q
2)

4π
=

1

β0 ln(Q2/Λ2
QCD)

.

At that point we also stressed that

β0 =
1

4π

(
11− 2

3
nf

)
> 0 for (the likely case of) nf < 17

which makes the effective coupling constant behave like shown in Fig. 7.4.2. The following
expansion holds for αs(µ

2) (see Eq. (7.43)):

αs(µ
2) ≈ αs(Q

2)

[
1− αs(Q2)β0 ln

µ2

Q2
+ α2

s(Q
2)β2

0 ln2 µ
2

Q2
+O(α3

s)

]
. (8.11)

To measure the coupling strength one uses as many methods as possible in order to
demonstrate that QCD really is the correct theory of strong interactions by showing that
one universal coupling constant describes all strong interactions phenomena. Consider the
perturbative expansion of the cross section for some QCD process:

σpert = αs(µ
2)A+ α2

s(µ
2)

[
B + β0A ln

µ2

Q2

]
+O(α3

s) (8.12)

where the coefficients A and B depend on the specific process. So, if only the leading oder
(LO) expansion is known, the following holds:

σpert
LO = αs(µ

2)A = αs(Q
2)A− α2

s(Q
2)β0A ln

µ2

Q2
+O(α2

s)

where in the second step we inserted the expansion from Eq. (8.11). This means that the
result depends strongly on the choice of the renormalization scale µ. Since the corrections
to the cross section can be relatively large, it is possible to find significantly different
values for the measured effective coupling constant αmeas,eff

s for two different processes:
Consider two processes, where the LO calculations predict

σpert
LO;1 = αsA1

σpert
LO;2 = αsA2.

The predictions are compared to the cross sections σexp
1 and σexp

2 from experiment. Finally,
because of the said strong scale dependence, the result may be αmeas,eff

s;1 6= αmeas,eff
s;1 .

To solve the problem of the correction depending on the renormalization scale being
too large, one has to take the calculation to next-to-leading order (NLO) to reduce the
scale dependence of the prediction. For our example reaction e+e− → qq̄g this means
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Figure 8.25: Feynman diagrams for e+e− → qq̄g to NLO.

considering the diagrams shown in Fig. 8.25. The NLO expression is again obtained from
the expansion in Eq. (8.12):

σpert
NLO = αs(µ

2)A+ α2
s(µ

2)

[
B + β0A ln

µ2

Q2

]
+O(α3

s)

= αs(Q
2)A+ α2

s(Q
2)B + α3

s(Q
2)β2

0A
2 ln2 µ

2

Q2
+O(α4

s)

where in the second line we inserted for αs(µ
2) the expansion from Eq. (8.11) and the

dependence on ln(µ2/Q2) cancels. Thus, the scale dependence of the prediction is much
smaller than in the LO case. The scale dependence cancels completely at fully calculated
order.

By comparing the NLO prediction for the cross section to experiment, one can extract
αs(Q

2), e. g. αs(M
2
Z). This information can in turn be used to predict other process cross

sections at NLO. Furthermore, by varying the scale µ2 one can estimate the size of the
NNLO contributions.

This procedure extends analogously to NNLO. Diagrams that have to be included at
NNLO are shown in Fig. 8.26. The prediction reads

σpert
NNLO = αs(Q

2)A+ α2
s(Q

2)B + α3
s(Q

2)C +O
(
α4
s, ln

3 µ
2

Q2

)

where the scale dependence is reduced even further. NNLO is the lowest order at which
scale variations at NLO can be tested.

As an example for the scale dependence of the extracted strong coupling constant, see
Fig. 8.27 where αs(M

2
Z) from jet rates at LEP is shown as a function of ln(µ2/Q2). Note

that the scale dependence is reduced by the extension to NLO, as mentioned before.
The theoretical error is taken to be the range of values covered by the projection of
the bands over −1 < ln(µ2/Q2) < 1 on the abscissa. The right figure shows how the
central values and errors obtained this way for three different shape variables converge
with improvements in the theory.

There has been an enormous progress in the measurements of the strong coupling during
the last 20 years. This is due to major improvements on the theoretical and also the
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Figure 8.26: Feynman diagrams for e+e− → qq̄g at NNLO.

COMPARISON AND COMBINATION OF RESULTS 307

exists. The methods mentioned above are used in various combinations, which
makes it very difficult to compare theoretical uncertainties. Nevertheless, and
even if it is not possible to assign confidence levels in a strict mathematical
sense to theoretical errors, they are best estimates of the actual uncertainties
constructed such that it is reasonable to interpret them like conventional 68%
confidence level intervals.

2 – jet rate
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Fig. 8.1. Estimate of theoretical uncertainties for a measurement of the strong
coupling from global event shape variables. A detailed discussion is given in
the text.

This is illustrated in Fig. 8.1 by means of some measurement of the strong
coupling constant performed on global event shape variables by the ALEPH

collaboration. The variables will be described later. The left plot shows error
bands in measurements of αs(M

2
Z) based on the LO, NLO and NLO+NLLA

predictions for the two-jet rate R2 as function of ln(µ2/Q2). The widths of the
bands indicate what happens when switching from the perturbative prediction
of R2 to that of ln R2. The theoretical error was taken to be the range of values
covered by the projection of the respective bands over −1 < ln µ2/Q2 < 1 on the
abscissa. The right figure shows how the central values and errors obtained this
way for three different shape variables converge with improvements in the theory.
That this procedure yields reasonable error estimates is demonstrated by the fact
that for a fixed level of theoretical precision the errors cover the scatter between
the different variables, and that they also match the convergence observed when
using better predictions.

8.2 Comparison and combination of results

To compare measurements of the strong coupling which were performed at dif-
ferent scales, one has to take into account that αs is energy dependent. Measure-

Figure 8.27: Estimate of theoretical uncertainties for a measurement of the strong coupling
constant from event shape variables. NLLA refers to resummation of logarithms. Source:
[27, p. 307].
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Figure 8.28: Summary of measurements of αs as a function of the respective energy scale
Q. The curves are QCD predictions. Source: [30, p. 12].

experimental side. A summary of measurements of αs as a function of the respective
energy scale Q is shown in Fig. 8.28.

In general, observables can be classified according to the influence the structure of the
final state has on their value.

Inclusive observables do not look at the structure of the final state. Examples are total
cross sections and ratios of cross sections (see e. g. Eq. (8.3)). Advantages of inclusive
observables are that they do not (or only weakly) depend on non-perturbative correc-
tions (hadronization) and that the perturbative series is now known to NNNLO. The
disadvantage lies in the low sensitivity in some cases.

Non-inclusive (exclusive) observables , on the other hand, look at some structure in the
final state depending on the momenta of the final state particles. Examples are jet rates
and event shape distributions. Advantages of non-inclusive observables are high sensitivity
and that the perturbative series is now known to NNLO (and resummation, see later).
Disadvantages are that in some cases even the NNNLO corrections might be relevant and
that hadronization (non-perturbative) corrections are needed.

As an example for the usage of inclusive observables, consider the determination of αs
from inclusive Z or τ decays. In general, the prediction of the cross section ratio R reads

R =
σZ,τ→ hadrons

σZ,τ→ leptons
= REW(1 + δQCD + δmass + δnp)
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where the overall factor REW depends on the electroweak couplings of the quarks.5 The
corrections are dominated by the perturbative QCD correction δQCD. The other terms
take into account the finite quark masses and the non-perturbative corrections. The per-
turbative QCD correction term is given by

δQCD = c1
αs
π

+ c2

(αs
π

)2

+ c3

(αs
π

)3

+ . . . .

Diagrammatically speaking, the factor REW arises from

�Z
q̄

q

while the perturbative QCD corrections come from diagrams like in Fig. 8.25 and 8.26.
For the case of

RZ =
σZ→ hadrons

σZ→ leptons

the prediction reads REW = 19.934, c1 = 1.045, c2 = 0.94, and c3 = −15. The correspond-
ing measurement is visualized in Fig. 8.29: Divide the number of hadronic decays by the
number of leptonic decays to find RZ = 20.767±0.025. From this ratio the following value
of the strong coupling at the Z resonance can be extracted:

αs(MZ) = 0.1226± 0.0038︸ ︷︷ ︸
exp., mostly statistical

± 0.0002︸ ︷︷ ︸
Mt:±5 GeV

± 0.0002︸ ︷︷ ︸
renormalization shemes

= 0.1226
+0.0058
−0.0038

.

Finally, we state a new result from 2009, obtained using NNNLO predictions:

αs(MZ) = 0.1193
+0.0028
−0.0027

± 0.0005.

We now turn to non-inclusive observables such as event-shapes and jet rates. We have
already seen perturbative predictions for some examples of non-inclusive quantities in
Sect. 8.2. There it is stated that the log terms in the predictions are because of the∫
dE/E integration arising from

dσq→qg

dEgluon

∝ σ0
αs
2π

1

Egluon

5REW is a modified version of the ratio R = Nc11/9 of Sect. 8.1.
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Figure 8.29: Visualization of RZ measurement.

where σ0 is the Born cross section for Z → qq̄ (see Sect. 8.1). Recall that the perturbative
prediction is given by:

1

σ0

dσ

dx
= αs(µ

2)A(x) + α2
s(µ

2)

[
B(x) + β0A(x) ln

µ2

Q2

]
+O(α3

s)

where the coefficients A and B are calculable for the class of observables x which are
infrared and collinear safe, i. e. infrared singularities from real and virtual radiative cor-
rections cancel (thrust, jet rates, C-parameter, etc.). To recall the important example of
thrust, see Fig. 8.15.

Let us take a look at the results obtained by NLO fits. First measurements gave indications
that the missing higher order terms are large: The coupling constant should be the same
for all variables, but the results vary too much (see Fig. 8.30) which indicates that the
expansion to NLO does not suffice. Typical results obtained by NLO fits are

αs(MZ) = 0.120± 0.010.

As we have seen before, to obtain perturbative corrections, we have to do integrals of the
type

∫ s
ycut

dEgluon/Egluon which gives rise to the logarithm terms in σLOthree-jet (see Eq. (8.10)):

σLOthree-jet = σ0CF
αs
2π

[
ln2 ycut + . . .

]
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xμ=μ/MZ

Figure 8.30: NLO results for αs(MZ). Source: [40, p. 29, modified].
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where the color factor CF = 4/3—the problem being that for ycut → 0 the series does not
converge.6 The resummation procedure mentioned earlier (see p. 165) also works for the
three-jet rate:

R3 =
CFαs

2π
ln2 ycut −

C2
Fα

2
s

8π2
ln4 ycut + . . .

= 1− exp



−

s∫

sycut

dq2

q2

CFαs(q
2)

2π

[
ln

s

q2
− 3

2

]
 .

Combined (to avoid double counting of logarithmic terms in resummed expressions and
in full fixed order prediction) with full NLO calculations this gives theoretically much
improved predictions. Typical results are:

αs(MZ) = 0.120± 0.005.

There are different sources of the remaining uncertainties. Experimental uncertainties
include

• track reconstruction,

• event selection,

• detector corrections (via cut variations or different Monte Carlo generators),

• background subtraction (LEP2), and

• ISR corrections (LEP2).

They amount to about 1% uncertainty. Furthermore, there are hadronization uncertain-
ties arising from the differences in behavior of various models for hadronization such as
PYTHIA (string fragmentation), HERWIG (cluster fragmentation), or ARIADNE (dipole
model and string fragmentation). Theses uncertainties are typically about 0.7 to 1.5%.
Finally, there are also theoretical uncertainties, for instance

• renormalization scale variation,

• matching of NLO with resummed calculation, and

• quark mass effects.

6Recall that ycut is the resolution parameter deciding if two particles are distinguished or seen as one
pseudo-particle.
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(a) (b)

Figure 8.31: NNLO fit to ALEPH thrust data (a) and visualization of improvement in
NNLO over NLO (b). Source: [50, p. 11 and 17].

The corresponding uncertainty is typically 3.5 to 5 %.

As we have seen, the perturbative predictions have to be to sufficiently high order if we
are to accurately determine the strong coupling constant: Now a NNLO prediction is
available. Bearing in mind the foregoing, it has to be of the form

1

σ0

dσ

dy
(y,Q, µ) = αs(µ)A(y) + α2

s(µ)B(y, xµ) + α3
s(µ)C(y, xµ) +O(α4

s)

where y denotes an event shape variable and xµ = µ/Q. At this level of precision, one
has to take care of additional issues, such as quark mass effects and electro-weak effects
which typically contribute around or below the per-cent range.

The first determination of αs(MZ) based on NNLO (and NLLA) calculations of event
shape distributions [49, 50] yields

αs(MZ) = 0.1224± 0.0009 (stat) ± 0.0009 (exp) ± 0.0012 (hadr) ± 0.0035 (theo).

The fit to ALEPH thrust data is shown in Fig. 8.31(a). The largely reduced scatter of
values for different variables at NNLO is visualized in Fig. 8.31(b). Note that the reduced
perturbative uncertainty is 0.003.
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The most precise determination of the strong coupling constant is obtained from jet
observables at LEP. Precision at the 2% level is achieved from the three-jet rate [51]:

αs(MZ) = 0.1175± 0.0020 (exp) ± 0.0015 (theo).

The three-jet rate is known to have small non-perturbative corrections and to be very
stable under scale variations (for a certain range of the jet resolution parameter). For a
comparison of LO, NLO, and NNLO predictions to the corresponding ALEPH data, see
Fig. 8.32(a).

The LEP results concerning the determination of the strong coupling constant (see
Fig.8.32(b)) can be summarized as follows (combination by S. Bethke, a couple of years
ago).

• Tau decays (NNLO)

αs(MZ) = 0.1181± 0.0030

• RZ (NNLO)

αs(MZ) = 0.1226
+0.0058
−0.0038

• Event shapes (NLO + NNLO)

αs(MZ) = 0.1202± 0.0050

• All (not including recent NNNLO results)

αs(MZ) = 0.1195± 0.0035

• Latest world average (S. Bethke, 2009 [30])

αs(MZ) = 0.1184± 0.0007

8.4 Measurements of the QCD color factors

Because they determine the gauge structure of strong interactions, the color factors are
the most important numbers in QCD, besides αs. Discussing the triple-gluon vertex we
concluded that our observables also allow to test the gauge structure of QCD. We have
already learned that the color factors (for SU(3)) CF = 4/3, CA = 3, and TF = 1/2
measure the relative probabilities of gluon radiation (q → qg), triple gluon vertex (g →
gg), and gluon splitting (g → qq̄).
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Figure 8.32: NNLO, NLO, and LO fits to ALEPH data for the thee-jet rate (a) and
summary of LEP results for αs (b).

The cross section prediction for four-jet events at order α2
s can be shown to be

1

σ0

dσfour-jet

dy
=
α2
sC

2
F

π2

[
σA(y) +

(
1− 1

2

CA
CF

)
σB(y)

+

(
CA
CF

)
σC(y) +

(
TF
CF

nf

)
σD(y) +

(
1− 1

2

CA
CF

)
σE(y)

]

where σi, i = A, . . . , E are kinematic factors independent of the gauge group of QCD.

The combined measurements of the QCD color factors are summarized in Fig. 8.33: Four-
jet and event shape results have been combined accounting for correlations between the
measurements. In addition, constraints on CA/CF from differences between quark and
gluon jets (see p. 177) are included. This yields

CA = 2.89± 0.21

CF = 1.30± 0.09

which is precise to 7% and agrees with the SU(3) values of CA = 3 and CF = 1.33.

8.5 Hadronization

The trouble with hadronization is that perturbative calculations are no longer useful
since αs ceases to be comparatively small at length scales of about the proton radius.
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The ellipses show the correlated measurements using 4-jet events [181, 185] or event

shape distributions [334] while the lines represent the results of determinations of

CA/CF from DELPHI [333] (dashed) and OPAL [320] (solid). The upper solid and

dashed lines overlap. The grey filled ellipsis displays the combined result for CA

and CF (see text). The solid triangle and squares show the expectations for various

assumptions for the gauge symmetry of QCD as indicated on the figure.

QCD as the theory of strong interactions and thus as an integral part of the standard

model of high energy physics.

Studies of differences between quark and gluon jets reveal many properties of the

gauge bosons of QCD, the gluons, which are correctly predicted by the theory. The

measurements of jet production rates and event shape observables using theoretically

and experimentally well behaved observables allow direct tests of advanced perturbative

QCD predictions and precise determinations of the value of the strong coupling constant

αS. A fundamental prediction by QCD is asymptotic freedom of the coupling at high

energies and this has been verified directly using data over a large range of cms energies.

More indirect tests of asymptotic freedom stem from successful comparison of precision

determinations of αS at different energy scales.

The most reliable and precise determinations of αS in e+e− annihilation to hadrons

employ inclusive observables such as the hadronic branching ratios of the gauge bosons of

Figure 8.33: Combined measurements of the color factors CA and CF . The ellipses show
the correlated measurements using four-jet events or event shape distributions while the
lines represent the results of determinations of CA/CF from DELPHI (dashed) and OPAL
(solid). Source: [52, p. 82].



8.5. Hadronization 193

Figure 8.34: Visualization of phenomenological models of hadronization. (LHS) string frag-
mentation: JETSET/PYTHIA; (RHS) Cluster fragmentation: HERWIG. Source: [27, p.
164]

Perturbative QCD is applicable to the transition from the primary partons to a set of
final state partons. This is pictured as a cascading process that is dominated by the
collinear and soft emissions of gluons and mainly light quark-antiquark pairs. By contrast,
phenomenological models are used to describe the non-perturbative transition from these
final state partons to hadrons which then may decay according to further models (recall
Fig. 8.6).

The parameters determining the behavior of the numerical models have to be adjusted
using experimental data. Hadronization can be modeled by string fragmentation (JET-
SET/PYTHIA) or cluster fragmentation (HERWIG). For a visualization of this difference,
see Fig. 8.34.

Fig. 8.35 shows comparisons of simulations to ALEPH data for hadron momentum distri-
butions of the final state: Fig. 8.35(a) shows simulation and data for an inclusive variable
and Fig. 8.35(b) deals with pions, kaons, and protons, respectively.
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(a)

(b)

Figure 8.35: Hadron momentum distributions, ALEPH data and simulation. Inclusive
measurement (a) and differential cross section for pions, kaons, and protons (b) compared
with the predictions of JETSET, HERWIG, and ARIADNE. All observables are shown
as functions of x = phadron/pbeam.
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two-jet event, 47, 158

Källén function, 11
kinematical region, 16
kinematics

relativistic, 7
Klein-Gordon equation, 56
Klein-Nishima formula, 97
Kronecker product, 58

laboratory frame, 10
ladder operators, 65
LEP, 49
lepton

families, 131
number, 131
pair production, 116

LHC, 38, 40
Lie algebra, 127
lifetime, 22

strong vs. weak processes, 135
luminosity, 40

integrated, 42, 112

Mfi, 88
magnet

dipole, 37
quadrupole, 37

Mandelstam variables, 10
mass

invariant, 51
mass-shell condition, 8
missing, 49
rest mass, 51

Maxwell’s equations
Lagrangian, 81

meson, 131, 136, 140
metric (jet algorithms), 162
metric tensor, 7
Møller

flux factor, 13
scattering, 17, 85, 87

momentum
longitudinal, 46

measurement, 44
transverse, 46

Monte Carlo, 191
HERWIG, 166

Neumann series
time evolution operator, 76

neutrino
detection, 49
oscillations, 29
signature, 50

neutron
charge radius, 130
general properties, 132
inner structure, 130

new physics, 102
Newton, 8
normal ordering, 67, 79

vs. time ordering, 79
normalization (state), 67
nucleon, 125
number operator, 66

Ω−, 135
optical theorem, 27

particle
relativistic, 8
zoo, 130

parton
spin, 172

Pauli
exclusion principle, 65

in QCD, 138
matrices, 58, 127

Penning trap, 103
phase space, 24

2→ 2, 24
photon

field operator, 72
gauge field, 99

pion
π0, 52
π+, 8
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polarization
sum, 64
vector, 72

PR,L, 63
probability density, 56
propagator

fermion, 70
corrections, 85

Feynman, 69
photon, 73

corrections, 85
proper time, 7
proton

antiproton production, 32
charge radius, 130
general properties, 132
inner structure, 130

pseudorapidity, 46
PSI, 34, 38

QCD, 5, 99, 125, 153
3-gluon vertex, 144, 175
4-gluon vertex, 145
β-function, 150, 181
covariant derivative, 142
current, 141
effective coupling, 151
experiments overview, 153
gauge group, 176
gluon propagator, 144
in e+e− annihilations, 153
Lagrangian, 142, 144, 179
observables, 159

inclusive, 184
non-inclusive, 184

perturbative regime, 191
strong coupling constant, 179

NNLO prediction, 189
results for αs(MZ), 190
scale dependence, 182

QED, 4, 55, 101
S-matrix, 78

2→ 2, 79
first order, S(1), 82

integral representation, 78
second order, S(2), 83

effective coupling, 149
gauge theory, 98
interaction

Hamiltonian, 81
Lagrangian, 81
timescale, 78

Lagrangian, 80, 99
limits, 122
observables, 98
potential

Coulomb limit, 148
tests, 101

high energy, 108
quantum mechanics, 55
quark, 5, 130

decay, 132
doublets, 131
families, 131
mass effects, 156
model, 130
spin, 172

radiative corrections, 114
reaction channel

s-channel, 15
t-channel, 15

relative velocity, 13
renormalization scale, 181
representation

Dirac, 74
Heisenberg, 74
Schrödinger, 74

resolution, 31
resonance, 121
resummation, 164, 165
ρ, 51

S-operator, 20
unitarity, 26

scalar propagator, 68
scattering

2→ 2, 24
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angle, 12
2→ 2, 12

elastic, 9, 12
angular distribution, 13

Schrödinger equation, 55
Σ±, 53
singularities, 156
slash notation, 59
special relativity

notation, 7
spectroscopic notation, 136
spin, 61

summation, 90
spinor, 58

space
Hamiltonian, 61
operator, 61

strangeness, 132, 133
strong interaction, 125
structure constants, 127
SU(2), 126

adjoint representation, 130
fundamental representation, 128
isospin, 125

SU(3)
adjoint representation, 140
color and flavor, 133
fundamental representation, 139
Lie algebra, 139

SU(N), 126
dimension of su(N), 127
rank, 127

Super-Kamiokande, 29
superposition

principle, 145
Swiss Light Source, 38
symmetry

approximate, 126
crossing, 14
gauge

QED, 98
internal

isospin, 125

unitary, 125
synchrotron, 37

momentum, 38
radiation, 38
radius, 37

Tevatron, 40
luminosity, 42

time evolution operator
interaction picture, 75
perturbation series, 77
properties, 75

time ordering, 71, 76
time ordered exponential, 77
vs. normal ordering, 79

total
decay width, 22

trace theorems, 90

U(1), 98
unit, 2

Heaviside-Lorentz, 4
natural, 3

unitarity, 27

vacuum
polarization, 148
state, 67

vacuum polarization, 149

W boson
decay, 50
discovery, 50
gauge field, 99
production, 50

Wick’s theorem, 80

Yang-Mills theory, 144
Yukawa theory, 5
L′, 129

Z boson, 52
gauge field, 99


