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Chapter 1

Introduction

Literature:

• Halzen/Martin [1]

• Aitchison/Hey [2] (rigorous)

• Seiden [3] (experimental, up to date)

• Nachtmann [4] (difficult to purchase)

Elementary particles are the smallest constituents of matter. Therefore the notion “ele-
mentary” changes with scientific progress (cf. Tab. 1.1).

We can define “elementary” as “having no resolvable inner structure”. This also means
that there can be no excited states. Elementary particles interact in a well-defined way
through fundamental interactions. These are

• gravity,

• electromagnetic interaction,

• weak interaction, and

• strong interaction,

where only the last three are relevant, at the elementary particle level, at energies currently
available. Range of phenomena:

• structure of matter

• stability of matter

3



4 Chapter 1. Introduction

1869 Mendeleev/Meyer periodic system atom
1890 J. Thomson electron
1910 Bequerel/Curie radioactivity atomic nucleus & electron

Rutherford scattering
1932 Chadwick neutron proton, neutron, electron

Anderson positron & their antiparticles
1947 Blackett/Powell pion, muon “particle zoo”
1956 Cowan/Reines neutrino
1967 Glashow/Weinberg/Salam electroweak

theory
1968 SLAC deep inelastic quarks & leptons

scattering
1972 Fritzsch/Gell-Mann/Leutwyler quantum

chromodynamics
1974 SLAC/BNL c quark, τ lepton
1979 DESY gluon
1977 Fermilab b quark
1983 CERN W , Z bosons
1995 Fermilab t quark, ντ

Table 1.1: Historical outline of the concept of “elementarity”

• instability of matter, radioactivity: decay of elementary particles

• scattering of elementary particles

• production of new particles

• indirect implications

– early history of the universe

– fuel cycle in stars

– astrophysical phenomena: supernovae, very high energy cosmic rays

1.1 Units

The Planck constant

~ =
h

2π
= 1.0546 · 10−34 Js (1.1)

has dimension of action and angular momentum. Another important physical constant is
the speed of light

c = 2.998 · 108 m

s
. (1.2)
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Because we are dealing with constants, Eq. (1.1) and (1.2) establish a relationship among
the units for energy, time, and length. Using so-called natural units, i. e. setting ~ = c = 1,
we find

[c] = [length] · [time]−1 = [L][T ]−1 ⇒ [L] = [T ] (1.3)

[~] = [energy] · [time] = [M ][L]2[T ]−1 ⇒ [M ] = [L]−1 (1.4)

⇒ [M ] = [L]−1 = [T ]−1 and [E] = [M ]. (1.5)

This raises the question of a suitable fundamental unit for energy. One electron volt is
the energy acquired by an electron passing a potential difference of 1 V :

1 eV = 1.602 · 10−19 J

keV = 103 eV

MeV = 106 eV

GeV = 109 eV

TeV = 1012 eV.

Examples of some orders of magnitude are

me = 511 keV

mp = 938 MeV

mn = 939 MeV

Ee(LEP) = 104.5 GeV

Ep(Tevatron) = 980 GeV

Ep(LHC) = 7 TeV.

Converting the units for energy, time, and length into each other yields, in agreement
with Eq. (1.5),

~ = 6.58 · 10−25 GeV · s !
= 1⇒ 1 GeV−1 ' 6.58 · 10−25 s , (1.6)

(recall lifetime τ = 1
Γ

with Γ the resonance width), and

c = 2.998 · 108 m

s
!

= 1⇒ 1 fm = 10−15 m ' 1

200 MeV
. (1.7)

Cross sections have dimensions of area:

[σ] = [L]2 = [M ]−2 =
1

(eV)2
. (1.8)

As unit we choose

1

(1 GeV)2
= 389379 nb = 389379 · 10−9 b
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with 1 b : 1 barn = 10−24 cm2 the typical scale of nuclear absorption.

The unit of electrical charge can be defined in different ways. The dimensionless fine
structure constant α is accordingly expressed differently in terms of e in different systems
of units,

α =
e2

4πε0~c

∣∣∣∣∣
SI

= 7.2972 · 10−3 ' 1

137

=
e2

~c

∣∣∣∣∣
CGS

=
e2

4π~c

∣∣∣∣∣
Heaviside-Lorentz

,

and determines the strength of the electromagnetic interaction. Therefore, in Heaviside-
Lorentz units, the electron charge is fixed to be

e =
√

4πα
∣∣∣
HL
. (1.9)

1.2 Elementary interactions

Gravitation. Since

Gm2
p ≈ 10−39

and because of the fact that gravity’s range is infinite, it is relevant for macroscopic
systems (and can be neglected here).

Electromagnetic interaction. Recall that α ' 1
137
. The range of the electromagnetic

interaction is infinite and typical lifetimes of particles decaying through electromagnetic
interactions range from τΣ0→Λ0γ = 10−20 s to τπ0→γγ = 10−16 s. Typical cross sections are of
order σep→ep = 1µb. QED’s (quantum electrodynamics’) predictions have been tested to
high theoretical and experimental precision. Consider for example the anomalous magnetic
moment of the electron:

µQED
e =

e

2me

g

2
=

e

2me

{
1︸︷︷︸

Dirac

+
1

2

α

π︸︷︷︸
Schwinger

− 0.388
α2

π2︸ ︷︷ ︸
Petermann

+ 1.18
α3

π3︸ ︷︷ ︸
Laporta/Remiddi

}

=
e

2me

{
1.0011596521465(270)

}

µexp.
e =

e

2me

{
1.0011596521883(42)

}
,

where the experimental value was obtained by Van Dyck, Schwinberg and Dehmelt.
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�n

ν̄e

e−

p

(a)

�n

ν̄e

e−

p

gW

gWW−W−

(b)

Figure 1.1: Beta decay of neutron. Depicted as a point like process, as described by Fermi’s
constant (a) and via W− boson exchange (b).

Weak interaction. As an example for weak interactions consider β decay: n→ peν̄e: see
Fig. 1.1(a). The range is about 1 fm and for the coupling we have

GFm
2
p ≈ 10−5.

The lifetimes go from 10−10 s to 103 s and cross sections are of order σ ≈ 1 fb. Theoretically,
the process is explained by W− boson exchange, see Fig. 1.1(b), which yields for Fermi’s

constant GF = g2w
8M2

W
.

Strong interaction. At the nuclear level, the Yukawa theory of pion exchange (see
figures 1.2(a) and 1.2(b)) is still used. It explains the bonding of protons and neutrons
by exchange of massive pions: mπ = 130 MeV ⇒ range ' 1

mπ
= 1

130 MeV
' 1.4 fm. QCD

(quantum chromodynamics) states that particles like p, n, and π consist of quarks which
interact through gluons. Gluons (in contrast to photons) carry themselves the charges
they are coupling to which influences the strong interaction’s potential, see fig.1.3. The
QCD coupling constant is approximately given by αs ' 0.12.
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�π+

n

p

p

n

(a)

�
u

d

d

u

u

d

u

d

u

d

u

d

(b)

Figure 1.2: Yukawa theory. Interaction by pion exchange (a) and exchange of quark and
anti-quark (b).

q q q q

V(r)

r

~1/r

~r
~1fm

Figure 1.3: Potential of the strong interaction.



Chapter 2

Relativistic kinematics

Literature:

• Nachtmann [4]

• Hagedorn [5]

• Byckling/Kajantie [6]

We state some notation concerning special relativity:

xµ = (x0 = t, x1, x2, x3) = (t, #»x ) contravariant four-vector (2.1)

xµ = (t,− #»x ) covariant four-vector (2.2)

gµν = gµν =




1
−1

−1
−1


 metric tensor (2.3)

τ 2 = t2 − #»x 2 = gµνx
µxν = xµxµ = x2 Lorentz invariant (2.4)

dτ = dt

√
1−

(d #»x

dt

)2

=
dt

γ
proper time. (2.5)

Combining Eq. (2.1) and (2.5) we arrive at the four-velocity

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γ(1, #»v ).

Since

u2 = γ2(1− #»v 2) = 1 > 0,

9
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u is a time-like four-vector. The four-momentum is then defined as

pµ = muµ = mγ(1, #»v ) = (p0 = E, #»p ).

By calculating the corresponding Lorentz invariant,

p2 = m2u2 = m2 = E2 − #»p 2,

we find the energy-momentum relation

E =
√
m2 + #»p 2. (2.6)

A particle is said to be relativistic if #»p 2 6� m2. Conversely, for a non-relativistic particle,
#»p 2 � m2, and therefore

E =
√
m2 + #»p 2 = m

(
1 +

1

2

#»p 2

m2
+ . . .

)
= m+

1

2

#»p 2

m
+ . . .

so that we recover the expression for | #»v | � 1 of Newtonian mechanics.

2.1 Particle decay

The decaying particle’s four-momentum is, in the rest frame, given by p = (M, 0, 0, 0),
see Fig. 2.1. The decay time (lifetime) is

dτ 2 = dt2(1− #»v 2)

where dt2 is the lifetime in the laboratory frame:

dt = γdτ > dτ. (2.7)

The result stated in equation (2.7) has been verified experimentally:

τπ+→µ+νµ = 2.6 · 10−8 s

Eπ = 20 GeV, γ =
Eπ
mπ

= 143⇔ v = 0.9999

⇒ t′π
tπ

= 143.

Constraints are (i) conservation of energy and momentum, p = p1 + p2 (4 equations), and
(ii) the mass-shell condition, p2

i = m2
i :

p2 = M2 p2
1 = m2

1 p2
2 = m2

2

p = (M,
#»
0 ) p1 = (E1,

#»p 1) p2 = (E2,
#»p 2).
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�p

p2

p1

Figure 2.1: Particle decay. Dynamics will be discussed later on; at the moment we are
dealing with kinematics.

It therefore follows that

p · pi = MEi ⇒ Ei =
1

M
p · pi =

1

M
(p1 · pi + p2 · pi).

And, by using p1 · p2 = 1
2
[(p1 + p2)2 − p2

1 − p2
2] = 1

2
[M2 −m2

1 −m2
2], we find

E1 =
1

M
(p2

1 + p1 · p2) =
1

2M
(M2 +m2

1 −m2
2)

E2 =
1

2M
(M2 −m2

1 +m2
2).

By using equation (2.6) and #»p 1 + #»p 2 = 0, the absolute value of the three-momenta,

#»p 2
1 = E2

1 −m2
1 =

1

4M2

(
M4 − 2M2(m2

1 +m2
2) + (m2

1 −m2
2)2
)

= #»p 2
2,

is also fixed. This means that only the directions of #»p 1 and #»p 2 remain unknown, while
the energies and the absolute values of the momenta can be calculated directly.

2.2 Two-particle scattering

For a visualisation of the process see Fig. 2.2(a). Once again, the constraints are

p2
i = m2

i (i = 1, . . . , 4)

p1 + p2 = p3 + p4.

We talk of elastic scattering if m1 = m3 and m2 = m4. Consider the Lorentz invariants

p2
i = m2

i and p1 · p2, p1 · p3, p1 · p4, p2 · p3, p2 · p4, p3 · p4︸ ︷︷ ︸
6 invariants, 2 linearly independent, 4 linearly dependent

.
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�
p2

p1

p3

p4

(a)

�s
t

2

1

4

3

uu

(b)

Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum
conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom
in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum
transfer squared (negative). Note also that s+ t+ u =

∑4
i=1m

2
i .

The center of mass frame is defined by

#»p 1 + #»p 2 = 0 = #»p 3 + #»p 4. (2.8)

One usually denote variables in this frame with an asterisk: (cm., pi = p∗i ). The laboratory
frame is defined by #»p 2 = 0 (fixed target) and variables are labelled with an L : (lab.,
pi = pLi ). In deep inelastic scattering the Breit system (pi = pBi ) is used, which is defined
by #»p 1 + #»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation
(2.8) leads to

#»p ∗1 = − #»p ∗2 = #»p
#»p ∗3 = − #»p ∗4 = #»p ′

p1 =
(
E∗1 =

√
#»p 2 +m2

1,
#»p
)

p2 =
(
E∗2 =

√
#»p 2 +m2

2,− #»p
)

p3 = (E∗3 ,
#»p ′)

p4 = (E∗4 ,− #»p ′).
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�
#»p − #»p

#»p ′

− #»p ′

Θ∗

4

1 2

3

Figure 2.3: Two-particle scattering in center of mass frame. For the constraints on the
scattering angle Θ∗ see section 2.2.1.

The sum

p1 + p2 = (E∗1 + E∗2︸ ︷︷ ︸√
s

,
#»
0 )

is no Lorentz invariant, whereas

s = (p1 + p2)2 = (E∗1 + E∗2)2

is one. Now we can express E∗i , | #»p |, and | #»p ′| in terms of s (see exercise sheet 1):

E∗1,3 =
1

2
√
s

(s+m2
1,3 −m2

2,4) (2.9)

#»p 2 = (E∗1)2 −m2
1 =

1

4s
λ(s,m2

1,m
2
2), (2.10)

where we have used the Källén function (triangle function) which is defined by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc

=
[
a− (

√
b+
√
c)2
][
a− (

√
b−√c)2

]

= a2 − 2a(b+ c) + (b− c)2.

We can see that the Källén function has the following properties:

• symmetric under a↔ b↔ c and

• asymptotic behavior: a� b, c : λ(a, b, c, )→ a2.
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This enables us to determine some properties of scattering processes. From #»p 2, #»p ′2 > 0
it follows that

smin = max
{

(m1 +m2)2, (m3 +m4)2
}
≥ 0

is the threshold of the process in the s-channel. In the high energy limit (s� m2
i ) Eq. (2.9)

and (2.10) simplify because of the asymptotic behavior of λ and one obtains:

E∗1 = E∗2 = E∗3 = E∗4 = | #»p | = | #»p ′| =
√
s

2
.

2.2.1 Scattering angle

In the center of mass frame, the scattering angle Θ∗ is defined by

#»p · #»p ′ = | #»p | · | #»p ′| cos Θ∗.

We also know that

p1 · p3 = E∗1E
∗
3 − | #»p ∗1|| #»p ∗3| cos Θ∗

t = (p1 − p3)2 = m2
1 +m2

3 − 2p1p3 = (p2 − p4)2

and can derive cos Θ∗ = function(s, t,m2
i ) :

cos Θ∗ =
s(t− u) + (m2

1 −m2
2)(m2

3 −m2
4)√

λ(s,m2
1,m

2
2)
√
λ(s,m2

3,m
2
4)

.

This means that 2→ 2 scattering is described by two independent variables:
√
s and Θ∗ or

√
s and t.

2.2.2 Elastic scattering

We now consider the case of elastic scattering. This means that m1 = m3 and m2 = m4

(e. g. ep→ ep). Therefore Eq. (2.9) and (2.10) simplify:

E∗1 = E∗3 , E
∗
2 = E∗4

| #»p |2 = | #»p ′|2 =
1

4s

(
s− (m1 +m2)2

)(
s− (m1 −m2)2

)

and we find for the scattering angle (in the case of elastic scattering)

t = (p1 − p3)2 = −( #»p 1 − #»p 3)2 = −2 #»p 2(1− cos Θ∗)

⇒ cos Θ∗ = 1 +
t

2| #»p |2 .

Restriction to the physically valid region yields

−1 ≤ cos Θ∗ ≤ 1
#»p 2 ≥ 0

}
⇔
{
−4| #»p |2 ≤ t ≤ 0
s ≥ (m1 +m2)2 .
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2.2.3 Angular distribution

Finally, we find for the angular distribution (bearing in mind that the distribution is
rotationally invariant with respect to the “ #»p -axis” such that

∫
dφ = 2π)

dΩ∗ = 2πd cos Θ∗

dΩ∗

dt
=

4πs√
λ(s,m2

1,m
2
2)
√
λ(s,m2

3,m
2
4)

=
π

| #»p || #»p ′| . (2.11)

2.2.4 Relative velocity

At this point, we introduce the relative velocity, which we will see to be of relevance in
defining the particle flux and hence the collider construction,

v12 = | #»v 1 − #»v 2| =
∣∣∣∣

#»p 1

E1

−
#»p 2

E2

∣∣∣∣ =

∣∣∣∣
#»p ∗1
E∗1
−

#»p ∗2
E∗2

∣∣∣∣ =
| #»p ∗1|
E∗1E

∗
2

(E∗1 + E∗2)︸ ︷︷ ︸√
s

, (2.12)

from which we get,

v12E
∗
1E
∗
2 =
√
s| #»p ∗1| =

√
s
√
E∗21 −m2

1

=
√
s

√
1

4s
(s+m2

1 −m2
2)2 −m2

1

=
√

(p1 · p2)2 −m2
1m

2
2, (2.13)

the so called Møller flux factor. In going from the first line to the second, we used the
definition of the Källén function and in going to the third the fact that s = m2

1+m2
2+2p1·p2.

We stress here that v12E
∗
1E
∗
2 is a frame independent quantity. It appears in the definition

of the incoming particle flux, an thus in the cross section. It also plays an important role
in the normalization issues, since the classical volume element is not Lorentz invariant.

2.2.5 Center of mass and laboratory systems

For the center of mass and the laboratory systems respectively, we have,

CM : s = (E∗1 + E∗2)2 = (total energy)2

L : s = m2
1 +m2

2 + 2m2E
L
1

EL1�m1,m2−→ 2m2E
L
1 .

As an example for the difference, we look at the two operating modes of the Tevatron at
Fermilab (Figure 2.4). The energy of the beam particles is Ebeam = 980 GeV.
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p

p
p

fixed target
m2= mp

Figure 2.4: Sketch of the Tevatron accelerator at Fermilab.

�
2

1

3

4

Ts

Figure 2.5: s-channel.

Used in the pp̄-mode, the collision is head on and we are allowed to consider the problem
in the center of mass frame and,

√
spp̄(Collider) = 1960 GeV,

which is ideal for discovering new phenomena with the highest possible energy.

If on the other hand, the pN -mode is chosen (N is a nucleus in the target), we need to
consider the laboratory frame and we get

√
spN(Fixed target) = 42.7 GeV < mW .

Although this mode is less energetic, it is then possible to create a secondary beam. With
this method, the existence of ντ could be proven.

2.3 Crossing symmetry

The 2 → 2 scattering process has some underlying symmetries, which we shall explore
now.

Example When we exchange p3 and p4, s is not affected but t and u interchange their
roles.

We take now a look at the reaction (Figure 2.5), 1+2→ 3+4, for which the 4-momentum
is conserved :

p1 + p2 = p3 + p4.
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�
p1 −p2
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3

1

4

2

Tt

�

= �
p1 p̄2

p̄3

p4

3

1

4

2

Tt

Figure 2.6: t-channel.

It is called “s-channel” reaction, because the only positive Mandelstam variable is s. Ts
describes the scattering dynamics of the process and will be treated later. It depends
on the three Mandelstam variables and is predicted by theoretically (QED, QCD, EW,
SUSY,...),

Ts(s, t, u) = T (s, t, u)|s>0,t≤0,u≤0. (2.14)

T can then be extended analytically to the whole range s, t, u ∈ R. Depending on the
region, it can then describe different crossed reactions.

For instance, suppose we exchange p2 and p3, we then get naively (Figure 2.6),

p1 + (−p3) = (−p2) + p4.

We now make the interpretation
−pn = pn̄,

in which n̄ stands for the antiparticle of the particle n, leading to the expression (Fig-
ure 2.6),

p1 + p3̄ = p2̄ + p4.

Since 1 and 3̄ are the incoming particles, we speak of the “t-channel” process. One has

Tt(s, t, u) = T (s, t, u)|s≤0,t>0,u≤0. (2.15)

2.3.1 Interpretation of antiparticle-states

As stated above, we interpret particles with 4-momentum −p to be antiparticles with
4-momentum p. The reason for that becomes clear when we look at the 4-current,

jµ
ED
=

(
ρ
#»
j

)
QM
= −e︸︷︷︸

electron charge

i(ϕ∗∂µϕ− ϕ∂µϕ∗).︸ ︷︷ ︸
probability density︸ ︷︷ ︸

charge density

(2.16)
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�
p1

−p2

−p4

p3

4

1

2

3

�

≡ �p4

p1 p3

p2

4̄

1

2̄

3

Figure 2.7: Emission of a positron and absorption of an electron. The emission of a positron
with energy +E is equivalent to the absorption of an electron with energy −E.

Inserting the wave function of the free electron,

ϕ = Ne−ip·x, (2.17)

in the definition of the 4-current Eq. (2.16), one gets

e− with 4-momentum + pµ : jµ(e−) = −2e|N |2pµ = −2e|N |2
(

+E
+ #»p

)
,

e+ with 4-momentum + pµ : jµ(e+) = +2e|N |2pµ = −2e|N |2(−p)µ,

e− with 4-momentum− pµ : jµ(e−) = −2e|N |2(−p)µ = −2e|N |2
(
−E
− #»p

)
,

and hence the rule,

jµ(e+) = jµ(e−) with the subsititution pµ → −pµ . (2.18)

We stress here the fact that the whole 4-vector pµ takes a minus sign, and not only the
spatial part #»p .

What we effectively used here is the fact that in the phase of Eq. (2.17) we can flip the
signs of both pµ and xµ without changing the wave function. There is no place here for
particle travelling backwards in time!

A particle with 4-momentum −pµ is a representation for the corresponding antiparticle
with 4-momentum pµ. Alternatively, one can say that the emission of a positron with
energy +E corresponds to the absorption of an electron with energy −E. Figure 2.7
restates the last sentence as a Feynman diagram.

The three reactions (s-, t- and u-channels) are described by a single function T (s, t, u)
evaluated in the relevant kinematical region (s ≥ 0 or t ≥ 0 or u ≥ 0).

In order to represent the situation, one usually refers to the Dalitz plot 1 (Figure 2.8).

1or equilateral coordinates
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t = tmin

s = sminu = umin

t-channel

u-channel s-channel
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u = 0

t

s
u
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.

Figure 2.8: Dalitz plot of s-, t-, and u-channels.
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Figure 2.9: Møller scattering (a) and Bhabha scattering (b).

Example We take a look at the Møller scattering,

e−e− → e−e−,

which is the s-channel of the reaction depicted on Figure 2.9(a). By crossing, we get as
u-channel reaction the Bhabha scattering,

e+e− → e+e−,

which is the reaction depicted on Figure 2.9(b).

The considerations of this chapter enable us to derive constraints on the possible dynamics
but are not sufficient to decide on the dynamics. To “get” the dynamics we must calculate
and compare to experiments decay rates and scattering cross-sections.
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Chapter 3

Lorentz invariant scattering cross
section and phase space

In particle physics, there are basically two observable quantities :

• Decay rates,

• Scattering cross-sections.

Decay:

�

|i〉�a

p1

p2

pn �

|f〉

Scattering:

�

|i〉�b
a

p1

p2

pn �

|f〉

21
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3.1 S-operator

In both cases |i〉 denotes the initial state, |f〉 denotes a multiparticle final state in a Fock
space and the box represents the dynamics/interactions and is called the S-operator.
The last is predicted by the theory describing the interaction.

Example In QM I/II, S ∝ H ′(t) ∝ V (t) in the first order perturbation theory of the
Schrödinger equation.

S is usually a very complicated object : it contains the information about all possible
transitions |i〉 → |f〉. Another way to state this is to remark that S contains all the
dynamics of the process.

In experiments one does not get/need/want the full S-operator. Instead, one restricts
oneself to specific |i〉 and |f〉 e.g. by choosing the beam particles (muon beam,...) for the
first and looking only at specific outcomes (3-jets events,...) for the latter.

One represents the S-operator by looking at its matrix elements,

∑

f ′

|f ′〉 〈f ′|
︸ ︷︷ ︸

1

S |i〉 =
∑

f ′

|f ′〉 Sf ′i (3.1)

where

Sf ′i = 〈f ′| S |i〉 (3.2)

To isolate a specific outcome |f〉, one multiplies Eq. (3.1) by 〈f |, and gets,

〈f |
∑

f ′

|f ′〉 Sf ′i =
∑

f ′

〈f |f ′〉︸ ︷︷ ︸
=δff ′

Sf ′i = Sfi. (3.3)

Hence, the probability for the process |i〉 → |f〉 is,

P (|i〉 → |f〉) = |Sfi|2 (3.4)

In general we can write,

Sfi = δfi︸︷︷︸
no int.

+ i(2π)4δ(4)(pf − pi)︸ ︷︷ ︸
4-momentum cons.

· Tfi︸︷︷︸
scat. amplitude

, (3.5)

or using a shorthand notation

S = 1 + iT ,
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in Feynman diagrams:

� �

=� �

+�
In the discussion of particle physics, a frequently used quantity is the transition probability
per unit time,

wfi =
|Sfi|2
T

. (3.6)

3.2 Fermi’s golden rule

From Eqs. (3.4) and (3.5), we see that we must address the issue of defining the value of a
squared Dirac δ-function. To do this we use the rather pragmatic approach due to Fermi:

[
2πδ(p0

f − p0
i )
]2

=

∫
dt ei(p

0
f−p0i )t · 2πδ(p0

f − p0
i )

= T · 2πδ(p0
f − p0

i ) (3.7)

[
(2π)3δ(3)( #»p f − #»p i)

]2
=

∫∫∫
d3x ei(

#»p f− #»p i)· #»x · (2π)3δ(3)( #»p f − #»p i)

= V · (2π)3δ(3)( #»p f − #»p i) (3.8)

⇒ wfi =
|Sfi|2
T

= V · (2π)4δ(4)(pf − pi) · |Tfi|2 (3.9)

To talk about the transition rate, we look at a Fock-space with a fixed number of particles.

Experimentally, the angle and energy-momentum is only accessible up to a given accuracy.
We therefore use differential cross-sections in angle dΩ and energy-momentum dp near Ω, p
respectively.

Motivating example In a cubic box of volume V = L3 with infinitely high potential
wells, the authorized momentum-values are discretely distributed.

p =
2π

L
n⇒ dn =

L

2π
dp⇒ d3n =

(
L

2π

)3

d3p,

and hence,

dwfi = V · (2π)4δ(4)(pf − pi) · |Tfi|2 ·
nf∏

f=1

V

(2π)3
d3pf , (3.10)
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where nf stands for the number of particles in the final state.

In order to get rid of normalization factors, we define a new matrix element Mfi by,

Tfi !
=

(
ni∏

i=1

1√
2EiV

)(
nf∏

f=1

1√
2EfV

)
Mfi. (3.11)

At first sight, the apparation of the energies of both the initial and final states might be
surprising. It is however needed in order to compensate the noninvariance of the volume,
so that EV is a Lorentz invariant quantity. From now on we will always normalize our
states to 2E (instead of 1 as is usually the case in nonrelativistic quantum mechanics).

We now substitute the definition (3.11) in Eq. (3.10) to get the fundamentally important
expression,

dwfi =
V 1−ni

(2π)3nf−4
δ(4)(pf − pi) · |Mfi|2 ·

ni∏

i=1

1

2Ei

nf∏

f=1

d3pf
2Ef

. (3.12)

We can then specify this result for the two cases of interest, as we do in the following
subsections.

3.2.1 Total decay rate

In the case where ni = 1, we view wfi as a decay rate for the reaction,

a→ 1 + 2 + · · ·+ nf .

We have

Γa→{nf} = w{f}a (decay width), (3.13)

τa→{nf} =
1

Γa→{nf}
(lifetime), (3.14)

where {nf} stands for the nf -particle final state 1 + 2 + · · ·+ nf .

The next step is the definition of the total decay width,

Γa =
∑

{nf}
Γa→{nf} =

1

2Ea

1

(2π)3nf−4
·
∫
d3p1

2E1

· · · d
3pnf

2Enf
δ(4)(pf − pi)|Mfi|2 , (3.15)

and the lifetime

τa =
1

Γa
(3.16)

We remark that since Ea is not a Lorentz invariant quantity, Γa also depends on the
reference frame. The quantity stated under the name “lifetime” in particle physics listings
is always the lifetime as measured in the rest frame of the particle and is hence always
the shortest one.
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Example Without relativistic time dilation, one would expect the µ leptons generated
by cosmic rays in the high atmosphere and traveling almost at the speed of light to be able
to travel cτµ ≈ 600 m before decaying, making their detection on the earth surface almost
impossible. When one takes time dilation into account, the distance becomes cτµ ≈ 10 km,
which is in accordance with the observed µ leptons number reaching the earth. This was
actually for long the only available test of special relativity.

3.2.2 Scattering cross section

We now analyze the case of ni = 2, i.e. the case of two particles interacting via the
reaction,

a+ b→ 1 + 2 + · · ·+ nf ,

thus getting the scattering cross section σ(a+ b→ 1 + 2 + · · ·nf ) defined by,

σ =
# of transitions a+ b→ 1 + 2 + · · ·nf per unit time

# of incoming particles per unit surface and time
=

wfi
incoming flux

. (3.17)

The denominator can also be stated as,

incoming flux = (number density) · (relative velocity) =
vab
V
.

Using Eqs. (2.12) and (3.17) we then find,

σi→{nf} =
1

4F

1

(2π)3nf−4

∫ ( nf∏

f=1

d3pf
2Ef

)
δ(4)

(
nf∑

f=1

pf − pa − pb
)
|Mfi|2 , (3.18)

in which we see once more the Lorentz invariant Møller flux factor,

F = EaEbvab =
√

(pa · pb)2 −m2
am

2
b

=
1

2

√
(s− (ma +mb)2)(s− (ma −mb)2)

s�m2
a,m

2
b−→ s

2
. (3.19)

From the form of (3.18), we see that the total cross section is manifestly a Lorentz invariant
quantity, since it only depends on Lorentz invariants.

3.2.3 Invariant phase space for nf-particles

We have already seen that the scattering angle is related to the Mandelstam t-variable
(Section 2.2.2).
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In order to make the same statement for multiparticle final states, we define the nf -
particles phase space,

Rnf =

∫
dRnf =

∫
d3p1

2E1

· · · d
3pnf

2Enf
δ(4)

(
nf∑

f=1

pf −
ni∑

i=1

pi

)
. (3.20)

We now prove that Rn is a Lorentz invariant quantity.

d3pi
2Ei

=

∞∫

0

dEiδ(p
2
i −m2

i )d
3pi (3.21)

=

∞∫

−∞

d4pi︸︷︷︸
L.I.

δ(p2
i −m2

i︸ ︷︷ ︸
L.I.

) θ(Ei)︸ ︷︷ ︸
Ei>0 is L.I.

. (3.22)

3.2.4 Differential cross section

In order to get the differential cross section, we define,

tjk := (pj − pk)2 = f(∠( #»p j,
#»p k)), (3.23)

and write

dσ

dtjk
=

1

4F

1

(2π)3nf−4

∫
dRnf |Mfi|2δ(tjk − (pj − pk)2). (3.24)

Starting from this expression, one can deduce differential distributions in all other kine-
matical variables (energies, angles) by expressing those through the tjk’s.

3.3 2→ 2 scattering cross section

Next we turn our attention towards the very important special case of 2→ 2 scattering,
ni = nf = 2:

a+ b→ 1 + 2.

3.3.1 Phase space

First, we take a look at the phase space R2, we see that there are 6 integration variables
and 4 constraints, i.e. we are left with only 2 free parameters. The goal of the next steps
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will be to get rid of the δ-functions.

R2 =

∫
d3 #»p 1

2Ẽ1

d3 #»p 2

2Ẽ2

δ(4)(p1 + p2 − pa − pb)

(3.26)
=

∫
d4p1δ(p

2
1 −m2

1)d4p2δ(p
2
2 −m2

2)θ(E1)θ(E2)δ(4)(p1 + p2 − pa − pb)
(3.27)
=

∫
d4p1δ(p

2
1 −m2

1)δ((pa + pb − p1)2 −m2
2)θ(E1)θ(Ea + Eb − E1)

=

Ea+Eb∫

0

dE1

∞∫

0

| #»p 1|2d| #»p 1|dΩδ(E2
1 − #»p 2

1 −m2
1)δ((pa + pb − p1)2 −m2

2)

(3.28)
=

Ea+Eb∫

0

dE1dΩ

√
E2

1 −m2
1

2︸ ︷︷ ︸∫∞
0 | #»p 1|2δ(E2

1− #»p 2
1−m2

1)d| #»p 1|

δ
(
s− 2(pa + pb) · p1 +m2

1 −m2
2

)
(3.25)

where we have used,

1

2Ẽ1

=

∫
dE1δ(E

2
1 − #»p 2

1 −m2
1)θ(E1), Ẽ1 =

√
m2

1 + #»p 2
1 (3.26)

1 =

∫
d4p2δ

(4)(p1 + p2 − pa − pb), (3.27)

δ(E2
1 − #»p 2

1 −m2
1) =

1

2| #»p 1|


δ
(
| #»p 1| −

√
E2

1 −m2
1

)
+ δ

(
| #»p 1|+

√
E2

1 −m2
1

)

︸ ︷︷ ︸
=0, since | #»p 1|≥0


 . (3.28)

We did not make any assumption about the reference frame up to this point. We now
specify our calculation for the center of mass frame,

#»p a + #»p b = 0⇒ Ea + Eb =
√
s,

bringing Eq. (3.25) into,

R2 =

√
s∫

0

dE∗1dΩ∗
| #»p ∗1|

2
δ(s− 2

√
sE∗1 +m2

1 −m2
2)

=

∫
dΩ∗
| #»p ∗1|
4
√
s

⇒ dR2 =
1

8s

√
λ(s,m2

1,m
2
2)dΩ∗. (3.29)

For the last steps we used Eq. (2.10) and the fact that,

δ(s− 2
√
sE∗1 +m2

1 −m2
2) =

1

2
√
s
δ

(
E∗1 −

1

2
√
s

(s+m2
1 −m2

2)

)
.
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A last step of the calculation can be made if the integrand has no angular dependency:
since we are in the center of mass frame, we then have manifestly a 4π-symmetry and
the scattering angle can take any value, the only restriction being that the two scattered
particles are flying back-to-back in the center of mass frame. Therefore R2 is then simply
the integrand multiplied with the volume of the unit sphere, i.e.

R2 =

∫
dR2 =

π

2s

√
λ(s,m2

1,m
2
2). (3.30)

This simplification always applies for a 1→ 2 decay, but usually not for a 2→ 2 scattering
reaction, where the incoming beam direction breaks the 4π-symmetry.

3.3.2 Differential cross section

Using Eq. (2.11) and (3.24) for nf = 2, we get,

dσ

dΩ∗
=
dσ

dt

dt

dΩ∗
=

| #»p ∗1|
64π2F

√
s
|Mfi|2, (3.31)

resulting in the differential cross section,

dσ

dΩ∗
=

1

64π2s

| #»p ∗1|
| #»p ∗a|
|Mfi|2 , (3.32)

since from Eq. (2.12) F =
√
s| #»p ∗a|.

For the special case of elastic scattering | #»p ∗1| = | #»p ∗a|, we get,

dσel.

dΩ∗
=

1

64π2s
|Mfi|2 . (3.33)

Finally, we write here the invariant differential cross section of a+ b→ 1 + 2 in terms of
invariants for future references,

dσ

dt
=

1

16πλ(s,m2
a,m

2
b)
|Mfi|2

s�m2
1,m

2
2−→ 1

16πs2
|Mfi|2. (3.34)

3.4 Unitarity of the S-operator

We can compute the transition probability from the matrix elements for the transition
|i〉 → |f〉,

|Sfi|2 = | 〈f | S |i〉 |2, (3.35)
∑

f

|Sfi|2 = 1, (3.36)
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where
∑

f stands for

∑

spins, particle types, quantum numbers

∫ ∏

f

(
V

(2π)3
d3pf

)
.

Developing and using the completeness relation,

∑

f

|f〉 〈f | = 1,

we obtain

1 =
∑

f

〈i| S† |f〉 〈f | S |i〉 = 〈i| S†S |i〉 ∀ |i〉

⇒ S†S = 1 , (3.37)

in other words S is a unitary operator.

This important fact has profound implications. We state here two of them.

First, for two orthogonal states |i〉 and |j〉, we have,

〈j| S†S |i〉 = 〈j|i〉 = δij.

The other implication concerns the expression introduced in Eq. (3.5),

Sfi = δfi + i(2π)4δ(4)(pf − pi) · Tfi. (3.38)

For a free theory, Tfi = 0 and hence Sfi = δfi. On the other hand, for an interacting
theory ImSfi 6= 0.

An obvious comparison of the real and imaginary parts of Sfi, tells us that,

Re Tfi ; ImSfi (virtual contribution),

Im Tfi ; ReSfi (absorbtive contribution).

Taking a closer look at the absorbtive contribution, we get,

2iIm Tfi = Tfi − T ∗fi = i(2π)4δ(4)(pf − pi)
∑

n

TfnT ∗in,

where n denotes an intermediate state.

The special case of elastic forward scattering (|f〉 = |i〉 ,Θ∗ = 0) yields the surprising
optical theorem,

ImMii =
√
λ(s,m2

a,m
2
b)σtot , (3.39)
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relating a very specific element of Sfi with the total cross section for the transition |i〉 →
|f〉, which is a measure for the probability for this transition to occur at all.

We can rewrite it symbolically with Feynman diagrams:

Im �
b

a ∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ=0

=
∑

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣�
b

a

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

The computation of the matrix elements Mfi will be treated from Chapter 5 on.



Chapter 4

Accelerators and collider
experiments

This chapter gives an introduction to particle accelerators and detectors as well as to
data analysis tools relevant in this context. This involves the definition and application
of concepts based on the kinematics developed in Chap. 2. Basic principles of particle
accelerators are discussed as well as fixed target and beam collider experiments. The
concepts of center of mass energy, luminosity, cross section, and event rates are introduced,
followed by the basic building blocks of particle physics experiments. In order to be able
to analyze the data gathered with collider experiments, we will introduce the concepts
of rapidity, transverse and missing momentum (applications of momentum conservation)
and invariant mass.

Modern techniques in experimental particle physics can be classified according to their
use of accelerators. Non-accelerator-based experiments (e. g. the setup in Fig. 4.1) include
measurements based on cosmic rays, solar and atmospheric neutrinos, and searches for
dark matter. The latter, together with dark energy, could account for 95% of the universe.
In the case of cosmic rays we can study high energy particles without having to accelerate
them. Advances in neutrino physics have been achieved using large targets of (heavy)
water surrounded by photomultipliers (e. g. Super-Kamiokande: neutrino oscillations).
Accelerator-based experiments, on the other hand, include fixed target experiments and
particle colliders, which are the topic of this chapter. As an example for particle colliders,
the Large Hadron Collider (LHC) is shown in Fig. 4.2 with its four collision sites.

4.1 Particle accelerators: motivations

Particle accelerators are a fundamental tool for research in physics. Their importance
and fields of use can be understood when one considers their main parameter, the beam
energy. If we intend to use accelerators as large “microscopes”, the spatial resolution
increases with beam energy. According to the de Broglie equation, the relation between

31
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Figure 4.1: Example of a non-accelerator-based experiment. Heavy water targets can be
protected from radiation background by installing them in deep-underground facilities.
The target is surrounded by photomultipliers.

Figure 4.2: The Large Hadron Collider at CERN with its four experiments CMS, ATLAS,
LHCb, and ALICE.
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momentum | #»p | and wavelength λ of a wave packet is given by

λ =
h

| #»p | . (4.1)

Therefore, larger momenta correspond to shorter wavelengths and access to smaller struc-
tures. In addition, it is possible to use accelerators to produce new particles. As we have
seen in Chap. 2, this requires the more energy the heavier the particles are. Because beams
are circulated for several hours accelerators are based on beams of stable particles and
antiparticles, such as e+, e− or p, p̄ or e, p (Deutsches Elektronen-Synchrotron, DESY).
There are two possibilities as to what to collide a beam of accelerated particles with:

1. collision with another beam;

2. collision with a fixed target.

In both cases one can study the resulting interactions with particle detectors. By using
a fixed target, one can furthermore produce a beam of secondary particles that may be
stable, unstable, charged or neutral, solving the impossibility of accelerating unstable or
neutral particles directly.

In the search for new sub-structures, Eq. (4.1) is the fundamental relation. It tells us that
the resolution increases as we go to higher energies. For instance the resolution of 1 GeV/c
and 103 GeV/c are:

| #»p | = 1
GeV

c
→ λ = 1.24 · 10−15 m ' size of a proton

| #»p | = 103 GeV

c
→ λ = 1.24 · 10−18 m ' size of proton substructures, e. g. quarks.

Consider now the second scenario mentioned above, namely the search for new particles
with high mass. For a collision of a particle with mass m1 and momentum #»p 1 with another
particle m2,

#»p 2 the energy in the laboratory frame is given by1

EL =
√

#»p 2
1c

2 +m2
1c

4 +
√

#»p 2
2c

2 +m2
2c

4

| #»pL| = | #»p 1 + #»p 2|
E2
L − #»p 2

Lc
2 = E∗2 − #»p ∗2︸︷︷︸

=0

c2

⇒ E∗ =
√
E2
L − #»p 2

Lc
2.

The production energy threshold for particles produced at rest is therefore:

E∗ =
∑

i

mic
2, while Ekin = 0

1Recall that we asterisk quantities given in the center of mass frame. See Sect. 2.2 for labeling con-
ventions.
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where mi is the mass of the i-th particle of the final state. We can conclude that, since
the center of mass energy E∗ grows with the energy in the laboratory frame EL, we can
produce higher masses if we have higher energies at our disposal. This allows to produce
particles not contained in ordinary matter.

Example: As an example, consider inelastic proton collisions. Imagine we want to pro-
duce three protons and one antiproton by colliding a proton beam against a proton target
(e. g. a hydrogen target). The corresponding reaction is

pp→ p̄ppp

where conservation of the baryon number requires the presence of one antiproton in the
final state. What is the minimum momentum of the proton beam for the reaction to take
place? Since particles and antiparticles have the same mass and the target is at rest in
the laboratory frame, we find

m1 = m2 = m = 0.9383
GeV

c2

| #»pL| = | #»p 1|, | #»p 2| = 0

at threshold: E∗ = 4mc2 = 3.7532 GeV

⇒ | #»p 1| = 6.5
GeV

c
.

4.1.1 Center of mass energy

As we have seen, the center of mass energy E∗ is the energy available in collision ex-
periments. We therefore want to compare fixed target and colliding beam experiments
concerning their available energy. In the case of beam-target collision, E∗ is determined
by (with m the mass of both the beam and target particles)

EL =
√

#»p 2
Lc

2 +m2c4 +mc2

E∗2 = M2c4 = E2
L − #»p 2

Lc
2 = 2m2c4 + 2mc2

√
#»p 2
Lc

2 +m2c4.

Setting | #»pL| = pinc and neglecting the mass of the target we get:

E∗ =
√

2mc2pincc = 1.37
√

GeV
√
pincc = 1.37

√
GeV

√
Einc.

This means that, in the case of a fixed target experiment, the center of mass energy grows
only with square root of Einc (see Fig. 4.3).

However, in beam-beam collisions, we find E∗ = ECM = 2Einc. Therefore, it is much more
efficient to use two beams in opposite directions, as the following examples demonstrate
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Figure 4.3: Center of mass energy of the colliding beam for a fixed target experiment. The
energy increases with the square root of the beam energy.

(target is for instance hydrogen):

−−−−→
22 GeV +

←−−−−
22 GeV has the same ECM as

−−−→
1 TeV +mtarget;

−−−→
1 TeV +

←−−−
1 TeV has the same ECM as

−−−−−→
103 TeV +mtarget.

The concept of colliding beams naturally leads to large circular accelerators. But for them
to work properly some technical problems have to be solved. For instance, the particle
density in a beam is much lower than in a solid or liquid target (see also the concept
of luminosity in Sect. 4.3.2). Therefore, one tries to cross the beams many times and
maximize the beam intensities (number of particle bunches per beam). As mentioned
before, this approach only works with stable particles or antiparticles. Furthermore, in
order to avoid beam-gas interactions (unintended fixed target collisions), a high vacuum
is needed in the beam-pipe (about 10−9 Pa). Two beam lines are needed in the particle-
particle case, whereas in the particle-antiparticle case one beam line is sufficient, with the
two beams circulating in opposite directions. Finally, electronics represent another crucial
part of the setup. At a rate of about 40 · 106 collisions per second a fast electronic system
is necessary to decide what collisions to select.

4.2 Acceleration methods

Bearing in mind that an electric field
#»

E produces an accelerating force
#»

F on a charge q,

#»

F = q
#»

E,
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Figure 4.4: Sketch of a circular (left) and linear (right) accelerator. A circular machine
needs to have one acceleration cavity, while a linear machine needs several cavities in
series in order to reach high energies.

one could use an electrostatic field to accelerate charged particles. Since the maximal
available potential difference (cf. Van de Graaff accelerator) is about 10 MV, one can
accelerate particles up to 10 MeV. However, the fact that the electrostatic field is con-
servative (

∮ #»

E · d #»

l = 0) implies that the energy transfer only depends on the potential
difference and not on the path. Therefore, circulating the beam in an electrostatic field
does not lead to an increasing acceleration. The problem is solved by using several times
a small but variable potential difference. This can be done using circular or linear ma-
chines. In a circular accelerator, one can use several times the same acceleration cavity
(see Fig. 4.4, left), whereas in a linear accelerator several cavities in series are needed to
reach high energies (see Fig. 4.4, right). In the case of a circular accelerator, the particles
will receive a certain amount of energy at every turn, provided they are in phase with the
accelerating potential. Because of the inertia principle, one further needs a magnetic field
providing the centripetal force to keep particles on a circular path. An outline of historical
developments in particle accelerators is given in Tab. 4.1. In the following sections, we will
take a more detailed look at two types of accelerators: cyclotrons and synchrotrons.

4.2.1 Cyclotron

The sketch of a cyclotron is shown in Fig. 4.5. Particles are injected in the center and
accelerated with a variable potential while a magnetic field

#»

B keeps them on spiral tra-
jectories. Finally, particles are extracted and used in experiments. Cyclotrons are rather
compact, as one can also see in Fig. 4.6. The maximal energy is of order 20 MeV for cy-
clotrons and up to 600 MeV for synchro-cyclotrons. For a particle moving in the cyclotron
the centripetal and Lorentz forces are balanced:

m
v2

ρ
= qvB (4.2)
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Figure 4.5: Sketch of a cyclotron accelerator. Source: [8, p. 108].

Figure 4.6: A first prototype of a cyclotron (by Lawrence) and the 590 MeV isochronous
cyclotron at PSI.
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Year Accelerator Beam energy
1921 “Kaskadengenerator” (Greinacher)
1924–1928 Concept and first prototype of linear accelerator

(Ising / Wideröe)
1932 First nuclear reaction induced by cascade particle 400 keV protons

accelerator, p7Li→ 2α (Cockroft / Walton)
1930 First Van de Graaff accelerator 1.5 MV
1930–1932 First cyclotron (concept: Lawrence) 1.5 MeV

Upgraded cyclotrons (Synchrocyclotron) 300− 700 MeV
1953 First synchrotron at Brookhaven lab—Cosmotron 3 GeV

(concept: Oliphant / Veksler / McMillan)
1958 Proton Syncrotron (CERN) 28 GeV
1983 Tevatron (Fermilab) 1000 GeV
1990 HERA (DESY): first and only electron-proton collider
2008 Large Hadron Collider (CERN) up to 7000 GeV

Table 4.1: Evolution timeline in particle accelerators (q. v. [7, pp. 9]).

where v is the velocity of the particle, m the mass, q the charge, and ρ the trajectory
radius. This yields for the cyclotron frequency ω

v = ωρ (4.3)

⇒ ω =
qB

m
. (4.4)

The alternating high voltage used to accelerate the particles (see Fig. 4.5) matches the
cyclotron frequency, such that the particles are accelerated when passing the capacitor
between the two half disks, also called as “D’s”. We can also conclude that the radius
of the particle trajectory grows linearly with its momentum. For relativistic particles,
Eq. (4.4) has to be modified:

ω′ =
qB

γm

where γ = 1/
√

1− v2/c2. This modification has, for example, the following effect on the
revolution frequency:

v

c
= 50%⇒ γ = 1.155⇒ ω′ = 0.86ω

v

c
= 99%⇒ γ = 7.1⇒ ω′ = 0.14ω.

Isochronous cyclotrons compensate for the variation in frequency by increasing the mag-
netic field (rather than changing the frequency) with the radius.
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Figure 4.7: Sketch of a synchrotron accelerator. High frequency cavities are used to accel-
erate the particles. Dipole magnets keep them on circular trajectories. Linear accelerators
are used for pre-acceleration and injection. Source: [8, p. 110].

Figure 4.8: Magnets used in synchrotrons. Dipole magnets (left) keep the beam on a
circular path, while quadrupole magnets (right) focus particles in the vertical or horizontal
plane. Source: [8, p. 111].

4.2.2 Synchrotron

In the case of the synchrotron, the trajectory radius is kept constant. This is achieved
by dipole magnets (see Fig. 4.8), while high frequency cavities are used to accelerate
the particles (see Fig. 4.7). The problem of reducing the cross section to increase the
particle density is solved by using quadrupole magnets (see Fig. 4.8). Their focussing and
defocussing properties can be combined in a way as to lead to an overall focussing of the
beam. Starting from Eq. (4.2), we have for the radius ρ

ρ =
p

qB
.
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This yields, setting q = ze (with e the unit charge),

cp[eV] = czBρ = 3 · 108 m

s
zB[T]ρ[m] (4.5)

⇒ p

[
GeV

c

]
= 0.3zB[T]ρ[m] (4.6)

for the momentum.

Example: As an example, we consider the LHC at CERN: With a circumference of
27 km, yielding a radius of 4.3 km, an average magnetic field of 5.4 T is needed to keep
protons with momentum 7 TeV/c on circular trajectories. Magnetic fields of this magni-
tude require very large currents and therefore superconductors which only work at low
temperatures (about 2◦K). The superconducting cables are therefore cooled with liquid
helium.

Particle beams are injected into the vacuum pipe at relatively low energy with the mag-
netic field at its minimal value. Because the particles traverse acceleration cavities at
every turn, the momentum grows accordingly. Since the beam has to be kept on the same
radius, the magnetic filed also has to grow. On the other hand, rising velocity means
changing revolution frequency and the frequency of the potential differences must be kept
in phase with the particles. When maximum momentum is reached the accelerating cavi-
ties are switched off and the beam can be extracted to be used in experimental areas (see
Fig. 4.9) or to be injected in larger synchrotrons (see Fig. 4.10). If the beam remains in
the synchrotron ring it can be steered to cross other beams in collision points.

Another possible application of synchrotrons is to use the synchrotron radiation emit-
ted by circulating beams. For this purpose one uses electrons, since they produce more
synchrotron radiation than hadrons because of their smaller mass. The highly energetic
photons emitted are used for measurements in solid state physics and protein research.
An example is the Swiss Light Source at the Paul Scherrer Institute (Villigen, Switzer-
land), where electrons are pre-accelerated by a 100 MeV linear accelerator, injected into a
synchrotron of 288 m circumference, kept on track by 36 dipole magnets with 1.4 T field,
focussed by 177 quadrupole magnets, for a total beam energy of 2.8 GeV.

4.3 Particle physics experiments

In the following sections we introduce or recapitulate some basic concepts in particle
physics experiments.
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Figure 4.9: Schematic view of a synchrotron. Beams can be extracted and used in several
experimental areas.

Figure 4.10: Accelerator system at CERN. Beams accelerated in linear machines and small
synchrotrons are injected into larger synchrotron rings. Source: [8, p. 113].
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4.3.1 Cross section

For a detailed introduction to the concept of cross section see Sect. 3.2.2. We recall that
cross sections have dimension of area (cm2). The common unit is barn, defined as

1 b = 10−24 cm2.

Until now, we have used the total cross section σ. This is a sum of contributions by many
final states:

σtot =
∑

i

σi.

Example: Results of total cross section measurements for pp and pp̄ collisions are shown
in Fig. 4.11.

4.3.2 Luminosity

While cross sections characterize the scattering process, the luminosity characterizes an
accelerators performance. With cross section σ and number of events per second R, the
luminosity L is given by

R = Lσ. (4.7)

Because the dimension of the cross section is a surface, the units of luminosity are cm−2s−1.

The meaning of luminosity can be illustrated considering e. g. an e+e− accelerator with
N particles per beam, revolving f times per second. We assume a Gaussian shaped beam
with dimensions sx and sy, which yields a transverse size of 4πsxsy. In one turn, one
electron crosses N/(4πsxsy) positrons. Because there are N particles revolving in each
beam f times per second the number of collisions per second is

L =
fN2

4πsxsy
. (4.8)

From Eq. 4.7, the number of events per second is

R =
σfN2

4πsxsy
. (4.9)

From Eq. (4.8) we notice that the luminosity can be increased by reducing the cross
section of the beam, by increasing the number of particles in the beam or by increasing
the revolution frequency.

In general, the luminosity of an accelerator gradually increases over time, while acceler-
ator physicists learn how to operate the machine and to squeeze the beam size at the
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Figure 40.11: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum

and total center-of-mass energy. Corresponding computer-readable data files may be found at

http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, August 2005)

6

Figure 4.11: Total and elastic cross sections for pp and pp̄ collisions as a function of
laboratory beam momentum and total center of mass energy. Source: [9].
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Figure 4.12: Instantaneous luminosity at Tevatron as a function of time (2001 – 2009).
Note that the target luminosity for LHC is 1034 cm−2s−1.

intersection point. For example, the evolution of instantaneous luminosity over time at
Tevatron is shown in Fig. 4.12.

The integral of the delivered luminosity over time is called integrated luminosity and is a
measure of the collected data size. The integrated luminosity delivered by Tevatron until
early 2009 is shown in Fig. 4.13.

Example: Consider an accelerator ring with the following properties:

• Ring length = 100 m;

• Revolution frequency = 3 · 106 Hz = 3 MHz;

• N = 1010 particles;

• sx = 0.1 cm, sz = 0.01 cm.

Using Eq. (4.9), we can calculate L = 1029 cm−2s−1. If we are interested in a rare process,
for example e+e− → pp̄ (the cross section is σ = 1 nb = 10−33 cm2) and have ECM ∼
2− 3 GeV we only expect R = 10−4 events per second or about 0.35 events per hour.
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Figure 4.13: Integrated luminosity at Tevatron as function of time.

4.3.3 Particle detectors

To gather data from experiments carried out at accelerators, we need particle detectors.
They are disposed around the interaction region and detect (directly or indirectly) the
reaction products. Typically, the following measurements are performed on final state
particles:

• Spatial coordinates and timing of final state;

• Momentum;

• Energy;

• Type of particle (particle ID).

Because of kinematical constraints, for fixed target experiments the production of final
states is mainly in the forward direction. Therefore, the detector has to cover only a
small solid angle (see Fig. 4.14). In colliding beam experiments, on the other hand, cylin-
drically symmetric detectors with hermeticity down to small angles are preferred (see
Fig. 4.15). A collider physics experiment has in general tracking detectors in a solenoidal
field surrounded by calorimeters and particle ID detectors (e. g. muon ID). To allow the
momentum measurements, a solenoidal magnetic field is applied parallel to the colliding
beams. The particles trajectories in the magnetic field are measured in the inner layers by
silicon pixel and silicon strip tracking devices. They are surrounded by calorimeters mea-
suring the particles’ energy. The general structure of such a detector, shown in Fig. 4.15,
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Figure 4.14: Schematic view of an experimental setup for a fixed target experiment.

Figure 4.15: Schematic view of a detector for colliding beam experiments.

is also visible in the Compact Muon Solenoid (CMS) experiment at LHC. A sketch of the
CMS experiment is given in Fig. 4.16.

In high energy experiments the momentum measurement is based on the deflection of
charged particles in a magnetic field. Consider a simple case involving a dipole magnet
(Fig. 4.17(a)). One can measure the track direction before and after the bending influence
of the magnetic field to obtain the angle θ. The momentum is derived from Eq. (4.6):

p = 0.3BR

length = l = 2R sin

(
θ

2

)
∼ Rθ

⇒ θ =
length

R
=

0.3Bl

p

⇒ p =
0.3Bl

θ
.

In collider experiments the B field is parallel to the beams, which means that curvature
only happens in the transverse plane (Fig. 4.17(b)). The momentum resolution is given
by

σ(pT)

pT

=
σrφpT

0.3Bl2R

[
720

n+ 4

]− 1
2
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Figure 4.16: The CMS experiment at the LHC.

(a) (b)

Figure 4.17: Momentum measurement in collider experiments using a magnetic field. The
magnetic field is parallel to the beams (orthogonal to the page).
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(a) (b)

Figure 4.18: Axes labelling conventions (a) and definition of transverse momentum (b).
Source: [10].

where σrφ is the error on each measurement point, lR the radial length of the track, and
n the number of equidistant points.

4.4 Kinematics and data analysis methods

In this section we describe the data analysis tools used in collider particle physics experi-
ments discussed in Sect. 4.3. We introduce variables in the laboratory frame and methods
based on momentum conservation and invariant mass. Momentum conservation leads to
the concepts of transverse momentum and missing mass. As examples, we discuss two-
and three-jet events as well as the W boson discovery.

4.4.1 Pseudorapidity and transverse momentum

Consider the collision of two beams in the laboratory frame. The axes labelling conventions
are given in Fig. 4.18(a) (pp̄ scattering). The momentum of each particle produced in a
collision can be decomposed in a component parallel to the beams (longitudinal, along the
z direction) and one perpendicular to the beams (transverse, in the xy plane) as shown
in Fig. 4.18(b). The transverse component of the momentum is given by (Θ∗ ≡ θCM)

pT = p sin(θCM)

and spans an angle φ with the x axis. To measure the longitudinal angle of the emerging
particle jet one usually uses a variable called pseudorapidity η. It is defined by

η = − ln

[
tan

(
θCM

2

)]

and is Lorentz invariant under longitudinal boosts (see Fig. 4.19(a)). Momenta in the
transverse plane are also invariant under longitudinal relativistic transformations. There-
fore, the distance between single particles or jets of particles is usually measured in the
ηφ plane, as shown in Fig. 4.19(b).
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(a) (b)

Figure 4.19: Definition of the longitudinal scattering angle θCM (a) and definition of par-
ticle distance in the η-φ plane (b). Source: [10].
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Figure 4.20: Pseudorapidity as a function of θCM (a) and pseudorapidity for various values
of θCM (b). Source (b): [11].

Particles produced at θCM = 90◦ have zero pseudorapidity. As visualized by Fig. 4.20(a)
and 4.20(b), high |η| values are equivalent to very shallow scattering angles. Typical
coverage of central detectors extends to |η| ∼ 3. Coverage of high rapidities (θCM < 5◦)
can be achieved with detectors placed at large z positions.

4.4.2 Momentum conservation in particle jets

Experiments in hadron colliders usually deal with particles at high transverse momentum.
This is because the incoming particles collide head-on and have no transverse momentum
before scattering and therefore, the final state particles must have zero total transverse
momentum. Processes involving large momentum transfer produce particles in the center
of the detector (small pseudorapidity). An example of such a process is given in Fig. 4.21.
The experimental signature of a two jet event is shown in Fig. 4.22. The calorimeter
measures the deposited energy in cells of the η-φ plane. Both charged and neutral particles
are detected. The histogram shows the energy measured in each cell. Note that the main
signals are symmetric in azimuth and at about zero pseudorapidity. The momentum of
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Figure 4.21: Two jet event production at hadron colliders. Source: [12].

Figure 4.22: Two jet event, reconstructed in the tracking chamber (b) and calorimeter
signals (a) of the DØ experiment.
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Figure 4.23: Two- and three-jet events in e+e− collisions. The rightmost sketch shows the
tracks reconstructed in the central tracking detector.

each charged particle in a jet is measured by the central tracking chamber. Low momentum
components yield smaller bending radii and the total transverse momentum has to be zero.

Electron-positron pairs can annihilate producing quark pairs (see Fig. 4.23(a)). This was
studied for example at the Large Electron-Positron Collider (LEP). In some cases, a gluon
can be radiated from one of the outgoing quarks (see Fig. 4.23(b)). In the latter case one
observes three particle jets in the final state: two quark jets and one gluon jet. If no particle
escapes the detector the three jets must have total transverse energy equal to zero. In the
next section we discuss the case of particles escaping the experiment undetected. This
topic is discussed more thoroughly in Chap. 8.

4.4.3 Missing mass method

A collision is characterized by an initial total energy and momentum (Ein,
#»p in). In the

final state we have n particles with total energy and momentum given by:

E =
n∑

i

Ei, (4.10)

#»p =
n∑

i

#»p i. (4.11)

Sometimes an experiment may measure E < Ein and #»p 6= #»p in. In this case one or more
particles have not been detected. Typically this happens with neutral particles, most often
neutrinos, but also with neutrons, π0, or K0

L. The latter have a long lifetime and may decay
outside the sensitive volume. To quantify this process, we introduce the concept of missing
mass:

missing mass× c2 =
√

(Ein − E)2 − ( #»p in − #»p )2c2. (4.12)

The missing mass is measured for every collision and its spectrum is plotted. If the spec-
trum has a well-defined peak one particle has escaped our detector.
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Figure 4.24: Production and decay of a W+ boson in a pp̄ collision.Volume 122B, number 1 
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Fig. 6. The digitization from the central detector for the tracks in two of the events which have an identified, isolated, well-mea- 
sured high-PT electron: (a) high-multiplicity, 65 associated tracks; (b) low-multiplicity, 14 associated tracks. 

pected number of  events with a "single" e + with PT 
> 20 GeV/c is 0.2 P0 (GeV'), largely independent of  
the composition of  the EM component; P0 is the ef- 
fective momentum below which the low-energy leg of  
the pair becomes undetectable. Very conservatively, 
we can take P0 = 200 MeV/c (curvature radius 1.2 m) 
and conclude that this background is negligible. 

(3) Heavy quark associated production, followed 
by pathological fragmentation and decay configuration, 
such that Q1 -> e(vX) with the electron leading and the 
rest undetected, and Q2 -> v(£X), with the neutrino 
leading and the rest undetected. In 5 nb -1 we have 
observed one event in which there is a muon and an 
electron in separate jets, with p(U) = 4.4 GeV/c and 

112 

Figure 4.25: Event with a W boson decay candidate via W+ → e+ + νe. The event was
recorded by the UA1 experiment (CERN). Source: [13, p. 112].

Example: Consider the decay of W bosons. They can be produced in proton-anti-
proton collisions mainly via the process shown in Fig. 4.24; a u quark collides with an
anti-d quark producing a W+ boson. The W+ then decays into a neutrino-lepton pair.
The muon is detected and its momentum can be measured. The neutrino escapes the
detector undetected. The total sum of the transverse momenta is therefore not zero! In
other words, the experimental signature of the neutrino in the experiment is the missing
transverse momentum. One of the first events [13, p. 112] attributed to production and
decay of a W+ boson is shown in Fig. 4.25. The arrow shows the lepton (e+) and the
missing momentum is compatible with the e+ transverse momentum.

4.4.4 Invariant mass method

The invariant mass is a characteristic of the total energy and momentum of an object or a
system of objects that is the same in all frames of reference. When the system as a whole
is at rest, the invariant mass is equal to the total energy of the system divided by c2. If
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Figure 4.26: Event distribution for invariant mass of the pion pair in the process pp →
ppπ+π−. The sparse pions’ (left) distribution is broad and can be predicted using simula-
tion techniques. The invariant mass of the pion pairs stemming from ρ0 decay (center) is
peaked around mρ. All pions contribute to the recorded events (right).

the system is one particle, the invariant mass may also be called the rest mass:

m2c4 = E2 − #»p 2c2.

For a system of N particles we have

W 2c4 =

( N∑

i

Ei

)2

−
( N∑

i

#»p ic

)2

(4.13)

where W is the invariant mass of the decaying particle. For a particle of Mass M decaying
into two particles, M → 1 + 2, Eq. 4.13 becomes:

M2c4 = (E1 + E2)2 − ( #»p 1 + #»p 2)2c2 = m2
1c

4 +m2
2c

4 + 2(E1E2 − #»p 1 · #»p 2c
2) = (p1 + p2)2.

Example: Particles like ρ, ω, φ have average lifetime of 10−22−10−23 s. How do we know
of their existence if they live so shortly? Consider, for example, the reaction pp→ ppπ+π−.
We identify all four particles in the final state and measure their momentum. Let’s focus
on the pion pair, the total energy and momentum of the pair are:

E = E+ + E−
#»p = #»p+ + #»p−.

The corresponding invariant mass is

Mc2 =
√
E2 − #»p 2c2.

The event distribution for the variable M will look like the plot in Fig. 4.26. The peak in
the event rate at mρ is evidence for ρ production.
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Figure 4.27: Z0 boson discovery at the UA1 experiment (CERN). The Z0 boson decays
into a e+e− pair, shown as white dashed lines.

Example: Another example illustrating this point is the Z discovery in 1984. Fig. 4.27
shows an event where the Z boson, after production by proton-proton collision decays
into an e+e− pair (white dashed lines). The invariant mass of the pair is about 92 GeV.

Example: Consider now the π0 reconstruction. Neutral pions decay in photon pairs in
about 99% of the cases. By measuring the angle and energy of the emitted photons (see
Fig. 4.28) one can reconstruct the mass of the decaying pion (see Fig. 4.29).

Figure 4.28: π0 decay in two photons. Σ denotes the laboratory frame (left) and Σ∗ denotes
the pion rest frame (right). Source [8, p. 95].
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Figure 4.29: Invariant mass spectrum for photon pairs. The π0 appears as a peak at the
pion mass.

Example: In case of three body decays, R→ 1 + 2 + 3, one can define three invariant
masses:

m2
12c

4 ≡ (p1 + p2)2

m2
13c

4 ≡ (p1 + p3)2

m2
23c

4 ≡ (p2 + p3)2.

This yields

m2
12 +m2

13 +m2
23 = m2

1 +m2
2 +m2

3 + (p1 + p2 + p3)2 1

c4

= m2
1 +m2

2 +m2
3 +M2.

This means that there are only two independent invariant masses.

As an example, let’s study the reaction:

K−p→ Λπ+π− (Λ→ π−p).

We can measure two invariant masses:

m12 ≡ m(Λπ−) and m13 ≡ m(Λπ+).

The so-called “Dalitz plot” given in Fig. 4.30 shows the relation between m2
13 and m2

12.
The Σ± resonances appear as two bands in the Dalitz plot around 1.4 GeV.
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Figure 4.30: Dalitz plot for K−p→ π+π−Λ (Λ→ π−p). Source: [8, p. 200].



Chapter 5

Elements of quantum
electrodynamics

5.1 Quantum mechanical equations of motion

In quantum mechanics I & II, the correspondence principle played a central role. It is in
a sense the recipe to quantize a system whose Hamiltonian is known. It consists in the
following two substitution rules :

#»p 7−→ −i∇ (momentum), (5.1)

E 7−→ i∂t (energy). (5.2)

For nonrelativistic quantum mechanics we get the celebrated Schrödinger equation,

i∂tψ = Hψ, with H = − 1

2m
4+ V ( #»x ), (5.3)

whose free solution (V ( #»x ) ≡ 0) is,

ψ( #»x , t) = Ce−i(Et−
#»p · #»x ) with E =

#»p 2

2m
.

The relativistic version of the energy-momentum relationship is however,

E2 = #»p 2 +m2, (5.4)

from which we get, using again the correspondence principle Eq. (5.1),

−∂2
t ψ = (−4+m2)ψ. (5.5)

57
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At this point we define some important symbols which will follow us troughout the rest
of this lecture,

∂µ := (∂t,∇), (5.6)

∂µ := gµν∂ν = (∂t,−∇), (5.7)

� := ∂µ∂
µ = ∂2

t −4. (5.8)

With this notation we can then reformulate Eq. (5.5) to get the Klein-Gordon equation,

(
�+m2

)
ψ = 0 , (5.9)

with solutions,

ψ( #»x , t) = Ce−i(Et−
#»p · #»x ) with E = ±

√
#»p 2 +m2.

We see that in this case it is possible to have negative energy eigenvalues, a fact not
arising with the nonrelativistic case.

As in the case of the Schrödinger equation (5.3) we can formulate a continuity equation. To
do so we multiply the Klein-Gordon equation (5.9) by the left with ψ∗ and its conjugate,
(�+m2)ψ∗ = 0, by ψ and then subtract both equations to get,

0 = ψ∗∂µ∂µψ − ψ∂µ∂µψ∗
= ∂µ(ψ∗∂µψ − ψ∂µψ∗)
⇒ ∂t(ψ

∗∂tψ − ψ∂tψ∗) +∇ · (ψ∗∇ψ − ψ∇ψ∗) = 0. (5.10)

We would like to interpret ψ∗∂tψ − ψ∂tψ∗ in Eq. (5.10) as a probability density, or more
exactly,

ρ = i(ψ∗∂tψ − ψ∂tψ∗),

which is not a positive definite quantity (as we can convince ourselves by computing ρ for
the plane wave solution), and hence cannot be interpreted as a probability density as it
was the case in QM.

When computing the continuity equation for the Schrödinger equation, where such a
problem does not arise, we see that the problem lies essentially in the presence of a second
order time derivative in the Klein-Gordon equation.

We now make a big step, by imposing that our equation of motion only contains a first
order time derivative. Since we want a Lorentz invariant equation of motion, we conclude
that only a linear dependence on ∇ is allowed. Following Dirac’s intuition, we make the
ansatz,

(iγµ∂µ −m)ψ = (iγ0∂t + i #»γ · ∇ −m)ψ = 0. (5.11)
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Turning back to the correspondence principle we remark that,

(γ0E − #»γ · #»p −m)ψ = 0 (5.12)

⇒ (γ0E − #»γ · #»p −m)2ψ = 0,

which must stay compatible with the mass-shell relation, E2 = #»p 2 +m2.

This implies that the γµ’s cannot be numbers since it would then be impossible to satisfy,

( #»γ · #»p )2 =

(
3∑

i=1

γipi

)2

!∝ #»p 2,

so we let them be n× n matrices, for an n which is still to be determined.

We now derive relations that the γµ’s must fullfill, so that the mass-shell relation remains
true. From Eq. (5.12), and again with the correspondence principle, we must have,

i∂t︸︷︷︸
E

=(γ0)−1 #»γ · (−i∇)︸ ︷︷ ︸
#»p

+(γ0)−1m

⇒ −∂2
t︸︷︷︸

E2

=−
3∑

i,j=1

1

2

(
(γ0)−1γi(γ0)−1γj + (γ0)−1γj(γ0)−1γi

)
∂i∂j (5.13)

− i ·m
3∑

i=1

(
(γ0)−1γi(γ0)−1 + (γ0)−1(γ0)−1γi

)
∂i (5.14)

+m2(γ0)−1(γ0)−1 (5.15)

!
=(∂i∂i +m2) (5.16)

=(−4︸︷︷︸
#»p 2

+m2).

Comparing Eqs. (5.16) and (5.15) we conclude that,

(γ0)−1(γ0)−1 !
= 1⇒ (γ0)−1 = γ0. (5.17)

Defining {a, b} := ab+ ba and comparing Eq. (5.16) and Eq. (5.14) we get

γ0γi(γ0)−1 !
= 0⇒ {γi, γ0} = 0. (5.18)

Finally, comparing Eq. (5.16) and Eq. (5.13), we have,

−1

2

(
(γ0)−1γi(γ0)−1γj + (γ0)−1γj(γ0)−1γi

) !
= δij ⇒ {γi, γj} = −2δij. (5.19)
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We can summarize Eqs. (5.17), (5.18) and (5.19) in the Clifford algebra of the γ-
matrices,

{γµ, γν} = 2gµν1 , (5.20)

where g00 = 1, gii = −1 and all the other elements vanish.

Important facts : The eigenvalues of γ0 can only be ±1 and those of γi ±i and the
γ-matrices have vanishing trace :

Tr γi = Tr (γ0γ0γi) = −Tr (γ0γiγ0) = −Tr γi ⇒ Tr γi = 0,

Tr γ0 = Tr (γ0γi(γi)−1) = −Tr (γiγ0(γi)−1) = −Tr (γ0)⇒ Tr γ0 = 0.

The eigenvalue property of γ0 implies with the last equation that the dimension n of the
γ-matrices must be even.

For n = 2 there are no matrices satisfying Eq. (5.20), as can be checked by direct compu-
tation.

For n = 4 there are many possibilities. The most common choice in textbooks is the
Dirac-Pauli representation :

γ0 = 1⊗ σ3 =

(
1 0
0 −1

)
, γi = σi ⊗ (iσ2) =

(
0 σi

−σi 0

)
, (5.21)

with the Pauli matrices,

σ0 = 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and the Kronecker product of 2× 2-matrices,

A⊗B =

(
b11A b12A
b21A b22A

)
.

Looking at the Dirac equation

(iγµ∂µ −m)ψ = 0 (5.22)

we see that ψ is no longer a function but a vector, called (4-)spinor,

ψ =




ψ1

ψ2

ψ3

ψ4


 .

For 4-spinors, there are two types of adjoints, namely,
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• the hermitian adjoint ψ† = (ψ∗1, ψ
∗
2, ψ

∗
3, ψ

∗
4), and

• the Dirac adjoint ψ̄ := ψ†γ0 = (ψ∗1, ψ
∗
2,−ψ∗3,−ψ∗4).

Note that ψ̄ satisfies a dirac equation of its own,

i∂µψ̄γ
µ +mψ̄ = 0. (5.23)

We now focus our attention on the continuity equation for the Dirac field. From Eqs. (5.22)
and (5.23),

iψ†(∂tψ) =
(
−iψ†γ0γi∂i + ψ†γ0m

)
ψ,

and its hermitian conjugate,

−i(∂tψ†)ψ =
(
i(∂iψ

†)γ0γi + ψ†γ0m
)
ψ,

we get the difference,

∂t(ψ
†ψ) = −

[
(∂iψ

†)γ0γiψ + ψ†γ0γii(∂iψ)
]
,

∂t(ψ̄γ
0ψ) = −∂i(ψ̄γiψ). (5.24)

We identify the components as,

ρ = ψ̄γ0ψ,
#»
j = ψ̄ #»γ ψ,

or interpreting them as components of a 4-vector as in classical electrodynamics,

jµ = ψ̄γµψ, (5.25)

we see that Eq. (5.24) can be reexpressed in the manifestly covariant form,

∂µj
µ = 0 . (5.26)

5.2 Solutions of the Dirac equation

Before we look at the solutions of the free Dirac equation, we introduce the slash notation
for contraction with the γ-matrices : /a := γµaµ. The Dirac equation then reads (i/∂−m)ψ =
0.
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5.2.1 Free particle at rest

In the rest frame of a particle, the Dirac equation reduces to,

iγ0∂tψ = mψ,

for which we find four linearly indepedent solutions, namely,

ψ1 = e−imt




1
0
0
0


 , ψ2 = e−imt




0
1
0
0


 , E = m (particles)

ψ3 = e+imt




0
0
1
0


 , ψ4 = e+imt




0
0
0
1


 , E = −m (antiparticles).

5.2.2 Free particle

In order to preserve the Lorentz invariance of a solution, it must only depend on Lorentz
scalars – quantities which are invariant under Lorentz transformations – like p ·x = pµx

µ.
We make the ansatz,

ψ1,2 = e−ip·xu±(p), p0 > 0

ψ3,4 = e+ip·xv∓(−p), p0 < 0.

Pluging those ansatz in the Dirac equation, we get,

(/p−m)u±(p) = ū±(/p−m) = 0, (5.27)

(/p+m)v±(p) = v̄∓(/p+m) = 0, (5.28)

where we replaced −p 7→ p in the second equation, having thus p0 > 0 in both cases now.

5.2.3 Explicit form of u and v

As checked in the exercices, the explicit form for the u and v functions are,

u±(p) =
√
p0 +m

(
χ±

#»σ · #»p
p0+m

χ±

)
, (5.29)

v±(p) =
√
p0 +m

( #»σ · #»p
p0+m

χ∓
χ∓

)
, (5.30)
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where χ+ =

(
1
0

)
corresponds to a “spin up” state and χ− =

(
0
1

)
to a “spin down”

state.

We note on the way that the application,

#»p 7−→ #»σ · #»p = σipi =

(
p3 p1 − ip2

p1 + ip2 −p3

)
,

defines an isomorphism between the vector spaces of 3-vectors and hermitian 2 × 2-
matrices.

5.2.4 Operators on spinor spaces

Hamiltonian The Hamiltonian is defined by i∂tψ = Hψ. Isolating the time derivative
in the Dirac equation, Eq. (5.22), we read out,

H = −iγ0γi∂i + γ0m =

(
m1 #»σ · #»p

#»σ · #»p −m1

)
. (5.31)

Helicity The helicity is the compenent of the spin in the direction of motion #̂»p :=
#»p
| #»p | ,

and is defined by,

h =
1

2
#»σ · #̂»p ⊗ 1 =

1

2

(
#»σ · #̂»p 0

0 #»σ · #̂»p

)
. (5.32)

By direct computation, one can check that [H, h] = 0, and thus there exist a set of eigen-
functions diagonalizing H and h simultaneously. The eigenvalues of h are then constants
of the motion and hence good quantum numbers to label the corresponding states.

This quantum number λ can take two values,

λ =

{
+1

2
positive helicity ! #»s �� #»p ,

−1
2

negative helicity ! #»s �� #»p .
(5.33)

We stress here that helicity/handedness is not a Lorentz invariant quantity for massive
particles.

Consider #»p in the z-direction, then,

1

2
#»σ · #̂»p χ± =

1

2
σ3χ± = ±1

2
χ±.

From the last argumentative steps, we are not surprised with the statement that the Dirac
equation describes spin-1

2
particles.
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Chirality Consider the Dirac equation for the case of massless particles. This is a good
approximation for E � m, which is often the case in accelerator experiments. Setting
m = 0 simplifies Eq. (5.22) leading to

iγµ∂µψ = 0.

Eq. (5.29) and (5.30) change accordingly. We consider for now the particle solutions u±:

u±(p) =
√
| #»p |
(

χ±
#»σ · #»p
| #»p | χ±

)
=
√
| #»p |
(
χ±
±χ±

)
. (5.34)

It is convenient to define the so-called chirality matrix γ5:

γ5 = iγ0γ1γ2γ3

which in the Dirac-Pauli representation reads

γ5 =

(
0 1

1 0

)
.

Using that the γ-matrices fulfill {γµ, γν} = 2gµν (see Eq. (5.20)), one can show that

{γ5, γ
µ} = 0 and (5.35)

γ2
5 = 1. (5.36)

These properties of γ5 imply that if ψ is a solution of the Dirac equation then so is γ5ψ.
Furthermore, since γ2

5 = 1 the eigenvalues of the chirality matrix are ±1:

γ5ψ± = ±ψ±

which defines the chirality basis ψ±.

Let us apply the γ5 matrix to the spinor part of particle solutions of the free Dirac equation
given in Eq. (5.34):

γ5u±(p) =

(
0 1

1 0

)√
| #»p |
(
χ±
±χ±

)
=
√
| #»p |
(
±χ±
χ±

)
(5.37)

= ±
√
| #»p |
(
χ±
±χ±

)
= ±u±(p). (5.38)

A similar calculation shows that for the antiparticle solutions

γ5v±(p) = ∓v±(p). (5.39)

Therefore, the helicity eigenstates for m = 0 are equivalent to the chirality eigenstates.
Results (5.38) and (5.39) lead to the notion of handedness (which is borrowed from chem-
istry):
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• u+ describes a right handed particle:
−−→
spin �� #»p e− and

• v+ describes a left handed antiparticle:
←−−
spin �� #»p e+

where the converse holds for u− and v−.

Exploiting the eigenvalue equations (5.38) and (5.39), one can define the projectors

PR
L

=
1

2
(1± γ5). (5.40)

They project to u±, v± for arbitrary spinors. For example we have

PLu± =
1

2
(1− γ5)u± =

1

2
(1∓ 1)u± =

{
0
1u−

.

To show that Eq. (5.40) indeed defines projectors, we check (using Eq. 5.36) for idempo-
tence,

P 2
R
L

=
1

4
(1± γ5)(1± γ5) =

1

4
(1± 2γ5 + γ2

5) =
1

2
(1± γ5) = PR

L

,

orthogonality,

PRPL =
1

4
(1 + γ5)(1− γ5) =

1

4
(1− γ2

5) = 0,

and completeness,

PR + PL = 1.

Note that the projectors PL and PR are often used to indicate the chirality basis:

uL,R = PL,Ru

vL,R = PL,Rv.

What has been derived so far rests on the assumption that the mass be zero. In this
case, chirality is equivalent to helicity which is also Lorentz invariant. If, on the other
hand m 6= 0, chirality and helicity are not equivalent: In this case chirality, while Lorentz
invariant, is not a constant of the motion,

[γ5, HDirac] 6= 0,

and therefore not a good quantum number. Helicity though is a constant of the motion,
but, since spin is unaffected by boosts, it is not Lorentz invariant for non-vanishing mass:
For every possible momentum #»p in one frame of reference there is another frame in
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L transformation
�p �p

Figure 5.1: Helicity for the case of non-vanishing mass.

Chirality Helicity

γ5 = iγ0γ1γ2γ3 h( #̂»p ) = 1
2

#»σ · #̂»p ⊗ 1

m = 0
Constant of motion
Lorentz invariant

3

3

3

3

m 6= 0
Constant of motion
Lorentz invariant

7

3

3

7

Table 5.1: Chirality and helicity.

which the particle moves in direction − #»p /| #»p | (see Fig. 5.1). A comparison of chirality
and helicity is given in Tab. 5.1.

Although chirality is not a constant of the motion for m 6= 0, it is still a useful concept
(and becomes important when one considers weak interactions). A solution of the Dirac
equation ψ can be decomposed:

ψ = ψL + ψR

where ψL and ψR are not solutions of the Dirac equation. The W vector boson of the
weak interaction only couples to ψL.

As for the normalization of the orthogonal spinors (5.29) and (5.30), the most convenient
choice is:

ūs(p)us′(p) = 2mδss′

v̄s(p)vs′(p) = −2mδss′

where s, s′ = ±.
Using ψ̄ = ψ†γ0, one can show that the following completeness relations (or polarization
sum rules) hold:

∑

s=±
us(p)ūs(p) = /p+m (5.41)

∑

s=±
vs(p)v̄s(p) = /p−m. (5.42)

Comparing these polarization sums with, for instance, the Dirac equation for u, Eq. (5.27),
one sees that /p+m projects on the subspace of particle solutions.
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5.3 Field operator of the Dirac field

The spinors

us(p)e
−ip·x, eigenvalues Ep = +

√
| #»p |2 +m2, and

vs(−p)eip·x, eigenvalues Ep = −
√
| #»p |2 +m2,

are eigenfunctions of the Dirac Hamiltonian and therefore solutions of the Dirac equation.
From these solutions we can deduce the field operator of the Dirac field (which fulfills the
Dirac equation) 1:

ψ(x) =

∫
d3p

(2π)3

1√
2p0

∑

s=±

{
as(

#»p )us(p)e
−ip·x + b†s(

#»p )vs(p)e
ip·x
}

(5.43)

ψ̄(x) =

∫
d3p

(2π)3

1√
2p0

∑

s=±

{
a†s(

#»p )ūs(p)e
ip·x + bs(

#»p )v̄s(p)e
−ip·x

}
(5.44)

where

a†s(
#»p ) : creation operator of particle with momentum #»p

b†s(
#»p ) : creation operator of antiparticle with momentum #»p

as(
#»p ) : annihilation operator of particle with momentum #»p

bs(
#»p ) : annihilation operator of antiparticle with momentum #»p .

In advanced quantum mechanics we have seen that field operators create or annihilate po-
sition eigenstates. The field operator in Eq. (5.44) does the same thing while furthermore
consistently combining the equivalent possibilities for particle creation and antiparticle an-
nihilation: a†s(

#»p ) creates individual particle momentum eigenstates from which a weighted
superposition is formed, the integral over bs(

#»p ) on the other hand, annihilates a weighted
superposition of antiparticles. Since the creation of a particle at position x is equivalent
to the annihilation of its antiparticle at position x, both terms have to appear in the field
operator ψ̄(x). Because we have to consider particles and antiparticles, here the energy
spectrum is more complicated than in the pure particle case. The creation terms come
with a positive-sign plane wave factor eip·x while the annihilation terms contribute e−ip·x.
The equivalence of particle creation and antiparticle annihilation is to be understood in
the sense that they lead to the same change in a given field configuration.

The Dirac field is a spin-1/2 field. Therefore, the Pauli exclusion principle must hold,
imposing anti-commutation relations on the field operators:

{ψ( #»x , t), ψ( #»x ′, t)} = {ψ̄( #»x , t), ψ̄( #»x ′, t)} = 0

{ψ( #»x , t), ψ̄( #»x ′, t)} = γ0δ3( #»x − #»x ′).

1The normalization is chosen to avoid an explicit factor 2p0 in the anticommutators of the fields and
of the creation and annihilation operators.
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Because of Eq. (5.43) and (5.44), this implies for the creation and annihilation operators

{a†r( #»p ), a†s(
#»p ′)} = {ar( #»p ), as(

#»p ′)} = 0

{b†r( #»p ), b†s(
#»p ′)} = {br( #»p ), bs(

#»p ′)} = 0

{ar( #»p ), a†s(
#»p ′)} = δrs(2π)3δ3( #»p − #»p ′)

{br( #»p ), b†s(
#»p ′)} = δrs(2π)3δ3( #»p − #»p ′).

As an example for the relation of field operator and ladder operator anti-commutation
relations, we calculate {ψ( #»x , t), ψ̄( #»x ′, t)}, assuming anti-commutation relations for the
creation and annihilation operators:

{ψ( #»x , t), ψ̄( #»y , t)}

=

∫
d3pd3 #»q

(2π)6

1√
2p02q0

∑

r,s

[
eip·xe−iqyvr(p)v̄s(q){b†r( #»p ), bs(

#»q )}

+ e−ip·xeiqyur(p)ūs(q){ar( #»p ), a†s(
#»q )}

]

=

∫
d3p

(2π)3

1

2p0

[
e−i

#»p ( #»x− #»y )
∑

s

vs(p)v̄s(p) + ei
#»p ( #»x− #»y )

∑

s

us(p)ūs(p)
]

which, using the completeness relations, Eq. (5.41) and (5.42),

=

∫
d3p

(2π)3

1

2p0

[
e−i

#»p ( #»x− #»y )(p0γ0

︸︷︷︸
even

− #»p · #»γ︸ ︷︷ ︸
odd

−m) + ei
#»p ( #»x− #»y )(p0γ0

︸︷︷︸
even

− #»p · #»γ︸ ︷︷ ︸
odd

+m)
]

= γ0

∫
d3p

(2π3)
ei

#»p ( #»x− #»y ) = γ0δ3( #»x − #»y ).

However, in the laboratory one prepares in general (to a first approximation) momentum
eigenstates, rather than position eigenstates. Therefore, we give the expression2 for the
momentum operator:

P µ =

∫
d3k

(2π)3
kµ
∑

s

(
a†s(

#»

k )as(
#»

k ) + b†s(
#»

k )bs(
#»

k )
)

which is just the momentum weighted with the number operator N = a†a+b†b. Using the
anti-commutation relations for the ladder operators, one can show that the momentum
operator fulfills the following useful commutation relations:

[P µ, a†s(
#»p )] = pµa†s(

#»p )

[P µ, b†s(
#»p )] = pµb†s(

#»p )

[P µ, as(
#»p )] = −pµas( #»p )

[P µ, bs(
#»p )] = −pµbs( #»p ).

2This expression is obtained from Noether’s theorem using the technique of normal ordering. These
topics are discussed in text books on quantum field theory, e. g. by Peskin/Schroeder [14].
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Vacuum state The vacuum state is denoted by |0〉 and has the property 3,

P µ |0〉 = 0, (5.45)

i.e. the vacuum has no momentum.

Using the commutation relations stated above and the property (5.45), we conclude that,

P µa†s(
#»p ) |0〉 = pµa†s(

#»p ) |0〉 , (5.46)

in other words, the state a†s(
#»p ) |0〉 is an eigenstate of P µ with momentum pµ.

With this fact in mind, we define the following states,

∣∣e−(p, s)
〉

=
√

2E #»p a
†
s(

#»p ) |0〉 , (5.47)
∣∣e+(p, s)

〉
=
√

2E #»p b
†
s(

#»p ) |0〉 , (5.48)

of a particle respectively antiparticle with momentum eigenstate p and spin s.

The factor
√

2E #»p is there in order to ensure a Lorentz invariant normalization,

〈e−(q, r)|e−(p, s)〉 = 2
√
E #»qE #»p 〈0| ar( #»q )a†s(

#»p ) |0〉
= 2
√
E #»qE #»p 〈0|

{
ar(

#»q ), a†s(
#»p )
}
− a†s( #»p ) ar(

#»q ) |0〉︸ ︷︷ ︸
=0

= δrs2E #»p (2π)3δ(3)( #»q − #»p ).

The definition of states (5.47) and (5.48) corresponds to a continuum normalization in
infinite volume. From the above equation, it can be seen that the dimensionality of the
one-particle norm 〈e−(p, s)|e−(p, s)〉 is,

(energy)

(momentum)3
= (energy) · (volume),

meaning that we have a constant particle density of 2E particles per unit volume. To
obtain single particle states in a given volume V , one must therefore multiply |e−(p, s)〉
with a normalization factor 1/

√
2EV :

∣∣e−(p, s)
〉

single-particle
=

1√
2EV

∣∣e−(p, s)
〉

(5.49)

∣∣e+(p, s)
〉

single-particle
=

1√
2EV

∣∣e+(p, s)
〉

(5.50)

3After applying the nontrivial concept of normal ordering, here only motivated by the number inter-
pretation in the operator Pµ.



70 Chapter 5. Elements of quantum electrodynamics

Figure 5.2: Integration paths for Dirac propagator.

5.4 Dirac propagator

In order to solve general Dirac equations, we want to apply a formalism similar to the
one used in classical electrodynamics, namely Green’s functions.

We introduce the scalar propagator,

∆±(x) = ±1

i

∫
d3p

(2π)32p0
e∓ip·x

= ±1

i

∫
d4p

(2π)3
δ(p2 −m2)e∓ip·x, (5.51)

which satisfies the Klein-Gordon equation,

(�+m2)∆±(x) = 0.

Representation as a contour integral

∆±(x) = −
∫

C±

d4p

(2π)4

e−ip·x

p2 −m2
, (5.52)

where the paths C± are depicted in Fig. 5.2.
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Figure 5.3: Deformed integration paths and +iε convention.

5.4.1 Feynman propagator

To get a “true” Green’s function for the operator �+m2, we need to introduce a discon-
tinuity, and define the Feynman propagator

∆F (x) = θ(t)∆+(x)− θ(−t)∆−(x), (5.53)

where we deform the paths of Fig. 5.3 according to the sign of t = x0 to get convergent
integrals over the real line (details can be found in a complex analysis book, see e.g.
Freitag & Busam [15]) :

• x0 > 0, Im p0 < 0⇒ e−ip
0x0 R→∞−→ 0 : C+,

• x0 < 0, Im p0 > 0⇒ e−ip
0x0 R→∞−→ 0 : C−.

+iε convention Instead of deforming the integration path, one can also shift the two
poles and integrate over the whole real p0-axis, without having to worry about the poles,

p0 = ±
√

#»p 2 +m2 −→ ±(
√

#»p 2 +m2 − iη),
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yielding

∆F (x) = lim
ε→0+

∫
d4p

(2π)4

e−ip·x

p2 −m2 + iε
, (5.54)

the Green’s function of the Klein-Gordon equation,

(�+m2)∆F (x) =

∫
d4p

(2π)4
e−ip·x

−p2 +m2

p2 −m2
= −δ(4)(x). (5.55)

Propagator A propagator is the transition amplitude of a particle between creation
at xµ and annihilation at x′µ (or vice-versa). It is a fundamental tool of quantum field
theory.

After getting the Feynman propagator for the Klein-Gordon field (spin 0), we want to
focus on the propagator for fermions (spin 1/2).

We compute the anticommutation relations for the field in this case getting,

{ψ(x), ψ̄(x′)} =

∫
d3pd3p′

(2π)6
√

2p0
√

2p′0

∑

r,s

[
ei(p·x−p

′·x′)vr(p)v̄s(p
′){b†r(p), bs(p′)}

e−i(p·x−p
′·x′)ur(p)ūs(p

′){ar(p), a†s(p′)}
]

=

∫
d3p

(2π)32p0

[
eip·(x−x

′)(/p−m) + e−ip·(x−x
′)(/p+m)

]

=(i/∂ +m)

∫
d3p

(2π)32p0

(
e−ip·(x−x

′) − eip·(x−x
′)
)
, (5.56)

where we made use of the completeness relations (5.41) and (5.42) in going from the first
to the second line.

We now define the Feynman fermion propagator,

iS(x− x′) ≡ (i/∂ +m)(∆+(x− x′) + ∆−(x− x′)). (5.57)

Splitting ψ and ψ̄ in their creation ψ−, ψ̄ − and annihilation ψ+, ψ̄ + parts (looking only
at the operators a†s, b

†
s and as, bs respectively), we get the comutation relations,

{ψ+(x), ψ̄ −(x′)} = (i/∂ +m)∆+(x− x′) = iS+(x− x′), (5.58)

{ψ−(x), ψ̄ +(x′)} = (i/∂ +m)∆−(x− x′) = iS−(x− x′). (5.59)

S±(x− x′) can as well be represented as contour integrals,

S±(x) =

∫

C±

d4p

(2π)4
e−ip·x

/p+m

p2 −m2
=

∫

C±

d4p

(2π)4
e−ip·x

1

/p−m
, (5.60)
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which is well defined because (/p+m)(/p−m) = (p2 −m2)1.

We take a look at the time ordered product of fermion operators,

T (ψ(x)ψ̄(x′)) =

{
ψ(x)ψ̄(x′), t > t′

−ψ̄(x′)ψ(x), t′ > t

= θ(t− t′)ψ(x)ψ̄(x′)− θ(t′ − t)ψ̄(x′)ψ(x).

The Feynman fermion propagator is then the vacuum expectation value of this time
ordered product,

iSF (x− x′) = 〈0|T (ψ(x)ψ̄(x′)) |0〉 . (5.61)

Remembering the destroying effect of annihilation operators on the vacuum, we can skip
some trivial steps of the calculation. We look separately at both time ordering cases,
getting,

〈0|ψ(x)ψ̄(x′) |0〉 = 〈0|ψ+(x)ψ̄ −(x′) |0〉 = 〈0| {ψ+(x), ψ̄ −(x′)} |0〉 = iS+(x− x′),
〈0| ψ̄(x′)ψ(x) |0〉 = 〈0| ψ̄ +(x′)ψ−(x) |0〉 = 〈0| {ψ̄ +(x′), ψ−(x)} |0〉 = iS−(x− x′),

yielding,

SF (x) = θ(t)S+(x)− θ(−t)S−(x) = (i/∂ +m)∆F (x), (5.62)

or, as a contour integral,

SF (x) =

∫

CF

d4p

(2π)4
e−ip·x

1

/p−m
= lim

ε→0+

∫
d4p

(2π)4
e−ip·x

/p+m

p2 −m2 + iε
. (5.63)

We then see that the fermion propagator is nothing else than the Green’s function of the
Dirac equation,

(i/∂ −m)SF (x) =

∫
d4p

(2π)4
e−ip·x

(/p−m)(/p+m)

p2 −m2
= δ(4)(x)1. (5.64)

The interpretation of SF is then similar to the one of the Green’s function in classical
electrodynamics:

t > t′ t′ > t

�

x′ creation

x annihilation

�

x creation

x′ annihilation

We can ask ourselves why the time ordering procedure is important. In scattering pro-
cesses both orderings are not distinguishable (see Fig. 5.4) in experiments, so that we can
understand as a sum over both time ordering possibilities.
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�
iS+(x− x′)

x

x′ �−iS−(x− x′)
+

x

x′ �iSF (x− x′)=

x

x′

Figure 5.4: Sum of both time orderings

5.5 Photon field operator

After being able to describe free scalar fields (Klein-Gordon, spin 0) and free fermion fields
(Dirac, spin 1/2), we go on to vector fields (spin 1) like the one describing the photon.
The photon field will be shown to have a fundamental importance in QED since it is the
interaction field between fermions.

To start, we recall the photon field operator of advanced quantum mechanics, which reads
in Coulomb gauge,

#»

A(x) =
∑

α=1,2

∫
d3k

(2π)3

1√
2ωk

(
aα(

#»

k ) #»ε α(
#»

k )e−ik·x + a†α(
#»

k ) #»ε ∗α(
#»

k )eik·x
)
. (5.65)

In Eq. (5.65), a†α(
#»

k ) creates a photon of momentum
#»

k and polarization α, and aα(
#»

k )
destroys the same.

Since we are dealing with a bosonic field, we impose the commutation relations,

[aα(
#»

k ), a†β(
#»

k ′)] = −gαβ(2π)3δ(3)(
#»

k − #»

k ′), (5.66)

[aα(
#»

k ), aβ(
#»

k ′)] = [a†α(
#»

k ), a†β(
#»

k ′)] = 0. (5.67)

Supposing that the photon propagates in the z-direction (kµ = (k, 0, 0, k)>), we have the
following possibilites for the polarization vectors :

• linear : εµ1 = (0, 1, 0, 0)>, εµ2 = (0, 0, 1, 0)>,

• circular : εµ+ = 1√
2
(εµ1 + iεµ2) = 1√

2
(0, 1, i, 0)>, εµ− = 1√

2
(εµ1 − iεµ2) = 1√

2
(0, 1,−i, 0)>.

These vector sets satisfy the completness relation,

Πµν =
∑

λ = ±
(or λ = 1, 2)

ε∗µλ ε
ν
λ =




0
1

1
0


 . (5.68)
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By applying a well chosen boost to Πµν we can easily check that it is in general not
Lorentz invariant. We have to choose a specific gauge depending on the reference frame,
parametrized by a real number n.

To do so we define a auxiliary vector nµ = n(1, 0, 0,−1)> satisfying nσk
σ = 2kn and get

the “axial gauge”,

Πµν = −gµν +
nµkν + kµnν

nσkσ
. (5.69)

For n = 1, we recover the Coulomb gauge,

Πµν =




−1
1

1
1


+




1
0

0
−1


 =




0
1

1
0


 .

In physical processes, the photon field couples to an external current,

jµ(x) = jµ(k)eik·x,

and we have the current conservation,

∂µj
µ = 0,

which yields in Fourier space,

kµj
µ = 0,

and thus,

jµΠµν = jνΠ
µν = 0,

i.e. the nµkν + kµnν term vanishes when contracted with external currents, such that we
are left with an effective polarization sum,

pµνeff = −gµν . (5.70)

We now look at the time ordered product of photon field operators,

T (Aµ(x)Aν(x
′)) =

{
Aµ(x)Aν(x

′), t > t′

Aν(x
′)Aµ(x), t′ > t

. (5.71)

Repeating the same steps as in the fermion case, we get the photon propagator,

iDF,µν(x− x′) = 〈0|T (Aµ(x)Aν(x
′)) |0〉 (5.72)

= −igµν∆F (x− x′) (5.73)

= −igµν lim
ε→0+

∫
d4k

(2π)4

e−ik·x

k2 + iε
. (5.74)

Finally, we see that the photon propagator is the Green’s function of the wave equation,

�DF,µν(x) = gµνδ
(4)(x). (5.75)
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5.6 Interaction representation

In the previous sections, we have gained an understanding of the free fields occurring in
QED. The next step is to introduce a way to handle interactions between those fields.

Idea: decompose the Hamiltonian in the Schrödinger representation,

HS = H0,S +H ′S,

and define states and operators in the free Heisenberg representation,

ψI = eiH0,StψS

OI = eiH0,StOSe−iH0,St,

and you get the interaction representation (also called Dirac representation).

We have, in particular,

H0,I = H0,S = H0, (5.76)

and the time evolution of ψI respectively OI becomes,

i∂tψI = H ′IψI , (5.77)

i∂tOI = −H0OI +OIH0 = [OI , H0], (5.78)

i.e. ψI is influenced only by the “true” interaction part; the “trivial” time evolution (free
part) has been absorbed in the operators OI .

Comparison The Schrödinger, Heisenberg, and interaction representations differ in the
way they describe time evolution:

• Schrödinger representation: states contain time evolution, operators are time inde-
pendent;

• Heisenberg representation: states are time independent, operators contain time evo-
lution;

• Interaction representation: time dependence of states only due to interactions, free
(also called “trivial”) time evolution for operators.

This comparison shows that the interaction representation is a mixture of both other
representations.
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5.6.1 Time evolution operator

In preparation for time-dependent perturbation theory, we consider the time evolution
operator U(t, t0) in the interaction representation:

ψI(t) = U(t, t0)ψI(t0). (5.79)

The time evolution operator in Eq. (5.79) can be written in terms of the free and in-
teraction Hamiltonians, Eq. (5.76), in the Schrödinger representation by using the time
evolution properties:

ψI(t) = eiH0tψS(t) = eiH0te−iHS(t−t0)ψS(t0) = eiH0te−iHS(t−t0)e−iH0t0ψI(t0).

Comparing this result with Eq. (5.79) yields

U(t, t0) = eiH0te−iHS(t−t0)e−iH0t0 . (5.80)

An interaction picture operator is related by

OH(t) = U †(t, t0)OIU(t, t0)

to its Heisenberg picture equivalent.

Because of Eq. (5.80) the time evolution operator has the following properties:

• U(t0, t0) = 1,

• U(t2, t1)U(t1, t0) = U(t2, t0),

• U−1(t0, t1) = U(t1, t0), and

• U †(t1, t0) = U−1(t1, t0) = U(t0, t1).

5.6.2 Time ordering

To find the time evolution operator, the time evolution (Schrödinger) equation

i
∂

∂t
U(t, t0) = H ′IU(t, t0) (5.81)

has to be solved. This is equivalent to the integral equation

U(t, t0) = 1 + (−i)
t∫

t0

dt1H
′
I(t1)U(t1, t0)
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which can be iterated to give the Neumann series

U(t, t0) = 1+(−i)
t∫

t0

dt1H
′
I(t1) (5.82)

+(−i)2

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2) (5.83)

+ . . . (5.84)

+(−i)n
t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtnH
′
I(t1) . . . H ′I(tn). (5.85)

This is not yet satisfactory since the boundary of every integral but the first depends
on the foregoing integration. To solve this problem, one uses time ordering. Let us first
consider the following identities:

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2) =

t∫

t0

dt2

t∫

t2

dt1H
′
I(t1)H ′I(t2)

=

t∫

t0

dt1

t∫

t1

dt2H
′
I(t2)H ′I(t1)

where in the first line the integration domains are identical (see Fig. 5.5) and in going to
the second line the variable labels are exchanged. We can combine these terms in a more
compact expression:

2

t∫

t0

dt1

t1∫

t0

dt2H
′
I(t1)H ′I(t2)

=

t∫

t0

dt2

t∫

t2

dt1H
′
I(t1)H ′I(t2) +

t∫

t0

dt1

t∫

t1

dt2H
′
I(t2)H ′I(t1)

=

t∫

t0

dt1

t∫

t0

dt2

(
H ′I(t1)H ′I(t2)θ(t1 − t2) +H ′I(t2)H ′I(t1)θ(t2 − t1)

)

=

t∫

t0

dt1

t∫

t0

dt2T
(
H ′I(t1)H ′I(t2)

)
.



5.6. Interaction representation 79

t1

t

t

t

2

t0

t0

Figure 5.5: Identical integration domains.

All terms of the Neumann series can be rewritten in this way. For the n-th term in
Eq. (5.85) we have

n!

t∫

t0

dt1 . . .

tn−1∫

t0

dtnH
′
I(t1) . . . H ′I(tn)

=

t∫

t0

dt1 . . .

t∫

t0

dtnT
(
H ′I(t1) . . . H ′I(tn)

)
.

We therefore obtain the following perturbation series4 for the time evolution operator:

U(t, t0) =
∞∑

n=0

1

n!
(−i)n

t∫

t0

dt1 . . .

t∫

t0

dtnT
(
H ′(t1) . . . H ′(tn)

)
. (5.86)

Defining the time ordered exponential, Eq. (5.86) can be written as

U(t, t0) = T exp

(
− i

t∫

t0

dt′H ′(t′)

)
. (5.87)

4We are working in the interaction picture and drop the index I for simplicity.
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We check that this result indeed solves the time evolution equation (5.81):

i
∂

∂t
U(t, t0) = i

∞∑

n=1

1

n!
(−i)nn

t∫

t0

dt1 . . .

t∫

t0

dtn−1

T
(
H ′(t0) . . . H ′(tn−1)H ′(t)

)

= H ′(t)
∞∑

n=1

1

(n− 1)!
(−i)n−1

t∫

t0

dt1 . . .

t∫

t0

dtn−1

T
(
H ′(t0) . . . H ′(tn−1)

)

= H ′(t)U(t, t0).

5.7 Scattering matrix

Our overall aim is to develop a formalism to compute scattering matrix elements which
describe the transition from initial states defined at t → −∞ to final states observed
at t → +∞. To this end, we split up the Hamiltonian into a solvable free part which
determines the operators’ time evolution and an interaction part responsible for the time
evolution of the states. Now we investigate how the time ordered exponential that is the
time evolution operator, see Eq. (5.87), relates to the S-matrix.

The scattering matrix element 〈f | S |i〉 is the transition amplitude for |i〉 → |f〉 caused
by interactions. The state of the system is described by the time dependent state vector
|ψ(t)〉 . The above statement about asymptotically large times can now be recast in a
more explicit form: The initial state is given by

lim
t→−∞

|ψ(t)〉 = |φi〉

where |φi〉 is an eigenstate of the free Hamilton operator and t → −∞ is justified since
the interaction timescale is about 10−15 s. The scattering matrix element Sfi is given by
the projection of the state vector |ψ(t)〉 onto a final state |φf〉:

Sfi = lim
t→+∞

〈φf |ψ(t)〉 = 〈φf | S |φi〉 .

Using the time evolution operator (and its action on a state, see Eq. (5.79)), this can be
expressed as

Sfi = lim
t2→+∞

lim
t1→−∞

〈φf |U(t2, t1) |φi〉 .

We can therefore conclude that

S = U(+∞,−∞) =
∞∑

n=0

1

n!
(−i)n

∞∫

−∞

dt1 . . .

∞∫

−∞

dtnT
(
H ′(t1) . . . H ′(tn)

)
. (5.88)
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As an instructive example, we consider 2→ 2 scattering:

k1 + k2 → k3 + k4.

The scattering matrix element is given by

Sfi = 〈f | S |i〉 = 〈0| a(k4)a(k3)︸ ︷︷ ︸
〈φf |

|S| a†(k1)a†(k2) |0〉︸ ︷︷ ︸
|φi〉

.

The S-operator itself consists of further creation and annihilation operators belonging
to further quantum fields. By evaluation of the creators and annihilators in S (using
commutation or anticommutation relations), it follows that there is only one single non-
vanishing contribution to Sfi being of the (“normally ordered”) form

f(k1, k2, k3, k4)a†(k3)a†(k4)a(k2)a(k1).

Note that in the above expression, the annihilation operators stand on the right hand
side, while the creation operators are on the left. Such expressions are said to be in
normal order and are denoted by colons, : ABC : . Since the aim is to find the non-
vanishing contributions, a way has to be found how time ordered products can be related
to products in normal order. For instance, consider the time ordered product of two Boson
field operators (where A+, B+ are annihilators and A−, B− creators)5

T
(
A(x1)B(x2)

)∣∣∣
t1>t2

= A(x1)B(x2)

= A+(x1)B+(x2) + A−(x1)B+(x2)

+ A+(x1)B−(x2)︸ ︷︷ ︸
not in normal order

+A−(x1)B−(x2).

5The ± sign is motivated by the decomposition of field operators in positive and negative frequency
parts:

φ(x) = φ+(x) + φ−(x).

Consider for example the Klein-Gordon field where

φ(x) =

∫
d3p

(2π)3
1√
2p0

(
a(p)e+i

#»p · #»x + a†(p)e−i
#»p · #»x

)

and therefore

φ+(x) =

∫
d3p

(2π)3
1√
2p0

a(p)e+i
#»p · #»x

φ−(x) =

∫
d3p

(2π)3
1√
2p0

a†(p)e−i
#»p · #»x .
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One can observe that only one of the above terms is not in normal order while the other
three would vanish upon evaluation in 〈0| · |0〉 . Using

A+(x1)B−(x2)︸ ︷︷ ︸
not in normal order

= B−(x2)A+(x1)︸ ︷︷ ︸
in normal order

+ [A+(x1), B−(x2)]︸ ︷︷ ︸
c-number

,

we rewrite

[A+(x1), B−(x2)] = 〈0| [A+(x1), B−(x2)] |0〉
= 〈0|A+(x1)B−(x2) |0〉
= 〈0|T (A(x1)B(x2)) |0〉 .

Since the same holds for t1 < t2, we draw the conclusion

T
(
A(x1)B(x2)

)
= :A(x1)B(x2) :+ 〈0|T (A(x1)B(x2)) |0〉 .

An analogous calculation for fermion operators yields the same result.

The next step towards Feynman diagrams is to formalize this connection between time
and normal ordered products. We first define the following shorthand

φA(x1)φB(x2) = 〈0|T (φA(x1)φB(x2)) |0〉

which is called contraction of operators. This allows to state the following in compact
notation.

Wick’s theorem: The time ordered product of a set of operators can be decomposed
into the sum of all corresponding contracted products in normal order. All combinatorially
allowed contributions appear:

T (ABC . . .XY Z) = :ABC . . .XY Z :

+:AB C . . .XY Z :+ · · ·+:ABC . . .XY Z :+ · · ·+:ABC . . .X Y Z :

+:AB CD . . .XY Z :+:ABCD . . .XY Z :+ . . .

+:threefold contractions :+ . . . .

5.8 Feynman rules of quantum electrodynamics

The Lagrangian density of QED is given by

L = LDirac
0 + Lphoton

0 + L′
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where the subscript 0 denotes the free Lagrangian densities and ′ denotes the interaction
part. In particular, we have

LDirac
0 = ψ̄(i/∂ −m)ψ (5.89)

Lphoton
0 = −1

4
FµνF

µν (5.90)

L′ = −eψ̄γµψAµ = −jµAµ (5.91)

where F µν = ∂µAν − ∂νAµ. Note that from Lphoton
0 the free Maxwell’s equations can be

derived using the Euler-Lagrange equations. Using Lphoton
0 +L′ yields Maxwell’s equations

in the presence of sources and LDirac
0 + L′ does the same for the Dirac equation. The

interaction term L′ describes current-field interactions and therefore couples the fermions
described by the Dirac equation to photons described by Maxwell’s equations.

Using Eq. (5.91), one finds the quantized interaction Hamiltonian density

H′ = −L′ = eψ̄γµψA
µ.

Integrating the interaction Hamiltonian density over all space yields the interaction Hamil-
tonian,

H ′ =

∫
d3 #»xH′,

and, in the integral representation of S given in Eq. (5.88), this leads to integrations over
space-time:

S =
∞∑

n=0

1

n!
(−ie)n

∫
d4x1 . . . d

4xnT
(
ψ̄(x1)γµ1ψ(x1)Aµ1 . . . ψ̄(xn)γµnψ(xn)Aµn

)
. (5.92)

Since e =
√

4πα (see Eq. (1.9)), the coupling constant appears in the interaction term and
n-th order terms are suppressed with en. This means that we found an expansion of S in
the small parameter e which is the starting point for perturbation theory. The structure
of the n-th term in the perturbation series in Eq. (5.92) is

S(n) =
1

n!

∫
d4x1 . . . d

4xnSn (5.93)

where

Sn =
∑

contractions

K(x1, . . . , xn) : . . . ψ̄(xi) . . . ψ(xj) . . . A(xn) : . (5.94)

For a specific scattering process, the relevant matrix element is

Sfi = 〈f |︸︷︷︸
∼a

S |i〉︸︷︷︸
∼a†
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� � � � �
� � �

Figure 5.6: First order contributions S(1). These processes violate energy-momentum con-
servation and are therefore unphysical.

which means that only terms in S matching 〈f | · |i〉 yield contributions to the transition
amplitude. The following field operators, which constitute the Feynman rules in position

space, are contained in S (
−−−→
time ).

ψ+(x) absorption of electron at x �
x

ψ̄+(x) absorption of positron at x �
x

ψ̄−(x) emission of electron at x �
x

ψ−(x) emission of positron at x �
x

A+(x) absorption of photon at x �
x

A−(x) emission of photon at x �
x

ψ(x2)ψ(x1)

= iSF (x2 − x1)
Fermion propagator �

x1 x2

Aµ(x2)Aν(x1)

= iDµν
F (x2 − x1)

photon propagator �
x1 x2

−ieψ̄(x)γµψ(x)Aµ(x)
= −ieγµ · vertex at x

vertex at x �
x

The S-operator at order n is examined using Wick’s theorem. At fist order, this yields
(remembering Eq. (5.92) while ignoring disconnected contributions from Wick’s theorem)
the following 23 = 8 contributions:

S(1) = −ie
∫
d4xT (ψ̄(x)γµψ(x)Aµ(x)) = −ie

∫
d4x : ψ̄(x)γµψ(x)Aµ(x) : .

There is a total of 8 possible combinations, since Aµ creates or annihilates a photon, ψ̄
creates an electron or annihilates a positron, and ψ creates a position or annihilates an
electron. Fig. 5.6 shows the corresponding Feynman diagrams.

However, all these processes are unphysical because they violate energy-momentum con-
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servation:

± pe+ ± pe− ± pγ 6= 0

which is because free particles fulfill

p2
e+ = m2

e p2
e− = m2

e p2
γ = 0.

To find physical contributions to the interaction Hamiltonian, we turn to the second order
contributions to S (see Eq. (5.92)):

S(2) =
1

2!
(−ie)2

∫
d4x1d

4x2T
(
ψ̄(x1)γµ1ψ(x1)Aµ1(x1)ψ̄(x2)γµ2ψ(x2)Aµ2(x2)

)
.

Application of Wick’s theorem yields contraction terms. We first note that contractions
of the form

ψ(x1)ψ(x2) ψ(x1)ψ(x2)

vanish because they contain creators and annihilators, respectively, for different particles
and thus

〈0|T (ψ(x1)ψ(x2)) |0〉 = 0.

The remaining terms read, using shorthands like ψ̄(x1) = ψ̄1,
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S(2) = (−ie)2
2!

∫
d4x1d

4x2

{

: ψ̄1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (a)

+: ψ̄1γµ1 ψ1ψ2 γµ2ψ2A
µ1
1 A

µ2
2 : �x2

x1

(b)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1

x2

(c)

+: ψ̄1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1 x2

(d)

+: ψ̄1γµ1 ψ1ψ2 γµ2ψ2A
µ1
1 A

µ2
2 : �x2

x1

(e)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : �x1

x2

(f)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (g)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (h)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (i)

+:ψ1γµ1ψ1ψ2γµ2ψ2A
µ1
1 A

µ2
2 : � (j)

+:ψ1γµ1ψ1 ψ2γµ2ψ2A
µ1
1 A

µ2
2 :
}
. � (k)
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It follows a discussion of the contributions (a) through (k).

(a) Independent emission or absorption. These diagrams violate energy-momentum con-
servation.

(b)&(c) Processes involving two electrons or positrons and two photons.

1. Compton scattering: γe− → γe−, γe+ → γe+

� �
2. Electron-positron pair annihilation: e+e− → γγ

�
e+

e−

Aµ2

Aµ1

�
e+

e−

Aµ2

Aµ1

3. Electron-positron pair creation: γγ → e+e−

�
Aµ2

Aµ1

e+

e−

�
Aµ2

Aµ1

e+

e−

(d) Processes involving four electrons or positions.

1. Møller scattering: e−e− → e−e−, e+e+ → e+e+

�
e−

e−

e−

e−

�
e−

e−

e−

e−

2. Bhabha scattering: e+e− → e+e−

�
e−

e+

e+

e−

�
e−

e+

e−

e+
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(e)&(f) No interaction between external particles. No scattering takes place, these terms are
corrections to the fermion propagator.

(g) Correction to photon propagator.

(h)&(i) Corrections to fermion propagator, vanishing.

(j)&(k) Vacuum → vacuum transitions, disconnected graphs.

This constitutes a list of all known processes (for practical purposes) in S(2); in general,
we can find all processes by examining all orders of the scattering matrix operator S.
The S-matrix elements are defined as matrix elements between single-particle states.
Consequently, we need to apply the norm (5.49) repectively (5.50) to external states. The
invariant amplitudesMfi, which are derived from the S-matrix elements according to Eq.
(3.11) properly account for this normalization factor, and are evaluated for continuum
states as defined in Eq. (5.47) and Eq. (5.48).

The contractions of the field operators (see Eq. (5.43) and (5.44)) with external momentum
eigenstates (as given in Eq. (5.49) and (5.50)) are for electrons

ψ(x)
∣∣e−(p, s)

〉
single-particle

=
1√

2EpV

∫
d3k

(2π)3

1√
2Ek

∑

r

ar(k)ur(k)e−ik·x
√

2Epa
†
s(p) |0〉

=
1√

2EpV
e−ip·xus(p) |0〉

〈
e−(p, s)

∣∣
single-particle

ψ̄(x) =
1√

2EpV
e+ip·x 〈0| ūs(p),

for positrons

ψ̄(x)
∣∣e+(p, s)

〉
single-particle

=
1√

2EpV
e−ip·xv̄s(p) |0〉

〈
e+(p, s)

∣∣
single-particle

ψ(x) =
1√

2EpV
e+ip·x 〈0| vs(p),

and for photons

Aµ(x) |γ(k, λ)〉 =
1√

2EkV
e−ik·xελµ(k)

〈γ(k, λ)|Aµ(x) =
1√

2EkV
e+ik·xε∗λµ (k).
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Example We treat the case of Møller scattering e−e− → e−e− as a typical example for
the application of the Feynman rules.

We first define our initial and final states,

|i〉 =
∣∣e−(p1, s1)

〉
single-particle

⊗
∣∣e−(p2, s2)

〉
single-particle

=
√

2E12E2
1√

2E1V 2E2V
a†s1(p1)a†s2(p2) |0〉 ,

〈f | =
〈
e−(p3, s3)

∣∣
single-particle

⊗
〈
e−(p4, s4)

∣∣
single-particle

=
√

2E32E4
1√

2E3V 2E4V
〈0| as4(p4)as3(p3).

The transition matrix element Sfi is then,

Sfi = 〈f | S |i〉 =
(−ie)2

2!

∫
d4x1d

4x2

√
16E1E2E3E4 〈0| as4(p4)︸ ︷︷ ︸

E

as3(p3)︸ ︷︷ ︸
D

: ψ̄(x1)︸ ︷︷ ︸
D

γµ ψ(x1)︸ ︷︷ ︸
C

ψ̄(x2)︸ ︷︷ ︸
E︸ ︷︷ ︸

=
B
−ψ̄(x2)ψ(x1)

γν ψ(x2)︸ ︷︷ ︸
A

:Aµ(x1)Aν(x2) a†s1(p1)︸ ︷︷ ︸
A

a†s2(p2)︸ ︷︷ ︸
C

|0〉 , (5.95)

yielding 2× 2 = 4 Feynman graphs in position space (of which 2! are topologically iden-
tical). In Fig. 5.7, we labeled the last Feynman graph according to Eq. (5.95).

�
p2

p1

p3

p4

x1

x2

�
p2

+

p1

p3

p4

x2

x1

�
p2

−

p1

p4

p3

x1

x2

�A
C

E

D

p2

−B

p1

p4

p3

x2

x1

Figure 5.7: Feynman graphs associated with the Møller scattering.

We recall that each ordering of ψ, ψ̄ corresponds to a Feynman diagram. The anticom-
mutation relations are responsible for the relative sign changes.
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With the photon propagator in momentum space,

iDµν
F (q) = −ig

µν

q2
, (5.96)

we get,

Sfi =(−ie)2(2π)4δ(4)(p3 + p4 − p1 − p2)
1√

16E1E2E3E4V 2
[
ūs4(p4)γµus2(p2)iDµν

F (p3 − p1)ūs3(p3)γµus1(p1)

− ūs4(p4)γµus1(p1)iDµν
F (p3 − p2)ūs3(p3)γµus2(p2)

]
. (5.97)

We now define the invariant amplitudeMfi (see Eq. (3.11)) via,

Sfi = δfi + i(2π)4δ(4)(p3 + p4 − p1 − p2)
1√

16E1E2E3E4V 2
Mfi. (5.98)

Mfi can then be computed using the Feynman rules in momentum space.

Application of the Feynman rules

• Momentum conservation at each vertex

• Fermion number conservation at each vertex (indicated by the direction of the ar-
rows)

• All topologically allowed graphs contribute

• Exchange factor (−1) when interchanging two external fermions with each other

• Each closed fermion loop yields a factor (−1), e.g. �x1 x2 coming from the
contraction :ψ(x1)ψ(x1)ψ(x2)ψ(x2) :

• graphs in which the ordering of the vertices along a fermion line is different are not
topologically equivalent, and must be summed, eg.

�S(2) : �6=

�S(4) : �6=
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External states

incoming electron �p, s us(p)

outgoing electron �p, s ūs(p)

incoming positron �p, s v̄s(p)

outgoing positron �p, s vs(p)

incoming photon �λ, µ, p (ελ)
µ(p)

outgoing photon �λ, µ, p (ε∗λ)
µ(p)

Propagators

electron �p
i(/p+m)

p2−m2+iε

photon �k

µ ν
−igµν
k2+iε

Vertex

electron-photon-electron �

µ

qe
−ieqeγµ

Table 5.2: Feynman rules in momentum space.
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5.9 Trace techniques for γ-matrices

Cross sections are proportinal to |Mfi|2 ∝ |ūsf (pf )Γusi(pi)|2, where Γ denotes an arbitrary
product of γ-matrices.

In many experiments – but not all! –, the spin states of the initial and final states are not
observed. This is for example the case at the CMS and ATLAS experiments of LHC. We
then need to follow the following procedure :

• If the spin state of the final state particles cannot be measured, one must sum over
the final state spins :

∑
sf
| · · · |2,

• If the initial states particles are unpolarized, one must average over the initial state
spins : 1

2

∑
si
| · · · |2.

Then, remembering that ū = u†γ0, we can write,

1

2

∑

si,sf

|ūsf (pf )Γusi(pi)|2 =
1

2

∑

si,sf

ūsf (pf )Γusi(pi)u
†
si

(pi)γ
0γ0Γ†γ0usf (pf )

=
1

2

∑

si,sf

ūsf (pf )Γusi(pi)ūsi(pi)Γ̄usf (pf )

=
1

2

∑

si,sf

(ūsf (pf ))αΓαβ(usi(pi))β(ūsi(pi))γΓ̄γδ(usf (pf ))δ

(5.41)
=

1

2
Γαβ(/pi +m)βγΓ̄γδ(/pf +m)δα

=
1

2

(
Γ(/pi +m)Γ̄(/pf +m)

)
αα

=
1

2
Tr
(

Γ(/pi +m)Γ̄(/pf +m)
)
,

where the indices α, β, γ and δ label the matrix element, and Γ̄ := γ0Γ†γ0.

We thus get the important result,

1

2

∑

si,sf

|ūsf (pf )Γusi(pi)|2 =
1

2
Tr
(

Γ(/pi +m)Γ̄(/pf +m)
)
, (5.99)

and its analogon for antiparticles,

1

2

∑

si,sf

|v̄sf (pf )Γvsi(pi)|2 =
1

2
Tr
(

Γ(/pi −m)Γ̄(/pf −m)
)
, (5.100)

i.e. the Clifford algebra of γ-matrices is taking care of the spin summation for us.

We now compute Γ̄ for an arbitrary number of γ-matrices.
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• For Γ = γµ, (γ0)† = γ0, (γi)† = −γi hence (γµ)† = γ0γµγ0 ⇒ γ̄µ = γµ. For later use,
note that γ̄5 = −γ5.

• For Γ = γµ1 · · · γµn , Γ† = (γµ1 · · · γµn)† = γ0γµn · · · γµ1γ0 ⇒ Γ̄ = γµn · · · γµ1 . In
other words, to get Γ̄, we just need to read Γ in the inverse ordering.

We finally want to compute some traces for products of γ-matrices, since they appear
explicitly (Γ, Γ̄) and implicitely (/p = γµpµ) in the formulas (5.99) and (5.100). In doing
this, one should remember that the trace is cyclic (Tr(ABC) = Tr(BCA)) and the Clifford
algebra of γ-matrices.

• 0 γ-matrix : Tr1 = 4.

• 1 γ-matrix : Tr γµ = 0, Tr γ5 = 0. The last one is shown using the fact that
{γ5, γµ} = 0.

• 2 γ-matrices : Tr(γµγν) = 1
2
Tr(γµγν + γνγµ) = 4gµν ⇒ Tr(/a/b) = 4a · b, where · is

the scalar product of 4-vectors.

• 4 γ-matrices :

Tr(γµγνγργσ) = Tr(γνγργσγµ) = −Tr(γνγργµγσ) + 2gµσTr(γνγρ)

= Tr(γνγµγργσ) + 8gµσgνρ − 8gµρgνσ

= −Tr(γµγνγργσ) + 8gµσgνρ − 8gµρgνσ + 8gµνgρσ

⇒ Tr(γµγνγργσ) = 4(gµνgρσ + gµσgνρ − gµρgνσ)

⇒ Tr(/a1/a2/a3/a4) = 4 [(a1 · a2)(a3 · a4) + (a1 · a4)(a2 · a3)− (a1 · a3)(a2 · a4)] .

and in general,

Tr(/a1 · · · /an) =(a1 · a2)Tr(/a3 · · · /an)− (a1 · a3)Tr(/a3/a4 · · · /an)

+ · · · ± (a1 · an)Tr(/a2 · · · /an−1),

which implies inductivly that the trace of a string of γ-matrices is a real number.

• n γ-matrices (n odd) :

Tr(γµ1 · · · γµn) = Tr(γµ1 · · · γµn γ5γ5

︸︷︷︸
=1

) = Tr(γ5γµ1 · · · γµnγ5)

= (−1)nTr(γµ1 · · · γµn)⇒ Tr(γµ1 · · · γµn) = 0.

• n γ-matrices (n even) :

Tr(γµ1 · · · γµn) = Tr((γµ1 · · · γµn)†) = Tr(γ0γµn · · · γµ1γ0) = Tr(γµn · · · γµ1).
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• γ5 and 2 γ-matrices : Tr(γ5γµγν) = 0. To show this identity, we remark that
γ5γµγν is a rank-2 tensor, which does not depend on any 4-momenta. Therefore,
Tr(γ5γµγν) = cgµν . We contract with gµν to get Tr(γ5γµγµ) = cgµνgµν = 4c, but
since γµγµ = 41 we get c = Tr γ5 = 0.

• γ5 and 4 γ-matrices : Tr(γ5γµγνγργσ) = −4iεµνρσ.

• Contractions :

γµγµ = 41 (5.101)

γµ/aγµ = −2/a (5.102)

γµ/a/bγµ = 4(a · b)1 (5.103)

γµ/a/b/cγµ = −2/c/b/a (5.104)

5.10 Annihilation process : e+e− → µ+µ−

In this section, we compute the differential cross section of the simplest of all QED process,
the reaction

e−(p1)e+(p2)→ µ−(p3)µ+(p4),

illustrated on Fig. 5.8. The simplicity arises frome the fact that e− 6= µ−, and hence only
one diagram contributes (the e+e−-pair must be annihilated).

�
p1

p4p2
p1 + p2

p3

e+

e−

µ+

µ−

Figure 5.8: Annihilation process e+e− → µ+µ−

We recall the Mandelstam variables for this process,

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2.

We make the following assumptions (very common for QED processes),
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• Unpolarized leptons : 1
2

∑
si,sf

,

• High energy limit : me,mµ = 0⇔ √s� me,mµ.

Using the Feynman rules of Table 5.2 for the diagram depicted in Fig. 5.8, we get,

−iMfi = ūs3(p3)ieγµvs4(p4)
−igµν

(p1 + p2)2
v̄s2(p2)ieγνus1(p1)

|Mfi|2 =
1

2

∑

s1

1

2

∑

s2

∑

s3

∑

s4

|Mfi|2

=
1

4

e4

s2
Tr(γµ/p4

γν/p3
)Tr(γµ/p1

γν/p2
)

=
1

4

e4

s2
16 [2(p1 · p3)(p2 · p4) + 2(p1 · p4)(p2 · p3)] .

Since we are working in the high energy limit, we have p2
i = 0 and hence t = −2p1 · p3 =

−2p2 · p4 and u = −2p1 · p4 = −2p2 · p3. Using the identity s+ t+ u = 2m2
e + 2m2

µ = 0 to

get rid of the Mandelstam u-variable and with α = e2

4π
we have,

|Mfi|2 = 32π2α2 t
2 + (s+ t)2

s2
. (5.105)

Considering the center of mass frame, we have s = 4(E∗)2, t = − s
2
(1− cos Θ∗) and with

the help of Eq. (3.34), this yields,

dσ

dt
=

1

16πs2
|Mfi|2 =

πα2

s2
(1 + cos2 Θ∗), (5.106)

or using,

dσ

dt
=
dΩ∗

dt

dσ

dΩ∗
=

4π

s

dσ

dΩ∗
,

we get the differential cross section for e+e− → µ+µ− in the center of mass frame,

dσe
+e−→µ+µ−

dΩ∗
=
α2

4s
(1 + cos2 Θ∗) . (5.107)

This differential cross section (see Fig. 5.9) has been very well measured and is one of the
best tests of QED at high energies.
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Π

2
Π

Q*

dΣ

dW
*

Figure 5.9: Differential cross section for e+e− → µ+µ− in the center of mass frame.

Using this result, we can calculate the total cross-section by integration over the solid
angle:

σ =

∫
dσ

dΩ∗
dΩ∗ =

α2

4s

π∫

0

(1 + cos2 Θ∗) sin Θ∗dΘ∗︸ ︷︷ ︸
d cos Θ∗

2π∫

0

dφ

︸ ︷︷ ︸
2π

(5.108)

=
α2

4s
2π

8

3
(5.109)

⇒ σe
+e−→µ+µ− =

4πα2

3s
=

86.9 nb

s [GeV2]
(5.110)

where 1 nb = 10−33 cm2. If one considers non-asymptotic energies, s ' m2
µ (but s� m2

e),
one finds a result which reduces to Eq. (5.110) for m2

µ = 0 :

σe
+e−→µ+µ− =

4πα2

3s

(
1 + 2

m2
µ

s

)√
1− 4m2

µ

s
.

5.11 Compton scattering

Let us now consider Compton scattering:

γ(k) + e−(p)→ γ(k′) + e−(p′).
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The diagrams corresponding to this process have been introduced in Sect. 5.8.

�
k + p =
k′ + p′

s-channel

p

k, λ, ν

p′

k′, λ′, µ

�

+ �
p− k′ =
p′ − k
u-channel

p

k, λ, ν

p′

k′, λ′, µ

This yields the amplitude

−iMfi = ε∗µ(k′, λ′)εν(k, λ)ū(p′)


ieγ

µ i

/p+ /k −mieγν

︸ ︷︷ ︸
LHS diagram

+ ieγν
i

/p− /k′ −m
ieγµ

︸ ︷︷ ︸
RHS diagram


u(p)

where the on-shell conditions read

k2 = k′2 = 0 p2 = p′2 = m2

and the photons are transversal:

k · ε(k) = k′ · ε(k′) = 0.

It is instructive to check that the invariant amplitude is indeed also gauge invariant.
Consider the gauge transformation

Aν(x)→ Aν(x) + ∂νΛ(x)

which leaves Maxwell’s equations unaltered. In the photon field operator this can be
implemented by

εν(k, λ)→ εν(k, λ) + βkν , β ∈ R arbitrary.

We observe the change of the matrix element for transformation of one of the photons:

−iMfi(εν → kν) = −ie2ε∗µ(k′, λ′)ū(p′)

[
γµ

1

/p+ /k −m/k + /k
1

/p− /k′ −m
γµ

]
u(p).

In simplifying this expression, we use

1

/p+ /k −m/ku(p) =
1

/p+ /k −m(/k + /p−m)u(p) = 1u(p)
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where we added a zero since (/p−m)u(p) = 0 and analogously

ū(p′)/k
1

/p− /k′ −m
= ū(p′)(/k − /p′ +m)

1

/p′ − /k −m
= −ū(p′)1.

Putting the terms together, we therefore find

−iMfi(εν → kν) = −ie2ε∗µ(k′, λ′)ū(p′)(γµ1− 1γµ)u(p) = 0.

The result is the same for the transformation ε∗µ → ε∗µ + βk′µ.

It is generally true that only the sum of the contributing diagrams is gauge invariant.
Individual diagrams are not gauge invariant and thus without physical meaning.

Recall that the aim is to find the differential cross section and therefore the squared matrix
element. Since there are two contributing diagrams, one has to watch out for interference
terms. Applying the trace technology developed in Sect. 5.9 yields

|Mfi|2 =
1

2

∑

λ

1

2

∑

s

∑

λ′

∑

s′

|Mfi|2

= 2e4

[
m2 − u
s−m2

+
m2 − s
u−m2

+ 4

(
m2

s−m2
+

m2

u−m2

)
+ 4

(
m2

s−m2
+

m2

u−m2

)2
]
.

(5.111)

Bearing in mind that s+ t+ u = 2m2, this yields the unpolarized Compton cross-section

dσ

dt
=

1

16π(s−m2)2
|Mfi|2 (5.112)

which is a frame independent statement.

Head-on electron-photon collision is rather uncommon; usually photons are hitting on a
target. Therefore it is useful to consider the electron’s rest frame (laboratory frame):

�
ΘL

k

p′

k′

With ω = | #»k | = EL
γ , ω

′ = | #»k ′| = E ′Lγ , and p = (m,
#»
0 )T one finds

s−m2 = 2mω (5.113)

u−m2 = −2p · k′ = −2mω′ (5.114)

t = −2ωω′(1− cos ΘL). (5.115)
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One of the three variables can be eliminated using s+ t+ u = 2m2:

ω′ =
1

2m
(s+ t−m2) = ω − ωω′

m
(1− cos ΘL) (5.116)

⇒ 1

ω′
− 1

ω
=

1

m
(1− cos ΘL) (5.117)

⇒ ω′ =
ω

1 + ω
m

(1− cos ΘL)
. (5.118)

We continue calculating the differential cross-section. Eq. (5.115) yields

dt =
ω′2

π
2πd cos ΘL =

ω′2

π
dΩL.

Furthermore, we can use Eq. (5.117) to simplify Eq. (5.111):

m2

s−m2
+

m2

u−m2
=

m2

2mω
+

m2

−2mω′
=
m

2

(
1

ω
− 1

ω′

)
= −1

2
(1− cos ΘL).

Using these results and remembering Eq. (5.112), we obtain

dσγe→γe

dΩL

=
dt

dΩL

dσ

dt
=
ω′2

π

1

16π(2mω)2
2e2

[
2mω′

2mω
+
−2mω

−2mω′
− sin2 ΘL

]
(5.119)

=
ω′2

π

2 · 16π2α2

16π4m2ω2

[
ω′

ω
+
ω

ω′
− sin2 ΘL

]
(5.120)

⇒ dσγe→γe

dΩL

=
α2

2m2

(
ω′

ω

)2 [
ω′

ω
+
ω

ω′
− sin2 ΘL

]
(5.121)

which is called the Klein-Nishima formula.

It follows a discussion of important limiting cases.

• Classical limit: ω � m⇒ ω′ ' ω
In the classical limit, Eq. (5.121) simplifies to the classical Thomson cross-section
(which was used to measure α)

dσγe→γe

dΩL

=
α2

2m2

[
1 + cos2 ΘL

]
,

yielding the total cross-section

σγe→γe =
α2

2m2

16π

3
.



100 Chapter 5. Elements of quantum electrodynamics

• Asymptotic limit: s� m2 ⇒ ω � m
In this case, the so-called leading log approximation holds:

σγe→γe =
2πα2

m2

m2

s

[
ln

s

m2
+

1

2
+O

(
m2

s

)]
' 2πα2

s
ln

s

m2
.

• In general we can conclude that

σγe→γe ∼ α2

m2
' 10−25 cm2

from which one can infer the “classical electron radius”

rclassical
e ∼ √σThomson ∼

α

m
= 2.8 · 10−13 cm.

5.12 QED as a gauge theory

Recall the QED Lagrangian

LQED = ψ̄(iγµ∂µ −m)ψ − eqeψ̄γµψAµ −
1

4
FµνF

µν

= LDirac
0 + L′ + Lphoton

0

introduced in Sect. 5.8 which includes the following observables:

• Fermions: components of ψ̄γµψ = jµ

• Photons: components of F µν :
#»

E and
#»

B field.

Neither ψ nor Aµ as such are observables. In particular, the phase of ψ cannot be observed.
This means that QED must be invariant under phase transformations of ψ:

ψ(x)→ ψ′(x) = eieqeχ(x)ψ(x)

which is a unitary one-dimensional i. e. U(1) transformation. Observe first the action on
the Dirac Lagrangian:

LDirac
0 → ψ̄′(iγµ∂µ −m)ψ′

= ψ̄e−ieqeχ(x)eieqeχ(x)(i/∂ −m)ψ − ψ̄γµ(∂µeqeχ(x))ψ

= LDirac
0 − eqeψ̄γµψ(∂µχ(x)).

Therefore, the free Dirac field Lagrangian alone is not invariant under this transformation.
In order for the extra term to vanish, Aµ has to be transformed, too:

Aµ → A′µ = Aµ − ∂µχ(x)
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QED photon U(1)
Weak interaction W±, Z0 SU(2)

QCD gluon SU(3)

Table 5.3: Summary of gauge theories.

such that F µν = F ′µν since F µν = ∂µAν − ∂νAµ. This means that we are dealing with the
gauge transformation known from classical electrodynamics. Because we have

−eqeψ̄γµψAµ → −eqeψ̄γµψAµ + eqeψ̄γ
µψ(∂µχ)

the complete Lagrangian LQED is invariant under U(1) gauge transformations. This mo-
tivates the definition of the gauge covariant derivative

Dµ = ∂µ + ieqeAµ

which contains the photon-electron interaction.

In summary, the requirement of gauge invariance uniquely determines the photon-electron
interaction and QED is a U(1) gauge theory.

This suggests a new approach on theory building: start from symmetries instead of finding
them in the final Lagrangian:

local symmeties
(gauge invariance)

→ existence of vector fields
(gauge fields)

→ gauge interactions .

A summary of gauge theories with the corresponding gauge fields and gauge groups is
given in Tab. 5.3.
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Chapter 6

Tests of QED

In the previous chapter elements of the quantum electrodynamics theory are discussed. We
now turn to precision tests of the theory which usually consist in the measurement of the
electromagnetic fine structure constant α in different systems. Experimental results are
compared with theoretical predictions. The validation process requires very high precision
in both measurements and theoretical calculations. QED is then confirmed to the extent
that these measurements of α from different physical sources agree with each other. The
most stringent test of QED is given by the measurement of the electron magnetic moment.
However, several other experimental tests have been performed in different energy ranges
and systems:

• Low energy range, accessible with small experiments;

• High energy range, accessible with particle colliders (e.g. e+e− colliders);

• Condensed matter systems (quantum Hall effect, Josephson effect).

As we will see, the achieved precision makes QED one of the most accurate physical
theories constructed so far.

6.1 Measurement of the electron anomalous mag-

netic moment

6.1.1 Electron magnetic moment

A rotating electrically charged body creates a magnetic dipole. In classical analogy, this
is also the case for the spinning electron. External magnetic fields exert a torque on the
electron magnetic moment. Electrons have an intrinsic magnetic moment µ, related to

103
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their spin s:

µ = −g e

2m
s = −g

2

e

2m
(6.1)

where e is the unit charge and m the electron mass. In the case of electrons the magnetic
moment is anti-parallel to the spin. The g-factor is equal to 2, as calculated from Dirac’s
equation:

a ≡ g − 2

2
= 0.

Corrections to the g-factor are given by higher order QED contributions as well as hadronic
and weak interactions. There could be additional contributions from physics beyond the
Standard Model (SM):

g

2
= 1 + aQED(α) + ahadronic + aweak + anew.

When adding the corrections we usually talk of the anomalous magnetic moment of the
electron.

6.1.2 QED: higher order corrections

The one-loop corrections to the magnetic moment are due to vacuum fluctuation and
polarization effects. A corresponding diagram is for example

� photon

lepton

The textbook calculation of the one-loop corrections gives corrections ∼ 10−3 (see [14,
pp. 189]):

a =
α

2π
≈ 0.0011614.

Hadronic and weak interactions are calculated (within the SM) to be very small and
negligible, respectively.

As we will see, the precision achieved by experimental results needs QED predictions with
α4 precision.
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Figure 6.1: Most accurate measurements of the electron g/2. Source: [16, p. 177].

6.1.3 g/2 measurements

Nowadays the precision of the g/2 measurements is below 10−12 as is shown in Fig. 6.1.
The latest measurements are 15 times more precise than the previous result which stood
for about 20 years. As one can see in Fig. 6.1, the latest value is shifted by 1.7 standard
deviations with respect to the previous result from 1987.

So, how did we get to this astonishing precision?

6.1.3.1 Experiment

The main ingredients of the experiment are:

• Single-electron quantum cyclotron
A Penning trap suspends and confines the electron in an atom-like state.

• Fully resolved cyclotron and spin energy levels
Accurate measurements of the resonant frequencies of driven transitions between
the energy levels of this homemade atom—an electron bound to the trap—reveals
the electron magnetic moment in units of Bohr magnetons, g/2.

• Detection sensitivity sufficient to detect one quantum transitions
Frequency detection sensitivity in the radio and microwave region.

The Penning trap confines electrons by using a strong vertical magnetic field B for radial
confinement and a quadrupole electric field for axial confinement (see Fig. 6.2(a)). The
magnetic field is produced by a solenoid while the electric field is produced by three
electrodes: one ring and two endcaps. A sketch of the electron trajectory is shown in
Fig. 6.2(b). The trajectory in the radial plane is characterized by two frequencies: The
magneton frequency ω− and the modified cyclotron frequency ω+. The cyclotron frequency
is then ω = ω+ +ω−. Since there is also a low-frequency oscillation in the z-direction, the
overall trajectory has the shown form.
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(a) (b)

Figure 6.2: Sketch of the fields and the electron trajectory in a Penning trap. Confinement
is achieved by a vertical magnetic field and a quadrupole electric field. Source: [17]. (a)
The magneton frequency ω− and the modified cyclotron frequency ω+ contribute to the
electron trajectory as well as a low-frequency oscillation in z-direction. (b)

A non-relativistic electron in a magnetic field has the following energy levels:1

E(n,ms) =
g

2
hνcms +

(
n+

1

2

)
hνc (6.2)

depending on the cyclotron frequency

νc =
eB

2πm
(6.3)

and on the spin frequency

νs =
g

2
νc =

g

2

eB

2πm
. (6.4)

Here n is the principal quantum number and ms the spin quantum number. Eq. (6.4)
yields

g

2
=
νs
νc

= 1 +
νs − νc
νc

≡ 1 +
νa
νc
.

Since νs and νc differ only by one part per 103, measuring νa and νc to a precision of one
part per 1010 gives g/2 to one part per 1013.

This technique of measuring g/2 has two main advantages:

1See e. g. [18, § 112].
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Figure 6.3: Lowest cyclotron and spin levels of an electron in a Penning trap. Source: [16,
p. 180, modified].

1. One can measure the ratio of two frequencies to very high precision.

2. Since the B field appears in both numerator and denominator (see Eq. (6.4)), the
dependence on the magnetic field cancels in the ratio.

Including the relativistic corrections, Eq. (6.2) is modified and the energy levels are given
by:

E(n,ms) =
g

2
hνcms +

(
n+

1

2

)
hν̄c −

1

2
hδ

(
n+

1

2
+ms

)2

︸ ︷︷ ︸
relativistic correction term

where ν̄c denotes the cyclotron frequency, shifted due to the Penning trap. Higher states
are excited via microwave radiation. The experiment measures the following transition
frequencies (see Fig. 6.3):

f̄c ≡ ν̄c −
3

2
δ, corresponding to (n,ms) = (1, 1/2)→ (0, 1/2) and

ν̄a ≡
g

2
νc − ν̄c, corresponding to (0, 1/2)→ (0,−1/2)

with the cyclotron frequency νc ∼ 150 GHz.

A sketch of the experimental setup is shown in Fig. 6.4(a) and 6.4(b). A Penning trap is
used to artificially bind the electron in an orbital state. For confinement, a high voltage
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trap electrodes

solenoid

dilution
refrigerator

cryogen
reservoirs

microwave
horn

Fig. 6.4. The apparatus includes a trap electrodes near the central axis, surrounded by
a superconducting solenoid. The trap is suspended from a dilution refrigerator.

the interior volume of the trap cavity. A large dewar sitting on top of the
solenoid dewar provides the helium needed around the dilution refrigerator
below. The superconducting solenoid is entirely self-contained, with a bore
that can operate from room temperature down to 77 K. It possesses shim
coils capable of creating a field homogeneity better than a part in 108 over
a 1 cm diameter sphere and has a passive “shield” coil that reduces fluctua-
tions in the ambient magnetic field [18, 19]. When properly energized (and
after the steps described in the next section have been taken) it achieves
field stability better than a part in 109 per hour. We regularly observe
drifts below 10−9 per night.

6.2.4. Stabilizing the Energy Levels

Measuring the electron g/2 with a precision of parts in 1013 requires that
the energy levels of our homemade atom, an electron bound to a Penning
trap, be exceptionally stable. The energy levels depend upon the magnetic
field and upon the the potential that we apply to the trap electrodes. The

(a)
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top endcap
electrode
compensation
electrode

compensation
electrode
field emission
point

bottom endcap
electrode

nickel rings

microwave inlet

ring electrode

quartz spacer

trap cavity electron

0.5 cm

Fig. 6.3. Cylindrical Penning trap cavity used to confine a single electron and inhibit
spontaneous emission.

uniform magnetic field (Bẑ). The potential (about 100 V) applied between
the endcap electrodes and the ring electrode provides the basic trapping
potential and sets the axial frequency ν̄z of the nearly harmonic oscillation
of the electron parallel to the magnetic field. The potential applied to the
compensation electrodes is adjusted to tune the shape of the potential, to
make the oscillation as harmonic as possible. The tuning does not change
ν̄z very much owing to an orthogonalization [11, 30] that arises from the
geometry choice. What we found was that one electron could be observed
within a cylindrical Penning trap with as good or better signal-to-noise
ratio than was realized in hyperbolic Penning traps.

Table 6.1. Properties of the trapped electron.

Cyclotron frequency ωc/(2π) 150 GHz

Trap-modified cyc. freq. ω+/(2π) 150 GHz

Axial frequency ωz/(2π) 200 MHz

Magnetron frequency ω−/(2π) 133 kHz

Cyclotron damping (free space) τ+ 0.09 s

Axial damping τz 30 ms

Magnetron damping τ− 109 yr

The principle motivation for the cylindrical Penning trap is to form a
microwave cavity whose radiation properties are well understood and con-
trolled – the best possible approximation to a perfect cylindrical trap cav-
ity. (Our calculation attempts with a hyperbolic trap cavity were much less
successful [12].) The modes of the electromagnetic radiation field that are

(b)

Figure 6.4: Sketch of the experimental setup. Overview of experimental apparatus. Source:
[16, p. 185]. (a) The Penning trap cavity is used to confine a single electron and to inhibit
spontaneous emission. Source: [16, p. 182]. (b)

(100 V) is applied between the cylindric and endcap contacts. Since νc ∝ B (see Eq. (6.3)),
a high magnetic field (5 T) is necessary to increase the spacing between the cyclotron
energy levels. And finally, because the probability to occupy the orbital ground state is
proportional to the Boltzmann factor,

exp

(
− hν̄c
kBT

)
,

very low temperatures (100 mK) are needed.

In analyzing the results of Penning trap measurements, one has to correct for the fre-
quency shifts due to the cavity. This can be done by measuring at various frequencies (see
Fig. 6.5(a)). The result for g/2 given in [16] is

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.5)

6.1.3.2 Theoretical predictions

The QED calculations provide the prediction for g/2 up to the fifth power of α:

g

2
= 1 + C2

(α
π

)
+ C4

(α
π

)2

+ C6

(α
π

)3

+ C8

(α
π

)4

+ C10

(α
π

)5

+ · · ·+ ahadronic + aweak

(6.6)
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quencies for which the uncertainty is the largest. Fig. 6.10. shows the good
agreement attained between the four measurements when the cavity shifts
are applied.
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without cavity-shift correction
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Fig. 6.10. Four measurements of g/2 without (open) and with (filled) cavity-shift cor-

rections. The light gray uncertainty band shows the average of the corrected data. The

dark gray band indicates the expected location of the uncorrected data given our result

in Eq. 6.23 and including only the cavity-shift uncertainty.

6.5. Results and Applications

6.5.1. Most Accurate Electron g/2

The measured values, shifts, and uncertainties for the four separate mea-
surements of g/2 are in Table 6.2.. The uncertainties are lower for mea-
surements with smaller cavity shifts and smaller linewidths, as might be
expected. Uncertainties for variations of the power of the ν̄a and f̄c drives
are estimated to be too small to show up in the table. A weighted average of
the four measurements, with uncorrelated and correlated errors combined
appropriately, gives the electron magnetic moment in Bohr magnetons,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (6.23)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 mea-
surements, and 2300 times smaller than has been achieved for the heavier
muon lepton [41].

(a)
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8.1. Introduction

The fundamental and dimensionless fine structure constant α is defined (in
SI units) by

α =
1

4πε0

e2

!c
. (8.1)

The well known value α−1 ≈ 137 is not predicted within the Standard
Model of particle physics.

The most accurate determination of α comes from a new Harvard mea-
surement [7, 8] of the dimensionless electron magnetic moment, g/2, that
is 15 times more accurate than the measurement that stood for twenty
years [9]. The fine structure constant is obtained from g/2 using the theory
of a Dirac point particle with QED corrections [10–15]. The most accurate
α, and the two most accurate independent values, are given by

α−1(H08) = 137.035 999 084 (51) [0.37 ppb] (8.2)

α−1(Rb08) = 137.035 999 45 (62) [4.5 ppb] (8.3)

α−1(Cs06) = 137.036 000 0 (11) [8.0 ppb]. (8.4)

Fig. 8.1. compares the most accurate values.

Harvard g!2 2008
Harvard g!2 2006

Rb 2008
Rb 2006

UW g!2 1987

Cs 2006

599.80 599.85 599.90 599.95 600.00 600.05 600.10

!10 !5 0 5 10 15

"Α
!1
!137.03#!10!5

ppb

Fig. 8.1. The most precise determinations of α.

The uncertainties in the two independent determinations of α are within
a factor of 12 and 21 of the α from g/2. They rely upon separate mea-
surements of the Rydberg constant [16, 17], mass ratios [18, 19], optical
frequencies [20, 21], and atom recoil [21, 22]. Theory also plays an impor-
tant role for this method, to determine the Rydberg constant (reviewed in
Ref. 23) and one of the mass ratios [24].

(b)

Figure 6.5: g/2 and fine structure constant. Four measurements of g/2 without (open) and
with (filled) cavity-shift corrections. The light gray uncertainty band shows the average of
the corrected data. The dark gray band indicates the expected location of the uncorrected
data given the result in Eq. (6.5) and including only the cavity-shift uncertainty. Source:
[16, p. 201]. (a) The most precise determinations of α. Source: [19, p. 264]. (b)

where

C2 = 0.500 000 000 000 00 (exact)

C4 = −0.328 478 444 002 90 (60)

C6 = 1.181 234 016 827 (19)

C8 = −1.914 4 (35)

C10 = 0.0 (4.6)

ahadronic = 1.682(20) · 10−12.

From Eq. (6.6) and the theoretical predictions we can on the one hand measure the cou-
pling constant α (see Fig. 6.5(b)):

α−1 = 137.035 999 084 (33) (39) [0.24 ppb][0.28 ppb]

= 137.035 999 084 (51) [0.37 ppb]

and on the other hand, we can compare the measured g/2 with the expectation using α
from other measurements

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt] (measured)

g(α)/2 = 1.001 159 652 177 60 (520) [5.2 ppt] (predicted).
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6.2 High energy tests

6.2.1 e+e− colliders

In addition to the low-energy experiments, QED has been tested also in high energy e+e−

collisions [20, 21, 22].

We discuss here the following reactions:

• Bhabha scattering : e+e− → e+e−

• Lepton pair production : e+e− → µ+µ−, τ+τ−

• Hadronic processes : e+e− → qq̄ → hadrons

The energy range 12 GeV ≤ √s ≤ 47 GeV was investigated with the PETRA accelerator
at DESY (Hamburg). High energy ranges (90 GeV ≤ √s ≤ 200 GeV) were covered by the
LEP collider at CERN (Geneva). However, electroweak contributions to the cross-sections,
like the one shown in Fig. 6.6, become considerable at these energies. Intermediate energies
were covered by TRISTAN and SLC. Table 6.1 gives an overview of the e+e− colliders.

� Z0

e−

e+

µ+

µ−

Figure 6.6: Electroweak contribution to Mfi(e
+e− → µ+µ−) at high energies.

The PETRA collider is shown in Fig. 6.7 as an example.

As an example for a typical detector we take a look at JADE (Figs. 6.8 and 6.9), using
the same numbering as in the figure.

1. Beam pipes counters.

2. End plug lead glass counters.

3. Pressure tank.
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Accelerator Experiment(s)
√
s [GeV] Lint [pb−1]

SPEAR SPEAR 2-8 -
PEP ASP, DELCO, HRS, 0-29 300

MARK II, MAC
PETRA JADE, MARK J, 12-47 20

PLUTO, TASSO, CELLO
TRISTAN TRISTAN 50-60 20
SLC MARK II, SLD 90 25
LEP ALEPH, DELPHI, 90-200 200

OPAL, L3 700

Table 6.1: Table of e+e− colliders

Figure 6.7: PETRA storage ring

4. Muon chambers. Detect muons.

5. Jet chambers. Records the trajectories of the produced particles.

6. Time of flight counters. Measure the time necessary for the particle to get from the
collision center and thus its velocity.

7. Coil. Produces a magnetic field of 0.5 [T] parallel to the beam in the central re-
gion to measure the momentum of the particles by providing the curvature of their
trajectories.

8. Central lead glass counters.

9. Magnet yoke.

10. Muon filter.

11. Removable end plug.
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12. Beam pipe.

13. Tagging counter.

14. Mini beta quadrupole. Focus the beam to increase the luminosity of the beam in the
experiment.

15. Moving devices.

~

Example: The JADE Detector

Figure 6.8: JADE detector : schematics

6.2.2 Detector elements

In order to help identify the particles produced in a collision (or their decay product) we
can determine their charge and invariant mass using the methods presented in chapter
4. This measurement proceeds mostly in the inner part of the detector, see Fig. 4.15, by
means of drift chambers or silicon trackers. If some of the produced particles are long
living (i.e. are stable or decay weakly), this setup gives also the possibility to detect a
decay vertex.

Further away from the beam axis are the calorimeters, whose function is to stop the
particles and measure the energy they deposit. There are mostly two types of calorimeters:
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Figure 6.9: JADE detector

electromagnetic and hadronic. The angular resolution is limited by the size of each detector
cell. Calorimeters are also able to measure neutral particles while the tracking devices
described above can only detect charged particles.

Electromagnetic calorimeters stop and measure the energy of electrons, positrons
and photons. All electromagnetically interacting particles leave at least a part of their
energy in this detector part.

Hadronic calorimeters stop and measure the energy of hadrons, e.g. protons, neutrons
and pions. Muons and antimuons are not stopped but leave some energy. Most modern
experiments are also surrounded by muon detectors in order to distinguish the energy
deposit of low energetic hadrons from the one of muons. Since it is practically impossible
to stop muons, this last detector records the direction of passage of muons and, eventually,
their momentum.

Fig. 6.10 shows the schematic view of the different signal hits for different types of particles.
The energy deposit is usually depicted by a histogram.

• Electron signature. Eletrons leave a curved trace in the inner tracking detector and
deposit all their energy in the electromagnetic calorimeter, where they are com-
pletely stopped. There is hence no signal stemming from electrons in detectors fur-
ther away from the collision point.

• Hadron signature. Charged hadrons leave a trace in the inner detector (curved by
the magnetic field), – whereas uncharged hadrons do not –, deposit a part of their
energy in the electromagnetic calorimeter and the rest of their energy in the hadronic
calorimeter.
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• Muon signature. Muons leave a curved trace in the inner detector and deposit some
energy in the electromagnetic and hadronic calorimeters whitout being stopped, and
then leave a signal in the muon detector.

• Photon signature. Photons do not leave a trace in the inner detector and are stopped
in the electromagnetic calorimeter.

Figure 6.10: Event reconstruction principle

6.2.3 Cross section measurement

To measure a cross section we divide the measured number of events N by the integrated
luminosity at that energy L(s),

σ(s) =
N

L(s)
. (6.7)

The last one is measured by counting the events occurring at small scattering angles and
using the relation,

σtheo
ee,γγ =

N(1− b)
(εA) · L , (6.8)

where A and b depend on the detector geometry, while ε is the efficiency (the probability
to measure a particle, if it hits the detector).

Fig. 6.11 shows a typical integrated luminosity spectrum over the energy range 0−47 GeV.
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Figure 6.11: Integrated luminosity for the JADE experiment at PETRA

Reminder : e+e− kinematics One can write the differential cross section as,

dσQED

dΩ
=
dσ0

dΩ
(1 + δrad), (6.9)

where δrad stands for the radiative corrections, i.e. terms coming form diagrams with more
vertices (proportional to α in the case of QED). These include emission of further low
energy exchange bosons and loop corrections.

6.2.4 Bhabha scattering

Leading order We first treat the leading order term, the one yielding dσ0/dΩ.

The following two diagrams contribute to the invariant amplitude :

� +

s-channel

�
t-channel
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Using Eq. (3.32) and the trace theorems of section 5.9, we get,

dσ0

dΩ
=
α2

4s


t

2 + s2

u2︸ ︷︷ ︸
t-channel

+
2t2

us︸︷︷︸
interference

+
t2 + u2

s2︸ ︷︷ ︸
s-channel




=
α2

4s

(
3 + cos2 ϑ

1− cosϑ

)2

. (6.10)

Note that it is divergent for ϑ → 0. Fig. 6.12 shows the cosϑ-dependence of each com-
ponent in Eq. (6.10). We remark that the differential cross section is dominated by the
t-channel component at all angles, and that the s-channel is almost constant, when com-
pared to the last. The interference term is always negative. It is small in magnitude
for large scattering angles (ϑ ∼ π ⇔ cosϑ ∼ −1) and diverges in the case of forward
scattering (ϑ = 0⇔ cosϑ = 1).

Fig. 6.13 shows the typical trace left in the electronic calorimeter by a scattered e+e−-pair.
Fig. 6.14 shows σe

+e−→e+e− measured as a function of cosϑ for different center of mass    Bhaba Scattering [e+e– ! e+e–]

2

2

Interference
Term

Sum

d#

cos !

Cross section 
diverges for ! ! 0

Figure 6.12: Relative magnitude of the different terms in dσ0/dΩ.

energies. It decreases following a 1/s-dependence.

Radiative corrections The diagrams contributing to the cross section and propor-
tional to higher powers of α (or e) are shown in Table 6.2.
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Figure 6.13: Typical event display of a Bhabha scattering event recorded by the Opal ex-
periment. The length of the blue histogram corresponds to the amount of energy deposited
in the electromagnetic calorimeter.

Figure 6.14: Energy and angle dependence of the cross section measured at TASSO and
compared to leading order calculations.



118 Chapter 6. Tests of QED

�e3 : � � � � � � �

�e4 : � � � � � � �

� e� µ� τ� e � µ � τ

Table 6.2: Diagrams of radiative and loop corrections up to e4

Because of momentum conservation, the diagrams of the e3-order imply that the electron-
positron pair is no longer back-to-back after the collision. This effect is called acollinear-
ity. The acollinearity angle is the angle ξ = π − φ, where φ is the angle between the
direction of the scattered electron and the scattered positron; for a back-to-back flight
there is no acollinearity, thus ξ = 0. This angle has been measured at the JADE experi-
ment and confirms higher order QED corrections in a very impressive way (see Fig. 6.15).

6.2.5 Lepton pair production

Muon pair production Looking at different final states gives also different results.
We illustrate this by looking at the process e+e− → µ+µ−. This is the simplest process of
QED and is often used to normalize cross sections of other processes.

There is only one leading order Feynman diagram, namely,

� γ

e−

e+

µ−

µ+
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Figure 6.15: Comparison of measured acollinearity at JADE with the QED prediction.

and the leading order differential cross section is,

dσ0

dΩ
=
α2

4s

(
t2 + u2

s2

)
=
α2

4s
(1 + cos2 ϑ), (6.11)

which is shown in Fig. 5.9.

Fig. 6.16 shows an event candidate: low energy deposits in the electromagnetic calorimeter
and hits in the muon chambers.

Muon pair production : Z0 exchange Since only s-channel contributes to the
muon pair production, the diagram containing a Z0 boson instead of a photon 2,

2This contribution is also present in the case of Bhabha scattering, yet since the t-channel dominates
over the s-channel, the effect is virtually invisible.
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Figure 6.16: Typical event display of a muon pair production event recorded by the Opal
experiment.

� Z0

e−

e+

µ−

µ+

becomes comparable with the photon term (approx. 10%), even at leading order. This
leads to a the modified cross section,

dσEW
0

dΩ
=
α2

4s
(1 + cos2 ϑ+ A cosϑ). (6.12)

This is illustrated in Fig. 6.17 comparing the QED and electroweak predictions to the
data.

As an easy integration of Eq. (6.12) shows, the total cross section is not sensitive to the
effects of electroweak interaction and we have a very good agreement with the QED value
(Fig. 6.18).

For the
√
s-range measured at PETRA, electroweak corrections are small. In the case of

LEP they are instead quite important, especally in the range around the Z0 resonance,
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86.8 nb/s(GeV2)

Figure 6.17: Comparison of e+e− → µ+µ− differential cross section measured at PETRA
with the QED and electroweak predictions.

√
s ∼ mZ ≈ 90 [GeV].

Muon Pair Production (Exp.)

Standard Model: V. Experimental Tests of QED
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Figure 6.18: Comparison of measured total cross section at PETRA with the QED pre-
diction.

Tau pair production At high enough energy (
√
s ≥ 2mτ ≈ 3.6 [GeV]) the production

of τ+τ−-pair – which is very similar to the case of muon pair production – is possible:
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� γ

e−

e+

τ−

τ+

The final state of a tau pair production event observed in the detector can contain hadrons,
since the lifetime of τ is very short (ττ = 2.9 · 10−13 [s]) and it is the only lepton with
sufficiently high mass to produce qq̄-pairs.

Fig. 6.19 shows an event where one of the two tau survived long enough, e.g. because of
a large energy and thus a longer lifetime γττ in the laboratory frame, to hit the electro-
magnetic calorimeter, while the other one decayed in three pions which then left traces
in the electromagnetic and hadronic calorimeters.

e–

e+

jet

jet

e+e– ! qq

+

+

e+e– ! %+%–

+

+ e–

e+

%–

%+

Experimental Signatures

Opal

Signature:

Figure 6.19: Typical event display of a tau pair production event recorded by the Opal
experiment.
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6.2.6 Hadronic processes

The production of quark-antiquark qq̄ pair is another possible final state in e+e− annihi-
lation.

When a bound qq̄ state is produced, we speak of a resonance because the e+e− cross
section looks like the amplification curve of a periodic system such as a pendulum or
an RLC circuit near the resonant frequency. A famous resonance is the J/ψ resonance
corresponding to a bound state of cc̄.

Away from the resonances, there is in general no visible bound state, and the produced
quarks hadronize in jets due to the confinement of the strong interaction : quarks cannot
be seen as free particles.

e–

e+

jet

jet

e+e– ! qq

+

+

Experimental Signatures

Opal

Signature:

Figure 6.20: Typical display of jet production event recorded by the Opal experiment.

Due to the strength of strong interaction at low energy, the radiative effects (this time
the radiated bosons are gluons),

� γ

g

e−

e+

q

q̄
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take a much more dramatic form than in QED : Since gluons also have a color charge,
they hadronize and for each emitted gluon one observes one more jet (Fig. 6.21).

Figure 6.21: Typical event display of a 3-jets production.

6.2.7 Limits of QED

In this section, one addresses the question : what do we expect if QED is not the only
theoretical model involved in the scattering processes discussed so far?

Suppose there is an energy scale Λ (equivalent to a length scale Λ−1) at which QED does
not describe the data anymore.

We would have changes of the various quantities, for instance, the potential, photon
propagator and total cross section would be modified as follows :

1

r
→ 1

r

(
1− e−Λr

)
(potential)

− 1

q2
→ − 1

q2

(
1 +

q2

Λ2

)
(propagator)

σe
+e−→µ+µ− → 4πα2

3s

(
1± s

Λ2 − s

)2

(cross section).
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The form of the potential is typical of a Yukawa coupling of a fermion with a massive
spin 0 field. Since this particle is imagined as heavy – the energy available is smaller or
similar to the production threshold Λ – we can treat thie particle as spinless since spin
effect are only significant in the relativistic case. This type of ansatz is thus standard in
the sense that any new heavy particle that can be produced from an e+e−-annihilation will
have the same effect on the potential, regardless of it being a scalar or a vector particle.
The other quantities are then directly related to the change in the potential.

We have seen the electroweak effects to the QED cross section at the end of the previous
subsection. This corresponds to Λ ≈ mZ0 (Fig. 6.22).B. Naroska, e~ephysics with the JADE detector at PETRA 95

I I I I I I I I I I I I I I I I I I I I I I I

R JADE
• ee—4L~r

1.5 - 0 ee—.tt -

Standard

Model

1.0 -_____________

QED

0.5- -

I II II II I III I I I I I II II I I

0.0 500 1000 1500 2000 2500

s(GeV
2l

Fig. 2.15. Total cross-section ratio for e ~e- —~p.~p. and e~e- —* r T compared with the predictions from QED (full line) and standard model
(dashed line).

results assuming e—p. or e—-r universality are shown in lines 2 and 3 of table 2.5. Finally a common fit
was made of all data, assuming e—p. —‘r universality; the results are shown in the last line of table 2.5.
The prediction of the standard model for the axial—vector coupling constant is confirmed with an error
of 8%.

The weak coupling constants have also been determined in neutrino scattering off electrons, which is
also a purely leptonic process [53].There, two sets of solutions exist, one of which is excluded by the
e~e measurements. The remaining solution is [52]:

ae = 2g~= —0.990 ±0.052, ~e = 2g~= —0.076 ±0.094

in good agreement with the e+ e - values assuming lepton universality.

2.4.2. Determination of sin2 Ow and M~

We have compared the predictions of the standard model for the charge asymmetry A and the
normalised cross-sectionR (eqs. (2.7) and (2.10)) with the measured muon and tau asymmetries and R
values using the parameterization of x as in eq. (2.8) with M~and sin2 ~ as free parameters. The
contours of 68% and 95% CL. are shown for p. pairs in fig. 2.16. The limit at 95% C.L. is also shown
for a combined fit to p.- and\-r-pair data. The contour extends along the prediction of the standard
model, its “width” is related to the errors of the measured angular asymmetry and the “length” (and

Table 2.5

Coupling constants from 2-parameter fits and results for sin2 Ow

Input la I mel sin2 Ow

e~e 0.96~~ 0.30±0.33 0.26±0.10
1.11±0.11 0.36±0.50 0.16i~

* 0.88~~ 0.50±0.31 —

+ — + ..- + — +0.14 *0.03e e , p. p. , s r 1.02 ±0.08 0.3502, O.200.02

Rµµ = σmeas

σQED

Muon Pair Production (Exp.)

Z0

! ~ MZ

"s < 50 GeV 
PETRA:

Figure 6.22: Comparison of measured total cross section at PETRA with the QED pre-
diction for muon and tau pair production.

Fig. 6.23 shows the ratio,

Rµµ =
σe

+e−→µ+µ−
meas

σe
+e−→µ+µ−

QED

,

as measured at PETRA and TRISTAN. By comparing data and theory and varying Λ
within the experimental error one can infer that – if any – new physics can only be brought
in with a mass scale Λ ≥ 200 [GeV].
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Muon Pair Production (Exp.)

Tristan

Petra

$s ( 55 GeV 
Tristan:

Z0

'± = 200 GeV

'-exclusion limits
up to 250 GeV
[after correcting for EW effects]

Figure 6.23: Comparison of measured total cross section at PETRA and TRISTAN with
the QED prediction for muon pair production.



Chapter 7

Unitary symmetries and QCD as a
gauge theory

Literature:

• Lipkin [23] (group theory concepts from a physicist’s point of view)

• Lee [24], chapter 20 (extensive treatment of Lie groups and Lie algebras in the
context of differential geometry)

Interactions between particles should respect some observed symmetry. Often, the proce-
dure of postulating a specific symmetry leads to a unique theory. This way of approach
is the one of gauge theories. The usual example of a gauge theory is QED, which
corresponds to a local U(1)-symmetry of the Lagrangian :

ψ → ψ′ = eieqeχ(x)ψ, (7.1)

Aµ → A′µ = Aµ − ∂µχ(x). (7.2)

We can code this complicated transformation behavior by replacing in the QED La-
grangian ∂µ by the covariant derivative Dµ = ∂µ + ieqeAµ.

7.1 Isospin SU(2)

For this section we consider only the strong interaction and ignore the electromagnetic
and weak interactions. In this regard, isobaric nuclei (with the same mass number A) are
very similar. Heisenberg proposed to interpret protons and neutrons as two states of the
same object : the nucleon:

|p〉 = ψ(x)

(
1
0

)
,

|n〉 = ψ(x)

(
0
1

)
.

127
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We note the analogy to the spin formalism of nonrelativistic quantum mechanics, which
originated the name isospin.

In isospin-space, |p〉 and |n〉 can be represented as a two-component spinor with I = 1
2
.

|p〉 has then I3 = +1
2

and |n〉 has I3 = −1
2
.

Since the strong interaction is blind to other charges (electromagnetic charge, weak hy-
percharge), the (strong) physics must be the same for any linear combinations of |p〉 and
|n〉. In other words, for,

|p〉 → |p′〉 = α |p〉+ β |n〉 ,
|n〉 → |n′〉 = γ |p〉+ δ |n〉 ,

for some α, β, γ, δ ∈ C, or,

|N〉 =

(
ψp
ψn

)
→ |N ′〉 = U |N〉 , (7.3)

for some 2×2 matrix U with complex entries, the (strong) physics does not change if we
switch from |N〉 to |N ′〉 to describe the system.

We remark at this point that this symmetry is only an approximate symmetry since it is
violated by the other interactions, and is hence not a symmetry of nature.

First we require the conservation of the norm 〈N |N〉 which we interpret as the number
of particles like in quantum mechanics. This yields,

〈N |N〉 → 〈N ′|N ′〉 = 〈N |U †U |N〉 !
= 〈N |N〉

⇒ U †U = UU † = 1⇒ U ∈ U(2). (7.4)

A general unitary matrix has 4 real parameters. Since the effect of U and eiϕU are the
same, we fix one more parameter by imposing,

detU
!

= 1⇒ U ∈ SU(2), (7.5)

the special unitary group in 2 dimensions. This group is a Lie group (a group which is
at the same time a manifold). We use the representation,

U = eiαj Îj , (7.6)

where the αj’s are arbitrary group parameters (constant, or depending on the spacetime

coordinate x), and the Îj’s are the generators of the Lie group.

We concentrate on infinitesimal transformations, for which αj � 1. In this approximation
we can write

U ≈ 1 + iαj Îj. (7.7)
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The two defining conditions of SU(2), Eq. (7.4) and (7.5), imply then for the generators,

Î†j = Îj (hermitian), (7.8)

Tr Îj = 0 (traceless). (7.9)

In order for the exponentiation procedure to converge for noninfinitesimal αj’s, the gen-
erators must satisfy a comutation relation, thus defining the Lie algebra su(2) of the
group SU(2).

Quite in general, the commutator of two generators must be expressible as a linear com-
bination of the other generators 1. In the case of su(2) we have,

[Îi, Îj] = iεijkÎk, (7.10)

where εijk is the totally antisymmetric tensor with ε123 = +1. They are characteristic of
the (universal covering group of the) Lie group (but independent of the chosen represen-
tation) and called structure constants of the Lie group.

The representations can be characterized according to their total isospin. Consider now
I = 1/2, where the generators are given by

Îi =
1

2
τi

with τi = σi the Pauli spin matrices (this notation is chosen to prevent confusion with
ordinary spin):

τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)

which fulfill [σi, σj] = 2iεijkσk. The action of the matrices of the representation (see
Eq. (7.6)) is a non-abelian phase transformation:

|N ′〉 = ei
#»α · #»τ

2 |N〉 .

For SU(2), there exists only one diagonal matrix (τ3). In general, for SU(N), the following
holds true:

• Rank r = N − 1: There are r simultaneously diagonal operators.

• Dimension of the Lie algebra o = N2 − 1: There are o generators of the group and
therefore o group parameters. E. g. in the case of SU(2)/{±1} ∼= SO(3) this means
that there are three rotations/generators and three angles as parameters.

1Since we are working in a matrix representation of SU(2) this statement makes sense. The difference
between the abstract group and its matrix representation is often neglected.
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I3

Figure 7.1: The nucleons |n〉 and |p〉 form an isospin doublet.

Isospin particle multiplets (representations) can be characterized by their quantum num-
bers I and I3: There are 2I + 1 states. Consider for example once again the case I = 1/2.
There are two states, characterized by their I3 quantum number:

(∣∣I = 1
2
, I3 = +1

2

〉
∣∣I = 1

2
, I3 = −1

2

〉
)

=

(
|p〉
|n〉

)
.

This is visualized in Fig. 7.1, along with the action of the operators τ± = 1/2(τ1 ± iτ2):

τ− |p〉 =

(
0 0
1 0

)(
1
0

)
=

(
0
1

)
= |n〉

τ+ |n〉 = |p〉
τ− |n〉 = τ+ |p〉 = 0.

This is the smallest non-trivial representation of SU(2) and therefore its fundamental
representation.

Further examples for isospin multiplets are

I multiplets I3

1
2

(
p
n

) (
K+

K0

) (
3
2He
3
1H

)
+1

2

−1
2

1



π+

π0

π−




+1
0
−1

3
2




∆++

∆+

∆0

∆−




+3
2

+1
2

−1
2

−3
2

where m∆ ≈ 1232 MeV and mp,n ≈ 938 MeV.

All I > 1 representations can be obtained from direct products out of the fundamental
I = 1/2 representation 2 where “2” denotes the number of states. In analogy to the
addition of two electron spins where the Clebsch-Gordan decomposition reads rep.1/2 ⊗
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rep.1/2 = rep.0⊕ rep.1 and where there are two states for the spin-1/2 representation, one
state for the spin-0 representation, and three states for the spin-1 representation, we have

2⊗ 2︸ ︷︷ ︸
I=| 1

2
± 1

2
|=0,1

= 1︸︷︷︸
isosinglet, I=0

⊕ 3︸︷︷︸
isotriplet, I=1

. (7.11)

However, there is an important difference between isospin and spin multiplets. In the latter
case, we are considering a bound system and the constituents carrying the spin have the
same mass. On the other hand, pions are not simple bound states. Their structure will be
described by the quark model.

7.1.1 Isospin invariant interactions

Isospin invariant interactions can be constructed by choosing SU(2) invariant interaction
terms L′. For instance, consider the Yukawa model, describing nucleon-pion coupling,
where

L′πN = igN̄ #»τ N · #»π = igN̄ ′ #»τ N ′ · #»π ′ (7.12)

which is an isovector and where the second identity is due to SU(2) invariance. Infinites-
imally, the transformation looks as follows:

N ′ = UN U = 1 +
i

2
#»α · #»τ (7.13)

N̄ ′ = N̄U † U † = 1− i

2
#»α · #»τ = U−1 (7.14)

#»π ′ = V #»π V = 1 + i #»α · #»
t . (7.15)

The parameters
#»
t can be determined from the isospin invariance condition in Eq. (7.12):

N̄τjNπj = N̄U−1τiUNVijπj.

With Vij = δij + iαk(tk)ij (cp. Eq. (7.15)) and inserting the expressions for U and U †, this
yields

τj =

(
1− i

2
αkτk

)
τi

(
1 +

i

2
αkτk

)

︸ ︷︷ ︸
= τi + i

2
αk[τi, τk] +O(α2

k)

= τi + i
2
αk2iεiklτl +O(α2

k)

(
δij + iαk(tk)ij

)

= τj + iαk {iεjklτl + τi(tk)ij}
= τj + iαkτi {iεjki + (tk)ij}︸ ︷︷ ︸

!
=0

⇒ (tk)ij = −iεkij.



132 Chapter 7. Unitary symmetries and QCD as a gauge theory

This means that the 3 × 3 matrices tk, k = 1, 2, 3, are given by the structure constants
(see Eq. (7.10)). For the commutator we therefore have

[tk, tl]ij = −εkimεlmj + εlimεkmj = εklmεmij = iεklm(−iεmij) = iεklm(tm)ij (7.16)

where the second identity follows using the Jacobi identity. This means that the matrices
tk fulfill the Lie algebra

[tk, tl] = iεklmtm.

The tks form the adjoint representation of SU(2).

7.2 Quark model of hadrons

It is experimentally well established that the proton and the neutron have inner structure.
The evidence is:

• Finite electromagnetic charge radius

〈rp,n〉 = 0.8 · 10−15 m

(The neutron is to be thought of as a neutral cloud of electromagnetically interacting
constituents.)

• Anomalous magnetic moment

#»µ = g
q

2m
#»s gp = 5.59 gn = −3.83

• Proliferation of strongly interacting hadronic states (particle zoo)

p, n, Λ, ∆−, Ξ, Σ, Ω, . . .

The explanation for these phenomena is that protons and neutrons (and the other
hadrons) are bound states of quarks:

|p〉 = |uud〉
|n〉 = |udd〉

}
3 quark states.

The up quark and the down quark have the following properties

|u〉 : q = +
2

3
, I =

1

2
, I3 = +

1

2
, S =

1

2
;

|d〉 : q = −1

3
, I =

1

2
, I3 = −1

2
, S =

1

2
.
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Quarks Charge Baryon number

Up
1.5− 3 Mev

Charm
1270 MeV

Top
171 000 MeV

+2/3 e 1/3

Down
3.5− 6 MeV

Strange
105 MeV

Bottom
4200 MeV

−1/3 e 1/3

Leptons Charge Lepton number

e− µ− τ− − e 1
νe νµ ντ 0 1

Table 7.1: Quarks and leptons.

Thus, |u〉 and |d〉 form an isospin doublet and combining them yields the correct quantum
numbers for |p〉 and |n〉. There are also quark-antiquark bound states: The pions form an
isospin triplet while the |η〉 is the corresponding singlet state (see Eq. (7.11)):

|π+〉 =
∣∣ud̄
〉

|π0〉 = 1√
2

(
|uū〉 −

∣∣dd̄
〉)

|π−〉 = |dū〉



 triplet states, I = 1

|η〉 = 1√
2

(
|uū〉+

∣∣dd̄
〉)}

singlet state, I = 0.

There are in total three known quark doublets:
(
|u〉
|d〉

)

︸ ︷︷ ︸
up/down

(
|c〉
|s〉

)

︸ ︷︷ ︸
charm/strange

(
|t〉
|b〉

)

︸ ︷︷ ︸
top/bottom

(
q = +2

3
, I3 = +1

2

q = −1
3
, I3 = −1

2

)
.

These quarks can be combined to give states like, e. g., |Λ〉 = |uds〉 .

7.3 Hadron spectroscopy

7.3.1 Quarks and leptons

Experimental evidence shows that, in addition to the three quark isospin doublets, there
are also three families of leptons, the second type of elementary fermions (see Tab. 7.1).
The lepton families are built out of an electron (or µ or τ) and the corresponding neutrino.
The summary also shows the large mass differences between the six known quarks. All of
the listed particles have a corresponding antiparticle, carrying opposite charge and baryon
or lepton number, respectively.

Stable matter is built out of quarks and leptons listed in the first column of the family
table. Until now, there is no evidence for quark substructure and they are therefore con-
sidered to be elementary. Hadrons, on the other hand, are composite particles. They are
divided in two main categories as shown in the following table:
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Quarks Flavor Other numbers

Up, Down — S = C = B = T = 0
Charm C = +1 S = B = T = 0
Strange S = −1 C = B = T = 0

Top T = +1 S = C = B = 0
Bottom B = −1 S = C = T = 0

Table 7.2: Additional quantum numbers for the characterization of unstable hadronic
matter. Antiquarks have opposite values for these quantum numbers.

Type Matter Antimatter

Baryons qqq q̄q̄q̄
Mesons qq̄

Bound states such as |qq〉 or |qqq̄〉 are excluded by the theory of quantum chromodynamics
(see Sect. 7.4).

Unstable hadronic matter is characterized by the following additional flavor quantum
numbers: Charm (C), Strangeness (S), Beauty (B), and Topness (T ) (see Tab. 7.2). It is
important to remember that in strong and electromagnetic interactions both baryon and
flavor quantum numbers are conserved while in weak interactions only baryon quantum
numbers are conserved. Therefore, weak interactions allow heavy quarks to decay into the
stable quark family. The quark decay channels are shown in the following table:

Quark → Decay products

u, d stable
s uW−

c sW+

b cW−

t bW+

As we have seen, protons and neutrons are prominent examples of baryons. Their general
properties can be summarized as follows:

Proton Neutron

Quarks |uud〉 |udd〉
Mass 0.9383 GeV 0.9396 GeV
Spin 1/2 1/2
Charge e = 1.6 · 10−19 C 0 C
Baryon number 1 1
Lifetime stable: τ ≥ 1032 years unstable: τn→pe−ν̄e = 887± 2 s

Production
gaseous hydrogen: ionization
through electric field

under 1 MeV: nuclear reactors;
1− 10 MeV: nuclear reactions

Target for ex-
periments

liquid hydrogen liquid deuterium
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The respective antiparticles can be produced in high-energy collisions, e. g.

pp→ ppp̄p with |p̄〉 =
∣∣ūūd̄

〉
or

pp→ ppn̄n with |n̄〉 =
∣∣ūd̄d̄

〉
.

Recall that in Sect. 4.1 we calculate the energy threshold for the reaction pp→ ppp̄p and
find that a proton beam colliding against a proton target must have at least | #»p | = 6.5 GeV
for the reaction to take place.

7.3.2 Strangeness

We now take a more detailed look at the strangeness quantum number. In 1947, a new
neutral particle, K0, was discovered from interactions of cosmic rays:

π−p
s→ K0Λ, with consequent decays: K0 w→ π+π−, Λ

w→ π−p. (7.17)

This discovery was later confirmed in accelerator experiments. The processes in Eq. (7.17)
is puzzling because the production cross section is characterized by the strong interaction
while the long lifetime (τ ∼ 90 ps) indicates a weak decay. In this seemingly paradoxical
situation, a new quantum number called “strangeness” is introduced. A sketch of produc-
tion and decay of the K0 is shown in Fig. 7.2. As stated before, the strong interaction
conserves flavor which requires for the production ∆S = 0. The decay, on the other hand,
proceeds through the weak interaction: The s quark decays via s→ uW−.

Baryons containing one or more strange quarks are called hyperons. With three consti-
tuting quarks we can have, depending on the spin alignment, spin-1/2 (|↑↓↑〉) or spin-3/2
(|↑↑↑〉) baryons (see Tab. 7.3).2 There are 8 spin-1/2 baryons (octet) and 10 spin-3/2
baryons (decuplet). Octet and decuplet are part of the SU(3) multiplet structure (see
Sect. 7.4).3 All hyperons in the octet decay weakly (except for the Σ0). They therefore
have a long lifetime of about 10−10 s and decay with |∆S| = 1, e. g.

Σ+ → pπ0, nπ+

Ξ0 → Λπ0.

The members of the decuplet, on the other hand, all decay strongly (except for the Ω−)
with |∆S| = 0. They therefore have short lifetimes of about 10−24 s, e. g.

∆++(1230)→ π+p

Σ+(1383)→ Λπ+.

2The problem that putting three fermions into one symmetric state violates the Pauli exclusion prin-
ciple is discussed in Sect. 7.4.

3However, this “flavor SU(3)” is only a sorting symmetry and has nothing to do with “color SU(3)”
discussed in Sect. 7.4.
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Figure 7.2: Sketch of the reaction π−p → K0Λ and the decays of the neutral K0 and Λ.
Tracks detected in a bubble chamber (a). Feynman diagrams for the production and the
Λ decay (b). Notice that S(K0) = 1, |K0〉 = |ds̄〉 and S(Λ) = −1, |Λ〉 = |uds〉 . Source:
[8, p. 140].

Spin-1/2: Octet Spin-3/2: Decuplet

Baryon State Strangeness Baryon State Strangeness

p(938) |uud〉 0 ∆++(1230) |uuu〉 0
n(940) |udd〉 0 ∆+(1231) |uud〉 0

Λ(1115) |(ud− du)s〉 −1 ∆0(1232) |udd〉 0
Σ+(1189) |uus〉 −1 ∆−(1233) |ddd〉 0
Σ0(1192) |(ud+ du)s〉 −1 Σ+(1383) |uus〉 −1
Σ−(1197) |dds〉 −1 Σ0(1384) |uds〉 −1
Ξ0(1315) |uss〉 −2 Σ−(1387) |dds〉 −1
Ξ−(1321) |dss〉 −2 Ξ0(1532) |uss〉 −2

Ξ−(1535) |dss〉 −2
Ω−(1672) |sss〉 −3

Table 7.3: Summary of the baryon octet and decuplet.
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Figure 7.3: Bubble chamber photograph (LHS) and line diagram (RHS) of an event showing
the production and decay of Ω−. Source: [25, p. 205].

The quark model, as outlined so far, predicts the hyperon |Ω−〉 = |sss〉 as a member of
the spin-3/2 decuplet. Therefore, the observation of the production,

K−p→ Ω−K+K0,

and decay,

Ω− → Ξ0π−, Ξ0 → Λπ0, Λ→ pπ−,

of the Ω− at Brookhaven in 1964 is a remarkable success for the quark model. A sketch
of the processes is given in Fig. 7.3. Note that the production occurs via a strong process,
∆S = 0, while the decay is weak: |∆S| = 1.

7.3.3 Strong vs. weak decays

Generally speaking, strong processes yield considerably shorter lifetimes than weak pro-
cesses. Consider, for instance, the following two decays,

∆+ → p+ π0 Σ+ → p+ π0

τ∆ = 6 · 10−24 s τΣ = 8 · 10−11 s

|uud〉 → |uud〉+
1√
2

(
|uū〉+

∣∣dd̄
〉)

|uus〉 → |uud〉+
1√
2

(
|uū〉 −

∣∣dd̄
〉)

(strong) (weak).
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Mesons

The bound qq state can have either spin=0 (singlet) or =1 (triplet)
Radial vibrations are characterized by the quantum number n
Orbital angular momentum is characterized by the quantum number l
States are represented in spectroscopic notation
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10.2 Aufbau des Hadronenspektrums
Die Bestandteile der Hadronen (q, q, g) werden Partonen genannt. Die Valenzquarks
tragen im Quarkmodell die totale Ladung und den Spin des Hadrons und bilden in erster
Ordnung die Struktur des Hadrons (qq, qqq...)74. Ausserdem können Seequarks (virtu-
elle qq-Paare) von Gluonen erzeugt werden. Gluonen und Seequarks tragen zur Masse
des Hadrons bei75. Wir stellen das Spektrum der Hadronen mit den Valenzquarks auf,
zunächst mit drei Quarks, u, d, s.

n
q q

s = 1!

s = 0!
Abbildung 117: Für jedes qq-Paar existiert ein Spin-Triplett (parallele Spins) und ein Spin-Singulett (anti-
parallele Spins). Ausserdem existieren orbitale Anregungen � (Rotation) und radiale Anregungen n (Vibra-
tionen).

10.2.1 Mesonen

Das qq-System befindet sich entweder im Spin-Singulett- (s = 0) oder im Spin-Triplett- (s
= 1) Zustand. Mit drei Flavours und drei Antiflavours können wir somit je neun Mesonen
aufbauen. Schaltet man zusätzlich Bahndrehimpuls � ein (Abb. 117a), dann können wei-
tere Nonetts von Mesonen aufgebaut werden, die sog. orbitalen Anregungen. Radiale
Anregungen (entgegengesetzte Schwingungen) werden durch die radiale Quantenzahl n
gekennzeichnet (n ≥ 1) und bilden weitere Nonetts. Somit entsteht ein Spektrum, ähnlich
dem Wasserstoffspektrum. Der Spin des Mesons setzt sich aus dem Spin und dem Dreh-
impuls zusammen ( �J = �s + ��) und wir bekommen für die Quantenzahl J

|�− s| ≤ J ≤ �+ s. (407)

Wir bezeichnen die Nonetts mit der spektroskopischen Notation76

n2s+1�J (� = 0 : S, � = 1 : P, � = 2 : D, ...) (408)

74Aus dem sog. “naiven” Quarkmodell können zahlreiche Voraussagen gemacht werden, wie z.B. die
magnetischen Momente der Baryonen. Die genauen Beiträge der Valenzquarks, Seequarks und Gluonen zu
den Spins der Hadronen sind noch unklar und werden gegenwärtig experimentell untersucht.

75In der e.m. Wechselwirkung, z.B. beim H-Atom, tragen Photonen auch zur Masse bei (Bindungsener-
gie), allerdings ist der relative Beitrag viel kleiner als für Gluonen bei der starken Wechselwirkung.

76In der Literatur findet man auch anstatt n die Zahl ν = n + � (z.B. beim H-Atom), also z.B.
1S, 2P, 3D... anstatt 1S, 1P, 1D... für die niedrigsten Zustände bei vorgegebenem �.
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Figure 7.4: Sketch of the possible spin configurations for quark-antiquark bound states.
The qq̄ pair is characterized by orbital excitations l (rotation) and radial excitations n
(vibration). Source: [8, p. 141].

The final state is identical in both decays but the lifetime is much longer for the weak
process. Since the final state is equal, this difference in lifetime must come from a difference
in the coupling constants. For τ ∼ 1/α2 where α is a coupling constant:

αweak

αstrong

∼
√
τ∆

τΣ

= 2.7 · 10−7.

7.3.4 Mesons

Mesons are quark-antiquark bound states: |qq̄〉 . In analogy to the spin states of a two-
electron system (and not to be confused with the isospin multiplets discussed on p. 130),
the |qq̄〉 bound state can have either spin 0 (singlet) or spin 1 (triplet) (see Fig. 7.4). Radial
vibrations are characterized by the quantum number n while orbital angular momentum
is characterized by the quantum number l. The states are represented in spectroscopic
notation:

n2s+1lJ

where l = 0 is labeled by S, l = 1 by P and so on. A summary of the n = 1, l = 0 meson
states is shown in Tab. 7.4. A summary of the states with l ≤ 2 can be found in Fig. 7.5.

7.3.5 Gell-Mann-Nishijima formula

Isospin is introduced in Sect. 7.1. The hadron isospin multiplets for n = 1, l = 0 are shown
in Fig. 7.6. This summary leads to the conclusion that the charge Q of an hadron with
baryon number B and strangeness S is given by

Q = I3 +
B + S

2
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Mesons spectrum
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Abbildung 118: Spektrum der qq-Mesonen (u-, d-, s-Quarks), eingereiht in Nonetts n2s+1�J (approxima-
tive Massenskala). Viele radiale und orbitale Anregungen sind noch nicht identifiziert worden. Die grau-
en Nonetts gelten als klar und eindeutig. Die äquivalente Bezeichnung JPC wird in Kap. 11.4 und 11.7
erläutert.

Für die zwei weiteren Mesonen liegt der Mischungswinkel im Bereich θ ∼ −10◦ bis
−20◦ [13, 47]. Für kleine θ bekommt man in grober Näherung aus (412)

η(547) ∼ 1√
6
|uu + dd− 2ss�,

η�(958) ∼ 1√
3
|uu + dd + ss�,

deren Zusammensetzung stark von der idealen Mischung abweicht.
Man stellt fest, dass die Spin-Triplett-Mesonen (z.B. ρ) schwerer sind als die Spin-

Singuletts (z.B. π). Der Grund liegt in der Hyperfeinaufpaltung (Spin-Spin-Wechselwir-
kung der Quarks), die mit dem Gluonenaustausch wesentlich grösser ist als bei dem Pho-
tonenaustausch der e.m. Wechselwirkung80.

Abb. 118 zeigt das Spektrum der qq Mesonen. Einzelheiten findet man in Ref. [13].

78Man spricht von “idealer” Mischung.
79Für diese üblichen Mesonen schreibt man normalerweise die Massen nicht.
80Beim Wasserstoffatom liegt der 11S0-Zustand 5.9× 10−6 eV unterhalb des 13S1, ein winziger Unter-
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Mesons from u, d, s quarks

Cells marked with grey are 
well established

Figure 7.5: Summary of mesons from u, d s quarks for l ≤ 2. Cells shaded in grey are well
established states. Source: [8, p. 143].
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Mesons (n = 1, l = 0)

11S0 (spin 0) 13S1 (spin 1)
π+(140)

∣∣ud̄
〉

ρ+(770)
∣∣ud̄
〉

π−(140) |ūd〉 ρ−(770) |ūd〉
π0(135) 1/

√
2
∣∣dd̄− uū

〉
ρ0(770) 1/

√
2
∣∣dd̄− uū

〉

K+(494) |us̄〉 K∗+(892) |us̄〉
K−(494) |ūs〉 K∗−(892) |ūs〉
K0(498) |ds̄〉 K∗0(896) |ds̄〉
K̄0(498)

∣∣d̄s
〉

K̄∗0(896)
∣∣d̄s
〉

η(547) ∼ 1/
√

6
∣∣uū+ dd̄− 2ss̄

〉
φ(1020) = ψ1 − |ss̄〉

η′(958) ∼ 1/
√

3
∣∣uū+ dd̄+ ss̄

〉
ω(782) = ψ2 1/

√
2
∣∣uū+ dd̄

〉

Table 7.4: Summary of n = 1, l = 0 meson states.

which is called Gell-Mann-Nishijima formula. As an example, consider the Ω− hyperon
where 0 + (1− 3)/2 = −1.

7.4 Quantum chromodynamics and color SU(3)

The quark model, as discussed so far, runs into a serious problem: Since the quarks have
half-integer spin, they are fermions and therefore obey Fermi-Dirac statistics. This means
that states like

∆++ =
∣∣u↑u↑u↑

〉
, S =

3

2

where three quarks are in a symmetric state (have identical quantum numbers) are for-
bidden by the Pauli exclusion principle.

The way out is to introduce a new quantum number that allows for one extra degree of
freedom which enables us to antisymmetrize the wave function as required for fermions:

∆++ = N
∑

ijk

εijk

∣∣∣u↑iu↑ju↑k
〉

where N is some normalization constant and the quarks come in three different “colors”:4

|q〉 → |q1,2,3〉 =



|q1〉
|q2〉
|q3〉


 .

Since color cannot be observed, there has to be a corresponding new symmetry in the
Lagrangian due to the fact that the colors can be transformed without the observables

4The new charge is named “color” because of the similarities to optics: There are three fundamental
colors, complementary colors and the usual combinations are perceived as white.
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Multiplets representation
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Abbildung 120: SU(3)-Multipletts der Hadronen im Grundzustand (n = 1, � = 0).

Wir können jetzt die Hadronen-Multipletts durch Diagramme darstellen85, in welchen
jedes Hadron durch seine Koordinaten (Strangeness S, i3) gekennzeichnet wird (Abb.
120). Für � = 0 bekommen wir die zwei Mesonen-Nonetts 11S0 und 13S1 mit J = 0
bzw. J = 1, s. (409, 414), das Baryonen-Oktett (J = 1/2), s. (415) und das Baryonen-
Dekuplett (J = 3/2), s. (416). Weitere Multipletts lassen sich mit � > 0 und n > 1
aufbauen.

Für Hadronen und für Quarks gilt die Gell-Mann-Nishijima-Formel86

Q = i3 + B+S
2

. (427)

Beachten Sie, dass die Hadronen auf einer Diagonalen in Abb. 120 stets die gleiche La-
dung haben. Zum Beispiel bekommen wir für das u-Quark oder das Ω−:

u :
2

3
=

1

2
+

1
3

2
, Ω− : −1 = 0 +

1− 3

2
. (428)

85Gewichtsdiagramme der SU(3)-Symmetrie-Gruppe [46].
86Die Verallgemeinerung zu 6 Quarks lautet

Q = i3 +
B + S + B� + C + T

2
. (426)

Die Quantenzahlen S(s) = −1, B�(b) = −1, C(c) = +1, T (t) = +1 und S(s) = 1, B�(b) = 1,
C(c) = −1, T (t) = −1 sind so gewählt, dass ihre Vorzeichen mit den Ladungsvorzeichen der Quarks
übereinstimmen.
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Figure 7.6: Summary of hadron isospin multiplets. n = 1, l = 0. Source: [8, p. 147].

being affected. In the case of our new charge in three colors the symmetry group is SU(3),
the group of the special unitary transformations in three dimensions. The Lie algebra of
SU(3) is

[
T a, T b

]
= ifabcT c

where, in analogy to Eq. (7.10), fabc denotes the structure constants and where there are
8 generators T a (recall that o = N2 − 1 = 8, see p. 129) out of which r = N − 1 = 2 are
diagonal.

The fundamental representation is given by the 3 × 3 matrices T a = 1
2
λa with the Gell-

Mann matrices

λ1 =




τ1︷ ︸︸ ︷
0 1
1 0

0
0

0 0 0


 λ2 =




τ2︷ ︸︸ ︷
0 −i
i 0

0
0

0 0 0


 λ3 =




τ3︷ ︸︸ ︷
1 0
0 −1

0
0

0 0 0


 λ4 =




0 0 1
0 0 0
1 0 0




λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0


 λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

One can observe that these matrices are hermitian and traceless,

λ†a = λa Trλa = 0.
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Furthermore, one can show that

Tr
(
λaλb

)
= 2δab

and

λaijλ
a
kl = 2

(
δilδkj −

1

3
δijδkl

)
(Fierz identity).

The structure constants of SU(3) are given by

fabc =
1

4i
Tr ([λa, λb]λc)

and are antisymmetric in a, b, and c. The numerical values are

f123 = 1

f458 = f678 =

√
3

2

f147 = f156 = f246 = f257 = f345 = f367 =
1

2
fabc = 0 else.

As in the case of SU(2), the adjoint representation is given by the structure constants
which, in this case, are 8× 8 matrices:

(ta)bc = −ifabc.
The multiplets (again built out of the fundamental representations) are given by the direct
sums

3⊗ 3̄ = 1⊕ 8 (7.18)

where the bar denotes antiparticle states and

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (7.19)

The singlet in Eq. (7.18) corresponds to the |qq̄〉 states, the mesons (e. g. π), while the
singlet in Eq. (7.19) is the |qqq〉 baryon (e. g. p, n). The other multiplets are colored and
can thus not be observed.’Working out theSU(3) potential structure, one finds that an
attractive QCD potential exists only for the singlet states, while the potential is repulsive
for all other multiplets.

The development of QCD outlined so far can be summarized as follows: Starting from the
observation that the nucleons have similar properties, we considered isospin and SU(2)
symmetry. We found that the nucleons n and p correspond to the fundamental repre-
sentations of SU(2) while the π is given by the adjoint representation. To satisfy the
Pauli exclusion principle, we had to introduce a new quantum number and with it a new
SU(3) symmetry of the Lagrangian. This in turn led us to multiplet structures where the
colorless singlet states correspond to mesons and baryons.
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Construction of QCD Lagrangian We now take a closer look at this SU(3) trans-
formation of a color triplet,

|q〉 =




q1

q2

q3


→ |q′〉 =




q′1
q′2
q′3


 = eigsαaT

a




q1

q2

q3


 = U |q〉 , (7.20)

where gs ∈ R is used as a rescaling (and will be used for the perturbative expansion) of
the group parameter α introduced previously. The reason of introducing it becomes clear
in the context of gauge theories.

In analogy to the QED current,

jµQED = eqeq̄γ
µq,

we introduce the color current 5, which is the conserved current associated with the
SU(3) symmetry,

jµa = gsq̄iγ
µT aijqj a = 1 · · · 8. (7.21)

In the same spirit, by looking at the QED interaction,

Lint
QED = −jµQEDAµ = eqeq̄γ

µqAµ,

yielding the vertex,

�

Aµ

q q

where we can see the photon – the electrically uncharged U(1) gauge boson of QED –, we
postulate an interaction part of the QCD Lagrangian of the form,

Lint
QCD = −jµaAaµ = gsq̄iγ

µT aijqjA
a
µ, (7.22)

which translates in the vertex (which is not the only one of QCD as we shall see),

5The Einstein summation convention still applies, even if the color index i and j are not in an upper and
lower position. This exception extends also to the color indices a, b, ... of the gauge fields to be introduced.
There is no standard convention in the literature, and since there is no metric tensor involved, the position
of a color index, is merely an esthetic/readability problem.
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�

Aaµ

qj qi

Now there are 8 SU(3) gauge bosons Aaµ for QCD : one for each possible value of a. They
are called gluons and are themselves colored.

Continuing with our analogy, we define the covariant derivative of QCD 6,

Dµ = ∂µ1 + igsT
aAaµ, (7.23)

and state that the QCD Lagrangian should have a term of the form,

L̃QCD = q̄(i /D −m)q. (7.24)

Up to this point, both QED and QCD look nearly identical. Their differences become
crucial when we look at local gauge symmetries. Such a transformation can be written,

|q(x)〉 → |q′(x)〉 = eigsαa(x)Ta |q(x)〉 , (7.25)

and we impose as before that the Lagrangian must be invariant under any such transfor-
mation. This is equivalent of imposing,

D′µ |q′(x)〉 !
= eigsαa(x)TaDµ |q(x)〉
⇔ 〈q̄′(x)| i /D′ |q′(x)〉 = 〈q̄(x)| i /D |q(x)〉 .

For αa(x)� 1, we can expand the exponential and keep only the first order term,

D′µ |q′(x)〉 =
(
∂µ + igsT

cA′cµ
)

(1 + igsαa(x)T a) |q(x)〉
!

= (1 + igsαa(x)T a)
(
∂µ + igsT

cAcµ
)

︸ ︷︷ ︸
Dµ

|q(x)〉 .

Making the ansatz A′cµ = Acµ+δAcµ where |δAcµ| � |Acµ| and expanding the former equation
to first order in δAcµ (the term proportional to αa(x)δAcµ has also been ignored), we get,

igsT
cδAcµ + igs(∂µαa(x))T a + i2g2

sT
cAcµαa(x)T a

!
= i2g2

sαa(x)T aT cAcµ

⇒ T cδAcµ
!

= −(∂µαa(x))T a + igs[T
a, T c]αa(x)Acµ,

6Note that Dµ acts on color triplet and gives back a color triplet; ∂µ does not mix the colors, whereas
the other summand does (T a is a 3×3 matrix).
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or, renaming the dummy indices and using the Lie algebra su(3),

T aδAaµ = −(∂µαa(x))T a − gsfabcT aαb(x)Acµ ∀T a

⇒ A′aµ = Aaµ − ∂µαa(x)︸ ︷︷ ︸
like in QED

− gsfabcαb(x)Acµ︸ ︷︷ ︸
non-abelian part

. (7.26)

Eq. (7.26) describes the (infinitesimal) gauge transformation of the gluon field.

In order for the gluon field to become physical, we need to include a kinematical term
(depending on the derivatives of the field). Remember the photon term of QED,

Lphoton
QED = −1

4
FµνF

µν Fµν = ∂µAν − ∂νAµ,

where the last is gauge invariant. As we might expect from Eq. (7.26), the non-abelian
part will get us into trouble. Let’s look at,

δ(∂µA
c
ν − ∂νAcµ) = −∂µ∂ναa + ∂ν∂µαa − gsfabcαb(∂µAcν − ∂νAcµ)

− gsfabc
(
(∂µαb)A

c
ν − (∂ναb)A

c
µ

)
.

We remark that the two first summands cancel each other and that the third looks like
the SU(3) transformation under the adjoint representation.

We recall that,

qi → q′i = (δij + igsαaT
a
ij)qj (fundamental representation)

Ba → B′a = (δac + igsαbt
b
ac)Bc (adjoint representation)

respectively, where,

tbac = −ifbac = ifabc.

Hence, if F a
µν transforms in the adjoint representation of SU(3), we should have,

δF a
µν

!
= −gsfabcαbF c

µν .

We now make the ansatz,

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (7.27)

and prove that it fulfills the above constraint.

δF a
µν =δ(∂µA

a
ν − ∂νAaµ)− gsfabcδ(AbµAcν)

=− gsfabcαb(∂µAcν − ∂νAcµ)− gsfabc
(
(∂µαb)A

c
ν − (∂ναb)A

c
µ

)

− gsfabc
(
−(∂µαb)A

c
ν + (∂ναb)A

c
µ

)
− gsfabc

(
−gsfbdeαdAeµAcν − gsfcdeαdAbµAeν

)
,



146 Chapter 7. Unitary symmetries and QCD as a gauge theory

Using,

fabcfbdeαdA
e
µA

c
ν = fabefbdcαdA

c
µA

e
ν = facefcdbαdA

b
µA

e
ν ,

and

faecfdbc − facbfdec = (iT aec)(iT
d
cb)− (iT dec)(iT

a
cb) =

[
T a, T d

]
eb

= ifadcT
c
eb,

we get the desired result.

We check finally that a kinematic term based on the above definition of F a
µν is gauge

invariant :

δ
(
F a
µνF

µν
a

)
= 2F µν

a δF a
µν = −2gs fabc︸︷︷︸

=−fcba

αb F
µν
a F c

µν︸ ︷︷ ︸
=Fµνc Faµν

= 0.

Finally, we get the full QCD Lagrangian,

LQCD = −1

4
F a
µνF

µν
a + q̄(i /D −mq)q, (7.28)

with /D and F a
µν definded by Eqs. (7.23) and (7.27) respectively.

This Lagrangian is per construction invariant under local SU(3) gauge transformations.
It is our first example of a non-abelian gauge theory, a so-called Yang-Mills theory.

Structure of the kinematic term From the definition of F a
µν , Eq. (7.27), we see that,

F a
µνF

µν
a =

(
∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν

)
(∂µAνa − ∂νAµa − gsfadeAµdAνe) ,

will have a much richer structure than in the case of QED.

First, we have – as in QED – a 2-gluon term
(
∂µA

a
ν − ∂νAaµ

)
(∂µAνa − ∂νAµa) corresponding

to the gluon propagator,

�

k

µ, a ν, b

= −g
µν

k2
δab. (7.29)

Then we have a 3-gluon term
(
−gsfabcAbµAcν

)
(∂µAνa − ∂νAµa) yielding a 3-gluon vertex

�
Aaµ(k1) Acλ(k3)

Abν(k2)

= gsfabc [gµν(k1 − k2)λ + gνλ(k2 − k3)µ + gλµ(k3 − k1)ν ] . (7.30)
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Finally we have also a 4-gluon term
(
−gsfabcAbµAcν

)
(−gsfadeAµdAνe) yielding the 4-gluon

vertex

�
Aaµ(k1)

Abν(k2)

Adρ(k4)

Acλ(k3)

= −ig2
s [fabefcde(gµλgνρ − gµρgνλ) + fadefbce(gµνgλρ − gµλgνρ) + facefbde(gµρgνλ − gµνgρλ)]

(7.31)

Unlike in QED, gluons are able to interact with themselves. This comes from the fact that
the theory is non-abelian. As a consequence, there is no superposition principle for QCD:
the field of a system of strongly interacting particles is not the sum of the individual
fields. Thence, there is no plane wave solution to QCD problems, and we cannot make
use of the usual machinery of Green’s functions and Fourier decomposition. Up to now
there is no known solution.

7.4.1 Strength of QCD interaction

In QED, when we take a term of the form,
∣∣∣∣∣∣∣∣∣ �

e e

∣∣∣∣∣∣∣∣∣

where the � denotes some other part of the Feynman diagram, the expression is pro-
portional to e2 = 4πα.

In the case of QCD, we have a few more possibilities. We look at the general SU(n) case.
The QCD result can be found by setting n = 3.

First, for the analogous process to the one cited above :
∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �i k

j j

a a

gsT
a
ij gsT

a
jk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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which is proportional to g2
sT

a
ijT

a
jk = 4παsCF δik, where

CF =
n2 − 1

2n
, (7.32)

is the color factor, the Casimir operator of SU(n). To find it, we used one of the Fierz
identities (see exercises), namely,

T aijT
a
jk =

1

2

(
δikδjj −

1

n
δijδjk

)

=
1

2

(
nδik −

1

n
δik

)
=
n2 − 1

2n
δik.

Next we look at,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �a b

i i

j j

gsT
a
ij gsT

b
ji

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is proportional to g2
sT

a
ijT

b
ji = 4παsTF δ

ab, where

TF =
1

2
. (7.33)

To find it, we used the fact that,

Tr
(
T aT b

)
=

1

2
δab.

Finally we investigate the case where,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �a d

b b

c c

gsfabc gsfdbc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is proportional to g2
sfabcfdbc = 4παsCAδ

ad, where

CA = n. (7.34)
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To find it, we used the relation,

fabc = −2iTr
([
T a, T b

]
T c
)
,

that we have shown in the beginning of this section.

In the case of QCD, CF = 4
3
, TF = 1

2
, CA = 3. From the discussion above, we can heuris-

tically draw the conclusion that gluons tend to couple more to other gluons, than to
quarks.

At this stage, we note two features specific to the strong interaction, which we are going
to handle in more detail in a moment :

• Confinement : At low energies (large distances), the coupling becomes very large,
so that the perturbative treatment is no longer valid, an the process of hadronization
becomes inportant. This is the reason why we cannot observe color directly.

• Asymptotic freedom : At high energies (small distances) the coupling becomes
negligible, and the quarks and gluons can move almost freely.

As an example, of typical QCD calculation, we sketch the calculation of the

Gluon Compton scattering

g(k) + q(p)→ g(k′) + q(p′).

There are at first sight two Feynman diagrams coming into the calculation,

�
k + p, l

p, i

k, a

p′, j

k′, b

�

+ �
p− k′, l′

p, i

k, a

p′, j

k′, b

which yields the following scattering matrix element,

−iMfi =− ig2
s

[
ū(p′)/ε∗(k′)

1

/p+ /k −m/ε(k)u(p)T bjlT
a
li

+ū(p′)/ε(k)
1

/p− /k′ −m
/ε∗(k′)u(p)T ajl′T

b
l′i

]
. (7.35)

We start by checking the gauge invariance (Mfi must vanish under the substitution
εµ(k)→ kµ):

−iM′
fi = −ig2

s ū(p′)/ε∗(k′)u(p)
(
T bjiT

a
li − T ajl′T bl′i

)
,
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where

T bjiT
a
li − T ajl′T bl′i =

[
T b, T a

]
ji

= ifbacT
c
ji 6= 0!

So we need another term, which turns out to be the one corresponding to the Feynman
diagram,

�p′ − p, c
p, i

k, a

p′, j

k′, b

The calculation of the gluon-gluon scattering goes analogously. We need to consider the
graphs,

� +� +� +�
.

7.4.2 QCD coupling constant

To leading order, a typical QED scattering process takes the form,

� γ(q)

e−(p) e−(p′)

with q2 = (p′ − p)2 ≤ 0.

In the Coulomb limit (long distance, low momentum transfer), the potential takes the
form,

V (R) = −α
R

R &
1

me

≈ 10−11 [cm]. (7.36)

When R ≤ m−1
e , quantum effects become important (loop corrections, also known as

vacuum polarization), since the next to leading order (NLO) diagram,
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� e+e−

starts to play a significant (measurable) role. This results in a change of the potential to,

V (R) = −α
R

[
1 +

2α

3π
ln

1

meR
+O(α2)

]
= − ᾱ(R)

R
, (7.37)

where ᾱ(R) is called the effective coupling.

We can understand the effective coupling in analogy to a solid state physics example : in
an insulator, an excess of charge gets screened by the polarization of the nearby atoms.
Here we create e+e− pairs out of the vacuum, hence the name vacuum polarization.

As we can see from Eq. (7.37), the smaller the distance R ≤ m−1
e , the bigger the observed

“charge” ᾱ(R). What we call the electron charge e (or the fine structure constant α) is the
limiting value for very large distances or low momentum transfer as shown in Fig. 7.4.2.

1/137

(R)

R

1/137

(Q2)

Q2

Figure 7.7: Evolution of the effective electromagnetic coupling with distance and energy
(Q2 = −q2).

For example the measurements done at LEP show that, ᾱ(Q2 = m2
Z) ≈ 1

128
> α.
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In the case of QCD, we have at NLO, the following diagrams,

� +� q̄q

screening

+�
antiscreening

+�
antiscreening.

We can picture the screening/antiscreening phenomenon as follows,

+ +

R↘⇒ αs(R)↗ R↘⇒ αs(R)↘

Figure 7.8: Screening and antiscreening.

For QCD, the smaller the distance R (or the bigger the energy Q2), the smaller the
observed coupling ᾱs(R). At large distances, ᾱs(R) becomes comparable with unity, and
the perturbative approach breaks down as we can see in Fig. 7.4.2. The region concerning
confinement and asymptotic freedom are also shown.

 (R)

R

(Q2)

Q2

s s

asymptotic
freedom

con"nement

asymptotic
freedom

      ≈ 200 MeVQCD

Figure 7.9: Evolution of the effective strong coupling with distance and energy (Q2 = −q2).
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The β-function of QCD In the renormalization procedure of QCD, we get a differen-
tial equation for αs(µ

2) where µ is the renormalization scale,

µ2 ∂αs
∂(µ2)

= β(αs) (7.38)

β(αs) = −αs
[
β0
αs
4π

+ β1

(αs
4π

)2

+ β2

(αs
4π

)3

+ · · ·
]
, (7.39)

with

β0 =
11

3
nc −

2

3
nf = 11− 2

3
nf (NLO) (7.40)

β1 =
17

12
n2
c −

5

12
ncnf −

1

4

(
n2
c − 1

2nc

)
nf , (NNLO) (7.41)

where nc is the number of colors and nf is the number of quark flavors. These two
numbers enter into the calculation through gluon respectively quark loop corrections to
the propagators.

We remark at this stage that unless 7 nf ≥ 17, we have β0 > 0, whereas in the case of
QED, we get,

βQED
0 = −4

3
< 0. (7.42)

This fact explains the completely different behavior of the effective couplings of QCD and
QED.

To end this chapter, we will solve Eq. (7.38) retaining only the first term of the power
expansion of β.

µ2 ∂αs
∂(µ2)

= − β0

4π
α2
s

∂αs
α2
s

= − β0

4π
∂(lnµ2)

αs(Q2)∫

αs(Q2
0)

dαs
α2
s

= − β0

4π

lnQ2∫

lnQ2
0

d(lnµ2),

and hence,

1

αs(Q2)
=

1

αs(Q2
0)

+
β0

4π
ln
Q2

Q2
0

. (7.43)

7As of 2009, only 6 quark flavors are known and there is experimental evidence (decay witdth of the
Z0 boson) that there are no more than 3 generations with light neutrinos.
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We thus have a relation between αs(Q
2) and αs(Q

2
0), giving the evolution of the effective

coupling.

A mass scale is also generated, if we set,

1

αs(Q2 = Λ2)
= 0⇒ αs(Λ

2) =∞.

Choosing Λ = Q0, we can rewrite Eq. (7.43) as,

αs(Q
2) =

4π

β0 ln Q2

Λ2

. (7.44)



Chapter 8

QCD in e+e− annihilations

Literature:

• Dissertori/Knowles/Schmelling [27]

• Ellis/Stirling/Webber [28]

• Bethke [29, 30]

• Particle Data Group [26]

• JADE, Durham, and Cambridge jet algorithms [31, 32, 33, 34]

• FastJet Package, Fast kT , SISCone [35, 36, 37]

In Chap. 7, QCD is introduced as an SU(3) gauge theory. Here we continue this discus-
sion and consider QCD processes following e+e− annihilations. The main focus is on the
definition and application of observables linking theoretical predictions with measurable
quantities: Jets and event shapes are discussed; the applications include measurements of
the parton spins, the strong coupling constant, and the QCD color factors. The chapter
is concluded by an outlook to hadronization and non-perturbative QCD.

Some examples of e+e− colliders and their energies are given in Tab. 6.1. Fig. 8.1(a) maps
the corresponding eras onto the available center of mass energies. A half-logarithmic plot
comparing σe

+e−→hadrons to σe
+e−→µ−µ+ is given in Fig. 8.1(b). Experimental milestones

include:

• SPEAR (SLAC): Discovery of quark jets.

• PETRA (DESY) & PEP (SLAC): First high energy (> 10 GeV) jets; discovery of
gluon jets (at the PETRA collider, see Fig. 8.2); many pioneering QCD studies.
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(a)

!"#$%&'(%)###*+###*&##,-../0-&1##2334######################5//6+#*.7#5%8+#######################################################################################!9-7% !"

!"#$%&'()*#+,-./0)1/+2*)-3)45)6-7-.

(b)

Figure 8.1: Cross sections in e+e− annihilations. (a) Cross section for e+e− → hadrons as
a function of the center of mass energy. The ECM dependence is linear because the plot
is double-logarithmic. Source: [38]. (b) Comparison of cross sections for e+e− → hadrons
and for e+e− → µ−µ+. Both cross sections show the same 1/s dependence on the center
of mass energy squared, except at the Z resonance.
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(a) (b)

Figure 8.2: Gluon discovery at the PETRA collider at DESY, Hamburg. Event display (a)
and reconstruction (b).

• LEP (CERN) & SLC (SLAC): Large energies (small αs, see later) mean more re-
liable calculations and smaller hadronization uncertainties. Large data samples are
collected: ∼ 3 ·106 hadronic Z decays per experiment. This allows for precision tests
of QCD.

8.1 The basic process: e+e− → qq̄

In Sect. 5.10 we calculated the cross section for e+e− → µ+µ− and found

σe
+e−→µ+µ− =

4πα2
em

3s
=

86.9 nbGeV2

s
(8.1)

where the finite electron and muon masses have been neglected. Here, we consider the
basic process e+e− → qq̄. In principle, the same Feynman diagram contributes:

�
e+

e−

µ+

µ−

�
e+

e−

q̄

q
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The only differences are the fractional electric charges of the quarks and the fact that the
quarks appear in Nc = 3 different colors which cannot be distinguished by measurement.
Therefore, the cross section is increased by a factor Nc. For the quark-antiquark case one
thus finds (for mq = 0)

σe
+e−→qq̄

0 =
4πα2

em

3s
e2
qNc =

86.9 nbGeV2

s
e2
qNc. (8.2)

We assume
∑

q σ
e+e−→qq̄ = σe

+e−→hadrons, i. e. the produced quark-antiquark pair will
always hadronize.

With Eq. (8.1) and (8.2), neglecting mass effects and gluon as well as photon radiation,
we find the following ratio:

R =
σe

+e−→hadrons

σe+e−→µ+µ−
= Nc

∑

q

e2
q. (8.3)

The sum runs over all flavors that can be produced at the available energy. For ECM
below the Z peak and above the Υ resonance (see Fig. 8.3), we expect1

R = Nc

∑

q

e2
q = Nc



(

2

3

)2

︸ ︷︷ ︸
u

+

(
−1

3

)2

︸ ︷︷ ︸
d

+

(
−1

3

)2

︸ ︷︷ ︸
s

+

(
2

3

)2

︸ ︷︷ ︸
c

+

(
−1

3

)2

︸ ︷︷ ︸
b


 = Nc

11

9
.

This is in good agreement with the data for Nc = 3 which confirms that there are three
colors. At the Z peak one also has to include coupling to the Z boson which can be created
from the e+e− pair instead of a photon. The small remaining difference visible in the plot
is because of QCD corrections for gluon radiation (see later).

8.1.1 Singularities

In order to achieve a better prediction, we have to go beyond the basic QED prediction by
including QCD dynamics: Consider the production of a quark-antiquark pair along with
a gluon:

�
e+

e−

q̄

g

q

1Recall that the top quark mass is mt ≈ 171 GeV.
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G. Dissertori
ETH Zürich QCD in e+e- annihilations: Particle Physics Phenomenology I

The “R ratio”

Confirmation of  : Number of colours = 3 !

7

For ECM below the Z peak and above the Υ resonance we expect  (zf = eq):

Note : small remaining difference : because of QCD correction (gluon radiation) = 1 + αs /π

6 quarks, 
3 colours  ( 45/9)

5 quarks, 
3 colours  ( 33/9)

5 quarks, 
1 colour  ( 11/9)

At Z peak :

have to include also 
couplings to Z

Figure 8.3: Ratio R = σe
+e−→hadrons/σe

+e−→µ+µ− as a function of the center of mass
energy. As expected by Eq. (8.3), there is roughly no energy dependence besides various
resonances. The data confirm that there are three quark colors.

We define the kinematic variables

xi = 2
pi ·Q
Q2

=
E∗i
Ebeam

(8.4)

where Q = pe+ + pe− = pγ/Z and Q2 = s. Energy-momentum conservation (
∑

i pi = Q)
requires that, in this case,

xq + xq̄ + xg = 2 (8.5)

xi ≤ 1. (8.6)

One can calculate the differential cross section

d2σ

dxqdxq̄
= σ0

αs
2π
CF

x2
q + x2

q̄

(1− xq̄)(1− xq)
(8.7)

where CF = 4/3 is the color factor of the fundamental representation. Note that this
expression is singular for

• xq → 1, e. g. q̄‖g,

• xq̄ → 1, e. g. q‖g, and for

• (xq, xq̄)→ (1, 1), e. g. xg → 0.

Because of the kinematic constrains imposed by energy-momentum conservation (Eq. (8.5)
and (8.6)), the allowed region (part of which we have to integrate Eq. (8.7) over to find a
cross section) for a γ? → qq̄g event is of the form shown in Fig. 8.4.
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G. Dissertori
ETH Zürich QCD in e+e- annihilations: Particle Physics Phenomenology I

Singularity Structure: “Dalitz Plot”

9

from : G. Dissertori, I.K. Knowles, M. Schmelling
“Quantum Chromodynamic : High Energy Experiments and Theory”, Oxford University Press

q q̄

q q̄
q q̄

Dienstag, 22. Dezember 2009

Figure 8.4: A Dalitz plot showing the allowed region of the xq-xq̄ plane for a γ? → qq̄g
event with massless partons. The thick lines indicate the singularities where xq = 1 and
xq̄ = 1. Their intersection marks the position of the soft gluon singularity: xg = 0. The
concept of jets will be introduced later, but it is clear that there has to be at least a
certain angle between the gluon and the quarks if the jet in gluon direction is to be
detected separately. Source: [27, p. 74].

So, how does one deal with these singularities to find a meaningful expression for the cross
section to first order? Consider first the two-jet cross section. Two jets are detected when
the gluon is either very soft or almost parallel to the quarks such that only two energy
flows back-to-back can be measured. Including interference terms, the cross section in the
case of an unresolved gluon is given by (integration over two-jet region, see Fig. 8.4)

σtwo-jet(T ) =

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

︸ ︷︷ ︸
O(α0

s)

+

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

︸ ︷︷ ︸
O(α1

s)

+ 2Re


� ·�




︸ ︷︷ ︸
O(α1

s)

+O(α2
s)

= σ0

(
1 + αsf(T ) +O(α2

s)
)

where T stems from the criterion separating the two- and three-jet regions of the Dalitz
plot: max{xq, xq̄, xg} < T. The singularities of the second and third term cancel and the
result is a function of the parameter T. However, our problem is not yet resolved, since
limT→1 f(T ) = −∞.

If the gluon can be resolved, a three-jet event is detected and the integration is over the
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(a) (b)

Figure 8.5: Hadronization of quarks and gluons. Diagrams of the processes e+e− → qq̄ →
hadrons (a) and e+e− → qq̄g → hadrons (b). The RHS shows the situation in the center
of mass frame. Source: [39, p. 5 and 6].

three-jet region of Fig. 8.4:

σthree-jet(T ) =

∣∣∣∣∣∣�
∣∣∣∣∣∣

2

+O(α2
s) = σ0αsg(T ) +O(α2

s)

where limT→1 g(T ) = +∞. Combining the two-jet and three-jet cross sections, one finds
that the dependence on T cancels yielding a finite result for the total cross section:

σtot = σtwo-jet + σthree-jet + · · · = σ0

(
1 + αs [f(T ) + g(T )] +O(α2

s)
)

= σ0

(
1 +

3

4
CF

αs
π

+O(α2
s)

)
.

8.2 Jets and other observables

We now focus on entities actually observable in experiment. We do not observe free quarks
but only colorless hadrons produced by the “hadronization/fragmentation” of quarks and
gluons. For instance, the processes discussed so far can be visualized as in Fig. 8.5.

The anatomy of the process e+e− → Z → hadrons is sketched in Fig. 8.6. The things that
we can do based on such a process include

• Measure αs,

• Measure the masses of (heavy) quarks,

• Measure gluon self-coupling,

• Study hadronization and particle correlations, and

• Study the transition between the non-perturbative and perturbative regime and the
properties of quark or gluon jets.
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Figure 8.6: The anatomy of the process e+e− → γ?, Z → hadrons. Source: [40, p. 13,
modified].

8.2.1 Jet algorithms

Let us turn to the question: What is a jet?

Fig. 8.7 shows a multi-jet event recorded by the ALEPH detector. A possible verbal defi-
nition of “jet” would be “cluster/spray of particles (tracks, calorimeter deposits) or flow
of energy in a restricted angular region”. Jets are the connection between the quarks and
gluons of QCD and the signals actually measured in the detectors. If we are to extract
this information from the data, we clearly need some kind of algorithmic definition of this
concept: In the “final state” of many interesting interactions there are quarks and gluons.
These are the fundamental particles of QCD. Confinement (see p. 150) means that in the
detector we see hadrons (together with leptons and photons), but not single quarks or
gluons. At energies much larger than ΛQCD(∼ 1 GeV) these hadrons appear confined into
jets. Our aim is to compare the predictions based on partons (quarks and gluons) with
the measurements on hadrons. Therefore, we need an algorithmic definition of a jet which

1. can be applied both to data and predictions and

2. gives a close relationship between partons and jets of hadrons.

The basic requirement for such an algorithm is applicability at all relevant levels of theory
and experiment: partons, stable particles, measured objects (calorimeter objects, tracks,
etc.) while always finding the same jet. Furthermore, the algorithm has to be independent
of the very details of the detector, e. g. the granularity of the calorimeter, the energy
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Figure 8.7: Multi-jet event in the ALEPH detector.

response, etc. Finally, it should also be easy to implement. In order that we can test
QCD predictions, there has to be a close correspondence between the jet momentum (i. e.
energy, momentum, and angle) at the parton level and at the hadron level.

NB: Other requirements might strongly depend on the specific applica-
tion/measurement being performed: For a precision test of QCD there may be
requirements which for an analysis of W decays or searches for new physics might not be
necessary (e. g. infrared safety).

Further requirements come from QCD: We want to compare perturbative calculations
with the data. Therefore, the algorithm has to be insensitive to “soft physics” which
requires infrared safety and collinear safety.

Infrared safety requires that the configuration must not change when adding a further
soft particle. This would be violated by the following behavior2:

Collinear safety means that the configuration does not change when substituting one
particle with two collinear particles. The problem is visualized in this figure:

2Source: [41, pp. 4].



164 Chapter 8. QCD in e+e− annihilations

Infrared and collinear safety yield algorithms with the required insensitivity to soft physics:
They guarantee the cancellation (between real and virtual emission diagrams) of the
infrared and collinear divergencies in every order of perturbation theory.

8.2.1.1 Examples of jet algorithms

There are two classes of jet algorithms in use. Algorithms of the class “JADE” are used
mainly for e+e− annihilations (i. e. for the analysis of events with purely leptonic initial
states), but more recently, this class of jet algorithms is also used at hadron colliders. We
will concentrate on this class here. The second class of jet algorithms is called “CONE”
and is mainly used at hadron colliders with some applications also at e+e− colliders.

JADE class algorithms are characterized by

• a “metric” yij (measure of distance in momentum space),

• a criterion of resolution ycut, and a

• procedure of recombination.

The original definition of the metric from the JADE experiment at PETRA reads

yij =
2EiEj(1− cos θij)

E2
CM

≈ m2
ij

E2
CM

(8.8)

where mij is the invariant mass of the particle pair (i, j), see Fig. 8.8(a) Given this metric
and a pre-defined resolution ycut, the algorithm is:
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(a) (b)

Figure 8.8: Particle pair (a) and recombination of close particles (b).

Compute yij  !ij

min yij = ykl

ykl < ycut

combine
p(kl)  

and remove k,l

EXIT
{pJ} J=1,n

NoYes

First, all distances yij between pairs (i, j) are calculated. Then we search for the smallest
invariant mass: min(i,j) yij = ykl. The fact that ykl is the smallest distance in momentum
space of all pairs (of particles or, in the subsequent steps, also pseudo-particles) means
that the pair (k, l) is either nearly parallel, θkl = 0, or one or both of the particles are
very soft, see Fig. 8.8(b). If the distance cannot be resolved, ykl < ycut, the two particles
(k, l) are combined (clustered) into one new pseudo-particle with the combined momentum
p(kl) = pk+pl (i. e. momentum is conserved), see Fig. 8.9(a). This is the so-called E scheme.
Applying this algorithm will reduce complex events until there is a certain number of jets
left, as is sketched in Fig. 8.9(b).

The proposed algorithm has some very useful characteristics:

• Infrared safety,

yij → 0 for Ei or Ej → 0,

and collinear safety,

yij → 0 for θij → 0,



166 Chapter 8. QCD in e+e− annihilations

ykl

Pkl

(a) (b)

Figure 8.9: Recombination of particle pair with small invariant mass (a) and reduction of
particle pattern to jets (b).

(in every order of perturbation theory, see p. 163 and Eq. (8.8)).

• All particles are assigned to one and only one jet.

• The algorithm’s sequence does not depend on ycut.

• The number of found jets is a monotonic function of ycut.

For the discussed algorithm there is no need to stick to the JADE metric of Eq (8.8);
alternative metrics can be introduced. For instance, the DURHAM metric is

yij =
2 min

(
E2
i , E

2
j

)
(1− cos θij)

E2
CM

≈ k2
⊥

E2
CM

(8.9)

where k⊥ is the transverse momentum of the less energetic particle with respect to the
more energetic one. The introduction of this metric was motivated by perturbative QCD
calculations: It allows for the resummation of large logarithms of the type lnm(ycut) in all
orders of perturbation theory (see e. g. [27, pp. 139]). These logarithms appear order-by-
order in the expressions for jet cross sections, jet rates, etc.

Now is a good time to recall the Dalitz plot of Fig. 8.4 where we separated a two-jet and a
three-jet region. The algorithmic jet definition we have developed enables us to define the
thee-jet region: Apply the jet algorithm until three jets are left. If the distance between
the jets can be resolved, min(i,j)(yij) > ycut, there are three jets, else it is a two-jet event.
The shape of the found three-jet region is somewhat different, since yij also depends on
the angle θij, see Fig. 8.10.

In order to compare the analyzed data to the predictions of QCD, we need perturbative
predictions for jet rates. For the reaction e+e− → hadrons the leading order predictions
are as follows. For the JADE algorithm we have

σLOthree-jet(ycut) = σ0CF
αs
2π

[
2 ln2 ycut + 3 ln ycut −

π2

3
+

5

2
− f(ycut)

]
(8.10)
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Figure 8.10: A Dalitz plot showing the allowed region of the xq-xq̄ plane for a γ? → qq̄g
event with massless partons. The three-jet region is determined using an algorithmic jet
definition.

where f(ycut)→ 0 for ycut → 0. The prediction for the DURHAM algorithm is the same,
except for the factor “2” in front of “ln2 ycut”. In simple terms, the logarithm terms arise
because the vertex where the gluon is radiated off contributes a factor proportional to
αs/Egluon to the integrand which upon integration yields

∫
ycut

dE/E.

Resummation3 with the DURHAM algorithm looks as follows. First, let

R2(ycut) =
σtwo-jet

σtot

.

One can show that

R2 = exp



−

s∫

sycut

dq2

q2

CFαs(q
2)

2π

[
ln

s

q2
− 3

2

]


≈ 1−
s∫

sycut

dq2

q2

CFαs(q
2)

2π
ln · · ·+ · · · ≈ 1− CFαs

2π
ln2 ycut + . . .

where R2(ycut → 0) = 0. This is an example of the characteristics an algorithm has to
have if you want to perform “high-precision” perturbative QCD calculations. Now there
also exists an algorithm of the kt (DURHAM) type for hadron colliders, see later.

To conclude this section, we turn to the comparison of jet algorithms. There is no such
thing as the best “benchmark” variable which allows to compare algorithms in a general
manner. The suitability and performance of an algorithm depends very strongly on the
performed analysis. Usually we would like to have a good resolution of energies and angles

3Resummation in QCD is analogous to the treatment of infrared divergencies in QED, see e. g. [14,
pp. 202]
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(a) (b)

Figure 8.11: Visualization of levels at which the algorithms have to deliver good resolution
(a) and comparison of jet algorithms (b). The mean number of jets is displayed as a
function of ycut. The parton level is denoted by squares and the hadron level by circles.
The results were obtained by HERWIG Monte Carlo simulation at ECM = Mz. Source:
[34, p. 28]. For details compare [34, pp. 7].

of the jets at the parton, hadron, and detector levels (see Fig. 8.11(a) for a visualization),
as well as a good efficiency and purity to find a certain number of jets at a certain
level. For some jet algorithms, the mean number of jets as a function of ycut at the
hadron and parton levels, as obtained by HERWIG (Hadron Emission Reactions With
Interfering Gluons) Monte Carlo simulation at ECM = MZ , is compared in Fig. 8.11(b).
Another comparison4 is shown in Fig. 8.12. The fraction of events with 2 jets which have
2, 3, 4, and 5 sub-jets is given as a function of ycut or r2, the radius fraction sqared,
respectively. The data stem from HERWIG Monte Carlo simulations at ECM = 1.8 TeV
with 75 GeV < Et(jet 2) < 100 GeV. Data from a kt algorithm are shown in Fig. 8.12(a)
while the results in Fig. 8.12(b) come from a CONE algorithm with radius R = 0.7.

8.2.2 Event shape variables

The introduced jet algorithms can be used as a starting point to define more refined
observables that capture the event topologies.

4More on kt and CONE algorithms can be found in [41].
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(a) (b)

Figure 8.12: Comparison of kt (a) and CONE (b) algorithms. Legend: —parton level,
· · · calorimeter level. The fraction of two-jet events with 2, 3, 4, and 5 sub-jets is given as
a function of ycut or r2. The data is generated by HERWIG Monte Carlo simulations at
ECM = 1.8 TeV with 75 GeV < Et(jet 2) < 100 GeV.

An example for an event shape variable is the differential two-jet rate. The definition goes
as follows: Apply the DURHAM algorithm until exactly three jets are left (in contrast
to the possibility to run the algorithm until a certain resolution is reached). Then take
the minimal distance yij of all pairs (i, j) and call it y23 (or y3): min(i,j) yij = y23 = y3.
This gives one value for each event. The distribution of these values for all events is an
“event-shape distribution”. Therefore, one can plot the differential cross section as in
Fig. 8.13. There is one histogram entry for each event. The data come from hadronic Z
decays at LEP. Observe that two-jet events are more likely than three-jet events. The
perturbative regime is limited to high gluon energies. Hadronization effects that have to
be phenomenologically modeled spoil the perturbative calculations at low y3 values.

As another example for an event-shape variable, let us consider thrust. It was invented
around 1978 and first used at PETRA. The idea is to select the axis that maximizes the
sum of the longitudinal momentum components:

The thrust of an event is then defined as

T = max
#»n

∑
i | #»p i · #»n |∑
i | #»p i|

where | #»n | = 1 and the sum runs over the three-momenta of all final states. The thrust
axis is defined by the vector #»nT for which the maximum is obtained. This definition
means that for T = 1 the event is perfectly back-to-back while for T = 1/2 the event is
spherically symmetric:
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Figure 8.13: Differential two-jet rate for hadronic Z decays at LEP.

This point is also illustrated with ALEPH data of Z decays in Fig. 8.14 where Fig. 8.14(a)
corresponds to T → 1 and Fig. 8.14(b) to T → 1/2. The corresponding event-shape
distribution is shown in Fig.8.15 (compare also the differential two-jet rate event-shape
distribution in Fig. 8.13).

There are further event-shape variables suitable for different purposes. Some examples are
given in the following.

• Thrust major Tmajor: The thrust major vector #»nMa is defined in the same way as
the thrust vector #»nT , but with the additional condition that #»nMa must lie in the
plane perpendicular to #»nT :

Tmajor = max
#»nMa⊥ #»nT

∑
i | #»p i · #»nMa|∑

i | #»p i|
.

• Thrust minor Tminor: The minor axis is perpendicular to both the thrust axis and
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(a) (b)

Figure 8.14: Event displays of Z decays recorded at ALEPH. The thrust is nearly 1 for (a)
and close to 1/2 for (b).

Figure 8.15: Thrust for hadronic Z decays at LEP. Observe that the two- and three-jet
events are indicated by thrust values close to 1 and 1/2, respectively. Again, in the non-
perturbative regime hadronization corrections from phenomenological models are needed.
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the major axis: #»nMi = #»nT × #»nMa. The value of the thrust minor is given by

Tminor =

∑
i | #»p i · #»nMi|∑

i | #»p i|
.

• Oblateness O: The oblateness is defined as the difference between thrust major and
thrust minor:

O = Tmajor − Tminor.

• Sphericity S: The sphericity is calculated from the ordered eigenvalues λi=1,2,3 of
the quadratic momentum tensor:

Mαβ =

∑
i p

α
i p

β
i∑

i | #»p i|2
, α, β = 1, 2, 3

λ1 ≥ λ2 ≥ λ3, λ1 + λ2 + λ3 = 1

S =
3

2
(λ2 + λ3).

The sphericity axis #»nS is defined along the direction of the eigenvector associated
to λ1, the semi-major axis #»n sMa is along the eigenvector associated to λ2.

• Aplanarity A: The aplanarity is calculated from the third eigenvalue of the quadratic
momentum tensor:

A =
3

2
λ3.

• Planarity P : The planarity is a linear combination of the second and third eigenvalue
of the quadratic momentum tensor:

P = λ2 − λ3.

• Heavy jet mass ρ: A plane through the origin and perpendicular to #»nT divides the
event into two hemispheres, H1 and H2 from which the corresponding normalized
hemisphere invariant masses are obtained:

M2
i =

1

E2
CM

(∑

k∈Hi
pk

)2

, i = 1, 2.

The larger of the two hemisphere masses is called the heavy jet mass,

ρ = max(M2
1 ,M

2
2 ),

and the smaller is the light jet mass ML,

ML = min(M2
1 ,M

2
2 ).
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• Jet mass difference MD: The difference between ρ and ML is called the jet mass
difference:

MD = ρ−ML.

• Wide jet broadening BW : A measure of the broadening of particles in transverse
momentum with respect to the thrust axis can be calculated for each hemisphere
Hi using the relation

Bi =

∑
k∈Hi |

#»p k × #»nT |
2
∑

j | #»p j|
, i = 1, 2

where j runs over all particles in the event. The wide jet broadening is the larger of
the two hemisphere broadenings,

BW = max(B1, B2),

and the smaller is called the narrow jet broadening BN ,

BN = min(B1, B2).

• Total jet broadening BT : The total jet broadening is the sum of the wide and the
narrow jet broadenings:

BT = BW +BN .

• C-parameter C: The C-parameter is derived from the eigenvalues of the linearized
momentum tensor Θαβ:

Θαβ =
1∑
i | #»p i|

∑

i

pαi p
β
i

| #»p i|
, α, β = 1, 2, 3.

The eigenvalues λj of this tensor define C by

C = 3(λ1λ2 + λ2λ3 + λ3λ1).

The discussed event-shape variables have been extensively used to analyze LEP data.
Examples are given in Fig. 8.16: Fig. 8.16(a) shows thrust predictions and measurements;
predictions and data for thrust, heavy jet mass, total jet broadening, wide jet broadening,
and the C-parameter are shown in Fig. 8.16(b).
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(a) (b)

Figure 8.16: Comparison of predictions and LEP data for some event-shape variables.
Thrust data are shown for several center of mass energies (a). The other analyses deal
with heavy jet mass, total jet broadening, wide jet broadening, and the C-parameter (b).

8.2.3 Applications

Examples for applications of the observables discussed above in this section are measure-
ments of the strong coupling constant αs (see later, Sect. 8.3), the discovery of quark and
gluon jets, measurements of the quark and gluon spin, the triple-gluon vertex, and jet
rates or the analysis of differences between quark and gluon jets.

Quark jets were discovered at the SPEAR storage ring (SLAC) [42]. The data are shown
in Fig. 8.17. For higher energies particles cluster around an axis and the Monte Carlo
simulation based on a jet model fits the data better than the simulation based on an
isotropic phase-space model. This is the first observation of a jet structure.

Gluon jets were discovered at PETRA (DESY) [43, 44, 45, 46]. Here, the relevant ob-
servable is oblateness (see p. 172). The first three-jet event seen by TASSO is shown in
Fig. 8.18(a). In Fig. 8.18(b) one can observe that events at ECM ∼ 30 GeV exhibit larger
oblateness (planar structure) than predicted by models without hard gluon radiation.

When it comes to parton spins the question is: How do you measure the spin of unob-
servable particles? For spin-1/2 fermions annihilating into a vector boson, conservation of
angular momentum predicts a distribution

dσ

d cos Θ∗
∼ 1 + cos2 Θ∗
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Figure 8.17: Discovery of quark jets at SPEAR (SLAC). Observed sphericity (see p. 172)
distributions for data, jet model (solid curves) and phase-space model (dashed curves) for
ECM = 3 GeV (LHS) and 7.4 GeV (RHS). Source: [42, 38, p. 1611].

(a) (b)

Figure 8.18: The first three-jet event seen by TASSO (a) and the distribution N−1dN/dO
as a function of oblateness, measured at MARK-J (b). In both figures of (b) the solid
curves are the predictions based on the qq̄g model and the dashed curve is based on the
standard qq̄ model. Source: [44, p. 832].
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(a) (b)

Figure 8.19: Measurements of quark (a) and gluon (b) spin by ALEPH. Source: [47].

if the final state particles have spin 1/2 and

dσ

d cos Θ∗
∼ 1− cos2 Θ∗ = sin2 Θ∗

for spin-0 particles in the final state. Therefore, the quark direction has to be measured
to measure the quark spin. At LEP energies the thrust axis in two-jet events to a very
good approximation aligns with the direction of the primary quarks. Thus, one can take
the thrust direction in two-jet events. The exact expression for the spin-1/2 case reads

dσ

d cos Θ∗
=
α2

eme
2
qπNc

2s

(
2− β∗2q + β∗2q cos2 Θ∗

)
β∗q

where β∗q =
√

1− 4m2
q/s → 1 for mq = 0. The resulting angular distribution found by

ALEPH [47] is shown in Fig. 8.19(a).The experimental data are compared to a Monte
Carlo simulation. The data are in perfect agreement with the spin-1/2 assignment for the
quarks while a spin-0 assignment is clearly excluded. The sharp drop in the distribution
around cos Θ∗ ∼ 0.8 is due to the finite detector acceptance.

Let us turn to the gluon spin. Hard gluon radiation leads to three-jet events. So, after
applying a jet algorithm to select the three-jet events, how do we know which one is the
gluon jet? Recall that the probability to radiate off a soft gluon is larger than to radiate
off a hard gluon. Therefore, for three jets
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with energies

Ei = ECM
sin θi∑
j sin θj

,

if ordered by energy, E1 > E2 > E3, jet 3 is the gluon jet in 75% of the events. Defining
the variable

Z =
1√
3

(x2 − x3)

(recall xi = 2Ei/ECM), the Dalitz plot looks like in Fig. 8.20. The arrow length is pro-
portional to the jet energy. The following cases have to be compared: In the spin-1 case
(“vector gluon”) the prediction reads

d2σv

dx1dx2

∝
[

x2
1 + x2

2

(1− x1)(1− x2)
+ permutations (1, 2, 3)

]

while for spin-0 (“scalar gluon”)

d2σs

dx1dx2

∝
[

x2
3

(1− x1)(1− x2)
+ permutations (1, 2, 3)− 10

∑
a2
q∑

a2
q + v2

q

]

where aq and vq are the axial-vector and vector couplings of the quarks to the intermediate
photon or Z boson and the sums run over all contributing quark flavors. For e+e− annihi-
lation via a photon only the vector coupling contributes, on the Z resonance both terms
have to be taken into account. The ALEPH data shown in Fig. 8.19(b) clearly indicate
that gluons have spin 1.

As we have seen before (see p. 146), the kinematic term of the QCD (SU(3), non-abelian,
gluon) Lagrangian contains a three-gluon term yielding a three-gluon vertex, a feature
not present in QED (U(1), abelian, photon). The splitting of a radiated gluon into two
gluons will lead to a four-jet event, just like the splitting into a quark-antiquark pair:

� 4

3

� 4

3
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Figure 8.20: Phase space as function of x1 and Z for energy-ordered jet configurations,
x1 > x2 > x3. The arrow length is proportional to the energy. Source: [47].

For gluon radiation off quarks one finds that the gluon is preferentially polarized in the
plane of the splitting process. On the other hand, for a gluon splitting into two gluons
there is a positive correlation between the plane spanned by the two new gluons and the
polarization of the branching one. Finally, in case a gluon splits into two quarks, the plane
defined by the momenta of the two quarks is anticorrelated with the polarization of the
splitting gluon. So we conclude that for four-jet events induced by a gluon splitting into
a qq̄ pair, the distribution of the angle between the plane defined by the two primary
quarks and the plane defined by the two secondary quarks should be enhanced around
90◦ (see Fig. 8.21). However, in a non-abelian theory we have contributions also from
the triple-gluon interaction, and in this case the favored angle between the two planes
spanned by the primary and secondary partons is rather small. Therefore, the shape of
the distribution of this angle is sensitive to the color factors (see Sect. 7.4.1). Like in
the three-jet case, it is difficult to distinguish between jets induced by the primary and
the secondary partons. However, because of the 1/E characteristic of radiated gluons we
expect the two secondary particles to be less energetic than the two primary quarks: If the
jets are ordered by energy, E1 > E2 > E3 > E4, jets 3 and 4 are more likely to come from
the radiated particles. So we arrive at the definition of the angular correlation variable
called Bengtsson-Zerwas angle

χBZ = ∠ [( #»p 1 × #»p 2), ( #»p 3 × #»p 4)] =
( #»p 1 × #»p 2) · ( #»p 3 × #»p 4)

|( #»p 1 × #»p 2)||( #»p 3 × #»p 4)|
where #»p i, i = 1, . . . , 4 are the energy-ordered momenta of the four partons (jets). In
Fig. 8.21 LEP measurements of χBZ are compared with the predictions by QCD on the
one hand and an abelian model with three quark colors but no three-gluon coupling on
the other. The data agree with QCD being an SU(3) gauge theory rather than an abelian
gauge theory.

At the end of our discussion of jet algorithms Fig. 8.12(a) is shown. It displays the fraction
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Figure 8.21: Distribution of χBZ measured by L3. The predictions for QCD and the abelian
model are shown as bands indicating the theoretical uncertainties. Source: [48, p. 233].

of 2-jet events with 2, 3, 4, and 5 sub-jets as a function of ycut. These predictions can
be tested comparing measurements at highest LEP energies to Monte Carlo simulations
which incorporate leading-order matrix elements for two-jet and three-jet production, plus
approximations for multiple soft or collinear gluon radiation. Fig. 8.22 shows the n-jet rate
according to the DURHAM (kt) algorithm as a function of ycut.

We conclude this section with a discussion of the differences between quark and gluon jets.
Quark and gluon jets have different coupling strengths to emit gluons (see Sect. 7.4.1 and
Fig. 8.23). Therefore, from couplings alone one expects a larger multiplicity in gluon jets
of the order CA/CF = 9/4, and a softening of the momentum distributions for particles
coming from the gluon jet. Thus gluon jets are more “soft” and “fat” than quark jets
(see Fig. 8.24). Also the scaling violations, i. e. change of multiplicities with energy and
momentum scale are different. In Fig. 8.24(d) the CONE algorithm is applied to data
of OPAL (LEP) and compared to CDF data. The variable r denotes the radius of the
considered cone fraction when R is the radius parameter of the cone algorithm:
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The ALEPH Collaboration: Studies of QCD at e+e− centre-of-mass energies between 91 and 209 GeV 467

ratio of distributions is shown in Fig. 6b. Scaling violations
induce a rise of the cross section at small xE and at a de-
crease at large xE with increasing

√
s. The data clearly

exhibit this property, and it is qualitatively reproduced by
the parametrisations; the predictions of the Monte Carlo
models are in better agreement with the data.

4 Jet rates

Jet rates are defined by means of the Durham clustering
algorithm [8] in the following way. For each pair of particles
i and j in an event the metric yij is computed

yij =
2 min(E2

i , E2
j )(1 − cos θij)

E2
vis

,

where Evis is the total visible energy in the event. The pair
of particles with the smallest value of yij is replaced by a
pseudo-particle (cluster). The four-momentum of the clus-
ter is taken to be the sum of the four momenta of particles
i and j, pµ = pµ

i + pµ
j (‘E’ recombination scheme). The

clustering procedure is repeated until all yij values exceed
a given threshold ycut. The number of clusters remaining
at this point is defined to be the number of jets. Alterna-
tively, the procedure is repeated until exactly three clusters
remain. The smallest value of yij in this configuration is
defined as y3. The distribution of y3 is sensitive to the
probability of hard gluon radiation leading to a three-jet
topology. It can therefore be used to determine αs (Sect. 6).

The n-jet rates were measured for n = 1, 2, 3, 4, 5 and
n ≥ 6. Detector correction factors were applied in the same
manner as for the inclusive distributions, but in this case
for each value of the jet resolution parameter ycut. Figure 7
shows the measured jet fractions as a function of ycut at
206 GeV. Good agreement with the Monte Carlo genera-
tor predictions is observed. However, in the region of the
peak of the three-jet fraction the generators, in particular
PYTHIA, lie above the data.

5 Event shapes

The various distributions describing the event shapes are
of interest because (i) most of the variables are predicted
to second order in QCD; and (ii) some resummed calcu-
lations to all orders in αs exist. By fitting the theoretical
predictions to these distributions the value of the strong
coupling constant may be determined. By comparing with
the direct predictions for the various Monte Carlo models,
the validity of each model is tested.

The primary objective is to observe the running of αs

with centre-of-mass energy. For this reason, the analyses at
each energy point have been carried out coherently and cor-
related systematic uncertainties are estimated. The event-
shape variables studied here are defined as follows.

– Thrust T : The thrust [26] axis nT maximises the quan-
tity

T = max
nT

( ∑
i |pi · nT |∑

i |pi|

)
,

where the sum extends over all particles in the event.
– Thrust Major Tmajor: The thrust major vector, nMa,

is defined in the same way as the thrust vector, but
with the additional condition that nMa must lie in the
plane perpendicular to nT ,

Tmajor = max
nMa⊥nT

( ∑
i |pi · nMa|∑

i |pi|

)
.

– Thrust Minor Tminor: The minor axis is perpendicular
to both the thrust axis and the major axis, nMi =
nT × nMa. The value of thrust minor is given by

Tminor =

∑
i |pi · nMi|∑

i |pi|
.

– OblatenessO: The oblateness is defined as the difference
between thrust major and thrust minor,

O = Tmajor − Tminor .

– Sphericity S: The sphericity is calculated from the
ordered eigenvalues λi=1,2,3 of the quadratic momen-
tum tensor

Mαβ =

∑
i pα

i pβ
i∑

i |pi|2
, α, β = 1, 2, 3 ;

λ1 ≥ λ2 ≥ λ3 , λ1 + λ2 + λ3 = 1 ;

S =
3

2
(λ2 + λ3) .
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Fig. 7. Measured n-jet fractions for n = 1, 2, 3, 4, 5 and n ≥ 6
and the predictions of Monte Carlo models, at a centre-of-mass
energy of 206 GeV

Figure 8.22: ALEPH measurements of the n-jet rate (DURHAM) as a function of ycut.

Figure 8.23: Comparison of quark and gluon jets. For a discussion of the difference in
coupling strength see Sect. 7.4.1.
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Ψ(r) denotes the energy in a fraction of the cone and Φ(r) is defined by Φ(r) = d/drΨ(r).

8.3 Measurements of the strong coupling constant

The QCD Lagrangian is introduced in Sect. 7.4:

THE QCD LAGRANGIAN 23

bosons carry the charge of the interaction, colour in case of QCD, and thus are
able to couple directly to themselves. The fermionic part of the Lagrangian is
a sum over all quark flavours, again featuring a free field term and a term for
the quark–gluon coupling. The triple-gluon and the quark–gluon coupling are
proportional to the gauge coupling gs, the four-gluon coupling is proportional to
g2

s . In addition the amplitudes associated with the individual couplings depend
on the detailed structure of the underlying symmetry group. Quark colours are
indexed by i, j = 1, 2, 3, gluon colours by a, b, c, d, e = 1, . . . , 8. The three-gluon
coupling between gluons of colour states a,b and c is proportional to the struc-
ture constant fabc, and the coupling between two quarks of colours i and j to a
gluon of type a is proportional to the matrix element T a

ij .

L
QCD

!ab

!ij

gs f abc

gsTij
a

gs
2f abef cde

a

i ij
j

a

ab
b

c c d

ba

flavours

Fig. 2.9. Pictorial respresentation of the QCD Lagrangian. Figure from
Schmelling(1995a).

The physics content of the QCD Lagrangian is further discussed in the follow-
ing chapter and in the problems Ex. (2-2) and Ex. (2-3) given below. It is shown
explicitly, that there is a full symmetry in all colours with respect to physics,
which is maybe not entirely obvious from the representation of the Gell-Mann
matrices or the numerical values of the structure constants. One finds that the
probability for gluon emission is the same for all quark colours, that the prob-
ability for gluon splitting into quark pairs is the same for all gluon states as is
the probability of a gluon splitting into secondary gluons. Denoting the relative
strengths of the splitting probabilities with CF , CA and TF for gluon radiation
off a quark, gluon splitting into two gluons and gluon splitting into two quarks,
respectively, QCD predicts

CF =
4

3
, CA = 3 and TF =

1

2
. (2.40)

Except for the quark masses, there is only one free parameter in it: the strong coupling
constant αs which is discussed in Sect. 7.4.2. Recall that the differential equation for the
strong coupling constant depending on the renormalization scale µ, αs(µ

2), is

µ2∂α
2
s(µ

2)

∂µ2
= β(αs(µ

2))
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(a) (b)

(c) (d)

Figure 8.24: Comparison of quark and gluon jets. Note that gluon jets are more “soft”
and “fat” than quark jets. The variable xE is the energy fraction of the particles with
respect to the jet energy (c). The variable r in (d) denotes the considered fraction of the
cone.
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which, retaining only the first term of the power expansion for β and absorbing the factor
of 4π into the coefficient β0, yields

αs(Q
2) ≡ g2

s(Q
2)

4π
=

1

β0 ln(Q2/Λ2
QCD)

.

At that point we also stressed that

β0 =
1

4π

(
11− 2

3
nf

)
> 0 for (the likely case of) nf < 17

which makes the effective coupling constant behave like shown in Fig. 7.4.2. The following
expansion holds for αs(µ

2) (see Eq. (7.43)):

αs(µ
2) ≈ αs(Q

2)

[
1− αs(Q2)β0 ln

µ2

Q2
+ α2

s(Q
2)β2

0 ln2 µ
2

Q2
+O(α3

s)

]
. (8.11)

To measure the coupling strength one uses as many methods as possible in order to
demonstrate that QCD really is the correct theory of strong interactions by showing that
one universal coupling constant describes all strong interactions phenomena. Consider the
perturbative expansion of the cross section for some QCD process:

σpert = αs(µ
2)A+ α2

s(µ
2)

[
B + β0A ln

µ2

Q2

]
+O(α3

s) (8.12)

where the coefficients A and B depend on the specific process. So, if only the leading oder
(LO) expansion is known, the following holds:

σpert
LO = αs(µ

2)A = αs(Q
2)A− α2

s(Q
2)β0A ln

µ2

Q2
+O(α2

s)

where in the second step we inserted the expansion from Eq. (8.11). This means that the
result depends strongly on the choice of the renormalization scale µ. Since the corrections
to the cross section can be relatively large, it is possible to find significantly different
values for the measured effective coupling constant αmeas,eff

s for two different processes:
Consider two processes, where the LO calculations predict

σpert
LO;1 = αsA1

σpert
LO;2 = αsA2.

The predictions are compared to the cross sections σexp
1 and σexp

2 from experiment. Finally,
because of the said strong scale dependence, the result may be αmeas,eff

s;1 6= αmeas,eff
s;1 .

To solve the problem of the correction depending on the renormalization scale being
too large, one has to take the calculation to next-to-leading order (NLO) to reduce the
scale dependence of the prediction. For our example reaction e+e− → qq̄g this means
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Figure 8.25: Feynman diagrams for e+e− → qq̄g to NLO.

considering the diagrams shown in Fig. 8.25. The NLO expression is again obtained from
the expansion in Eq. (8.12):

σpert
NLO = αs(µ

2)A+ α2
s(µ

2)

[
B + β0A ln

µ2

Q2

]
+O(α3

s)

= αs(Q
2)A+ α2

s(Q
2)B + α3

s(Q
2)β2

0A
2 ln2 µ

2

Q2
+O(α4

s)

where in the second line we inserted for αs(µ
2) the expansion from Eq. (8.11) and the

dependence on ln(µ2/Q2) cancels. Thus, the scale dependence of the prediction is much
smaller than in the LO case. The scale dependence cancels completely at fully calculated
order.

By comparing the NLO prediction for the cross section to experiment, one can extract
αs(Q

2), e. g. αs(M
2
Z). This information can in turn be used to predict other process cross

sections at NLO. Furthermore, by varying the scale µ2 one can estimate the size of the
NNLO contributions.

This procedure extends analogously to NNLO. Diagrams that have to be included at
NNLO are shown in Fig. 8.26. The prediction reads

σpert
NNLO = αs(Q

2)A+ α2
s(Q

2)B + α3
s(Q

2)C +O
(
α4
s, ln

3 µ
2

Q2

)

where the scale dependence is reduced even further. NNLO is the lowest order at which
scale variations at NLO can be tested.

As an example for the scale dependence of the extracted strong coupling constant, see
Fig. 8.27 where αs(M

2
Z) from jet rates at LEP is shown as a function of ln(µ2/Q2). Note

that the scale dependence is reduced by the extension to NLO, as mentioned before.
The theoretical error is taken to be the range of values covered by the projection of
the bands over −1 < ln(µ2/Q2) < 1 on the abscissa. The right figure shows how the
central values and errors obtained this way for three different shape variables converge
with improvements in the theory.

There has been an enormous progress in the measurements of the strong coupling during
the last 20 years. This is due to major improvements on the theoretical and also the



8.3. Measurements of the strong coupling constant 185

�
e+

e−

q̄

g

g

g

q

�
e+

e−

q̄

g

q

�
e+

e−

q̄

g

g

q

Figure 8.26: Feynman diagrams for e+e− → qq̄g at NNLO.

COMPARISON AND COMBINATION OF RESULTS 307

exists. The methods mentioned above are used in various combinations, which
makes it very difficult to compare theoretical uncertainties. Nevertheless, and
even if it is not possible to assign confidence levels in a strict mathematical
sense to theoretical errors, they are best estimates of the actual uncertainties
constructed such that it is reasonable to interpret them like conventional 68%
confidence level intervals.

2 – jet rate
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Fig. 8.1. Estimate of theoretical uncertainties for a measurement of the strong
coupling from global event shape variables. A detailed discussion is given in
the text.

This is illustrated in Fig. 8.1 by means of some measurement of the strong
coupling constant performed on global event shape variables by the ALEPH

collaboration. The variables will be described later. The left plot shows error
bands in measurements of αs(M

2
Z) based on the LO, NLO and NLO+NLLA

predictions for the two-jet rate R2 as function of ln(µ2/Q2). The widths of the
bands indicate what happens when switching from the perturbative prediction
of R2 to that of ln R2. The theoretical error was taken to be the range of values
covered by the projection of the respective bands over −1 < ln µ2/Q2 < 1 on the
abscissa. The right figure shows how the central values and errors obtained this
way for three different shape variables converge with improvements in the theory.
That this procedure yields reasonable error estimates is demonstrated by the fact
that for a fixed level of theoretical precision the errors cover the scatter between
the different variables, and that they also match the convergence observed when
using better predictions.

8.2 Comparison and combination of results

To compare measurements of the strong coupling which were performed at dif-
ferent scales, one has to take into account that αs is energy dependent. Measure-

Figure 8.27: Estimate of theoretical uncertainties for a measurement of the strong coupling
constant from event shape variables. NLLA refers to resummation of logarithms. Source:
[27, p. 307].
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Figure 8.28: Summary of measurements of αs as a function of the respective energy scale
Q. The curves are QCD predictions. Source: [30, p. 12].

experimental side. A summary of measurements of αs as a function of the respective
energy scale Q is shown in Fig. 8.28.

In general, observables can be classified according to the influence the structure of the
final state has on their value.

Inclusive observables do not look at the structure of the final state. Examples are total
cross sections and ratios of cross sections (see e. g. Eq. (8.3)). Advantages of inclusive
observables are that they do not (or only weakly) depend on non-perturbative correc-
tions (hadronization) and that the perturbative series is now known to NNNLO. The
disadvantage lies in the low sensitivity in some cases.

Non-inclusive (exclusive) observables , on the other hand, look at some structure in the
final state depending on the momenta of the final state particles. Examples are jet rates
and event shape distributions. Advantages of non-inclusive observables are high sensitivity
and that the perturbative series is now known to NNLO (and resummation, see later).
Disadvantages are that in some cases even the NNNLO corrections might be relevant and
that hadronization (non-perturbative) corrections are needed.

As an example for the usage of inclusive observables, consider the determination of αs
from inclusive Z or τ decays. In general, the prediction of the cross section ratio R reads

R =
σZ,τ→ hadrons

σZ,τ→ leptons
= REW(1 + δQCD + δmass + δnp)
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where the overall factor REW depends on the electroweak couplings of the quarks.5 The
corrections are dominated by the perturbative QCD correction δQCD. The other terms
take into account the finite quark masses and the non-perturbative corrections. The per-
turbative QCD correction term is given by

δQCD = c1
αs
π

+ c2

(αs
π

)2

+ c3

(αs
π

)3

+ . . . .

Diagrammatically speaking, the factor REW arises from

�Z
q̄

q

while the perturbative QCD corrections come from diagrams like in Fig. 8.25 and 8.26.
For the case of

RZ =
σZ→ hadrons

σZ→ leptons

the prediction reads REW = 19.934, c1 = 1.045, c2 = 0.94, and c3 = −15. The correspond-
ing measurement is visualized in Fig. 8.29: Divide the number of hadronic decays by the
number of leptonic decays to find RZ = 20.767±0.025. From this ratio the following value
of the strong coupling at the Z resonance can be extracted:

αs(MZ) = 0.1226± 0.0038︸ ︷︷ ︸
exp., mostly statistical

± 0.0002︸ ︷︷ ︸
Mt:±5 GeV

± 0.0002︸ ︷︷ ︸
renormalization shemes

= 0.1226
+0.0058
−0.0038

.

Finally, we state a new result from 2009, obtained using NNNLO predictions:

αs(MZ) = 0.1193
+0.0028
−0.0027

± 0.0005.

We now turn to non-inclusive observables such as event-shapes and jet rates. We have
already seen perturbative predictions for some examples of non-inclusive quantities in
Sect. 8.2. There it is stated that the log terms in the predictions are because of the∫
dE/E integration arising from

dσq→qg

dEgluon

∝ σ0
αs
2π

1

Egluon

5REW is a modified version of the ratio R = Nc11/9 of Sect. 8.1.
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Figure 8.29: Visualization of RZ measurement.

where σ0 is the Born cross section for Z → qq̄ (see Sect. 8.1). Recall that the perturbative
prediction is given by:

1

σ0

dσ

dx
= αs(µ

2)A(x) + α2
s(µ

2)

[
B(x) + β0A(x) ln

µ2

Q2

]
+O(α3

s)

where the coefficients A and B are calculable for the class of observables x which are
infrared and collinear safe, i. e. infrared singularities from real and virtual radiative cor-
rections cancel (thrust, jet rates, C-parameter, etc.). To recall the important example of
thrust, see Fig. 8.15.

Let us take a look at the results obtained by NLO fits. First measurements gave indications
that the missing higher order terms are large: The coupling constant should be the same
for all variables, but the results vary too much (see Fig. 8.30) which indicates that the
expansion to NLO does not suffice. Typical results obtained by NLO fits are

αs(MZ) = 0.120± 0.010.

As we have seen before, to obtain perturbative corrections, we have to do integrals of the
type

∫ s
ycut

dEgluon/Egluon which gives rise to the logarithm terms in σLOthree-jet (see Eq. (8.10)):

σLOthree-jet = σ0CF
αs
2π

[
ln2 ycut + . . .

]
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xμ=μ/MZ

Figure 8.30: NLO results for αs(MZ). Source: [40, p. 29, modified].
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where the color factor CF = 4/3—the problem being that for ycut → 0 the series does not
converge.6 The resummation procedure mentioned earlier (see p. 167) also works for the
three-jet rate:

R3 =
CFαs

2π
ln2 ycut −

C2
Fα

2
s

8π2
ln4 ycut + . . .

= 1− exp



−

s∫

sycut

dq2

q2

CFαs(q
2)

2π

[
ln

s

q2
− 3

2

]
 .

Combined (to avoid double counting of logarithmic terms in resummed expressions and
in full fixed order prediction) with full NLO calculations this gives theoretically much
improved predictions. Typical results are:

αs(MZ) = 0.120± 0.005.

There are different sources of the remaining uncertainties. Experimental uncertainties
include

• track reconstruction,

• event selection,

• detector corrections (via cut variations or different Monte Carlo generators),

• background subtraction (LEP2), and

• ISR corrections (LEP2).

They amount to about 1% uncertainty. Furthermore, there are hadronization uncertain-
ties arising from the differences in behavior of various models for hadronization such as
PYTHIA (string fragmentation), HERWIG (cluster fragmentation), or ARIADNE (dipole
model and string fragmentation). Theses uncertainties are typically about 0.7 to 1.5%.
Finally, there are also theoretical uncertainties, for instance

• renormalization scale variation,

• matching of NLO with resummed calculation, and

• quark mass effects.

6Recall that ycut is the resolution parameter deciding if two particles are distinguished or seen as one
pseudo-particle.
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(a) (b)

Figure 8.31: NNLO fit to ALEPH thrust data (a) and visualization of improvement in
NNLO over NLO (b). Source: [50, p. 11 and 17].

The corresponding uncertainty is typically 3.5 to 5 %.

As we have seen, the perturbative predictions have to be to sufficiently high order if we
are to accurately determine the strong coupling constant: Now a NNLO prediction is
available. Bearing in mind the foregoing, it has to be of the form

1

σ0

dσ

dy
(y,Q, µ) = αs(µ)A(y) + α2

s(µ)B(y, xµ) + α3
s(µ)C(y, xµ) +O(α4

s)

where y denotes an event shape variable and xµ = µ/Q. At this level of precision, one
has to take care of additional issues, such as quark mass effects and electro-weak effects
which typically contribute around or below the per-cent range.

The first determination of αs(MZ) based on NNLO (and NLLA) calculations of event
shape distributions [49, 50] yields

αs(MZ) = 0.1224± 0.0009 (stat) ± 0.0009 (exp) ± 0.0012 (hadr) ± 0.0035 (theo).

The fit to ALEPH thrust data is shown in Fig. 8.31(a). The largely reduced scatter of
values for different variables at NNLO is visualized in Fig. 8.31(b). Note that the reduced
perturbative uncertainty is 0.003.
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The most precise determination of the strong coupling constant is obtained from jet
observables at LEP. Precision at the 2% level is achieved from the three-jet rate [51]:

αs(MZ) = 0.1175± 0.0020 (exp) ± 0.0015 (theo).

The three-jet rate is known to have small non-perturbative corrections and to be very
stable under scale variations (for a certain range of the jet resolution parameter). For a
comparison of LO, NLO, and NNLO predictions to the corresponding ALEPH data, see
Fig. 8.32(a).

The LEP results concerning the determination of the strong coupling constant (see
Fig.8.32(b)) can be summarized as follows (combination by S. Bethke, a couple of years
ago).

• Tau decays (NNLO)

αs(MZ) = 0.1181± 0.0030

• RZ (NNLO)

αs(MZ) = 0.1226
+0.0058
−0.0038

• Event shapes (NLO + NNLO)

αs(MZ) = 0.1202± 0.0050

• All (not including recent NNNLO results)

αs(MZ) = 0.1195± 0.0035

• Latest world average (S. Bethke, 2009 [30])

αs(MZ) = 0.1184± 0.0007

8.4 Measurements of the QCD color factors

Because they determine the gauge structure of strong interactions, the color factors are
the most important numbers in QCD, besides αs. Discussing the triple-gluon vertex we
concluded that our observables also allow to test the gauge structure of QCD. We have
already learned that the color factors (for SU(3)) CF = 4/3, CA = 3, and TF = 1/2
measure the relative probabilities of gluon radiation (q → qg), triple gluon vertex (g →
gg), and gluon splitting (g → qq̄).
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Figure 8.32: NNLO, NLO, and LO fits to ALEPH data for the thee-jet rate (a) and
summary of LEP results for αs (b).

The cross section prediction for four-jet events at order α2
s can be shown to be

1

σ0

dσfour-jet

dy
=
α2
sC

2
F

π2

[
σA(y) +

(
1− 1

2

CA
CF

)
σB(y)

+

(
CA
CF

)
σC(y) +

(
TF
CF

nf

)
σD(y) +

(
1− 1

2

CA
CF

)
σE(y)

]

where σi, i = A, . . . , E are kinematic factors independent of the gauge group of QCD.

The combined measurements of the QCD color factors are summarized in Fig. 8.33: Four-
jet and event shape results have been combined accounting for correlations between the
measurements. In addition, constraints on CA/CF from differences between quark and
gluon jets (see p. 179) are included. This yields

CA = 2.89± 0.21

CF = 1.30± 0.09

which is precise to 7% and agrees with the SU(3) values of CA = 3 and CF = 1.33.

8.5 Hadronization

The trouble with hadronization is that perturbative calculations are no longer useful
since αs ceases to be comparatively small at length scales of about the proton radius.
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The ellipses show the correlated measurements using 4-jet events [181, 185] or event

shape distributions [334] while the lines represent the results of determinations of

CA/CF from DELPHI [333] (dashed) and OPAL [320] (solid). The upper solid and

dashed lines overlap. The grey filled ellipsis displays the combined result for CA

and CF (see text). The solid triangle and squares show the expectations for various

assumptions for the gauge symmetry of QCD as indicated on the figure.

QCD as the theory of strong interactions and thus as an integral part of the standard

model of high energy physics.

Studies of differences between quark and gluon jets reveal many properties of the

gauge bosons of QCD, the gluons, which are correctly predicted by the theory. The

measurements of jet production rates and event shape observables using theoretically

and experimentally well behaved observables allow direct tests of advanced perturbative

QCD predictions and precise determinations of the value of the strong coupling constant

αS. A fundamental prediction by QCD is asymptotic freedom of the coupling at high

energies and this has been verified directly using data over a large range of cms energies.

More indirect tests of asymptotic freedom stem from successful comparison of precision

determinations of αS at different energy scales.

The most reliable and precise determinations of αS in e+e− annihilation to hadrons

employ inclusive observables such as the hadronic branching ratios of the gauge bosons of

Figure 8.33: Combined measurements of the color factors CA and CF . The ellipses show
the correlated measurements using four-jet events or event shape distributions while the
lines represent the results of determinations of CA/CF from DELPHI (dashed) and OPAL
(solid). Source: [52, p. 82].
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Figure 8.34: Visualization of phenomenological models of hadronization. (LHS) string frag-
mentation: JETSET/PYTHIA; (RHS) Cluster fragmentation: HERWIG. Source: [27, p.
164]

Perturbative QCD is applicable to the transition from the primary partons to a set of
final state partons. This is pictured as a cascading process that is dominated by the
collinear and soft emissions of gluons and mainly light quark-antiquark pairs. By contrast,
phenomenological models are used to describe the non-perturbative transition from these
final state partons to hadrons which then may decay according to further models (recall
Fig. 8.6).

The parameters determining the behavior of the numerical models have to be adjusted
using experimental data. Hadronization can be modeled by string fragmentation (JET-
SET/PYTHIA) or cluster fragmentation (HERWIG). For a visualization of this difference,
see Fig. 8.34.

Fig. 8.35 shows comparisons of simulations to ALEPH data for hadron momentum distri-
butions of the final state: Fig. 8.35(a) shows simulation and data for an inclusive variable
and Fig. 8.35(b) deals with pions, kaons, and protons, respectively.
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(a)

(b)

Figure 8.35: Hadron momentum distributions, ALEPH data and simulation. Inclusive
measurement (a) and differential cross section for pions, kaons, and protons (b) compared
with the predictions of JETSET, HERWIG, and ARIADNE. All observables are shown
as functions of x = phadron/pbeam.
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Chapter 9

Proton structure in QCD

Literature:

• Halzen/Martin [1], Chap. 8-10.

This chapter reviews the study of the proton structure, which lasted form after World
War II to the closure of HERA (DESY) in 2007. The understanding gained from those
results is of essential importance to predict cross-sections for the Tevatron (Fermilab) and
the LHC (CERN), since both of them use hadrons as colliding particles.

First, the methods used to study the proton structure are presented and the relevant
kinematic quantities are defined, starting from the similar case of e−µ−-scattering. We
then generalize to the case of a composite hadron. After that, the Bjorken scaling is
introduced. Finally, the steps leading to the discovery of the uncharged parton – the
gluon – are described.

One must remember that the link between the particle zoo and the results concerning the
proton structure was not at all obvious, as the quark model had not yet imposed itself as
a leading theory.

9.1 Probing a charge distribution & form factors

To probe a charge distribution in a target one can scatter electrons on it and measure their
angular distribution (Fig. 9.1). The measurement of the cross-section can be compared
with the expectation for a point charge distribution,

dσ

dΩ
=

(
dσ

dΩ

)

point

|F (q)|2, (9.1)

where F (q) is called the form factor, and q := ki−kf is the momentum transfer from the
probing particle to the target. The momentum transfer is also related to the resolution
power of the probe.

199
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�
ki

kfq

Figure 9.1: Probing a charge distribution

When probing a point (≡ spinless & structureless) target, F (q) ≡ 1 and one gets the
Mott cross section,

(
dσ

dΩ

)

point

=
(Zα)2E2

4k4 sin4(θ/2)

(
1− k2

E2
sin2(θ/2)

)
, (9.2)

where Z is the electric charge measured in units of the elementary charge, E and k =
|ki| = |kf | are respectively the energy and the momentum of the probing particle, and θ
is the scattering angle. One typically measures θ and E of the scattered electron.

Comparing the angular dependence of the differential cross-section of eletrons scattering
off protons with the Mott cross sections, measurements show that the two distributions
do not agree at large scattering angles as shown in Fig. 9.2.

⇤
“The Discovery of the Point-Like Structure of Matter” 4 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

The first electron scattering measurements at Stanford were made using carbon targets. 
Scattering from hydrogen was first observed using a CH2 target, although the first published data 
on hydrogen came from measurements using high-pressure gas targets. The early data indicated 
that the “proton was not a point”, that there were contributions from magnetic scattering, and 
also that the magnetic and electrical sizes were comparable. 
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Figure 3 First published results on electron-proton elastic scattering measured at the Mark III 
accelerator at Stanford. 

These very direct measurements of the proton’s extended charge and magnetic moment 
distributions were a major event in high energy physics in the mid-1950s. Measurements on 
hydrogen (and deuterium) targets continued at energies up to 1 Gev. The electron community 
began to consider electron accelerators with even higher electron energies. By this time, it had 
been demonstrated (at Cornell and elsewhere) that scattering experiments could be performed at 
electron synchrotrons using internal targets or external beams. CEA, DESY and SLAC were soon 
under construction.  

In the original proposal for SLAC (1957), electron scattering was mentioned as an 
extension of the successful experiments at Stanford’s Mark III linac, and as experiments where 
violations of QED might be observed. In a 1960 summer study at SLAC, J. Cassels produced a 
more sophisticated analysis of electron scattering, finding that there might still be lots to learn 
from elastic scattering at SLAC energies. 

In 1963 a collaboration of physicists from MIT, Caltech and SLAC began to think 
seriously about scattering experiments at SLAC, and the equipment that would be needed to 
make such measurements. 

Figure 9.2: Mott cross section (dashed line) and compared to the experimental data form
electron-hydrogen scattering. The measurement disagrees with the point-linke cross sec-
tion at large scattering angles.
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9.2 Structure functions

Starting from the example of scattering of two different elementary spin-1
2

particles, an
ansatz is made for the general case.

9.2.1 e−µ−-scattering in the laboratory frame

In the case of the e−µ−-scattering in the laboratory frame at high energy (s�M = mµ),
the matrix element is given by,

|Mfi|2 =
e4

q4
Lµνe−L

µ−
µν

=
8e4

q4
2M2E ′E

(
cos2(θ/2)− q2

2M2
sin2(θ/2)

)
,

where E ′ is the energy of the scattered electron, and the transferred momentum,

q2 ≈ −2k · k′ ≈ −4EE ′ sin2(θ/2),

yielding – upon inclusion of the flux factor and phase space – the differential cross section
for e−µ− in the laboratory frame,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E

E ′

(
cos2(θ/2)− q2

2M2
sin2(θ/2)

)
. (9.3)

9.2.2 e−p-scattering & the hadronic tensor

When dealing with hadrons, the possibility of inelastic scattering, i.e. scattering where
the final state contains excited states or other particles than the probe and the scattering
particle, must be taken into account, shown in the Feynman diagram,

�p

ki kf

q

W

where W is the invariant mass of the particles in the final state (Sect. 4.4.4, p. 52). The
scattering cross-section as a function of W is shown in Fig. 9.3. One notes the elastic peak
at W = mp followed by a peak at 1232 MeV corresponding to the ∆+ resonance and
produced by the reaction,

e−p→ e−∆+ → e−pπ0
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Figure 9.3: Differential cross section as a function of the invariant mass W .

To calculate the e−p-scattering, one makes the substitution Lµνµ− → W µν
p , where,

W µν
p = −W1g

µν +
W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν), (9.4)

is the most general rank-2 tensor with functions W1, ...,W5 constructed from Lorentz
scalars 1 depending on the internal structure of the proton, constructible from the 4-
momentum of the proton (p) and the momentum transfer (q).

Imposing current conservation ∂µj
µ
p = 0, one can rewrite W4 and W5 in terms of W1 and

W2 :

W5 = −p · q
q2

W2

W4 =

(
p · q
q2

)2

W2 +
M2

q2
W1,

Replacing W4 and W5 in Eq. (9.4) :

W µν
p = W1

(
−gµν +

qµqν

q2

)
+
W2

M2

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
. (9.5)

W1 and W2 are the so-called the structure functions of the proton. They depend on
two independent variables,

Q2 := −q2 : the 4-momentum transfer squared,

ν =
p · q
M

: the energy transferred to the nucleon by the scattering electron,

1The “missing” W3-term is related to the axial part of the current, and is relevant when considering
the weak interaction. It is discarded in what follows.
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or their dimensionless counterparts,

x = − q2

2p · q =
Q2

2Mν
: the Bjorken scaling x-variable, 0 ≤ x ≤ 1,

y =
p · q
p · ki

, 0 ≤ y ≤ 1.

With the variables defined above, we have the following expression for the invariant mass :

W 2 = (p+ q)2 = M2 + 2Mν −Q2. (9.6)

The elastic scattering case W 2 = M2 corresponds to the value x = 1. Fig. 9.4 shows the

Figure 9.4: Allowed kinematical region of the Q2-ν-plane.

kinematic region in the Q2-ν-plane.

Using the hadron tensor, Eq. (9.5), the scattering matrix element is,

Le
−
µνW

µν
p = 4EE ′

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)

Including the flux and phase-space factors (Sect. 2.2.4, p. 15 & 3.2.3, p. 25) one finds the
differential cross-section in the laboratory frame,

dσ

dE ′dΩ
=

α2

4E2 sin4(θ/2)

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)

Integrating over the energy of the outgoing election E ′, one gets,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E ′

E

(
W2(Q2, ν) cos2(θ/2) +W1(Q2, ν) sin2(θ/2)

)
.
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9.3 Parton model

The key factor for investigating the proton substructure is the wavelength of the probing
photon, which is related to the transferred momentum by,

λ ∼ 1√
Q2
,

Therefore, large momentum transfer is equivalent to high resolution. As shown in Fig. 9.5,
for λ ≈ 1 fm, one can “see” the proton as a single particle, whereas for, λ � 1 fm, the

Figure 9.5: Relationship between resolution and transferred momentum.

probed particles are the constituents of the proton.

9.3.1 Bjorken scaling

J. Bjorken proposed in 1968 that, in the limit of infinite Q2, the structure functions
should only depend on the scaling variable x, and not on Q2 and ν independently. This
corresponds to postulating that at large Q2 the inelastic e−p-scattering is a sum of elastic
scatterings of the electron on free partons within the proton, as illustrated below.

�
p

γ∗

�p

γ∗

Q2→∞
=⇒

In this limit, one defines then the functions,

F1(x) := lim
Q2→∞

MW1(Q2, ν), (9.7)

F2(x) := lim
Q2→∞

νW2(Q2, ν). (9.8)
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9.3.2 SLAC-MIT experiment

To test the hypothesis of Bjorken, a joint experiment of the SLAC and MIT groups was
performed at the SLAC laboratory. Sketches and photographs of the experiment are shown
in Fig. 9.6.

(a) (b)

⇤
“The Discovery of the Point-Like Structure of Matter” 6 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

There were two common ways of defining the inelastic form factors in the 1950s, and 
that history has left us using a mixture of parameters from the two expressions for the cross-
section. In the end the virtual photon approach did not simplify the physics, but we still talk 
about R, the ratio of longitudinal to transverse virtual photons, along with the structure functions 
W1 and W2 . 

In the initial planning of the SLAC experimental facilities, the kinematics and the 
estimates of cross-sections for elastic scattering and for photoproduction of pions provided the 
main design guidelines for the equipment. It was important to have sufficient resolution to 
cleanly separate states that differed by a single pion mass in photoproduction or to separate the 
excited states in inelastic scattering. 

I will not describe the spectrometer facility we built in End Station A, since that has been 
done many times and details are available in the literature. We built three spectrometers capable 
of analyzing singly charged particles with moment of 20, 8, and 1.6 Gev/c. The solid angle 
acceptances were 0.1, 1, and 5 milli-steradians respectively. The scale of the devices was quite 
impressive for its day.  

TARGET 
POSITION

8 Gev SPECTROMETER

20  Gev SPECTROMETER

      1.6 Gev
SPECTROMETER

MONITORS
BEAM

 

Figure 5 Spectrometer facility at the Stanford Linear Accelerator. Each of the Spectrometers 
can be rotated about the target position to vary the angle of scattering. 

The basic design philosophy was conservative – SLAC was a very visible project, and it 
was important to the laboratory that reliable results be generated in the early running. It seemed 
unlikely that the experiments could be reproduced soon at another accelerator, so any wrong 
answers were likely to mislead for a long time. Beam time would be very costly at SLAC, so we 
tried hard to make the spectrometer complex efficient. This led us to incorporate a mid-sized 
computer dedicated to our data acquisition and on-line analysis. Our computer system became a 
model for those who could afford such things. 

(c)

Figure 9.6: SLAC-MIT experiment. (a), (b) Sketches showing the 1.5 GeV, 8 GeV and 20
GeV spectrometers. (c) Photograph of the experiment.

The setup measured the scattering cross-section for fixed energies of the scattered electron
and various angles. Fixing x (or ω = 1

x
) one gets different values of Q2 by varying the

angle. The experimental result is shown in Fig. 9.7. This experiment confirmed the scaling
hypothesis of Bjorken and gave a decisive piece of evidence in favour of the parton model
introduced by Feynman in 1969. This model describes the proton as composed of partons
which are the object one “sees” during an e−p-scattering. One may describe the scattering
process as shown in the following diagrams,
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⇤
“The Discovery of the Point-Like Structure of Matter” 14 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

ω = 4

4 6 820
Q2

  [(GeV/c)2]

0
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νW2
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O        26O

7145A54-92  

Figure 13  Values of νW2 vs. Q2 at ω = 4, showing that νW2 does not vary with Q2, (ie. νW2 
“scales”) 

So things were in pretty good shape, but nothing is ever perfect. As the data improved, it 
became clear that scaling was not working over the full range of our data (it turns out that ω = 4 
is not a good place to look for scale breaking). At first, the scale breaking was observed only 
below W = 2.6 Gev, and we wondered if the "resonant region" was more extensive than we had 
assumed, even though we were seeing no visible peaks between 2 and 2.6 Gev. So for a while we 
made “scaling plots” including only data having W >2.6 Gev. Another solution was to use a 
slightly different scaling variable, ω’= W2 /Q2 – (this variable is equivalent to 2Mν/Q2 in the 
limit as ν, Q2, and W go to infinity, so Bjorken’s hypothesis was still valid). We could detect 
only minor deviations from scaling in ω’, and used ω’ in our presentations for a couple of years. 

By the summer of 1971, most people were at least aware of our results and the quark-
parton interpretation of our data. A growing number of theorists were hard at work, and soon the 
concepts of “asymptotic freedom” and “confinement” (sometimes called “infra-red slavery”) led 
on to Quantum Chromodynamics. These advances actually predicted scale breaking, so we could 
go back to ω (or x) as the scaling variable.  

It was in 1971 that the original SLAC-MIT collaboration split into two independent 
groups. There was, at that time, some disagreement about what to do next. Most of the SLAC 
contingent worked on an experiment at 4º (and at 58 – 60°), while all the MIT scientists and a 
couple of people from SLAC repeated the hydrogen measurements at 18º, 26º and 34º along with 
new measurements on deuterium. The breakup was so friendly that many people don't realize that 
it ever happened and make no distinction between SLAC-MIT and MIT-SLAC. 

Late in 1969 we had heard rumors that an analysis of CERN neutrino data was indicating 
that the neutrino scattering cross-sections were proportional to the neutrino energy, as expected 
in the quark-parton picture. By 1972 a major independent confirmation of the quark model was 
announced by Don Perkins at the ICHEP conference in Batavia. The Gargamelle data showed 

Figure 9.7: Experimental evidence for Bjorken scaling as measured at the SLAC-MIT
experiment (ω = 1/x).

�
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γ∗

�p

γ∗

i, xp

=
∑

i

∫
dxe2

i

[ ]

The sum runs over all possible partons, each carrying an electric charge ei (in units of
the elementary charge) and a fraction x of the total momentum of the proton. This gives
us a physical interpretation of the Bjorken scaling variable x. Since the fraction of proton
momentum carried by the i-th parton is not known a priori, one needs to integrate over all
possible values of x between zero (the parton carries no momentum) and one (the parton
carries all the proton momentum).

The probability fi(x) that the struck parton carries a fraction x of the proton momentum
is called parton distribution function (PDF). The total probability must be equal to
1, in order for the proton as a whole to carry all its momentum :

∑

i

1∫

0

dx xfi(x) = 1. (9.9)

In Feynman’s parton model the structure functions are sums of the parton densities
constituting the proton,

νW2(Q2, ν)→ F2(x) =
∑

i

e2
ixfi(x) (9.10)

MW1(Q2, ν)→ F1(x) =
1

2x
F2(x) (9.11)
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9.3.3 Callan-Gross relation

The result,

2xF1 = F2 , (9.12)

is known as Callan-Gross relation and is a consequence of quarks being spin-1
2

particles.
It can be derived by comparing the e−p and e−µ− differential cross sections and setting
the mass of the quark to be m = xM . Remembering the definitions of F1 and F2, Eqs.
(9.7) and (9.8), one has,

F1(x)

F2(x)
=
W1(Q2, ν)

W2(Q2, ν)

M

ν
,

and since the scattering is elastic with a point particle (the parton),

2W1(Q2, ν) =
Q2

2m2
δ

(
ν − Q2

2m

)

W2(Q2, ν) = δ

(
ν − Q2

2m

)
⇒ W1(Q2, ν)

W2(Q2, ν)
=

Q2

4m2
,

and one gets the desired result, by putting in the definition of x and m = xM ,

F1(x)

F2(x)
=

Q2

4m2

M

ν
=

Q2

2Mν

1

2x2
=

1

2x

Fig. 9.8 shows the Q2-independence of the Callan-Gross relation.

Figure 9.8: Experimental evidence for the Callan-Gross relation.
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9.3.4 Parton density functions of protons and neutrons

The proton is know to be composed of two up and one down quarks (Sect. 7.3, p. 133).
These quarks are known as valence quarks and are denoted qv. They are the ones de-
termining the properties of a hadron. It can however occur (in particular at high Q2,
corresponding to a high resolution) that a valence quark radiates a gluon which then
splits in a quark-antiquark pair which is then probed by the virtual photon. These quarks
are referred to as sea quarks and are denoted qs.

In the case of e−p-scattering and e−n-scattering, writing qN instead of fNq (x) for conve-
nience and using Eq. (9.10), we get respectively,

1

x
F ep

2 =

(
2

3

)2

(up + ūp) +

(
1

3

)2

(dp + d̄p) +

(
1

3

)2

(sp + s̄p) (9.13)

1

x
F en

2 =

(
2

3

)2

(un + ūn) +

(
1

3

)2

(dn + d̄n) +

(
1

3

)2

(sn + s̄n), (9.14)

where we have discarded the contributions of partons heavier than the strange quark.

One makes the assumption that these functions are not independent (exchanging an up
quark for a down turns basically a proton into a neutron), and defines the total PDF of
a given quark as the sum of its valence and sea components,

u := uv + us = up = dn

d := dv + ds = dp = un.

Furthermore, we assume that the three lightest quark flavours (u,d,s) occur with equal
probability in the sea:

S := us = ūs = ds = d̄s = ss = s̄s.

Combining all definitions and assumptions one obtains,

1

x
F ep

2 =
1

9
(4uv + dv) +

4

3
S (9.15)

1

x
F en

2 =
1

9
(4dv + uv) +

4

3
S. (9.16)

At small momentum fractions (x ≈ 0) the structure function is dominated by low-
momentum qq̄-pairs constituting the “sea”, and hence

F en
2

F ep
2

→ 1,

whereas for x ≈ 1 the valence quarks dominate and,

F en
2

F ep
2

→ 1

4
.

The experimental evidence is shown in Fig. 9.9.

Fig. 9.10 shows the distribution of F ep
2 that one would observe in different scenarios of

proton structure.
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Figure 9.9: Ratio of the proton and neutron structure functions as a function of the
Bjorken x-variable.

9.4 Gluons

9.4.1 Missing momentum

Summing the measured momenta of the partons cited above should give the proton mo-
mentum. However this is not the case.

1∫

0

dx x(u+ ū+ d+ d̄+ s+ s̄) = 1− εg,

where,

εq :=

1∫

0

dx x(q + q̄).

The experimental data, neglecting the contribution of strange quarks, show that,

1∫

0

dxF ep
2 =

4

9
εu +

1

9
εd = 0.18,

1∫

0

dxF en
2 =

1

9
εu +

4

9
εd = 0.12.
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Figure 9.10: Structure functions F ep
2 in different scenarios of the proton structure.

Therefore,

εu = 0.36

εd = 0.18,

and the fraction of the proton momentum not carried by quarks is,

εg = 1− εu − εd = 0.46.

Almost half of the proton momentum is carried by electrically uncharged partons. By
repeating the scattering experiments with neutrinos instead of electrons, one observes
that these uncharged partons do not interact weakly either. The parton carrying the
missing momentum is now known as the gluon, the gauge boson of QCD.



9.4. Gluons 211

9.4.2 Gluons and the parton model at O(ααs)

By including the gluons into the parton model, the following diagrams need to be taken
into account :

�p

γ∗

�p

γ∗

Looking specifically at the contribution of the first diagram, and using the kinematic
variables defined in the following diagram,

�
p

γ∗

pi = yp zpi = xp

one can show that the contribution to the proton structure function is of the form :

1

x
F γ∗q→qg

2 =
∑

i

e2
i

1∫

x

dy

y
fi(y)

[
αs
2π
Pqq(x/y) log

(
Q2

µ2

)]
, (9.17)

where µ is a cutoff to regularize soft gluon emission and,

Pqq(z) =
4

3

(
1 + z2

1− z

)
,

is called splitting function. It is the probability of a quark to emit a gluon and reduce
momentum by a fraction z. It is obviously divergent for soft gluons (z → 1).

From the form of Eq. (9.17), one sees that Q2 appear explicitely, and not divided by
2Mν. This logarithmic term is responsible for the phenomenon of scaling violations wo
be discussed in the next chapter.

Why did the SLAC-MIT experiment not see this violation? The effect of scaling violation is
only visible at extremely small x-values which were not available at this time. The scaling
violation was indeed observed in later experiments as we will discuss in the following
sections.
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9.5 Experimental techniques

The main site dedicated to the study of the proton structure is the HERA accelerator
(DESY), shown in Fig. 9.11. It was the only e−p-collider ever built and reached the beam
energies Ee = 30 GeV and Ep = 900 GeV for electrons and protons respectively.

Figure 9.11: Schematics of the HERA accelerator at DESY.

Fig. 9.12 shows the coverage of the Q2-x-kinematic region achieved at HERA and other
experiments. The data at low Q2 and low x allowed the observation of scaling violation
and definitively confirmed the existence of the gluon as a constituent of the proton.

Fig. 9.13 shows the sketches of the H1 and ZEUS experiments at HERA, as well as the
integrated luminosity collected by ZEUS. One can notice the asymmetrical configuration
due to the different beam energies.

A typical deep inelastic scattering (DIS) event at ZEUS is shown in Fig. 9.14. One can
observe the different properties of the final state : the quark jet deposits energy in the
hadron calorimeter, while the electron is stopped in the electromagnetic section. The
angles of the electron and hadronic system are measured in the central tracking chamber.

A “two jets” event, corresponding to the reaction,

e− + p→ e− + q + q̄ +X,

where X denotes the proton remnant (whose products are visible in the forward calorime-
ter), is shown in Fig. 9.15. An interesting feature of this event is the presence of a muon
in correspondence of the jet. This muon may originate from the decay of a heavy quark.
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Figure 9.12: Coverage of the Q2-x-kinematic region at HERA.

Since scaling is no longer preserved, both Q2 and x (or y = Q2

sx
) have to be measured.

Those can be obtained by measuring the energy E ′e and angle θe of the scattered eletron
and using,

ye = 1− E ′e
2Ee

(1− cos θe)

Q2
e = 2EeE

′
e(1 + cos θe).

Fig. 9.16 shows the kinematic region measured at ZEUS while Fig. 9.17 shows the experi-
mental results for the structure function F2 as well as the NLO QCD fits. For low values
of x, the scaling violation appears very clearly. It is due to the inclusion of the processes
containing gluons.

Finally, Fig. 9.18 shows the measurement of the proton PDFs achieved at HERA. The
relative importance of the sea and gluon distribution can be seen to vary significantly for
Q2 between 1.9 GeV2 and 10 GeV2 (note the scale reduction!). One can notice similarities
with the expectation shown in Fig. 9.10.

9.6 Parton model revisited

In the following two sections we formalize the foregoing discussion and derive the expres-
sion of the QCD improved parton model for F2(x,Q2)/x given in Eq. (9.17).

As we have seen the proton is a bound state of three quarks with strong binding. “Strong
binding” says that the quark binding energy is much larger than the light quark masses:
Ebind � mq. Compare this to the weak binding of the hydrogen atom electron: Ebind � me.
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(a) (b)

(c)

Figure 9.13: Experiments at HERA. (a) H1. (b) Luminosity integrated by the ZEUS during
its operation. (c) ZEUS.

We consider a proton with large momentum (| #»p | � mp):

pµ =

(√
| #»p |2 +m2

p

#»p

)
'
(
| #»p |

#»p

)
.
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Figure 9.14: DIS event recorded by the ZEUS experiment.

(a) (b)

Figure 9.15: Two jet event at ZEUS (a) Side view. (b) Transverse view.

In Sect. 7.4.2 (p. 150) we discussed asymptotic freedom, namely the fact that for Q2 �
Λ2

QCD the strong coupling constant ᾱs � 1. In this case the quarks of the proton are asymp-
totically free and therefore deep inelastic lepton-proton scattering is not an interaction
with the whole proton but with just one of its constituents. This means that coherence
and interference are lost (one of mutually exclusive scattering events is taking place) and
deep inelastic lepton-proton scattering is an incoherent sum of lepton-quark scattering
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ZEUS 1994

Figure 7: a)The distribution of the events in the (x ,Q2) plane. b) The (x ,Q2)-bins used in the
structure function determination. Also indicated are lines of constant y and of constant γ

H
.

The γ
H

values for this figure are calculated directly from x and Q2.

35

Figure 9.16: Kinematic phase-space measured by the ZEUS experiment.

processes (see Sect. 9.3.2 for diagrams) with the doubly differential cross section2

d2σ

dxdQ2
=
∑

q

1∫

0

dξfq(ξ)
d2σ̂lq

dxdQ2
(9.18)

where

• fq(ξ) is a quark distribution function, i. e. the probability density of finding a quark
with momentum ξp inside a proton with momentum p,

• ξfq(ξ) is the corresponding momentum density,

• and the hat is used to denote quantities in the lepton-quark system (to distinguish
them from lepton-proton system quantities).

Depending on strength and nature of the binding, one expects different behaviors of the
momentum density ξfq(ξ), as is shown in Fig. 9.19 (compare also Fig. 9.10). If the proton
were pointlike the momentum density would be just a delta function, δ(1− ξ), enforcing
ξ = 1 for the one particle involved, see Fig. 9.19(a). A proton built out of three massive
and weakly coupled quarks leads to momentum densities consisting of non-ideal delta
functions located at ξ = 1/3, 1/3δ(1/3− ξ), which are insignificantly smeared out due to
the ongoing exchange of binding energy between the quarks with weak, QED like coupling:

2Note that ξ and x are not a priori identical. Their relationship under varying assumptions is discussed
below and eventually involves QCD corrections.
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Figure 9.17: Proton structure function F p
2 measured by H1 and other experiments for

various values of Q2 and x. Scaling violations appear for x < 10−2.

mp ' 3mq, see Fig. 9.19(b). If, however, the proton consisted of three light and strongly
coupled quarks, mq � 1/3mp, the peaks of ξf(ξ) would still be located around 1/3, but,
since most energy is present in the form of potential and kinetic energy, they would be
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(a) (b)

Figure 9.18: Parton distribution functions of the proton (a) Q2 = 1.9 GeV2. (b) Q2 =
10 GeV2. The sea and gluon PDFs are reduced by a factor 20.

smeared out significantly at any given instant of time, as shown in Fig. 9.19(c).

1
Ξ

Ξ fqHΞL

(a) Pointlike proton.

1

3
1

Ξ

Ξ fqHΞL

(b) Three massive, weakly interact-
ing quarks: mp ' 3mq.

1

3
1

Ξ

Ξ fq�Ξ�

(c) Three light, strongly coupled quarks:
mq � mp/3.

Figure 9.19: Quark momentum density ξfq(ξ).
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Let us consider the kinematics of the simple parton model. The on-shell condition for the
outgoing quark (see Fig. 9.20(a)) yields

m2
q = (ξp+ q)2 ' 2p · qξ −Q2 =

Q2

x
ξ −Q2 ⇒ ξ =

(
1 +

m2
q

Q2

)
x ' x.

Therefore, given the assumptions made are valid, the Bjorken variable x is the momentum
fraction ξ of a parton inside the proton.

�
p

l(k) l(k′)

q = k − k′

q(ξp)

(a)

�
q

l

q

l

(b)

Figure 9.20: (a) Kinematics of simple parton model and (b) Feynman diagram for lepton-
quark scattering.

To determine d2σ̂lq/dxdQ2 of lepton-quark scattering, we consider the Feynman diagram
in Fig. 9.20(b) which is just a crossing of the Born level diagram for e+e− → µ+µ− (see
Sect. 5.10, p. 94). We therefore find

dσ̂lq

dt
=

2πα2e2
q

ŝ2

(
ŝ2 + û2

t̂2

)

where the Mandelstam variables read (the subscript ep emphasizes that sep refers to the
lepton-proton system)

ŝ = (xp+ k)2 = 2xpk = xsep

t̂ = −Q2 = −xysep = t

û = −ŝ− t̂ = −x(1− y)sep.

Note that t̂ = t depends only on the lepton kinematics. This leads to the lepton-quark
differential cross section

d2σ̂lq

dxdQ2
=

2πα2e2
q

Q4

(
1 + (1− y)2

)
δ(x− ξ).

Inserting this result into the parton model expression for lepton-proton scattering of
Eq. (9.18) yields

d2σ

dxdQ2
=

4πα2

xQ4

∑

q

1∫

0

dξfq(ξ)e
2
q

x

2

(
1 + (1− y)2

)
δ(x− ξ).
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Upon comparison with the deep inelastic scattering structure functions we find

F2(x,Q2) =
∑

q

e2
qxfq(x)

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) = 0

where FL is called longitudinal structure function. We recognize that F2(x,Q) = F2(x)
ceases to be a function of two variables, but under the assumed conditions depends only
on one variable, a phenomenon generally referred to as scaling. Furthermore, FL = 0 ⇔
2xF1 = F2 is the Callan-Gross relation, a consequence of quarks having spin 1/2 familiar
from Sect. 9.3.3.

Before we go on we introduce the following notation for the distribution functions

fq(x) = q(x) (q = u, d, s, c, . . . , ū, . . . )

fg(x) = g(x) (gluons).

9.7 QCD corrections to the parton model

Our discussion of the parton model involved no QCD corrections up to now; it rested on
the assumption of electromagnetic interactions alone. QCD corrections will concern the
quark part of our diagram. Within the parton model we just found

� q

γ?

q

=
4παe2

q

ŝ
δ(x− ξ) =: σ̂0δ(x− ξ) (9.19)

and

F2(x,Q2)

x
=
∑

q

1∫

0

dξ

ξ
q(ξ)e2

q δ

(
1− x

ξ

)
(9.20)

where σ̂0 is the QED contribution which drops out of the structure functions.

The O(αs) = O(g2
s) QCD corrections are given by

∣∣∣∣∣∣∣� +�
∣∣∣∣∣∣∣

2

and 2Re

∣∣∣∣∣∣∣� ·�
∣∣∣∣∣∣∣
,

i. e. gluon radiation and virtual gluon exchange. The one-loop virtual gluon interference
term stems from the loop corrections to the quark-photon vertex squared at O(g2

s). As an
example, consider the process γ?q → qg (which is a crossing of γ? → qq̄g):

|M|2 = 32π2(e2
qααs)CF

(
− t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

)
.
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This expression for |M|2 is unproblematic for small ŝ, since ŝ is fixed. However, a prob-
lem arises at small t̂, since we have to integrate over it as it is a dynamic variable (see
Sect. 3.3.2, p. 28).

For small scattering angles −t̂� ŝ and we have

p2
T =

ŝ(−t̂)
ŝ+Q2

for the transverse momentum of the outgoing gluon. Eliminating the Mandelstam variable
û, the differential cross section becomes

dσ̂

dp2
T

=
1

16πŝ2
|M|2 ' σ̂0

αs
2π
CF

(
− 1

t̂ŝ

[
ŝ+

2(ŝ+Q2)Q2

ŝ

])
.

By introducing the dimensionless variable

z =
x

ξ
=

Q2

2pq · q
=

Q2

ŝ+Q2
,

we arrive at

dσ̂

dp2
T

= σ̂0
1

p2
T

αs
2π
Pqq(z)

where

Pqq(z) = CF
1 + z2

1− z
(compare Sect. 9.4.2). Note that in the simple parton model we had pq = ξp which is no
longer the case when QCD corrections are taken into account.

To find the inclusive cross section, we have to integrate over the transverse momentum
squared:

σ̂γ
?q→qg

σ̂0

=
αs
2π
Pqq(z)

Q2∫

µ2

dp2
T

p2
T

=
αs
2π
Pqq(z) log

Q2

µ2

where the infrared cutoff µ2 has been introduced because of the collinear singularity at
p2
T → 0. The rationale is to later define observables in a way that allows to send µ2 → 0

(compare also Sect. 8.2.1, p. 162). Having calculated the QCD corrections at O(αs) to the
structure function in Eq. (9.20), we can state the resulting corrected expression:

F2(x,Q2)

x
=
∑

q

1∫

x

dξ

ξ
q(ξ)e2

q

{
δ
(

1− x

ξ

)
+
αs
2π

[
Pqq

(x
ξ

)
log

Q2

µ2
+ finite

]
+O(α2

s)

}

(9.21)
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which leads to some interesting consequences.3 Observe that we found an equality of
a measurable and hence finite quantity (after all, F2 is just a specific coefficient in the
parametrization of a cross section) and an expression which is divergent at the given order
of perturbation theory. Since the LHS of Eq. (9.21) is fixed, the problem has to be tackled
on its RHS. As a starting point, recall that we justified the form of the quark distribution
functions by asymptotic freedom and neglected QCD interactions among the quarks in the
first place. When QCD corrections are taken into account, the naive parton model is no
longer valid. Therefore, it is necessary to redefine the parton distribution functions such
that they are well-defined for the case of interacting quarks. This amounts to a redefinition
of the quark distribution in the infrared region and is called mass factorization of the quark
distribution:

q(x, µ2
F ) = q(x) +

αs
2π

1∫

x

dξ

ξ
q(ξ)Pqq

(x
ξ

)
log

µ2
F

µ2
(9.22)

where q(x, µ2
F ) is a measurable, screened quark density, q(x) denotes the bare (unphysical)

quark density, and the integral term is the contribution from unresolvable gluon radiation
with transverse momentum µ2

F ≥ p2
T ≥ µ2 where µ2

F is the mass factorization scale
at which the quark distribution is measured. Recall that the infrared cutoff µ2 can be
chosen arbitrarily small—smaller than any given detector resolution. At sufficiently small
scattering angles the emitted gluon cannot be resolved by the detector as it appears to
be parallel to the proton remnants. Two-jet events in deep inelastic scattering can only
be excluded in the momentum range where they could be detected. Therefore, the quark
distribution q(x, µ2

F ) admits gluon radiation below a predefined resolution scale µF .

Let us solve for q(x) in Eq. (9.22) and plug it into the QCD corrected structure function
in Eq. (9.21), we have

F2(x,Q2)

x
=
∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e2
q

{
δ
(

1− x

ξ

)
+
αs
2π
Pqq

(x
ξ

)
log

Q2

µ2
− αs

2π
Pqq

(x
ξ

)
log

µ2
F

µ2

}

=
∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e2
q

{
δ
(

1− x

ξ

)
+
αs
2π
Pqq

(x
ξ

)
log

Q2

µ2
F

}

which is independent of the infrared cutoff µ2 and finally, setting µ2
F = Q2 as in deep

inelastic scattering experiments,

=
∑

q

q(x,Q2)e2
q.

Perturbative QCD is used to answer the question how the Q2 dependence of the quark
distribution q(x,Q2) looks like.

3One can observe, as was done before, that because of QCD corrections to the naive parton model
scaling no longer holds, since F2(x,Q2) ceases to be a function of the single variable x alone.
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9.8 Altarelli-Parisi equations

The bare quark distribution q(x) is independent of µ2
F :

µ2
F

d

dµ2
F

q(x) = 0.

Differentiating Eq. (9.22) with respect to log µ2
F we thus obtain the renormalization group

equation4 for the quark distribution:

∂q(x, µ2
F )

∂ log µ2
F

=
αs
2π

1∫

x

dξ

ξ
q(ξ, µ2

F )Pqq

(x
ξ

)
(9.23)

which means that scaling invariance is logarithmically violated.

Eq. (9.23) is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation, or simply Altarelli-Parisi evolution equation. It is a small-p2

T approximation,
which resums the collinear gluon radiation in the initial state at O(αns lognQ2).

�q(x0, Q
2
0)

q(x1 ≤ x0, Q
2
1 > Q2

0)

q(x2 ≤ x1, Q
2
2 > Q2

1)

q(x ≤ xn, Q
2 > Q2

n)

This diagram is a universal correction, since the emitted gluons do not know about the
scattering process of the quark off the virtual photon. The DGLAP equation tells us what
happens if one infinitesimally increases the resolution. It is an integro-differential equation
with one “initial condition” q(x, µ2

F = µ2
0). Knowing the latter, one can compute the quark

distribution at any value of µ2
F . The procedure is analogous to the determination of the

running coupling of QED (Sect. 6.1.2, p. 104) or QCD (Sect. 7.4.2, p. 150).

In using Eq. (9.23) we omitted until now, the fact that Pqq(z) has a singularity in z = 1,
which belongs to the integration domain. This singularity corresponds to the emitted

4For a concise discussion of this topic see [53, pp. 28].
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gluon becoming soft. It is compensated by a singularity in the virtual corrections. As a
result, Pqq(z) is modified to become,

Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
,

which takes into account the virtual corrections occuring at z = 1. We use the ‘+’-
presciption, coming from the reguarisation procedure and defined by,

1∫

0

dz
f(z)

(1− z)+

=

1∫

0

dz
f(z)− f(1)

1− z . (9.24)

The factor in front of the δ-function can be inferred from the quark number conservation,
which can be stated as,

1∫

0

dzPqq(z) = 0. (9.25)

Up to now, we considered only gluon radiation off a quark. However, the emission history
can be made more complicated with gluons at intermediate stages of the parton cascade,

�
By inspection, one can find out that there are four different splitting processes at O(αs) :

• q → q :

�

p zp

! Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
, (9.26)
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• q → g :

�

p zp

! Pgq(z) = CF

(
1 + (1− z)2

z

)
, (9.27)

• g → q :

�

p zp

! Pqg(z) = TF
(
z2 + (1− z)2

)
, (9.28)

• g → g :

�

p zp

! Pgg(z) = 2CA

(
z

(1− z)+

+
1− z
z

)
+

(
11

6
CA −

3

2
TFnf

)
δ(1− z).

(9.29)

Those splitting functions satisfy a set of coupled DGLAP equations,

∂

∂ log µ2
F

(
q(x, µ2

F )
g(x, µ2

F )

)
=
αs(µ

2
F )

2π

1∫

x

dz

z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)(
q
(
x
z
, µ2

F

)

g
(
x
z
, µ2

F

)
)
. (9.30)

In this equation, αs
2π
Pji(z) is the probability for i → j splitting with momentum fraction

z in the transverse momentum interval [log µ2
F , log µ2

F + d log µ2
F ].

For nf quark flavours, we get 2nf +1 coupled equations (antiquarks must be taken explic-
itly into account). This system can be diagonalized be introducing (i labels the flavour),

• nf valence quark distributions

qVi = qi − q̄i, (9.31)

• nf − 1 flavour non-singlet quark distributions

qFi =
i−1∑

n=1

(qn + q̄n − qi − q̄i), (9.32)

• 1 flavour singlet quark distribution

qS =

nf∑

n=1

(qn + q̄n). (9.33)
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We also define the convolution,

(P ⊗ q)(x, µ2
F ) =

1∫

x

dz

z
P (z)q

(x
z
, µ2

F

)
,

allowing us to write,

∂qVi
∂ log µ2

F

=
αs
2π
Pqq ⊗ qVi (9.34)

∂qFi
∂ log µ2

F

=
αs
2π
Pqq ⊗ qFi (9.35)

∂qS

∂ log µ2
F

=
αs
2π

(
Pqq ⊗ qS + 2nfPqg ⊗ g

)
(9.36)

∂g

∂ log µ2
F

=
αs
2π

(
Pgq ⊗ qS + Pgg ⊗ g

)
. (9.37)

The factor 2nf in Eq. (9.36) comes from the fact that one needs to consider quarks
and antiquarks of all possible flavours. This set of equations only includes leading order
corrections that are precise at 15%. The data obtained in the last years yield however
results to the 5% precision, so that correction from higher orders need to be taken into
account.

At NLO, O(αns logn−1Q2), the finite term from the O(αs)-processes is relevant,

∣∣∣∣∣∣� +�
∣∣∣∣∣∣

2

This translates in the expressions for the structure functions,

1

x
F2(x,Q2) =

1∫

x

dξ

ξ

{∑

q

q
(
ξ,Q2

) [
δ

(
1− x

ξ

)
+
αs
2π
C2,q

(
x

ξ

)]
+ g(ξ,Q2)

αs
2π
C2,g

(
x

ξ

)}

(9.38)

FL(x,Q2) = O(αs) 6= 0 (9.39)

We now need to compute O(α2
s)-corrections to the spitting functions Pji. At this

order, there is essentially one new spitting process with two quark-gluon vertices,

�
i j

�
i j
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At O(αs), we had implicitly P V
qq = P F

qq = P S
qq = Pqq in Eqs. (9.34), (9.35) and (9.36). This is

no longer true at O(α2
s), where all these splitting functions are different from one another.

At even higher orders, no essentially new features appear, so that NLO calculations lead
already quite acceptable results. These are of crucial importance for W and Z production
at hadron colliders.

9.9 Solution of DGLAP equations

Looking at the set (9.30) of coupled DGLAP integro-differential equations one can expect
that solving it could be a highly non-trivial task. There are basically two approaches to
attack the problem :

1. Numerical solution, e.g. with the Runge-Kutta method. This approach is yielding
satisfactory results for Q2

0 & 2 GeV, i.e. in the asymptotically free regime, where
αs(Q

2
0)� 1,

2. Analytically, by using Mellin tranformation. This approach is especially useful to
obtain a quantitative understanding and to determine the asymptotic properties.

In both cases we have to start from given initial distributions qi(x,Q
2
0), q̄i(x,Q

2
0), g(x,Q2

0).

Mellin transformation The Mellin transform of a function f : [0, 1]→ R is given by,

f(n) = M [f(x)] =

1∫

0

dxxn−1f(x), (9.40)

with inverse

f(x) =
1

2πi

a+i∞∫

a−i∞

dnx−nf(n), (9.41)

for f(n) analytical in the half plane Ren > a.

We list here some of the properties of Mellin transformations:

M [af(x) + bg(x)] = af(n) + bg(n) (linearity) (9.42)

M

[
dk

dxk
f(x)

]
= (−1)n−k

Γ(n)

Γ(n− k)
f(n− k) (derivative) (9.43)

M [(f ⊗ g)(x)] = f(n)g(n) (convolution) (9.44)
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Armed with this new technology, we Mellin transform Eq. (9.34) with respect to the x
variable to get (the following analysis is valid for the valence and flavour non-singlet quark
distribution, thus, we drop the i, V/F for notational convenience),

∂q(n, µ2
F )

∂ log µ2
F

=
αs(µ

2
F )

2π
Pqq(n)q(n, µ2

F ). (9.45)

Using the evolution equation for αs (Sect. 7.4.2, p. 153) in the leading order approximation,

1

αs

∂αs
∂ log µ2

F

=
∂ logαs
∂ log µ2

F

= − β0

4π
αs,

one gets,

∂q(n, µ2
F )

∂ logαs
= − 2

β0

Pqq(n)q(n, µ2
F )

∂ log q(n, µ2
F )

∂ logαs
= − 2

β0

Pqq(n), (9.46)

which can now be solved by integrating from µ2
F = Q2

0 to Q2,

q(n,Q2) = q(n,Q2
0)

[
αs(Q

2
0)

αs(Q2)

] 2
β0
Pqq(n)

,

or, in the usually known form, using Eq. (7.44), p. 154,

q(n,Q2) = q(n,Q2
0)exp

{
2

β0

Pqq(n) log
log(Q2/Λ2)

log(Q2
0/Λ

2)

}
. (9.47)

This is the solution for the quark valence and flavour non-singlet distributions.

We now turn to the two remaining distributions, namely the quark singlet and and gluon
distributions. Mellin transforming Eqs. (9.36) and (9.37) yields,

∂

∂ log µ2
F

(
qS(n, µ2

F )
g(n, µ2

F )

)
= − 2

β0

(
Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)(
qS(n, µ2

F )
g(n, µ2

F )

)
. (9.48)

The first step is the diagonalization of the matrix,
(
Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)
.

Then one applies the same formalism as for the valence quark distribution discussed above.
By inverse Mellin transformation, one gets the result in the variable x.

Specific values of n correspond to various physical quantities. For example, Pqq(n = 1) = 0
is the Mellin transform of Eq. (9.25) and q(n = 2) corresponds to the fraction of the total
momentum transported by the quark q. One has the momentum sum rule,

qS(2, Q2) + g(2, Q2) = 1.
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with the asymptotic values,

qS(2, Q2 →∞)→ 3nf
16 + 3nf

nf=5
=

15

31

g(2, Q2 →∞)→ 16

16 + 3nf

nf=5
=

16

31
.

9.10 Observables at hadron colliders

We now study processes and observables at hadron colliders and the consequences of
parton evolution in this context.

The simple parton model cross section for processes at hadron-hadron colliders reads

σpp =
∑

i,j∈{q,g}

∫
dx1dx2fi(x1)fj(x2)σ̂ij→X(sij = x1x2spp), (9.49)

i. e. two partons enter into a hard collision from which a final state X emerges, as shown
in Fig. 9.21(a).

�p(p2)

p(p1)

j(x2p2)

i(x1p1)

Xσ̂

(a)

�
q

q̄
γ?

µ−

µ+

(b)

Figure 9.21: (a) Hadron-hadron collision in naive parton model and (b) Drell-Yan process.

As an example consider the Drell-Yan process, pp → µ+µ−, shown in Fig. 9.21(b). The
parton model cross section reads

σDY =
∑

q

∫
dx1dx2 [q(x1)q̄(x2) + q(x2)q̄(x1)] σ̂qq̄→µ+µ− (9.50)
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where

σ̂qq̄→µ+µ− =
4πα2

3sqq̄

1

3︸ ︷︷ ︸
σ̂DY
0

e2
q δ(1− x1x2spp/M

2
µ+µ−) (9.51)

which we basically already calculated before (Sect. 5.10, p. 94). The difference to the
e+e− → µ+µ− result is the color factor of 1/3 and the delta function which states that
the muon pair invariant mass fulfills (pµ+ + pµ−)2 =: M2

µ+µ− = x1x2spp.

The following QCD corrections have to be included:

�
q

q̄

γ?

µ−

µ+

g � q

g

γ?

µ−

µ+

q

� γ?
µ−

µ+

where the first two diagrams are because of parton evolution and the third diagram is a
virtual correction. Setting z = x1x2spp/M

2
µ+µ− , the QCD corrected Drell-Yan cross section

reads

σDY = σ̂DY
0

∑

q

e2
q

∫
dx1dx2

{
q(x1)q̄(x2)δ(1− z) +

αs
2π
Cqq̄(z)

+ [q(x1) + q̄(x1)] g(x2)
αs
2π
Cqg(z) + (x1 ↔ x2)

}

where q(xi) etc. are the QCD evolved parton distributions.

In the following some standard reactions are listed.

• W±, Z0 production
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�
q̄

q

W±, Z0

• γ + jet production

�
g

q

q

γ

�
q̄

q

g

γ

• 2-jet production

�
q̄

q

q̄

q

�
q̄

q

g

g

Further processes leading to 2-jet events are qg → qg, gg → gg, gg → qq̄ and
qq → qq.

Examples for relevant processes in searches for new physics:

• Higgs production

�
t

t̄ H

g

g

• SUSY particles
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�
g

q

q̃

g̃

A general feature of hadron-hadron colliders is that
√
sparton-parton is variable since the

parton momentum fractions vary.5 This allows to search for peaks in mass spectra at
fixed collider energy. An example for this effect is the Z0 peak in the µ+µ− spectrum of
SPS at CERN (compare also Sect. 4.4.4, p. 52).

9.11 Multiparticle production

Describing multijet final states in QCD is problematic because of two reasons.

• Factorial growth of the number of diagrams
E. g. for gg → ng the number of diagrams # scales with the number of final state
gluons n in the following way:

n 2 3 4 5 6 7
# 4 25 220 2485 34300 559405.

These numbers illustrate that a computation even on the amplitude level is time-
consuming.

• Complexity of the final state phase space
In addition to the aforementioned problem, the final state phase space has high
dimension and the integrations are constrained in various ways.

These problems can be approached by introducing approximate descriptions. One uses the
fact that |M|2 is largest if partons are emitted into soft (E → 0) or collinear (θij → 0)
regions of phase space. Therefore, the dominant contributions stem from these phase space
regions.

5Compare this to the e+e− case where the center of mass energy of the actual collision is fixed by the
collider energy: s = ŝ.
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Let us analyze a collinear parton shower. Consider the shower subgraph

�
a

θc

θb

c

b

where p2
a � p2

b , p
2
c and p2

a = t. The opening angle is θ = θb + θc and the energy fractions
are

z =
Eb
Ea

1− z =
Ec
Ea
. (9.52)

For small angles we have

t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2 (9.53)

θb
1− z =

θc
z

= θ. (9.54)

For θ → 0 the matrixelement factorizes as

|Mn+1|2 =
4g2

s

t
CFFqq(z)|Mn|2

where

Fqq(z) =
1 + z2

1− z = Pqq(z < 1).

Analogous splittings involve Fqg, Fgq, and Fgg.

Also the phase space factorizes:

dφn = . . .
d3pa

2Ea(2π)3

dφn+1 = . . .
d3pb

2Eb(2π)3

d3pc
2Ec(2π)3

.
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Since pc = pa − pb, we have d3pc = d3pa for fixed pb. For small θ this yields6

dφn+1 = dφn
1

2(2π)3

∫
EbdEbθbdθbdφ

dz

1− z δ(z − Eb/Ea)dtδ(t− EaEbθ
2)

= dφn
1

4(2π)3
dtdzdφ

(recall Eq. (9.52) and (9.53)).

Since the matrixelement and the phase space factorize, so does the cross section:

dσn+1 = dσn
dt

t
dz
dφ

2π

αs
2π
CFF (z).

Therefore, multiple emission processes like

�γ?(Q)

t1 < Q2

t2 < t1

tc < tn

q̄

z1 < 1

z2 < z1

q

where tc is a cutoff scale at which hadronization sets in, tc & Λ2
QCD, can be subdivided

into fundamental steps in (t, z) space:

�
(t1, z1)

(t2, z1)

(t2, z2)A Monte Carlo method to generate a corresponding set of final state partons proceeds as

6One observes that

dφn+1 = . . .
d3pb

2Eb(2π)3
d3pc

2Ec(2π)3
= dφn

Ea
Ec

d3pb
(2π)32Eb

' dφn
Ea
Ec

EbdEb
2(2π)3

θbdθbdφ = dφn
1

1− z
EbdEb
2(2π)3

θbdθbdφ.

And the Jacobian determinant is just 2zEaθb/(1− z).
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follows: Starting from a simple final state (e. g. e+e− → qq̄), generate additional partons
step-by-step while admitting only visible (i. e. non-soft) emission:

z > ε(t) (1− z) > ε(t)

where ε(t) can be expressed in the following way:

p2
a = t and p2

b , p
2
c > tc

p2
T = z(1− z)p2

a − (1− z)p2
b − zp2

c > 0

⇒ z(1− z) >
tc
t

⇒ ε(t) =
1

2
− 1

2

√
1− 4

tc
t
' tc

t

which means that the threshold ε(t) gets more strict for decreasing t.

Let us define the Sudakov form factor ∆(t)

∆(t) = exp




−

t∫

tc

dt′

t′

1−ε(t′)∫

ε(t′)

dzαsCFFqq(z)





which is the probability for a parton to evolve from t to tc without emission of another
parton. Observe that

∆(tc) = 1

and the probability for a parton to evolve from t1 → t2 without emission of another parton
is given by

R(t1, t2) =
∆(t1)

∆(t2)
.

The Monte Carlo procedure is now as follows.

0. Starting point (t1, z1)

1. Generate a random number R ∈ ]0; 1[.

2. Solve ∆(t1)/∆(t2) = R for t2.

• For ∆(t1) > R:
∆(t2) > 1: t2 < tc: no emission, parton saved for final state
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• For ∆(t1) < R:
Generate further random number R′ ∈ ]0; 1[ and solve

z2/z1∫

ε(t2)

dz
αs
2π
P (z) = R′

1−ε(t2)∫

ε(t2)

dz
αs
2π
F (z)

for z2.

3. Use the two new partons

(
(t2, z2);

(
t2,

z1 − z2

z1

))

as starting point for another Monte Carlo step (see Fig. 9.22).

4. Repeat steps 1 to 3 until all partons fulfill ti < tc.

This procedure generates events with the same probabilities as in experiment and produces
a list of final state particles which allows to perform the same analyses as on experimental
data. This is how one arrives at the “theory curves” shown e. g. in some of the plots in
Chap. 8.

�t1
t2

t2

z1

z1−z2
z1

z2

Figure 9.22: Starting point for second Monte Carlo step.
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Hadron collider physics

Literature:

• Ellis/Stirling/Webber [28]

• Dissertori/Knowles/Schmelling [27]

• Kane/Pierce [54]

• Review on QCD of the Particle Data Group [26]

• Technical Design Reports (TDRs) about the Physics Performance of ATLAS and
CMS [55, 56]

With the start of the LHC at CERN on March 30, 2010, operating at the moment at a
total center of mass energy of 7 TeV, a new record in particle collision energy has been
achieved. Like the Tevatron at Fermilab (operating at a total center of mass energy of
about 2 TeV) it is a hadron collider. The purpose of this chapter is to present the most
important features of this kind of colliders and the physics studied there.

First, the purposes, advantages and weaknesses of using a hadron collider are dis-
cussed in the introduction. Then the different components of the cross-section of proton-
(anti)proton interactions are presented. Next comes a digression to the topic of parton
distribution functions (PDF), in particular how these are determined from the wealth of
data from different experiments. An excellent knowledge of the proton structure, i. e. of
the PDFs, is a necessary ingredient for obtaining precise predictions of production rates
and other observables at hadron colliders. Finally specific processes are presented, such
as jet production, electroweak, top and Higgs physics.

237
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10.1 Introduction

Many measurements performed at earlier colliders have tested the standard model of
particle physics to a very high accuracy. As it can be seen in Fig. 10.1, the relevant
measured parameters of the model agree with their fitted values within 1 to 3 standard
deviations, as obtained from a global fit of the standard model predictions to the data.
Up to now there is basically no phenomenon in contradiction with the predictions of
the minimal version of the standard model (with the exception of neutrino masses and
oscillations). However, there are some key questions which remain unanswered so far.

Figure 10.1: Comparison of the measured parameters of the standard model with the
result of a global fit.

10.1.1 Open questions in particle physics

Mass? The question of the origin of mass of the fundamental constituents of matter
still lies at the center of the investigations. More precisely, in its simplest form, without any
spontaneous symmetry breaking, the electroweak theory 1 predicts the existence of 4 mass-
less vector particles (gauge bosons). However, the observations show that the W+, W−

and Z have a non-zero mass, whereas the photon γ is massless. A possible explanation is
given by adding a scalar field to the model, the Higgs field (or boson). This field has a non-
zero vacuum expectation value, which breaks the original symmetry (of the ground-state)
and gives those particles a mass which interact with it . Since this symmetry is not broken
at the Lagrangian level, one speaks of a spontaneous symmetry breaking mechanism. Pre-
dicted since the sixties, this particle has not yet been observed. Fig. 10.2 shows the most

1To be discussed in the next chapter.
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likely Higgs mass range as obtained from global fits of the standard model to the data,
with the Higgs mass as free parameter (see http://lepewwg.web.cern.ch/LEPEWWG/).
Also shown is the mass region excluded by the LEP data (< 114 GeV).

Figure 10.2: Most likely region for the Higgs mass (indicated by the minimum in the χ2

value) as obtained from a fit of standard model predictions to LEP, SLD and Tevatron
data

Unification? In the spirit of the electroweak theory of Glashow, Salam and Weinberg,
which describes together the electromagnetic and weak interactions as being the low en-
ergy limit of a unified gauge theory, physicists soon thought of further unifications of the
four fundamental interactions. Since the coupling of the strong interaction is decreasing
with the energy, whereas the electroweak couplings are increasing, it is tempting to pos-
tulate that all three interactions would arise from a single coupling strength related to
a gauge theory with extended gauge group, which “splits into three” as the energy gets
below a certain (large) value. This is the basic idea behind grand unification theories
(GUTs), which view the standard model gauge group,

SU(3)color × SU(2)weak isospin × U(1)hypercharge,

with three different couplings as a subgroup of a bigger “unified” gauge group G. However,
a nice convergence of the electroweak and strong couplings at a single unification scale
is not necessarily achieved. In case of supersymmetry this is achieved. Here a new
fundamental symmetry is introduced, which associates to each fermion a boson and vice-
versa. The supersymmetric partner of the electron e is called selectron, denoted ẽ, which is
a spin-0 particle, whereas the superpartner of the photon is called photino γ̃ and is a spin-
1
2

particle. Supersymmetry is the only way to combine the internal symmetry group of a
field with the Poincaré group in a non-trivial fashion. As of now, there is no quantum field
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theory of gravitation. Supersymmetry might provide a natural context for the inclusion of
gravity (supergravity), opening the possibility for a unified theory of all interactions. The
extreme weakness of gravity at the level of particle interactions has also lead physicists
to conjecture that it could propagate in extra dimensions, whereas other interactions
and matter cannot. Thus, in the usual 3+1-dimensional world we would only feel a small
fraction of the total gravitational flux, which then explains the weak nature of gravity.

At this point, it should be noted that the lightest supersymmetric particle is neutral,
stable and weakly interacting, thus a good candidate for dark matter. From astrophysical
observations we know that dark matter represents ∼ 23% of the mass of our universe.
Dark matter does not interact electromagnetically, hence the name. This is based on the
principle that the lightest supersymmetric particle cannot decay because of the conserva-
tion of a new quantum number, R-parity. This is an analogous explanation as the one for
the stability of the electron (due to the conservation of the lepton number) or the proton
(baryon number).

Flavour? From the decay width of the Z, at LEP it could be shown that there are
exactly 3 types of light neutrinos, leading to the conclusion that there are three families
of leptons and, by extension to the quark sector, of matter. The natural question becomes
then: why 3 and not say 4? The existence of 3 families of quarks leads to CP-violation
through the number of free parameters within the CKM matrix, related to the weak
decays of quarks. A major issue is the precise measurement of its coefficients. Fig. 10.3
shows the experimental constraints on the possible values of the parameters describing
the elements of the CKM matrix.

Figure 10.3: Experimental constraints on the parameters of the CKM matrix [26]

In view of these basic questions, the main goals of the experiments at the LHC are :

• Mechanism behind the electroweak symmetry breaking: search for the Higgs boson;
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• Unification : test of the standard model, search for supersymmetric partners or for
other physics beyond the standard model;

• Flavour : study of CP-violation in the b quark sector, by measuring properties
(decays, oscillations) of B-hadrons.

10.1.2 Hadron colliders vs. e+e−-colliders

In essence, physics at hadron colliders is much more complex than at e+e−-colliders such
as LEP or SLC, since now we are dealing with composite objects as our beam particles,
whereas leptons are (as far as we know) point-like. Why then bother using hadrons?

e+e−-colliders are precision machines : they lead to clean events, where basically all the
energy of the initial state is used and the centre-of-mass system and the laboratory frame
typically coincide (if both beam energies are the same). Thus the kinematics of the re-
action is fixed and can be well reconstructed. Furthermore, theoretical calculations are
simplified by the point-like and non-coloured initial state. On the other hand, in order to
scan the energy range, the energy of the particle beam has to be changed “manually”. Fur-
thermore, the maximum energy achievable is limited (in the case of circular accelerators)
by synchrotron radiation.

Hadron colliders are better suited for discoveries : the synchrotron radiation (going with
the inverse fourth power of the accelerated mass) is much less relevant, and the energy
range of the hard interaction is automatically scanned, since quarks and gluons can have
any fraction of the proton 4-momentum. However, the complexity of the event result-
ing from the non-trivial proton structure and hadronization needs to be overcome and
represents a challenge to and a limitation for the theoretical calculations.

10.1.3 Kinematic variables

We recapitulate here the most important kinematic quantities for hadron colliders.

Transverse (longitudinal) momentum pT (pL) is defined as the component of the
3-momentum perpendicular (parallel) to the beam. If θ is the angle relative to the beam
and p is the modulus of the momentum, then,

pT = p sin θ,

pL = p cos θ.

Rapidity y is defined through,

y =
1

2
ln

(
E + pL
E − pL

)
, (10.1)

where E = p0 is the energy of the scattered particle/jet.
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Pseudorapidity η is defined through,

η = − ln tan

(
θ

2

)
, (10.2)

with again θ being the angle between the beam and the particle/jet. For massless particles,
rapidity and pseudorapidity coincide. It is customary to represent e.g. the energy deposits
in the calorimeters as histograms in the η-φ plane, where φ is the angle around the detector
(Fig. 10.4(a)). Tab. 10.1 gives the correspondence between angle and pseudorapidity. The
barrel detectors (trackers, calorimeters) usually cover a region |η| ≤ 1.5, whereas the
endcap detectors go up to |η| ∼ 2.5− 5.

θ η
90◦ 0
10◦ 2.4
170◦ −2.4
1◦ ∼ 5

Table 10.1: Correspondence between angle and pseudorapidity.

The interest of introducing rapidity and pseudorapidity lies in the fact that at hadron
colliders the laboratory(detector)-frame in general does not coincide with the center of
mass frame of the parton-parton collision, unless the two beams have the same energy
and the parton momentum fractions fulfill x1 = x2. Typically x1 6= x2, which leads to a
longitudinal boost of the scattered system. We thus want to introduce quantities invariant
under longitudinal boosts. It can be shown that the difference of two rapidities is invariant
under such boosts. As a further consequence, detectors are typically built and structured
in “rapidity towers” (Fig. 10.4(b)).

10.2 Components of the hadron-hadron cross section

The different components of the proton-proton cross section are shown in Fig. 10.5.

In elastic as well as in double diffractive scattering, both protons remain intact. In sin-
gle diffractive scattering, one of the protons remains intact, whereas the other breaks
up into several fragments. In these diffractive events, an uncolored object (a so-called
“Pomeron”), which has the quantum numbers of the vacuum, is exchanged between the
protons. Diffractive scattering is not well understand theoretically and it is the main field
of research of the LHCf and TOTEM experiments, which focus on scattering events at
very small angles.

The kind of events we will mostly focus on are called non-diffractive and correspond
to the case of the complete break-up of both protons, with a cross section of ∼ 70 mb.
The biggest fraction of this cross section is associated to soft scattering, i.e. scattering
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(a) (b)

Figure 10.4: (a) η-φ-plane representation of a calorimeter signal. (b) Calorimeter towers
of a detector, structured according to rapidity intervals.

Figure 10.5: Pictorial representation of the components of the total proton-proton cross
section. Here “interesting physics” refers to those processes relevant for the study of hard
interactions.

where the exchanged momentum is small. The really interesting events are so-called “hard
scattering events”, in particular for the study of heavy objects such as energetic jets, W
and Z bosons, top quarks, or the search for new heavy particles. These events are orders
of magnitudes less probable than soft scattering events.



244 Chapter 10. Hadron collider physics

10.2.1 Soft scattering

Most of the proton-proton collisions are due to interactions with a small momentum
transfer. This results in a shower of particles having a large longitudinal momentum and
a small transverse momentum,

〈pT 〉 ≈ 700 [MeV] for
√
s = 14 [TeV].

These processes cannot be reliably computed in perturbative QCD, since the coupling
constant is rather big for soft processes. Thus the structure of such events is poorly
known and one must rely on phenomenological models, implemented in the simulations,
as well as on measurements.

Example When a proton is broken up, it produces neutral and charged pions (because
of hadronization). Assuming a simple constant matrix element, from the structure of the
phase-space element we realize that the produced particles should be uniformly distributed
in transverse momentum squared and rapidity :

d3p

2E
=
π

2
dp2

Tdy.

Thus, the produced particles should be distributed according to an almost flat distribution
in pseudorapidity (due to the finite pion mass), as the one seen in Fig. 10.7(a) and 10.7(b).
A typical soft event at 2.36 TeV measured by CMS is shown in Fig. 10.7(c). At 14 TeV one
expects 4-6 charged and 2-3 neutral pions per unit of pseudorapidity, uniformly distributed
in φ.

10.2.2 Pile-up events

Due to the very large cross section for soft scattering, the probability of having multiple
proton-proton collisions during the same bunch crossing can become big, if the luminosity
is large. Put in another way, interesting events – such as the production of a Higgs boson –
will most probably be accompanied by other less interesting events, “polluting” the signal.
The amount of additional soft proton-proton scatterings depends on the luminosity of the
collider as seen in Fig. 10.8.

For example, at full LHC luminosity (1034 cm−2sec−1) there can be up to∼25 soft collisions
per bunch crossing, each generating ∼9 pions. Taking the total rapidity range typically
covered by an LHC experiment to be ymax = ±5, we can estimate that there will be

25 · 9 · 2|ymax| ≈ 2250
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Figure 10.6: Cross sections for different processes in proton-proton scattering

pions produced that will deposit a total energy of,

2250 · 700 [MeV]︸ ︷︷ ︸
〈pT 〉

≈ 1.6 [TeV]

in the calorimeters for each bunch crossing, resulting in an important background noise,
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(a) (b)

(c)

Figure 10.7: (a) Pseudorapidity distribution simulated with PYTHIA and PHOJET. (b)
Pseudorapidity distribution measured by CMS and ALICE and compared with UA5. (c)
Soft event at 2.36 TeV recorded by CMS.
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Figure 10.8: Pile-up events at different luminosities.

which has to be isolated from the interesting signal (hard scattering event).

10.3 Hard scattering

The main process of relevance for the study of energetic jets, heavy standard model
particles or the discovery of new particles, is hard scattering, depicted in Fig. 10.9. Here
we have a large momentum transfer (Q) involved in the scattering process. The function
fa/h1 denotes the PDF for the parton a in the hadron h1, and analogously for fb/h2 .
Denoting by x1(2) the momentum fraction of h1(2) carried by a(b), the available center of
mass energy for the underlying scattering process is then (assuming massless partons)

√
ŝ =
√
x1x2s, (10.3)

with s = (ph1 + ph2)
2 the center of mass energy of the colliding hadrons.
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Figure 10.9: Basic Feynman graph for the description of a hard scattering process in a
hadron-hadron collision.

At high energies (� ΛQCD), we can view the resulting interaction as the incoherent sum
of the interactions for any combination of the constituents 2, yielding the master formula,

dσh1h2→cd =

1∫

0

dx1

1∫

0

dx2

∑

a,b

fa/h1(x1, µ
2
F )fb/h2(x2, µ

2
F )dσ̂ab→cd(Q2, µ2

F ) (10.4)

Here µ2
F is the factorization scale and Q is the typical scale of the process, e.g. the

momentum transfer in a t-channel or Q =
√
ŝ in an s-channel process. Examples of

parton-parton processes with a cross section σ̂ can be found in Sect. 9.10, p. 230. The
calculation of such cross sections can be achieved by using a given interaction theory,
typically QED, QCD, electroweak theory, supersymmetry, etc.

We proceed by demonstrating that heavy particle states are produced more centrally in the
detector, i.e. at low rapidity, compared to soft-particle production. For this, we consider
the production of a hypothetical heavy gauge boson, Z ′, with mass M ∼ 1 TeV � mp,
energy E and rapidity y at a proton-proton collider. The heavy gauge boson can appear
in the propagator of an s-channel quark-antiquark annihilation diagram. From the mass
shell condition (which gives the largest cross section) in this propagator we have,

ŝ = x1x2s
!

= M2.

Since each proton has an energy Ebeam =
√
s/2 � mp, it is straightforward to see that

(we assume w.l.o.g. that x1 ≥ x2),

E =

√
s

2
(x1 + x2)

pL =

√
s

2
(x1 − x2).

2This is nothing else than Eq. (9.49) in Sect. 9.10



10.3. Hard scattering 249

Inserting those values in the definition of the rapidity, Eq. (10.1), we get,

ey =

√
x1

x2

,

and hence y → 0 if x1 → x2. In this case, the energy is used optimally, since the longitu-
dinal component of the momentum of the Z ′ vanishes, and it becomes “easier” to produce
it (Fig. 10.10). With one line of algebra, one can see that,

Figure 10.10: Rapidity distribution for Z ′ production

x1,2 =
M√
s

e±y, (10.5)

i.e. to produce a Z ′ with rapidity y, one of the partons must have had a momentum
fraction Me+y/

√
s, while the other had the momentum fraction Me−y/

√
s. This formula

is often used to determine the momentum fraction carried by the partons, if the rapidity of
the heavy object and its mass can be reconstructed experimentally. This is relatively easy
in cases where the heavy particle decays into a lepton-antilepton pair, since the lepton
momenta can be measured rather precisely.

Using Eq. (10.5), we can find the momentum fraction, which a parton should carry in order
to produce a heavy particle centrally, y ≈ 0⇔ x = x1 ≈ x2 for a given collider. To produce
a particle with a mass of order 100 GeV (e.g., Z and W bosons, a light Higgs), one needs
x ≈ 0.05 in the case of Tevatron (

√
smax = 2 TeV), whereas at LHC (

√
smax = 14 TeV)

one only needs x ≈ 0.007, a momentum fraction at which the gluon PDF is already very
big (compared to the PDF of valence quarks). To produce a particle with mass 5 TeV,
one needs x ≈ 0.36 at LHC, where the dominant PDF contribution comes from valence
quarks.
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10.4 Global PDF fits

The master formula (10.4) contains not only the underlying parton-parton cross section,
calculable in the context of some theory, but also the PDFs of both hadrons. These
quantities cannot be calculated from first principles. Therefore, we stop for a moment in
our study of hadron colliders to review the techniques associated with the determination
of the PDF of the proton.

Many measurements have been performed which probe the proton structure, such as

• F2 measurements, in particular at HERA,

• F3 measurements at HERA in CC 3 interactions,

• F3 measurements in neutrino-nucleon scattering,

• measurements of the Drell-Yan process (W and Z production in hadron-hadron
collisions with subsequent decays to leptons),

• Sum rules,

• Jets and direct photon production,

• Constraints on the gluon content from scaling violations, jets and heavy quark pro-
duction.

Tab. 10.2 shows a typical data set which is used for a global determination (fit) of PDFs.

The general procedure goes as follows:

1. Choose a set of experimental data with possible restrictions in x and Q2 in order to
avoid critical phase-space regions and thus systematic uncertainties.

2. Parametrize the PDFs at a given fixed scale, e.g. Q2
0 = 4 GeV2, with an ansatz of

the type,

xfi(x,Q
2
0) = Ai x

αi︸︷︷︸
low-x

(1− x)βi︸ ︷︷ ︸
large-x

,

for i = u, d, g, ū etc. with different coefficients.

3. Evolve the PDFs in Q2 using the DGLAP evolution equations (9.34)-(9.37) to bring
the PDFs from the scale Q2

0 to the scale Q2 of the specific data set. Then fold

3Charged current; exchange of W± bosons.
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TABLE III. Processes studied in the global analysis (∗ indicates data fitted).

Process/ Leading order Parton behaviour probed
Experiment subprocess



DIS (µN → µX) γ∗q → q

F µp
2 , F µd

2 , F µn
2 /F µp

2 Four structure functions →
(SLAC, BCDMS, u + ū
NMC, E665)∗ d + d̄

ū + d̄

DIS (νN → µX) W ∗q → q′ s (assumed = s̄),
F νN

2 , xF νN
3 but only

∫
xg(x, Q2

0)dx " 0.35

(CCFR)∗ and
∫
(d̄ − ū)dx " 0.1

DIS (small x) γ∗(Z∗)q → q λ

F ep
2 (H1, ZEUS)∗ (xq̄ ∼ x−λS , xg ∼ x−λg)

DIS (FL) γ∗g → qq̄ g

NMC, HERA

"N → cc̄X γ∗c → c c

F c
2 (EMC; H1, ZEUS)∗ (x >∼ 0.01; x <∼ 0.01)

νN → µ+µ−X W ∗s → c s ≈ 1
4(ū + d̄)

(CCFR)∗ ↪→ µ+

pN → γX qg → γq g at x " 2pγ
T /

√
s →

(WA70∗, UA6, E706, . . . ) x ≈ 0.2 − 0.6

pN → µ+µ−X qq̄ → γ∗ q̄ = ...(1 − x)ηS

(E605, E772)∗

pp, pn → µ+µ−X uū, dd̄ → γ∗ ū − d̄ (0.04 <∼ x <∼ 0.3)
(E866, NA51)∗ ud̄, dū → γ∗

ep, en → eπX γ∗q → q with ū − d̄ (0.04 <∼ x <∼ 0.2)
(HERMES) q = u, d, ū, d̄

pp̄ → WX(ZX) ud → W u, d at x " MW /
√

s →
(UA1, UA2; CDF, D0) x ≈ 0.13; 0.05

→ "± asym (CDF)∗ slope of u/d at x ≈ 0.05 − 0.1

pp̄ → tt̄X qq̄, gg → tt̄ q, g at x >∼ 2mt/
√

s " 0.2
(CDF, D0)

pp̄ →jet + X gg, qg, qq → 2j q, g at x " 2ET /
√

s →
(CDF, D0) x ≈ 0.05 − 0.5

Table 10.2: Example of data sets employed for fitting PDFs, from Stirling et al.
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the PDFs with the coefficient functions/parton cross sections from NLO or NNLO
perturbative QCD in order to get a structure function/cross section 4,

F2(x,Q2) =
∑

i

Ci(z,Q
2/µ2

F )⊗ fi(x/z, µ2
F )

dσ(Q2) =
∑

i,j

fi(x, µ
2
F )⊗ fj(y, µ2

F )⊗ dσ̂ij(xyQ2, µ2
F )

4. Fit to the experimental data to determine Ai, αi, βi for all i and use the obtained
PDFs for the evolution to any other scale and the corresponding computation of
cross sections.

Different groups use a different ansatz, which leads to differences in the extracted PDFs
(Fig. 10.11). These agree up to a few percent, which ultimately translates into an uncer-
tainty on the cross section given by the master formula (10.4). Therefore, a good knowledge
of the structure of the proton, i.e. of the PDFs of its constituents is essential in order to
be able to compute accurately cross sections at hadron colliders such as the Tevatron or
the LHC.

From Fig. 10.11(a), it becomes clear that the LHC is effectively a gluon-gluon collider if
one considers the production of particles around or below a scale of ∼ 100 GeV. This is
because of the relative importance of the gluon PDF (downscaled by a factor of 20 on the
figure) in the relevant x-range (see the discussion above).

As can be seen in Fig. 10.12, the kinematic regime of the LHC is much broader than the
one currently tested experimentally. Much of the relevant x range is covered by HERA,
but for much smaller values of Q2. The question arises if the DGLAP evolution is sufficient
to evolve the PDFs to the full LHC kinematic range. Furthermore, one has to propagate
the uncertainties on the PDFs in order to have a meaningful comparison of the predictions
to data. The data acquired at the LHC will themselves serve to constrain the PDFs.

10.5 Jets

At the LHC, an important component of the inelastic cross-section after soft scattering
is jet production, i.e. events where colored partons with significant transverse momentum
are produced in the final state. Fig. 10.5 shows this component, labeled σjet in the case of
a minimal jet energy of 250 GeV. One notes that this component is 6 orders of magnitude
smaller than the total cross-section for pp-scattering.

Jet processes are important for multiple purposes. First, they are the main tool to test
precisely perturbative QCD. Second, they allow to test if the quarks are composite objects.

4It is implicitly understood that one integrates over the z variable or the x and y variables respectively,
see Sect. 9.8.
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(a)

H. Jung, QCD & Collider Physics, Lecture 5  WS 05/06 15

Extraction of pdfs from DGLAP fits ...

Solve DGLAP equations
adjust input parameters (starting 
distributions) such that F2 is best 
described
extract pdf's as fct of x
then DGLAP gives pdfs at any 
Q2

(b)
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Figure 10.11: (a) PDFs for Q2 = 10 GeV2 from Botje. (b) PDFs for Q2 = 10 GeV2 from
HERA collaborations. (c) PDFs for Q2 = 5 GeV2 from CTEQ.

Finally, they represent a part of the background for other more rare processes and must
thus be extensively understood in order to be able to filter out the signal.

Fig. 10.13 shows the differential production cross section at zero rapidity (center of the
detector) as a function of the transverse momentum of the jet for the Tevatron and the
LHC (note the logarithmic scale). We see that the Tevatron almost cannot produce jets
with transverse energy bigger than 800 GeV, whereas the LHC can access for the same
rate about 4.5 TeV.
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Figure 10.12: Q2-x range of LHC, Tevatron and HERA.

Figure 10.13: Differential cross section for jet production at zero rapidity as a function of
the transverse momentum for the Tevatron and the LHC.

The relevant elementary processes (represented by ŝ in Fig. 10.9) for jet production are
shown in Fig. 10.14. These processes can all be achieved at both Tevatron and LHC since
sea partons are dominant at low x. Since the color factor for a three-gluon vertex (3) is
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almost twice the one for a quark-gluon vertex (4
3
), jets are more likely to be produced

through gg-collisions. Also, the gluon PDF dominates at low x.

� � � �

� � � �
Figure 10.14: Elementary processes at hadron colliders.

10.5.1 Jet algorithms

Section 8.2, p. 161, contains a discussion of jet algorithms used at e+e−-colliders.

CONE algorithms Fig. 10.15 shows some typical jet events at the DØ and CDF ex-
periments at Tevatron, a pp̄-collider.

(a) (b)

Figure 10.15: Jet events. (a) at DØ, (b) at CDF.

From this type of events it seems sensible to define jets via a cone with opening,

R =
√

(∆η)2 + (∆φ)2,
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where η is the pseudorapidity and φ the angle around the beam axis. This is the basis of
the CONE class of jet algorithms.

The CONE algorithm can be represented by the following algorithmic flow, starting from
a list of seeds and a given R:

1. Is the list of seeds exhausted?

• Yes : send list of protojets to recombination/splitting algorithm

• No : continue to 2.

2. Compute centroid using R. Is the new axis the same as the old one?

• Yes : continue to 3.

• No : return to 2.

3. Was the cone already found?

• Yes : remove it from the list of seeds.

• No : add it to the list of protojets.

4. Return to 1.

The computation of the centroid is achieved by doing an energy weighting of the (η, φ)-
coordinates of the energy deposits inside a cone of a given R. An energy deposit i is part
of the cone C if,

i ∈ C :
√

(ηi − ηC)2 + (φi − φC)2 ≤ R,

where,

ηC :=
1

EC
T

∑

i∈C
Ei
Tη

i, φC :=
1

EC
T

∑

i∈C
Ei
Tφ

i, EC
T :=

∑

i∈C
Ei
T

One of the major drawbacks of the CONE algorithm is that it is neither infrared nor
collinear safe. A new algorithm called SISCone has been developed recently that solves
this issue.

Recombination algorithms (kT -type) We are now going to present a class of algo-
rithms called kT -recombination algorithms [57], having the following properties:

• Infrared and collinear safe,

• No overlapped jets,

• Every particle/detector tower is unambiguously assigned to a single jet,
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• No biases from seed towers

• Sensitive to soft particles, area could depend on pile-up.

We start with a set of 4-momenta {pi}i=1,...,n with coordinates (ηi, φi). One then defines
the metric,

dij = min(p2
T,i, p

2
T,j)

∆Rij

D2
i > j (10.6)

dii = p2
T,i,

with,

∆R2
ij = (ηi − ηj)2 + (φi − φj)2

D ∼ 0.4− 1.

Next, we determine the minimum dmin of the set {dij|i ≥ j}. If dmin = dkl, k 6= l, we
combine the 4-momenta k and l: pk + pl → pkl. If instead dmin = dkk, we identify it as a
jet of its own and take pk out of the list of 4-momenta. One then restarts with the new
set until there are no 4-momenta left. This algorithm ends up with a list of jets having
∆R ≥ D.

A deviation from this algorithm is obtained by modifying the metric, for a given p ∈ Z,

dij = min(p2p
T,i, p

2p
T,j)

∆Rij

D2
i > j (10.7)

dii = p2p
T,i.

One then speaks of,

• p = 1 : regular kT jet algorithm,

• p = 0 : Cambridge/Aachen jet algorithm,

• p = −1 : anti-kT jet algorithm.

Interestingly enough, the anti-kT jet algorithm yields jets with a cone structure. The soft
particles are first clustered with hard particles instead of being combined with other soft
particles. Fig. 10.16 shows the jet shapes for different recombination algorithms.

Further difficulties In the context of jet physics, pile-up events (typically containing a
hard scattering and some soft proton-proton interactions) generate a homogeneous back-
ground that needs to be substracted before applying the jet algorithms since this energy
is not carried by the original jets themselves.

Another challenge is the identification of the underlying event. As an example, consider
the case in which 4 jets are observed. They could come from a true 4-jet event (2 quarks +
2 initial or final state gluon radiation) or from two independent 2-jet events (see Sect. 10.7
for a discussion of this phenomenon).
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Figure 10.16: Jet areas for different values of the p-parameter in the modified kT jet
algorithm and for the SISCone jet algorithm for the same input data.

10.5.2 Measurements

The goal of a jet algorithm is to make it possible to measure cross-sections in an inclusive
manner as a function of the transverse energy of the jet ET . Fig. 10.17 shows a comparison
of the Monte Carlo simulation JETRAD with the data from DØfor small rapidities.

If there is some new physics, e.g. if quarks have a substructure, the high-energy tail would
be shifted from the simulation values.

One can compare the predicted value in perturbative QCD and the experimental data
through the relation,

〈
d2σ

dETdη

〉
=

N

∆ET∆ηεLint
,

whereN is the number of events in the bin (Ej, ηj) ∈ [ET , ET+∆ET ]×[η, η+∆η], ε denotes
the efficiency in reconstructing jets (typically obtained using Monte Carlo simulations)
and Lint is the integrated luminosity.
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Figure 10.17: Differential jet cross-section as a function of ET . Monte Carlo simulation
(JETRAD) and DØdata.

A decisive requirement for a precise measurement, a test of QCD, and to be able to “see”
new physics, is to have a very good energy calibration. Indeed, the double-differential
cross section is very steeply falling:

d2σ

dETdη
∝ E−6

T ,

and the propagation of the error becomes important,

δN

N
≈ 6

δET
ET

.

In fact, the slope is so steep that the energy resolution can distort the spectrum. The
number of measured events with a given ET can be expressed as the convolution,

N(Emeas
T ) =

∞∫

0

N(Etrue
T ) ·Resol(Emeas

T , Etrue
T )dEtrue

T . (10.8)
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It is usual to assume a Gaussian resolution function,

Resol(Emeas
T , Etrue

T ) ∝ exp

[
−(Emeas

T − Etrue
T )2

2σ2
ET

]
,

where σET is the typical energy resolution of the detector. Although the resolution is
symmetric around Etrue

T the steepness causes it to have more influence on one side than
on the other, leading to the distortion of the spectrum. This problem can be minimized
by choosing the bin-width ∆ET ≈ σET .

Beside these measurement problems, one must account also for the errors/uncertainties on
the theory’s side (non-perturbative effects) or of the proton PDFs (see Sect. 10.4) when
comparing measurement with theory. Fig. 10.18 shows the typical relative uncertainty
range on the energy of the jet from the experimental and theoretical point of view for√
s = 10 TeV at CMS. We see that the jet energy scale and the PDFs induce the largest

uncertainties.

Figure 10.18: Experimental and theoretical part of the fractional uncertainty as a function
of the jet transverse energy ET .
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10.5.3 Jet energy scale

In order to calibrate the (transverse) energy of a jet, the most useful process is qq̄ → gγ,

�
.

Indeed, the energy of the photon can be measured to a high precision (1-2%) with the
electromagnetic calorimeter. From conservation of momentum, the (transverse component
of the) 3-momenta of the jet and the photon must add up to zero and their energies are
then the same. The selection of this type of event is achieved by requiring that the photon
is well isolated, that there is no secondary jet and that the photon and the jet must
be well separated in the transverse plane. Fig. 10.19 shows a typical event of this type
as observed at DØ. However, a bias cannot be fully avoided since soft charged particles
might not make it to the calorimeter due to the strong magnetic fields. Also, an additional
second soft jet can spoil the momentum balance.

Figure 10.19: Event display of DØwith a jet and a photon used to calibrate the jet energy
scale.
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10.5.4 Isolation

It is often the case that the signal we would like to observe is smaller than the background
(e.g. Higgs). The way out is the introduction of some filtering procedure to reject back-
ground events. This can be for example a veto on events presenting an energy deposit in a
given cone about a photon. For an observed jet + photon event, one background consists
in a photon radiation off the final state quark, yielding a 2-jets + photon event,

� � � �
In this specific case, a sufficient requirement is that the photon should be isolated, i.e.
there are no energy deposits nor charged tracks in a cone around the photon. This does
not exclude possible “fake” photons from a boosted pion decay, π0 → γγ. Fig. 10.20 shows
the background and signal before and after the isolation cut for jet + photon events.

(a) (b)

Figure 10.20: Isolation. Signal and background (a) before and (b) after isolation cut.

10.5.5 Di-jet events

To look for new physics (e.g. a heavy gauge boson Z ′ of some grand unified theory) a
simple procedure consists in making a histogram of the invariant mass of all di-jet events.
A new resonance would then manifest itself as a peak in this histogram. In the eventuality
that there is no special feature, we can test higher order QCD corrections (see Fig. 10.21).
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Figure 10.21: Measured dijet angular distributions at DØcompared to LO and NLO QCD
calculations.

10.6 W and Z production

After jets the second most abundantly produced type of events at LHC are the ones
containing the massive gauge bosons of the weak interaction : W± and Z0 (Fig. 10.5). For
a luminosity of 1034 cm−2s−1 (design luminosity of LHC) at

√
s = 14 TeV there will be

about 100 W bosons produced per second. These bosons can decay into leptons and are
thus easy to separate from the hadronic signal (jets) : one filters events with high-pT and
isolated leptons.

Since the weak gauge bosons do not couple to gluons and a high center of mass energy
is needed, the valence quarks are determinant for their production. At LHC, W bosons
can be produced via ud̄→ W+ and dū→ W−, and since there are more u-valence quarks
than d-valence quarks in the proton, there will be more W+ produced than W−.



264 Chapter 10. Hadron collider physics

10.6.1 Predictions

The production cross sections for weak gauge bosons in pp-collisions are known to NNLO
in perturbative QCD. Fig. 10.22 shows some of the diagrams contributing to the produc-
tion of Z bosons with two leptons in the final state.

�

� � �

� � �

� �
Figure 10.22: LO, NLO and NNLO Feynman diagrams for Z-production

Fig. 10.23 shows the double differential cross-section for W - and Z-production at LHC at
LO, NLO and NNLO. One observes the stabilization of the shape and the small uncer-
tainty at NNLO (at zero rapidity : 0.5-0.7% for the W and 0.1% for the Z). However, for
the total production cross-sections significant uncertainties from the PDFs interfere and
cause 4-5% of relative error (Remember the master formula, Eq. (10.4)).

10.6.2 Experimental signature

Events involving weak gauge bosons are relatively easy to spot, due to their clean signa-
ture. We focus here on a decay involving at least one lepton and disregard decays involving
hadrons.
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(a)

On-shell Z boson at the LHC

small NNLO scale uncertainty: (30% − 25%)(LO) → (6%)(NLO) → 0.1%(Y =

0) − 1%(Y ≤ 3) − 3%(Y $ 4)(NNLO)

shape stabilizes at NNLO

Electroweak boson rapidity distributions at hadron colliders – p. 28/48

(b)

Figure 10.23: Differential production cross-section at LO, NLO and NNLO perturbative
QCD as a function of the rapidity. (a) W boson (b) Z boson.

Z : pair of charged leptons A Z boson decays (in its visible mode!) into a pair of
charged leptons. These carry a large transverse momentum pT , are well isolated, have
opposite charge (bending direction) and have an invariant mass (Sect. 4.4.4, p. 52) in a
typical range of 70− 110 GeV. Fig. 10.24 shows the topology of a typical Z event.

Figure 10.24: Typical dileptonic signature for a Z event.

W : single charged lepton A W boson decays into a charged lepton and its corre-
sponding neutrino. The charged lepton has a large transverse momentum pT and is well
isolated. By summing the energies and momenta, one can deduce the missing pT of the
neutrino that escapes undetected. Fig. 10.25 shows the topology of a typical W event.
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Figure 10.25: Typical signature for a W event.

Fig. 10.26 shows the experimental data (37584 candidates for a W production, Lint =
72 pb−1 of data) from CDF at Tevatron and the Monte Carlo simulation for different
channels before and after a missing ET cutoff : /ET > 25 GeV. The low-ET events (denoted
QCD) correspond to collimated jets erroneously interpreted as electrons.

(a) (b)

Figure 10.26: Histogram of missing ET associated with W production. (a) Raw data. (b)
Data after /ET > 25 GeV cut.
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Fig. 10.27 shows the invariant mass of e+e− (4242 candidates) and µ+µ−-pairs (1371
candidates) around the Z pole and the Monte Carlo simulation with Lint = 72 pb−1 of data
from CDF at Tevatron. The larger number of charged leptons (making the identification
of the process easier) makes the background very small.

(a) (b)

Figure 10.27: Histogram of the invariant mass of lepton pairs associated with Z production.
(a) Electron decay channel. (b) Muon decay channel.

The total production cross section for W and Z bosons are respectively (CDF, electron
and muon channels):

σW = 2775± 10(stat)± 53(sys)± 167(lum)[pb]

σZ = 254.9± 3.3(stat)± 4.6(sys)± 15.2(lum)[pb].

Fig. 10.28 shows the evolution of the measured production cross-sections for weak gauge
bosons at UA1, UA2, CDF and DØcompared to the theoretical prediction.

Fig. 10.29 shows the expected experimental missing ET and invariant mass distribution at
LHC after collection of 10 pb−1 of data at 10 TeV for W and Z production respectively.
Selection will be achieved by requiring isolated leptons and a transverse energy of 30 resp.
20 GeV.

W/Z + jets An important background for many searches are the W/Z + jets events.
Indeed the topology of a SUSY event will be typically jet + n leptopns + /ET , n ≥ 0,
which is for example identical if the Z of a Z + jet event decays in 2 neutrinos, resulting
also in a large /ET .
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Figure 10.28: Evolution of the production cross-section for W and Z bosons.

(a) (b)

Figure 10.29: Simulation of the different signal and backgrounds for CMS. (a) W− → e−ν̄e.
(b) Z → e+e−.

10.7 Underlying event and multi-parton interactions

So far we have neither discussed the role of the remnants left over e. g. from a hard
scattering process like the one depicted in Fig. 10.9 nor the possibility of multiple-parton
scattering. Since the scattering partons carry color, so do the remnants. Therefore, soft
particle production out of the color field between parton and remnant is to be expected.
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Figure 10.30: Underlying event. The underlying event is everything except for the hard
scattering component of the collision. This includes initial and final state radiation of soft
gluons, spectators, and remnants (a), as well as multi-parton interactions (b).

Furthermore, as was discussed in connection with parton evolution, gluons may be radi-
ated off before the partons engage in the actual scattering. In summary this means that
many soft particles, not directly related to the hard scattering process, are around in the
detector constituting the so-called underlying event (see Fig. 10.30(a)).

The underlying event is defined to be everything except for the hard scattering component
of the collision, i. e. initial and final state soft gluon radiation, spectators, remnants, and
multiple-parton interactions.

The momentum scale of the interaction is set by the parton hard scattering. There is the
possibility of further partons engaging in scattering; one then speaks of multiple-parton
scattering (see Fig. 10.30(b)). Since high pT values are improbable, any further parton
scatterings will, if they happen, do so at a lower pT scale than the initial hard scattering.
It is in this way that multi-parton scattering contributes to the background of soft hadrons
potentially obscuring interesting results of hard parton scattering processes. Calculations
concerning multi-parton interactions are hard and thus only phenomenological models
with some parameters to be tuned exist. In tuning these parameters for LHC, the issue
is their energy dependence.

Now that the problem is stated, let us examine the possibilities to study the underly-
ing event by taking a look at corresponding observables. One possibility is to work with
charged jets, using minimum bias and and jet triggers. Looking for the highest pT (leading
jet), the direction φ = 0 is defined (see Fig. 10.31). Since the underlying event should be
uniformly distributed in φ, the transverse region, where neither the leading jet nor the
back-to-back jet are relevant, is particularly sensitive to the underlying event. The under-
lying event depends on the leading jet pT and one wants to measure how many particles
are in the transverse region per rapidity and angle and their transverse momentum, i. e.
the charged density dN/dηdφ and the transverse momentum density dpT,sum/dηdφ. An-
other possibility is to work with Drell-Yan muon pair production (see Fig. 9.21(b)), using
muon triggers. In this case, after removing the muon pair, everything else is by definition
the underlying event.
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Figure 10.31: Leading jet and transverse region.

Examples of results for the charged density, dN/dηdφ, as function of φ and leading jet pT
are shown in Fig. 10.32. Besides the expected peaks at the position of the leading jet and
in the opposite direction, one can also observe that the underlying event depends on the
leading jet transverse momentum. This behavior is also shown in the RHS plot, which
in addition illustrates the dependence of underlying event studies on phenomenological
models and the values of their parameters.

To conclude this section on the underlying event, let us briefly mention handles to estimate
multiple partonic interaction rates: One can count pairs of mini-jets (two additional jets
balanced on their own) in minimum bias interactions, reconstructing them using charged
tracks. Another possibility is to look for the production of same-sign W pairs.5

10.8 Top production

Since the top quark which was discovered in the nineties at Tevatron is much heavier than
the other quarks and leptons (see Fig. 10.33(a)), one might suspect a special link to the
Higgs which, after all, should be responsible for nonvanishing masses. Because of its large
mass, the top decays immediately into bW+, such that no top-mesons can be produced.

Why is it important to measure the top mass (besides in its own right)? First of all, mt,
combined with mW , yields an indirect constraint on the Higgs mass (see Fig. 10.33(b)).
Furthermore, the measurement of mt serves to test the overall consistency of the standard
model (or of something beyond that), if the Higgs is found. The Higgs contributions to

5See [58].
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Figure 10.32: Underlying event studies at CMS.

cross sections depend on mt. One can therefore check how well corresponding predictions
agree with the data as a function of mt. The ellipses in Fig. 10.33(b) state restrictions
on the Higgs mass from measurements of mt and mW and can accordingly be shrunk by
more precise measurements of these masses.

Possible measurements related to the top quark include the production cross section, the
production via a heavy intermediate state Z ′ (resonance production), along with mass,
spin and charge. A summary of top quark physics is given in Fig. 10.34.

The examples of decay modes given here indicate the type of events originating from top
production: They involve many jets and possibly missing energy. But what exactly does
the shaded blob (in Fig. 10.34) hide? Two possible diagrams for top production are shown
in Fig. 10.35. Initial state gluon radiation may produce additional hadrons X or the tt̄
pair may be produced in pair creation by two gluons.

As mentioned before, the top almost immediately and exclusively decays into W+b:
BR(t → W+b) ∼ 100%. According to the subsequent decays of the thus produced W s
one classifies the top decay channels as follows:

• Dilepton channel. Both W s decay via W → lν (l = e or µ; 5%);

• Lepton + jet channel. One W decays via W → lν (l = e or µ; 30%);

• All-hadronic channel. Both W s decay via W → qq̄ (44%).

Therefore, important experimental signatures are leptons or lepton pairs, missing trans-
verse momentum (ν), and b jets. In terms of detection, the all-hadronic channel causes
some difficulties, since the QCD background has a comparable magnitude. Figure 10.36(a)
shows some features of an event that can be used to search for jets originating from b
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(a)

(b)

Figure 10.33: Top quark mass (a) and constraints on Higgs mass by mt and mW (b).
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Figure 10.34: Top physics summary.
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Figure 10.35: Two possibilities for top production. In (a) initial state radiation produces
additional hadrons X while in (b) the top pair is produced by pair creation.
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Isolated lepton
pT> 20 GeV

4 jets pT> 40 GeV

2 jets M(jj) ~ M(W)

ET
miss > 20 GeV

b-tag(s)

(a) (b)

Figure 10.36: b tagging. Event features used to identify b jets (a) and vertex close-up of a
top decay. b jets can be identified by looking for displaced vertices. They arise because B
mesons can travel some millimeters before decaying (b).

quarks (b tags). From the invariant mass of the jets the top mass can be reconstructed;
however, it can be difficult to correctly combine the observed jets. Since b tagging is im-
portant for top identification, excellent silicon vertex and pixel detectors are needed to
measure displaced tracks originating from secondary vertices. These secondary vertices
arise because the B meson lifetime allows it to travel some millimeters before decay.
Therefore, displaced vertices can be used to find b jets, see Fig. 10.36(b).

Results of measurements which employ the discussed criteria for b tagging are shown in
Fig. 10.37.6 On the LHS semi-leptonic events (one b tag) are counted, while the RHS lists
events with two b tags (which excludes one-jet events). The background of the measured
top signal stems from the production of W + jets by diagrams like the following:

� �
One can observe that the background signal relies on gluon radiation for jet production and
is therefore rather limited in jet multiplicity. An example for the top mass reconstruction
from lepton + jets events is shown in Fig. 10.38.

6For a collection of Tevatron results on the top mass and production cross section see e. g. http://
www-cdf.fnal.gov/physics/new/top/top.html or http://www-d0.fnal.gov/d0_publications/d0_

pubs_list_runII_bytopic.html#top.
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Figure 10.37: Jet multiplicity and b tagging.

Figure 10.38: Mass reconstruction. Comparison between data and Monte Carlo two-jet
(m2j) and three-jet (m3j) invariant mass distributions.
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Figure 10.39: Tevatron results for top production cross section and mass.

By combining measurements for different decay channels (see Fig. 10.39(a)) the CDF
experiment determined the top production cross section to be σpp̄→tt̄/pb = 7.50± 0.31±
0.34±0.15 (statistical, systematic, and integrated luminosity errors). This is compared to
theoretical predictions for a top mass of mt = 172.5 GeV and

√
s = 1.96 TeV. Top mass

results obtained by considering various channels are given in Fig. 10.39(b).

10.9 Searches for a SM Higgs and SUSY

We conclude this chapter on collider physics by discussing ways to produce and detect a
standard model Higgs and SUSY particles.

Let us first examine Higgs production. The Higgs couples to particles with mass, while it
couples to g and γ indirectly via loops of heavy particles:

�
g

g

H

This motivates the first of the four production diagrams shown in Fig. 10.40. Gluon fusion
is the most likely one of these processes at hadron colliders (if mH ∼ 100−200 GeV), since
for small parton momentum fractions x gluons are dominating in the proton PDFs (see
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(d) Associated production.

Figure 10.40: Higgs production at hadron colliders.

Fig. 9.18(b)). Figure 10.41 shows as functions of mH the corresponding standard model
cross sections σpp→H+X at

√
s = 14 TeV. Again, one observes that the gluon fusion cross

section is dominant; the subdominant mechanisms are important for measuring the Higgs
couplings.

To appreciate the challenges in Higgs detection, we now discuss Higgs decay. Branching
ratios and width predictions are shown in Fig. 10.42(a) and 10.42(b), respectively. The
Higgs couplings to fermions grow with their masses and the coupling of H to W and Z
grows as m2

H . Therefore, the branching ratios strongly depend on the Higgs mass. If mH

is around 120 GeV the dominant channel is decay to b quarks. This basically leads to
two-jet events which compete with a large QCD background. Although the 2γ channel
only has a branching ratio of ∼ 0.002 it is still useful since in this case detection is easier
as in the b quark case. Also, together with jets, the tau channel seems feasible. In the
case of mH = 120− 200 GeV the W and Z channels are dominant. Figure 10.42(b) shows
the total Higgs width as a function of the Higgs mass: Only for mH less than 200 GeV a
narrow resonance is to be expected. In the most likely mass region there is a considerable
spread in possible values for the the total Higgs width.

Combining Higgs production cross sections and branching ratios, we can (in parts reca-
pitulatory) discuss some experimental signatures:

• Two-photon final states.
Excellent detector resolution, isolation and rejection of QCD background jets is
required.
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Figure 10.41: Higgs production cross section as function of Higgs mass.

(a) (b)

Figure 10.42: Higgs branching ratios (a) and total width (b).
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• Lepton final states (µ, e or τ).
As in the 2γ case the final state has to be isolated. This measurement relies on the
lepton momentum resolution and, if necessary, τ identification.

• Lepton + neutrino final states.
Here lepton identification and missing energy resolution are important. In addition,
the background from W and t pairs has to be rejected.

• Associated Higgs production (bb̄H, tt̄H).
b tagging as well as jet spatial and energy resolution are important. Background
signal from hadronic top decays.

• Higgs production via vector boson fusion.
The two jets in forward direction have to be identified: “very forward jet tagging”.
This signature (a rapidity gap appears if the Higgs is produced by vector boson
fusion) will help distinguish the signal from the hadronic top decay and underlying
event background.

The final states can be classified according to whether mass reconstruction is possible:
For the final states γγ, 4l, and bb̄ the mass can be fully reconstructed. In these cases the
background is obtained from the “sidebands” surrounding the signal box. For hadronic
final states an excellent jet ET resolution is needed. Final states containing neutrinos
form a second class for which no exact mass reconstruction is possible. Such decays are
for example H → W+W− → l+νl−ν̄ or decays into tau pairs. In these cases one will
look for Jacobian peaks in the transverse mass spectrum, while the background will be
determined from sideband measurements if possible.

As we have discussed, there are three important Higgs discovery channels:

• mH ' 114− 140 GeV: γγ(H → γγ);

• mH ' 140− 175 GeV: 2l + /ET (H → WW (?)) and 4l(H → ZZ(?));

• mH ' 175− 600 GeV: 4l(H → ZZ(?)).

Note that there are further possibilities under detailed study which appear more diffi-
cult for now. These are vector boson fusion with decay into taus and associated Higgs
production with Higgs decays into b quark pairs which may turn out to be extremely
difficult.

As an example for event selection and background treatment in measuring the important
Higgs discovery channels consider the decay H → γγ. In this case the event selection
would proceed as follows: Search for two isolated photons such that pT,1 > 25 GeV, pT,2 >
40 GeV, and |η| < 2.5 and identify the primary vertex. This procedure will yield about
30% selection efficiency. Estimating the background from the sidebands will yield an
uncertainty smaller than 1% for an integrated luminosity of 20 fb−1. The problem is that
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the reducible background will be large. Figure 10.43 shows a plot of expected background
and signal. This QCD background arises for example from diagrams analogous to electron-
positron pair annihilation:

�
q̄

q

γ

γ

The spectrum of these background photon pairs will just decrease with invariant mass
without peaks, as is also shown in Fig. 10.43. Note that the simulated Higgs peaks shown
there are amplified by a factor of 10. Therefore, integrated luminosities of much more
than 1 fb−1 are needed to see a signal significantly above the background. There is also
the possibility that one photon is produced immediately and instead of a second photon
a gluon is radiated off which forms a π0 that subsequently decays into two almost parallel
photons which are finally detected as one. Overall, the event will therefore look like pair
annihilation,

�
π0

q̄

q

2γ

γ

and it will contribute to the background since the large probability of radiating off the
initial gluon outweighs the small probability of it forming one π0 carrying almost all its
momentum.

As a second example consider the channel H → ZZ(?) → 4l. In this case the selection goes
as follows: Look for four isolated and well reconstructed leptons; because they originate
from Z decays, they can be either two e+e− pairs (see Fig. 10.44(a)) or two µ+µ− pairs
or an e+e− and a µ+µ− pair (see Fig. 10.44(b)). The transverse momentum should be
above 5 − 10 GeV. For mH ∼ 140 − 150 GeV the expected signal should be larger than
the background produced by top decays: tt̄ → WbWb → lν clν lν clν. This background
contribution is considerable, since σ × BR ∼ 1300 fb. In oder to reduce it, criteria based
on isolation of the detected leptons and secondary vertexing can be used.

10.9.1 The road to discovery

There are three scenarios for an early discovery which vary in their experimental difficulty.
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1 fb-1
cut-based analysis

Figure 10.43: Invariant mass a of photon pair for the Higgs decay H → γγ. Note that the
Higgs peaks are increased by a factor of 10.

(a)

2e+2µ

(b)

Figure 10.44: Mass reconstruction in H → 4l decays. Note that (a) shows the 4e final
state case while (b) is the 2e2µ case.
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Figure 10.45: Diagram for production and decay of a new heavy resonance Z ′ (a) and
expected signal for decay into a lepton pair (b).

1. An easy case.
A new resonance decaying into e+e− or µ+µ−, e. g. Z ′ → e+e− of mass 1 − 2 TeV
would be easily detectable.

2. An intermediate case.
SUSY (See below.)

3. A difficult case.
As we have seen, a light Higgs with mH ∼ 115−120 GeV would be difficult to detect
since, with many other interactions happening at the same momentum scale as the
Higgs mass scale, the background would be large.

The easy case is the production of new heavy gauge bosons, as predicted by GUT, dy-
namical EWSB, etc. which are generically called Z ′. The diagram would look like in
Fig. 10.45(a) and the background would be low and mainly stem from the Drell-Yan pro-
cess (see Fig. 9.21(b)). The clear two-lepton signature combined with the low background
should yield a clear signal as shown in Fig. 10.45(b).

Let us now turn to the intermediate case, the search for SUSY at the LHC. If SUSY exists
at the EW scale, a discovery at the LHC should be easy. What helps is that squarks and
gluinos are colored and are therefore produced via the strong interaction, which means
large production cross sections. These then decay via cascades into the lightest SUSY
particles (LSP) and other SM particles (leptons and jets) (see Fig. 10.46(a)). Thus the
final states contain leptons, jets and missing energy. The general procedure will be as
follows:

1. Look for deviations from the SM predictions, e. g. in the multi-jet + Emiss
T signature.
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(a) (b)

Figure 10.46: Diagram for strong production and subsequent decay of SUSY particles (a)
and SUSY event display simulation (b).

2. Establish the SUSY mass scale by using inclusive variables such as the effective mass

Meff = /ET +
∑

jets

pT (jet).

3. Determine the model parameters (difficult). The strategy is to select particular decay
chains and to use kinematics to determine the mass combinations.

Because of the mentioned features SUSY events promise to be very spectacular: There
will be many hard jets, large missing energy (from two LSPs and many neutrinos), and
many leptons. A corresponding event display simulation is shown in Fig. 10.46(b). As one
can see from the following numbers, for low SUSY mass scales the LHC should become a
real SUSY factory (numbers for

√
s = 14 TeV):

M/GeV σ/pb #events per year

500 100 106 − 107

1000 1 104 − 105

2000 0.01 102 − 103

Having said that, SUSY detection is still not easy, for it relies on good reconstruction
and understanding of multi-jet backgrounds and missing transverse energy. A typical
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Figure 10.47: Typical SUSY signal and backgrounds.

selection would be based on the following criteria: Njet > 4, ET > 100, 50, 50, 50 GeV,
and /ET > 100 GeV. One would then hope to find a signal as shown in Fig. 10.47, where
the effective mass variable Meff is used.
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Electroweak interactions

Literature:

• Böhm/Denner/Joos [59]

In this chapter a unified theory of electromagnetic and weak interactions is discussed.
The energy scale of this unification corresponds to the mass of the vector bosons: EEW ∼
MW , MZ ∼ 100 GeV. At low energies, in contrast, there are two distinct interactions,
the electromagnetic interaction described by QED, and the weak interaction described by
Fermi’s theory. Some signals are also present in low energy atomic physics, e. g. electroweak
interference and parity violation.

11.1 Introduction – the weak force

A comparison of strong, electromagnetic and weak interactions is given in the following
table:

Interaction Involved ∼ τ/s

Strong quarks 10−23

Electromagnetic charged leptons and quarks 10−16

Weak all leptons and quarks 10−6 − 10−8

One can observe that the timescales involved in weak decays are much larger than the
ones of strong or electromagnetic decays. Thus, since τ ∼ 1/coupling2, the weak coupling
is supposed to be some orders of magnitude smaller than the strong coupling (see also
Sect. 7.3.3).

Weak processes are classified according to the leptonic content of their final state:

• Leptonic.
E. g. µ+ → e+ + ν̄µ + νe; νe + e− → νe + e−.

285
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• Semi-leptonic.
E. g. τ+ → ρ+ + ν̄τ .

• Hadronic (non-leptonic).
E. g. K0 → π+ + π−; Λ0 → n+ π0.

The weak interaction violates parity (P ) and charge conjugation (C) symmetry. It also
violates CP and T, much more weakly, though. Also flavor is not conserved in weak
interactions (see Sect. 7.3.2). If mν 6= 0, neutrino oscillations occur and lepton family
number is not conserved either.

Let us review some of the experimental results for the weak interaction.

Existence of neutrinos. Consider nuclear β− decay, assuming a two-particle final
state: n→ p+ e−. Since me � mn, mp, the recoil can be neglected and so

mn = Ep + Ee

mn ' mp + pe

pe ' mn −mp.

This result means that for a two-body decay monoenergetic electrons are to be expected.
However, the measured electron spectrum is continuous (see Fig. 11.1(a)). To solve this
problem, Fermi and Pauli introduced an invisible neutrino carrying part of the decay
energy: n → p + e− + ν̄e (see Fig. 11.1(b)). The Fermi theory amplitude for this process
reads

M =
GF√

2
(ψ̄pγ

µψn)(ψ̄eγµψν̄), (11.1)

where GF ∼ 1/(300 GeV)2 is the Fermi constant. Note that the expression in Eq. (11.1)
has vector structure and therefore does not violate parity. This point will be revisited
later on.

Leptonic decays of π±. Since π± is the lightest hadron, it cannot decay into other
hadrons. Furthermore, electromagnetic decay (like in the case of π0 → γγ) is forbidden
by charge conservation. Thus no other channels are obscuring the study of the leptonic
decay π+ → µ+ + νµ.

Non-observation of µ→ e+γ. Although energetically possible, the decay µ− → e−+γ
is not observed in experiment. This leads to the introduction of a new quantum number
called lepton number L, where

Ll = 1 e−, µ−, νe, . . .

Ll̄ = −1 e+, µ+, ν̄e, . . . .

The leptonic muon decay conserving lepton number per family reads µ− → e− + νµ + ν̄e.
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(a)

�n

ν̄e

e−

p

(b)

Figure 11.1: β− decay spectrum (a) and diagram (b). (a) shows an electron momentum
spectrum for the β− decay of 64Cu, source: [60, p. 14].

Parity violation. One famous instance of parity violation is the so-called τ -θ puzzle
(1956). It consists in the finding that the Kaon K+ decays into two final states with
opposite parity:

K+

{
θ → π+π0

τ → π+π+π−

P |ππ〉 = (−1)(−1)(−1)l = +1

P |πππ〉 = (−1)3(−1)lπ1π2 (−1)lπ3 = −1,

where l denotes angular momentum eigenvalues. The above is true for JK+ = 0, since then,
by conservation of angular momentum, l = 0 and lπ1π2 ⊕ lπ3 = 0 such that lπ1π2 = lπ3 .
Lee and Young introduced the idea that θ and τ are the same particle K+ (fitting into
its multiplet, see Fig. 7.6) which undergoes a flavor changing decay.

Another famous example for the demonstration of parity violation in weak interactions
is the Wu experiment (1957). The idea is to consider β decay of nuclei polarized by an
external magnetic field:

60Co����
J=5

→ 60Ni�� �� �
J=4

+ e− + ν̄e� �� �
Jz=1

�B

The Cobalt nuclei are aligned to the external magnetic field and are in a state with
J = 5. By conservation of angular momentum, the electron and neutrino spins have to
be parallel (the decay product 60Ni? is fixed). Since, to fulfill momentum conservation,
they are emitted in opposite directions, the electron and its neutrino must have opposite
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chirality. It is observed that electrons are emitted preferentially opposite to the
#»

B field
direction:

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R
)

>Γ
(

60Co→ 60Ni? + e−R + νe,L
)

= P
{

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R
)}
.

Thus left-handed leptons and right-handed antileptons (e−L , ν̄e,R) are preferred over right-
handed leptons and left-handed antileptons (e−R, ν̄e,L). Recall (Sect. 5.2.4) that one uses
the projectors PR

L

= 1
2
(1± γ5) to indicate the chirality basis: uL,R = PL,Ru.

These observations gave rise to the V − A theory of weak interactions, described in
Sect. 11.3 below.

11.2 γ5 and εµνρσ

Recall that the amplitude in Eq. (11.1) does not violate parity. Therefore it has to be
modified such that parity violation is included. To achieve this aim, the matrix γµ which
forms the vector ψ̄γµψ has to be replaced by a linear combination of elements of the set

{1, γµ, σµν , γ5γ
µ, γ5}

where σµν = i
2
[γµ, γν ] and γ5 = iγ0γ1γ2γ3. Using these matrices we can form the following

field bilinears whose names are inspired by their transformation behavior under proper
and improper Lorentz transformations1

ψ̄ψ scalar

ψ̄γµψ vector

ψ̄σµνψ tensor

ψ̄γ5ψ pseudoscalar

ψ̄γµγ5ψ pseudovector.

In Sect. 5.2.4 we discussed operators on spinor spaces, including helicity,

h =
1

2
#»σ ·

#»p

| #»p | ⊗ 1 P± =
1

2
(1± h),

and chirality,

γ5 PR
L

=
1

2
(1± γ5).

Recall that in the high energy limit chirality and helicity have the same eigenstates.

The chirality matrix γ5 has the following useful properties (see also Sect. 5.9)

1See e. g. [14, p. 64].



11.2. γ5 and εµνρσ 289

• γ2
5 = 1;

• {γ5, γµ} = 0;

• γ†5 = iγ3γ2γ1γ0 = γ5;

• Trγ5 = 0;

• Dirac-Pauli representation: γ5 =

(
0 1

1 0

)
.

Now let us define the totally antisymmetric ε tensor in four dimensions:

εµνρσ =





+1, {µ, ν, ρ, σ} even permutation of {0, 1, 2, 3}
−1, {µ, ν, ρ, σ} odd permutation of {0, 1, 2, 3}
0 else

, (11.2)

such that

ε0123 = +1

εµνρσ = −εµνρσ.

The product of two such ε tensors is then given by

εµνρσεµ
′ν′ρ′σ′ = − det




gµµ
′
gµν

′
gµρ

′
gµσ

′

gνµ
′
gνν

′
gνρ

′
gνσ

′

gρµ
′
gρν

′
gρρ

′
gρσ

′

gσµ
′
gσν

′
gσρ

′
gσσ

′




resulting in

εµνρσεµν
ρ′σ′ = −2(gρρ

′
gσσ

′ − gρσ′gσρ′)
εµνρσεµνρ

σ′ = −6gσσ
′

εµνρσεµνρσ = −24 = −4!.

Using the definition in Eq. (11.2), one can express γ5 as

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ.

Here are some traces involving γ5:

• Trγ5 = 0;

• Tr(γ5γ
µγν) = 0;
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• Tr(γ5γ
αγβγγγδ) = −4iεαβγδ

Observe that interchanging two matrices in the trace above yields a minus sign,
furthermore the trace vanishes if two indices are identical. Hence the trace is pro-
portional to the ε-tensor:

aεαβγδ = Tr(γ5γ
αγβγγγδ).

Multiplying both sides by εαβγδ yields

−24a = Tr(γ5γ
αγβγγγδ)εαβγδ

= 24iTr(γ5γ5 = 1)

⇒ a = −4i.

11.3 The V − A amplitude

The correct linear combination of bilinears replacing the vector ψ̄γµψ in Eq. (11.1) in
order to achieve parity violation turns out to be the “vector minus axialvector”, or V −A,
combination ψ̄γµψ − ψ̄γµγ5ψ.

2

Adjusting the amplitude in Eq. (11.1) accordingly yields for the β− decay amplitude

M(n→ pe−ν̄e) =
GF√

2
[ūpγ

µ(1− γ5)un][ūeγµ(1− γ5)uνe ] (11.3)

and analogously for the muon decay

M(µ− → νµe
−ν̄e) =

GF√
2

[ūνµγ
µ(1− γ5)uµ][ūeγµ(1− γ5)uνe ]. (11.4)

Let us analyze the general form and properties of V − A amplitudes. Their structure is
that of a current-current interaction:

M =
4√
2
GFJ

µ
i J
†
j,µ (11.5)

where

Jµi = ūi0γ
µ1

2
(1− γ5)ui− (11.6)

J†j,µ = ūj−γµ
1

2
(1− γ5)uj0 . (11.7)

Note the following properties of this kind of amplitudes:

2An axialvector is a pseudovector, since the prefix “pseudo” is used for cases where an extra minus
sign arises under the parity transformation (in contrast to the non-pseudo case).
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1. γµ(1− γ5) selects left-handed fermions,

γ5uL = γ5PLu = γ5
1

2
(1− γ5) = −1

2
(1− γ5)u = −uL,

and right-handed antifermions, as desired.

2. GF is universal.

3. Parity and charge conjugation alter the outcome of experiments, but here CP is
conserved:

Γ
(
π+ → µ+

R + νL
)
6= Γ

(
π+ → µ+

L + νR
)

/P 7

Γ
(
π+ → µ+

R + νL
)
6= Γ

(
π− → µ−R + ν̄L

)
/C 7

Γ
(
π+ → µ+

R + νL
)

= Γ
(
π− → µ−L + ν̄R

)
CP 3.

11.4 Muon decay – determination of GF

Consider the decay

µ−(p)→ e−(p′) + ν̄e(k
′) + νµ(k),

see Fig. 11.2. The amplitude is given by

M =
GF√

2
[ū(k)γµ(1− γ5)u(p)][ū(p′)γµ(1− γ5)v(k′)].

Recall that the differential decay rate reads

dΓ =
1

2Eµ
|M|2(2π)4dR3(p′, k, k′)

where

dR3(p′, k, k′) =
d3p′

(2π)32Ep′

d3k

(2π)32Ek

d3k′

(2π)32Ek′
δ(4)(p− p′ − k − k′).

For mν = me = 0 this yields

dΓ

dEp′
=
mµG

2
F

2π3
m2
µE

2
p′

(
3− 4Ep′

mµ

)

and

Γ =

mµ/2∫

0

dEp′
dΓ

dEp′
=
G2
Fm

5
µ

192π3
=

1

τ
.
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Figure 11.2: Leptonic muon decay.

The measured muon lifetime is

τ = 2.1970 · 10−6 s = 2.9960 · 10−10 eV;

assuming a muon mass of

mµ = 105.658 · 106 eV,

this yields

GF = 1.166 · 10−5 GeV−2 ' 1

(300 GeV)2

which is a dimensionful ([GF ] = m−2) quantity. This hints to the fact that there are some
problems with Fermi’s theory:

1. It deals with massless fermions only.

2. It is not renormalizable. This problem, along with the dimensionful coupling, is
typical for an effective theory, a low energy approximation of a more general theory,
in this case the GWS theory.

3. It violates unitarity at high energies. E. g. one finds that the cross section for
electron-neutrino scattering is divergent for ECM →∞:

σe
−+νe→e−νe =

4G2
F

π
E2

CM.

One can show that the optical theorem yields the following unitarity constraint
for the S-wave: G2

F s
2 . 1. Thus Fermi’s theory is a good approximation only for√

s . 1/
√
GF and it breaks down for higher energies.
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11.5 Weak isospin and hypercharge

From the earlier analysis, we consider the currents of the weak interaction as charged
currents 3,

jµ = j+
µ = ūνγµ

1

2
(1− γ5)ue = ν̄γµ

1

2
(1− γ5)e = ν̄LγµeL = �W+

e−

νe

j†µ = j−µ = ūeγµ
1

2
(1− γ5)uν = ēγµ

1

2
(1− γ5)ν = ēLγµνL = �W−

νe

e−

.

These currents correspond to transitions between pairs of fermions whose charge differs
by one unit. For this reason, one speaks of charged currents (CC). These two currents
are the ones associated with (weak) decays of muons and neutrons.

In analogy to the case of isospin, where the proton and neutron are considered as the two
isospin eigenstates of the nucleon, we postulate a weak isopin doublet structure (T = 1

2
),

χL =

(
ν
e

)

L

T3 = +1
2

T3 = −1
2

, (11.8)

with raising and lowering operators,

τ± =
1

2
(τ1 ± iτ2),

where the τi are the usual Pauli matrices. With this formalism, one can write the charged
currents as,

j+
µ = χ̄Lγµτ+χL (11.9)

j−µ = χ̄Lγµτ−χL (11.10)

The next step consists in postulating an SU(2) symmetry of these currents. In the case
of isospin, this leads to the prediction of three currents mediated by the pions π±, π0. We
thus expect a third current to exist, which does not change the charge and is thus called
neutral current (NC),

j3
µ = χ̄Lγµ

1

2
τ3χL = ν̄Lγµ

1

2
νL − ēLγµ

1

2
eL = �W 3

νe(e
−)

νe(e
−)

, (11.11)

3The ‘plus’ + and ‘dagger’ † shall not be confused.
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yielding a weak isospin triplet of weak currents,

jiµ = χ̄Lγµ
1

2
τiχL i = 1, 2, 3,

with algebra,

[τi, τj] = iεijkτk.

Now, we compare these to the electromagnetic current,

jemµ = ēγµQe = ēRγµQeR + ēLγµQeL, (11.12)

where Q is the electromagnetic charge operator. This current is invariant under U(1)Q, the
gauge group of QED associated to the electromagnetic charge. It is however not invariant
under the SU(2)L which we postulated for the weak currents : it contains eL instead of χL.

To solve this issue, we construct an SU(2)L-invariant U(1)-current,

jYµ = ēRγµYReR + χ̄LγµYLχL, (11.13)

where the hypercharges YR and YL are the conserved charge operators associated to the
U(1)Y symmetry. It is different for left and right handed leptons.

We now want to write jemµ as a linear combination of j3
µ and 1

2
jYµ (the factor 1

2
is a matter

of convention). One gets,

ēRγµQeR + ēLγµQeL = ν̄Lγµ
1

2
νL − ēLγµ

1

2
eL +

1

2
ēRγµYReR +

1

2
χ̄LγµYLχL,

from which we read out,

YR = 2Q YL = 2Q+ 1. (11.14)

with the weak isospin third components,

T3(eR) = 0 singlet, blind to the weak interaction

T3(νL) = +1
2

T3(eL) = −1
2

}
doublet,

one can then write the relation,

Y = 2Q− 2T3 . (11.15)

In Tab. 11.1 and 11.2, we summarise the quantum numbers of leptons and quarks. It should
be noted that the right handed neutrino νR does not carry SU(2)L or U(1)Y charges, and
thus decouples from the electroweak interaction.
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T T3 Q Y
νL 1/2 1/2 0 −1
e−L 1/2 −1/2 −1 −1
νR 0 0 0 0
e−R 0 0 −1 −2

Table 11.1: Weak quantum numbers of leptons

T T3 Q Y
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 11.2: Weak quantum numbers of quarks

11.6 Construction of the electroweak interaction

As in the case of QED (Sec. 5.12, p.100) and QCD (Sec. 7.4, p. 140), we expect the elec-
troweak interaction to be mediated by gauge fields. In the case of QED, we had,

LQED
int = −iejemµ Aµ,

where e is the (U(1)Q-)coupling, jemµ the (U(1)Q-)current, and Aµ the (U(1)Q-)gauge field
(photon). We copy this for the current triplets and singlet :

LEW
int = −igjiµW iµ − ig

′

2
jYµ B

µ, (11.16)

where we introduced the SU(2)L-gauge field triplet W iµ and singlet Bµ associated to the
weak isospin and weak hypercharge respectively.

From those we can construct the massive charged vector bosons,

W±µ =
1√
2

(W 1µ ∓ iW 2µ),

as well as the neutral vector bosons (mass eigenstates) as a linear combination of W 3µ

and Bµ,

Aµ = Bµ cos θw +W 3µ sin θw massless → γ,

Zµ = −Bµ sin θw +W 3µ cos θw massive → Z0,

where θw is called the weak mixing angle (or sometimes Weinberg angle).
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Substituting these quantities in the interaction Lagrangian of the neutral electroweak
current, we obtain,

−igj3
µW

3µ − ig
′

2
jYµ B

µ =− i
(
g sin θwj

3
µ + g′ cos θw

jYµ
2

)
Aµ

− i
(
g cos θwj

3
µ − g′ sin θw

jYµ
2

)
Zµ.

The first term corresponds to the electromagnetic current, for which we had jemµ = j3
µ +

1
2
jYµ , implying,

g sin θw = g′ cos θw = e , (11.17)

and thus linking the three couplings together. One often uses e and sin θw as parameters
for the standard model to be measured experimentally.

The second term corresponds to the weak neutral current. From jYµ = 2(jemµ − j3
µ), we get,

jNC
µ =

g

cos θw
(j3
µ − sin2 θwj

em
µ ). (11.18)

11.7 Electroweak Feynman rules

Vertices The Feynman rules for vertices stemming from,

LEW
int = LQED

int + LCC
int + LNC

int ,
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can be computed as follows,

iLQED
int = −ieψ̄fγµQψfAµ

⇒ �γ
f

f

= −ieQfγµ

iLCC
int = −i g√

2
(χ̄Lγµτ+χL)W+µ − i g√

2
(χ̄Lγµτ−χL)W−µ

= −i g√
2
ν̄γµ

(
1− γ5

2

)
eW+µ − i g√

2
ēγµ

(
1− γ5

2

)
νW−µ

⇒ �W+

e−

νe

= �W−

νe

e−

= −i g√
2
γµ

(
1− γ5

2

)

iLNC
int = −i g

cos θw
ψ̄fγµ

[(
1− γ5

2

)
T3 − sin2 θwQ

]
ψfZ

µ

= −i g

cos θw
ψ̄fγµ

1

2
(cfV − cfAγ5)ψfZ

µ

⇒ �Z0

f

f

= −i g

cos θw
γµ

1

2
(cfV − cfAγ5)

where cfV and cfA are the vector and axial vector couplings of the fermion type f . A simple
calculation yields,

cfV = T f3 − 2 sin2 θwQ
f (11.19)

cfA = T f3 . (11.20)

Tab. 11.3 lists the couplings for the various types of fermions.

Qf cfV cfA
ν 0 1/2 1/2
e −1 −1/2 + 2 sin2 θw −1/2
u 2/3 1/2− 4/3 sin2 θw 1/2
d −1/3 −1/2 + 2/3 sin2 θw −1/2

Table 11.3: Vector and axial vector couplings of fermions.
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Propagator of a massive vector boson Form Eq. (11.17), we see that e and g
should be of the same order of magnitude (since we know experimentally that sin2 θw ≈
0.23). This leads to the question : why is the weak interaction so much weaker than the
electromagnetic one? This can be made evident by looking at the typical lifetime of weakly
decaying particles (as the neutron or the muon) compared with electromagnetic decays.
The answer lies in the large mass of the weak gauge bosons W± and Z0.

The components Xµ = W+µ,W−µ, Zµ fulfill the Klein-Gordon equation,

(�+M2)Xµ = 0, ∂µX
µ = 0 (gauge fixing),

which results in the propagator,

i

∑
λ(ε

µ
λ)∗ενλ

p2 −M2
.

The polarisation sum Πµν must take the form,

Πµν =
∑

λ

(εµλ)∗ενλ = Agµν +Bpµpν .

Using the identities,

pµp
µ = M2, pµΠµν = pνΠ

µν = 0, gµνΠ
µν = 3,

coming from the on-shell condition, the conservation of current and the count of polar-
ization states (for a massive particle) respectively, we get A = −1 and B = M−2, making
us able to write,

�W±, Z0

µ ν= i
−gµν + pµpν/M2

p2 −M2
.

So unless momentum transfer is not of the order of M & 100 GeV, the propagator gets
suppressed drastically by the mass.

Relation of the Fermi V −A-interaction In V −A-theory, we have a 4 point vertex,

�
4GF√

2
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yielding the matrix element,

MV−A =
4GF√

2
jµj†µ.

The same process, viewed as the exchange of a low momentum (q2 �M2
W ) vector boson,

� q

g√
2

g√
2

corresponds to the matrix element,

MEW ≈
(
g√
2
jµ
)

1

M2
W

(
g√
2
j†µ

)
,

yielding the relation,

GF =

√
2g2

8M2
W

. (11.21)

From this relation, the first estimates of the mass of the W± bosons were 50− 100 GeV.

11.8 Spontaneous symmetry breaking:

Higgs mechanism

The ad hoc introduction of non-vanishing vector boson masses runs into a serious problem:
One would have to include into the Lagrangian the usual mass term

LM = −m
2

2
AµA

µ (11.22)

which violates gauge invariance (the boson field transforms as Aµ → Aµ− ∂µα(x)). If the
“massive vector bosons” are indeed to be massive, gauge symmetry needs to be broken
in some way, since the inclusion of a mass term requires breaking of gauge symmetry.
To avoid problems at the theory level caused by broken gauge symmetry, the idea is
to retain gauge symmetry in this respect, while physical states are less symmetric than
the Lagrangian. This situation can e. g. also be found in solid state physics: Consider a
ferromagnet modeled as a collection of spins. As long as no magnetization is imposed, this
system is rotationally invariant. A non-vanishing magnetization breaks this symmetry, in
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that it singles out a specific direction. Symmetry breaking occurs due to the influence of
changing a continuos parameter (magnetization) caused by the environment. This does not
affect the rotational invariance of the theory describing the ferromagnet and two physical
states with different imposed directions are related by a transformation corresponding to
the symmetry that is broken by imposing directions.

Let us start out with an example: Consider a real scalar field with a four-point interaction
(which is to the complex scalar field what is the Ising model to the isotropic ferromagnet
mentioned above):

L =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

1

4
λφ4

)
(11.23)

= T − V (11.24)

where −1/2µ2φ2 is a mass term and −1/4λφ4 is an interaction term corresponding to the
four-point vertex. Because the potential needs to be bounded from below, λ > 0. Observe
that L is even in φ and therefore invariant under the transformation φ→ −φ.

The vacuum state of this theory corresponds to a minimum of the potential:

∂V

∂φ
= φ(µ2 + λφ2)

!
= 0. (11.25)

Depending on the sign of µ2, one can distinguish two cases.

a) µ2 > 0, λ > 0.
In this case the vacuum state is reached for φ = 0, see Fig. 11.3(a).

b) µ2 < 0, λ > 0.
Here, φ = 0 is still an extremum, but has turned into a local maximum. In addition
there are two minima at

φ = ±
√
−µ2

λ
= ±v

which correspond to two vacua, degenerate in energy, see Fig. 11.3(b). In this case,
the symmetry transformation φ → −φ, which leaves the Lagrangian in Eq. (11.23)
invariant, changes two distinct physical states into each other.

A perturbative calculation is an expansion around the vacuum sate. If we consider case
b), this means φ = v or φ = −v. Therefore, the symmetry φ → −φ is broken, although
the Lagrangian has this symmetry irrespective of the signs of µ2 and λ. Let us choose the
positive sign vacuum state and expand:

φ(x) = v + η(x) (11.26)
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Figure 11.3: The Potential V (φ) for (a) µ2 > 0 and (b) µ2 < 0 and λ > 0. Source: [1, p.
322].

where η(x) is some perturbation around v. Inserting this expansion into the Lagrangian
yields

L =
1

2
(∂µη)2 − λv2η2 − λvη3 − 1

4
λη4 + const. (11.27)

Here, the first term is a kinetic term for η with mass mη =
√

2λv2 =
√
−2µ2 and the

second an third terms are the thee-pint and four-point interaction terms, respectively.

Two other examples for spontaneous symmetry breaking are

• The alignment of spins in a ferromagnet which violates rotational invariance and

• The bending of an elastic bar under a force aligned with its symmetry axis, see
Fig. 11.4.

These examples share the following feature: Variation of some continuous parameter is
associated with a transition between two phases with differing degree of symmetry.

Above we considered a discrete symmetry of the Lagrangian; we now turn to the sponta-
neous breaking of a continuos symmetry, namely of global gauge symmetry. Consider now
a complex scalar field:

φ =
1√
2

(φ1 + iφ2) (11.28)

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2. (11.29)
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Figure 11.4: Bending of an elastic bar. Source: [1, p. 324].

The Lagrangian is invariant under global U(1) transformations φ → eiαφ. In the case
λ > 0, µ2 < 0 the minimum of the potential V (φ) is a circle in the φ1, φ2 plane with

φ2
1 + φ2

2 = v2 = −µ
2

λ
, (11.30)

see Fig. 11.5. Out of the infinitely many distinct vacua, degenerate in energy, we choose
φ1 = v, φ2 = 0. Again, we can expand around the ground state, this time in two orthogonal
directions: η(x) denotes the perturbation in the steepest ascent direction and ξ(x) is the
perturbation in the orthogonal direction (potential valley, see Fig. 11.5):

φ(x) =
1√
2

[v + η(x) + iξ(x)] . (11.31)

Inserting this expansion into the Lagrangian in Eq. (11.29) yields

L =
1

2
(∂µξ)

2 +
1

2
(∂µη)2 + µ2ξ2 + const +O

(
(η, ξ)3

)
(11.32)

where we identify a mass term −1/2m2
ηη

2 with mη = −2µ2 while for the ξ field there is
only a kinetic and no mass term.4 This is because η is an excitation along the potential
direction while ξ corresponds to a rotation along the circle of vacua. Here, the process
of spontaneous symmetry breaking leads from a more symmetric phase with two massive
fields to a less symmetric phase with a massive and a massless field.

4This massless scalar is a Goldstone boson. The Goldstone theorem says that for every broken con-
tinuous symmetry there is a massless boson.
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Figure 11.5: The potential V (φ) for a complex scalar field for the case µ2 < 0 and λ > 0.
Source: [1, p. 325].

Let us now turn to the spontaneous breaking of local gauge symmetry. Consider a complex
scalar field and local U(1) gauge transformations:

φ→ φ′ = φeieα(x). (11.33)

Gauge invariance of the Lagrangian requires the covariant derivative

Dµ = ∂µ + ieAµ (11.34)

with the massless U(1) gauge field Aµ transforming as

Aµ → A′µ = Aµ − ∂µα(x). (11.35)

A gauge invariant Lagrangian reads

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
F µνFµν . (11.36)

As before, we consider the case µ2 < 0, λ > 0; v and the expansion are

v2 = −µ
2

λ
φ(x) =

1√
2

[v + h(x)] ei
ξ(x)
v (11.37)

where in this case wee keep the finite rotation due to ξ to preserve gauge freedom. This
allows to absorb ξ(x) into a redefinition of the gauge field:

Aµ → Âµ = Aµ −
1

v
∂µξ(x). (11.38)
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Combining expansion and redefinition with the Lagrangian in Eq. (11.36) yields

L =
1

2
(∂µh)2 − λv2h2 +

1

2
e2v2Â2

µ − λvh3 − 1

4
λh4 +

1

2
e2Â2

µh
2 + ve2Â2

µ −
1

4
F̂ µνF̂µν .

(11.39)

The particle spectrum of this theory is as follows.

• There is a massive scalar field h (Higgs) of mass mh =
√

2λv2.

• The Goldstone field has been absorbed into Âµ and is no longer present in the
Lagrangian.

• There is a massive U(1) vector field Âµ of mass mA = ev.

It is important to notice that the vacuum state φ = v/
√

2 is charged under the gauge
interaction.

Finally, let us consider the degrees of freedom for the Lagrangian given in terms of φ and
A and in terms of h and Â:

L Fields d. o. f.

L in φ, A
φ complex, scalar 2
Aµ massless, spin-1 vector 2

L in h, Â
h real, scalar 1

Âµ massive, spin-1 vector 3
This acquiring of a mass by a spin-1 vector boson is also what happens to the photons
belonging external fields in superconductors: Since the propagation of the massive photons
is exponentially suppressed, the field is correspondingly excluded (Meißner-Ochsenfeld
effect).

11.9 Gauge boson masses in SU(2)L × U(1)Y

For constructing a gauge invariant Lagrangian, we define the covariant derivative in
SU(2)L × U(1)Y :

Dµ = ∂µ − ig
1

2
#»τ · # »

W µ − ig′
1

2
Y Bµ. (11.40)

The corresponding Lagrangian for a complex scalar field reads

L = [iDµφ]†[iDµφ]− µ2φ†φ− λ[φ†φ]2 (11.41)

where φ is an SU(2) doublet (choose to arrange fields such that Y = 1):

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
=

(
φ+

φ0

)
. (11.42)
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This is also called a Higgs doublet.

Again let us consider the case µ2 < 0 and λ > 0. We may choose the following vacuum
state: φ1 = φ2 = φ4 = 0 and φ3 = v and expand, which, up to a phase, yields

v2 = −µ
2

λ
φ =

1√
2

(
0

v + h(x)

)
. (11.43)

This choice of vacuum breaks the SU(2)L and U(1)Y gauge symmetries, since it is hy-
percharged. The U(1)Q symmetry of electromagnetism, though, is conserved, because
Qφ = (T3+Y/2)φ = 0 and the photon remains massless. What is the particle spectrum for
this theory, given the vacuum expectation value chosen above? Inserting φ0 = 1/

√
2(0, v)T

into the relevant term of the Lagrangian in Eq. (11.41), [Dµφ]†[Dµφ], gives the answer:

∣∣∣∣
(
−ig

2
#»τ · # »

W µ − i
g′

2
Bµ

)
φ

∣∣∣∣
2

=
1

8

∣∣∣∣
(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −gW 3

µ + g′Bµ

)(
0
v

)∣∣∣∣
2

=
1

8
v2g2

∣∣(W 1)2 + (W 2
µ)2
∣∣+

1

8
v2(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ)

=

(
1

2
vg

)2

W+
µ W

−µ +
1

8
v2(g′Bµ − gW 3

µ)2

which, using Zµ = (gW 3
µ − g′Bµ)/

√
g2 + g′2,

= M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ

where

MW =
1

2
vg MZ =

1

2
v

√
g2 + g′2 . (11.44)

Using g′/g = tan θw yields the following relation between the W and the Z mass:

MW

MZ

= cos θw . (11.45)

Finally, knowing the W mass, we can use Fermi’s constant to obtain an estimate for the
vacuum expectation value v:

GF =

√
2g2

8M2
W

=
1√
2v2
→ v = 246 GeV .
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11.10 Fermion masses

The usual mass term for quarks and leptons (we focus on the T3 = −1
2

fermions, i.e. down
quarks and electrons) takes the form,

Lm− = −mψ̄ψ = −m
(
ψ̄RψL + ψ̄LψR

)
,

where ψL is a component of the SU(2)L-doublet χL, and ψR is an SU(2)L-singlet. Because
of its form, this mass term cannot be invariant under the action of the gauge group SU(2)L
(ψR transforms trivially, whereas ψL necessarily changes).

The solution consists in pairing ψL with an adjoint doublet, the Higgs doublet, that we
have already introduced earlier to give masses to the vector bosons by means of sponta-
neous symmetry breaking. A gauge invariant mass term is obtained by coupling to the
Higgs doublet, e.g. for the electron (also valid for all T3 = −1

2
fermions):

Lm− = −Ge

[(
ν̄e ē

)
L

(
φ+

φ0

)
eR + ēR

(
φ̄+ φ̄0

)( νe
e

)

L

]

= −G
ev√
2

(ēLeR + ēReL)− Ge

√
2
h (ēLeR + ēReL) , (11.46)

where Ge denotes the Yukawa coupling of the electron, and we used,
(
φ+

φ0

)
=

1√
2

(
0

v + h(x)

)
.

We can now read out of Eq. (11.46),

me =
Gev√

2
, (11.47)

and the coupling of the electron to the Higgs field,

�h
e−

e−

= −ime

v
.

Since me = 511 keV and v = 246 GeV, this vertex factor is very small for the electron. In
the case of the top, mt = 172 GeV and the vertex factor is much bigger. In the event the
Higgs mass is big enough (mh > 2mt), thus kinematically allowing this decay mode, the
branching ratio,

BR(h→ tt̄) =
Γ(h→ tt̄)

Γ(h→ anything)
,
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would be significant.

The vacuum is charged under both SU(2)L and U(1)Y but not electrically. Because of
this, the photon stays massless, even after SU(2)L × U(1)Y has been broken. Therefore
the vacuum expectation value (VEV) of the Higgs fields concentrates on the neutral
component of the doublet, i.e. the second component having T3 = −1

2
(otherwise the

vacuum would also be charged electrically, giving a mass to the photon). Up to now, we
have been able to give a gauge invariant mass term to the charged leptons and d-type
quarks (d, s, b) all having T3 = −1

2
. It appears that we are not able to give a mass term

to the neutrinos (neutral leptons) and u-type quarks (u, c, t) having T3 = +1
2

without
introducing another Higgs doublet 5.

In the case of SU(2) (but not in general), we are allowed to use at this end the charge
conjugate of the Higgs doublet,

φc = iτ2φ
† =

(
φ̄0

−φ̄+

)
→ 1

2

(
v + h(x)

0

)
, (11.48)

which has Y = −1, because φ and φc are equivalent, i.e. can be connected by a unitary
transformation.

Example For quarks we get,

Lm− + Lm+ =−Gd

[(
ū d̄

)
L

(
φ+

φ0

)
dR + d̄R

(
φ̄+ φ̄0

)( u
d

)

L

]

−Gu

[(
ū d̄

)
L

(
φ0

−φ+

)
uR + ūR

(
φ̄0 −φ̄+

)( u
d

)

L

]

=−mdd̄d−
md

v
hd̄d−muūu−

mu

v
hūu. (11.49)

We conculde by emphasising that all fermion masses are generated in a gauge invariant
way through coupling of the field to the Higgs VEV v. The coupling of each fermion to the
Higgs boson h is proportional to the mass of the particle. The origin of mass is reduced
to a Yukawa coupling of the different fermions to the Higgs field.

11.11 Lagrangian of the electroweak standard model

The theory of the electroweak interaction was formulated between 1961 and 1967 by
Sheldon Lee Glashow, Abdus Salam and Steven Weinberg. All three received the Physics
Nobel Prize in 1979 although the W± and Z0 had not yet been observed directely. Deep
inelastic scattering of spin-polarized electrons off nuclei gave evidence for a minute parity

5This is the case in extensions of the standard model, e.g. for the minimal supersymmetric standard
model (MSSM), where we have a Higgs doublet for each value of T3.
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violating interaction (all interactions except the weak interaction conserve parity). The
first evidence for neutral currents (mediated by the Z0 boson) were found in 1973 in
the bubble chamber Gargamelle at CERN. Direct observation of both W± and Z0 was
achieved in 1983 by the experiments UA1 also at CERN, leading to the Physics Nobel
Prize of 1984 for Carlo Rubbia and Simon van der Meer.

The Lagrangian of the electroweak theory can be decomposed as,

LEW = Lgauge + Lmatter + LHiggs + LY ukawa,

with,

Lgauge = −1

4

# »

Wµν ·
# »

W µν − 1

4
BµνB

µν (11.50)

W i
µν = ∂µW

i
ν − ∂νW i

µ − igεijkW j
µW

k
ν

Bµν = ∂µBν − ∂νBµ,

Lmatter =
∑

L

L̄γµ
(
i∂µ + g

1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)
L+

∑

R

R̄γµ
(
i∂µ + g′

Y

2
Bµ

)
R,

(11.51)

LHiggs =

∣∣∣∣
(
i∂µ + g

1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)
φ

∣∣∣∣
2

− V (φ), (11.52)

V (φ) = −µ2φ†φ+ λ(φ†φ)2

LY ukawa = −
∑

f−
Gf
−(L̄φR + R̄φ̄L)−

∑

f+

Gf
+(L̄φcR + R̄φ̄cL), (11.53)

where L denotes a left-handed fermion doublet, R a right-handed fermion singlet, Gf
± the

fermion Yukawa coupling for T3 = ±1
2
. All terms in LEW are invariant under SU(2)L and

U(1)Y gauge transformations.

After the spontaneous symmetry breaking, we have,

φ(x) =
1√
2

(
0

v + h(x)

)
,

yielding the masses through the Higgs mechanism:

MW = 2gv = 80.4 [GeV] (11.54)

MZ =
MW

cos θw
= 91.19 [GeV] (11.55)

Mf =
Gfv√

2
me = 511 [keV], . . . ,mt = 172 [GeV] (11.56)

Mh = v
√

2λ > 114 [GeV] (LEP) (11.57)

We now classify the vertices of the electroweak Lagrangian (V : vector boson, f : fermion,
H : Higgs boson):
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�V ff : �V V V : �V V V V :

�Hff : �HHH: �HHHH:

�HV V : �HHV V :

Care must be taken in choosing the fields as for example photon can interact with W
bosons because they carry an electric charge, but not with the Z boson. All diagrams not
involving a Higgs bosons have been observed experimentally so far.

11.12 Properties of the Higgs boson

The decay width of the Higgs boson Γ = 1
τ

for a two particle final state is (see Eq. (3.15),
p. 24),

ΓH =
1

2MH

1

(2π)2

∑

f

∫
d3p1

2E1

d3p2

2E2

δ(4)(pf − pH)|MfH |2,

where f denotes the final state : bb̄, tt̄,W+W−, Z0Z0, τ+τ−, . . . and m1 = m2 = mf .

|MfH |2 cannot depend on individual components of p1 or p2, and we can hence factorize
the phase space,

R2 =

∫
d3p1

2E1

d3p2

2E2

δ(4)(pf − pH) =
π

2M2
H

√
λ
(
M2

H ,m
2
f ,m

2
f

)
=
π

2

√
1−

4m2
f

M2
H

,

and hence,

ΓH =
1

16πMH

∑

f

√
1−

4m2
f

M2
H

|MfH |2 =
∑

f

ΓH→f . (11.58)

We now look at the different final states separately :
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Decay into fermions Leptons :

|MlH |2 =
∑

s,f

∣∣∣∣∣∣∣∣∣∣∣
�

f̄

f

−imf
v

∣∣∣∣∣∣∣∣∣∣∣

2

=
m2
f

v2
Tr
(

(/pf +mf )(/pf̄ −mf )
)

=
4m2

f

v2

(
M2

H

2
− 2m2

f

)
,

where s denotes the spin and f the flavour.

Quarks :

|MqH |2 =
∑

c

|MlH |2 = 3|MlH |2,

where c denotes the color.

Plugging these into Eq. (11.58), we get the partial widths,

ΓH→l+l− =
1

8π2v2
m2
fMH

(
1−

4m2
f

M2
H

) 3
2

(11.59)

ΓH→qq̄ =
3

8π2v2
m2
qMH

(
1− 4m2

q

M2
H

) 3
2

. (11.60)

We remark at this point that the dominant decay mode (corresponding to the largest
partial width) is always into the heaviest kinematically allowed fermion. In the case of a
light Higgs boson (MH < 2MW,Z), the dominant channels would be into bb̄ and τ+τ−.

The partial width for a decay into fermions is proportional to the mass of the Higgs boson,
so there is no upper limit to MH .

Decay into gauge bosons The relevant vertices are,

�H
W−
ν

W+
µ

= igMWgµν , �H
Z0
ν

Z0
µ

=
igMZ

cos θw
gµν ,
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Summing the moduli squared over the polarizations, we get,

∑

λ

∣∣∣∣∣∣∣∣∣∣∣
�H

W−

W+∣∣∣∣∣∣∣∣∣∣∣

2

= g2M2
W

(
−gµρ +

pµ1p
ρ
2

M2
W

)(
−gµρ +

p1µp2ρ

M2
W

)

=
g2M4

H

4M2
W

(
1− 4

M2
W

M2
H

+ 12
M4

W

M4
H

)
,

and an analogous result for the decay H → Z0Z0. The partial widths are then, respec-
tively,

ΓH→W+W− =
1

16πv2
M3

H

(
1− 4M2

W

M2
H

) 1
2
(

1− 4
M2

W

M2
H

+ 12
M2

W

M4
H

)
(11.61)

ΓH→Z0Z0 =
1

32πv2
M3

H

(
1− 4M2

Z

M2
H

) 1
2
(

1− 4
M2

Z

M2
H

+ 12
M2

Z

M4
H

)
, (11.62)

where the factor 1
2

in the second line is a symmetry factor for identical bosons.

In the case of a decay into gauge bosons, the partial width is proportional to the third
power of the Higgs mass. This implies that for a heavy Higgs boson (MH > 2MW,Z), the
decay into gauge bosons will be dominant over the decay into fermions, the only competing
fermionic decay being H → tt̄ (for MH ≈ 2mt). Fig. 10.42(a) and (b), show the different
branching ratios and total width as a function of MH .

Due to this power dependence, one remarks by plugging the known values of MW , MZ

and v that if MH ≈ 1 TeV, ΓH ≈ MH and the interpretation of the Higgs particle as a
resonance of the S-matrix is no longer possible. This yields an upper bound for the Higgs
mass in the framework of the standard model. A mass of the order of 1 TeV would imply
a coupling λ ≈ 1 requiring some non-perturbative approach (as in QCD for Q ≈ ΛQCD).

11.13 Tests of electroweak theory

In the previous sections the theory of electroweak interactions was discussed, in particular
it was shown how massive gauge bosons emerge; in this section we discuss experimental
tests of the theory, including the consistency of the standard model parameters, the W
and Z boson discovery and measurements of the width. We discuss the forward-backward
asymmetries, as well as examples of Higgs boson searches. An introduction to the latter
topic is given in Sect. 10.9, here we focus on a specific case study, namely searches for
heavy Higgs decaying into W boson pairs.
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11.13.1 Parameters of the standard model and historical back-
ground

A summary6 of the experimental values of the standard model parameters is shown in
Fig. 10.1. The stated deviations are a measure for the consistency of the standard model.
As can be seen from the bars, which visualize the deviation of the measured from the
best fitting values, assuming the standard model to be correct, in units of measurement
standard deviations, the majority of the measured parameters is compatible within 1σ. A
notable exception is the variable A0,b

fb , an asymmetry measured in the b sector.

Electroweak unification was accomplished theoretically in the sixties by Glashow, Salam
and Weinberg. The predictions derived from this theory were consistent with the observed
charged current interactions (flavor-changing exchange of W± bosons, see e. g. Fig. 1.1(b)).
However, as we have seen in Sect. 11.5, the theory also predicts neutral current interactions
(via Z0 exchange and γ/Z0 interference) which had never been observed up to that time.
In fact, until 1973 all observed weak interactions were consistent with the existence of
only charged bosons W±. The first neutral current interaction was observed at CERN in
1973 with the “Gargamelle” experiment in the following reaction:

νµ + nucleus→ νµ + p+ π− + π0

which can be explained by a flavor conserving weak interaction, i. e. a weak neutral current.
This discovery made urgent the question of how to observe W and Z bosons directly to
test electroweak predictions.

11.13.2 W and Z boson discovery, mass and width measure-
ments

Electroweak theory predicted bosons with masses MW ∼ 83 GeV and MZ ∼ 93 GeV.
Therefore, to produce W and Z bosons, a particle collider was needed capable of producing
particles with mass ∼ 100 GeV. A the time, two candidates were available at CERN. The
ISR with

√
s = 61 GeV was too weak and also the SPS, which consisted of a 400 GeV

proton beam against a fixed target, did not provide sufficient center of mass energy (recall
that for fixed target experiments

√
s =
√

2mE, see Sect. 4.1.1).

This problem was solved by the Spp̄S machine, designed by Rubbia and van der Meer,
a proton-antiproton collider at

√
s = 540 GeV. It had a luminosity of 5 · 1027 cm−2s−1,

achieved with three against three bunches with ∼ 1011 particles per bunch. The first
collisions took place in 1981.

LEP, which later on delivered part of the precision data discussed in this chapter was
an electron-positron collider, while Spp̄S was a hadron collider.7 Figure 11.6 shows the

6http://lepewwg.web.cern.ch/LEPEWWG/
7A general comparison of these types of colliders can be found in Sect. 10.1.2.
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�
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Z
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e−

e+

W−

W+

(b)

Figure 11.6: Z (a) and W (b) boson production at electron-positron colliders.

relevant production diagrams for e+e− colliders while Fig. 11.7 shows a hadron collider
production diagram along with the dominant background diagram (see also Fig. 10.14).
In the electron-positron case, beam energies of about MZ/2 are sufficient to produce Z
bosons (see Fig. 11.6(a)), while W± bosons can only be produced in pairs, requiring a
higher center of mass energy (see Fig. 11.6(b)). Now compare this to the hadron collider
case shown in Fig. 11.7(a): To produce a Z boson, flavor conservation is required such that
processes like uū→ Z0 and dd̄→ Z0 contribute. The production of W± bosons involves
quarks of different flavors, such as ud̄ → W+ and dū → W−. What has been said so far
concerns production of W and Z bosons, what about their detection? Consider first the
decay into quark-antiquark pairs: The cross section of “usual” two-jet production, e. g.
via gluon exchange (see Fig. 11.7(b)) is much larger than the one of hadronic vector boson
decays. In other words, the cross section for W production is small compared to the total
cross section:

σ(p̄p→ WX → eνX)

σT (pp̄)
' 10−8.

Therefore, it is preferred to look for W and Z decays into leptons, where the background
is smaller:8

W± → e±
(−)
νe , µ

± (−)
νµ , τ

± (−)
ντ

Z0 → e+e−, µ+µ−, τ+τ−.

11.13.2.1 W discovery and mass measurement

The UA1 experiment at the Spp̄S collider was an hermetic particle detector optimized
for the W± → e±νe/ν̄e measurement. It featured for the first time the general design
principles of collider detectors (see also Sect. 4.3.3): tracking devices inside a magnetic

8The Z0 boson may also decay into neutrino-antineutrino pairs, which makes it possible to determine
the number of neutrino families with mν < MZ/2, see below.
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�θ

f̄

q̄ q

f
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(a)
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q̄
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q̄′ → jet

q′ → jet

(b)

Figure 11.7: (a) Sketch of the kinematics of W and Z boson production at hadron colliders
and diagram of a process leading to two jets (b).

13

The UA1 Detector

• all-purpose detector
• Excellent hermeticity (i.e.

very few gaps) - good for
missing E! measurement

• tracker and electromagnetic
calorimeter immersed in
magnetic field

• Magnet return yoke =
hadronic calorimeter

• 8-layer muon detector
(a) (b)

Figure 11.8: UA1 experiment. A cross section along the beam line, featuring the impor-
tant components of collider experiment detectors is shown in (a), while (b) shows the
electromagnetic and hadronic calorimeters. Source: [8, p. 305].

field, followed by electromagnetic calorimeters, hadron calorimeters and muon chambers
(see Fig. 11.8(a)). Since MW ∼ 80 GeV, the electromagnetic calorimeter resolution is
optimized for 40 GeV electrons to ±500 MeV(1%). Because the photomultipliers had to
be placed outside the magnetic field of the coil, the hadron calorimeter is sandwiched in
the return yoke (see Fig. 11.8(b)): Showering in the lead layers, the particles then produce
light in the szintillator layers which is transferred to the photomultipliers via light-guides.

To understand how to search for the W decay in the data, we look at the final-state
kinematics. Since the neutrino cannot be detected, there is no direct information on its
momentum. However, due to momentum conservation one can write

#»p⊥(ν) = − #»p⊥(H)− #»p⊥(e)

where #»p⊥(ν) is the neutrino transverse momentum while #»p⊥(H) and #»p⊥(e) denote the
total hadron transverse momentum and the electron transverse momentum, respectively.
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Figure 11.9: Transverse momenta in a leptonic W decay. On the LHS one sees a sketch
of the electron and neutrino transverse momenta. ~p⊥‖e is the component of the neutrino
transverse momentum parallel to ~p⊥(e). The correlation between these momenta is shown
in the RHS Subfig. Source: [8, p. 305].

Momenta are considered in the transverse plane to avoid leakage along the beam lines.
Since the W boson is not always produced at rest and the detector resolution is finite, the
neutrino transverse momentum #»p⊥(ν) is not exactly anti-parallel to the electron trans-
verse momentum (see Fig. 11.9). Nevertheless, there is still a strong correlation between
#»p⊥(e) and the neutrino transverse momentum projected along the electron transverse
momentum #»p⊥(ν)‖e (see Fig. 11.9).

We discuss now how to measure the W boson mass using the electron transverse mo-
mentum spectrum (see also exercises). Electron emission is assumed to be isotropic
(dN/d cos θ = const) and detector effects are emulated with Monte Carlo simulation.
One can rewrite the spectrum as

dN

dp⊥
=

dN

d cos θ

d cos θ

dp⊥
= const

d cos θ

dp⊥

where θ is the electron polar angle. Using the kinematics of Sect. 2.1 and | #»p⊥| = | #»p | sin θ,
we have

p⊥ =
MW

2
sin θ =

MW

2

√
1− cos2 θ,

which yields

dp⊥
d cos θ

=
MW

2

cos θ

sin θ
=
MW

2

√
1− sin2 θ

sin θ
=

(
MW

2

)2

√
1− 4p2⊥

M2
W

p⊥
.
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Figure 11.10: Momentum distribution of the electron perpendicular to the beam (43 events).
The histogram shows the data while the continuous and dashed lines show the Monte Carlo
expectation for a two-body decay and three-body decay scenarios, respectively. Source:
[8, p. 306].

We thus find

dN

dp⊥
∝ p⊥√

M2
W − 4p2

⊥
. (11.63)

The denominator vanishes at MW = 2p⊥, which allows to determine the W boson mass
from a measurement of the electron transverse momentum spectrum (see Fig. 11.10).

A summary of experimental results for the W boson mass is shown in Fig. 11.11.

11.13.2.2 W and Z width

Using the kinematics discussed Chap. 3, one can calculate the partial width of the W
boson. From Eq. (3.15) we have

Γ =
1

2MW

1

(2π)2

∫
dR2|Mfi|2

and Eq. (3.29) reads

dR2 =
1

8s

√
λ(s,m2

e,m
2
ν)dΩ.

Combining these results yields

dΓ

dΩ
=

1

64π2MW

|Mfi|2.
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Figure 11.11: Summary of the current W boson mass measurements. Source: [63].

Using the following result for the matrix element:

|Mfi|2 =
g2M2

W

4
(1− cos θ),

where θ is the electron polar angle in the center of mass frame, and integrating over θ,
one finds for MW = 80 GeV

Γ(W → eν) =
g2MW

48π
=
GF√

2

M3
W

6π
= 224 MeV. (11.64)

To obtain the total width (for the W− case) from the partial widths, we consider the
following points:

1. All leptonic decays (e, µ, τ) have the same width.

2. ūd and c̄s are similar to the leptonic channels (cos θc ∼ 1).

3. The other hadronic decays (ūs, c̄d, ūb, c̄b) with quarks of different families are
Cabibbo-suppressed.

Keeping these facts in mind, we have to sum over three lepton currents and two quark
currents to find the total width ΓT . Each quark current can be realized in three colors,
therefore:

ΓT (W ) = 3 lepton currents + (3 colors × 2 quark currents) (11.65)

= 9Γ(W → eν) = 2.02 GeV. (11.66)
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We now consider the Z boson decay. The Z resonance in the hadronic cross section for
e+e− annihilation can be used to count the number of neutrino families with mν < MZ/2.
One way to accomplish this is to derive a standard model prediction for the Z decay
widths as a function of the number of neutrino families Nν which can be compared to the
experimental data.

First we calculate the partial width of the Z boson decaying into neutrino pairs (see also
exercises for the explicit calculation). It can be obtained from the W boson case with some
substitutions: Using the Feynman rules given in Sect. 11.7, one finds, since cνV = cνA = 1/2,
that substituting

g → g√
2 cos θw

, MW →MZ

in the partial W width in Eq. (11.64) does the trick:

Γ(Z → νν̄) =
g2MZ

96π cos2 θw
=
GF√

2

M3
Z

12π
= 165 MeV, (11.67)

assuming MZ = 91 GeV. To obtain the total width of the Z boson, one has to sum over
all partial widths, originating from all the allowed decays into quarks and leptons. Solving
exercise sheet 99 we showed that for the general fermionic case the Z partial width is

Γ(Z → ff̄) =
g2

48π cos2 θw

√
M2

Z − 4m2
f

{
[cfV ]2

(
1 +

2m2
f

M2
Z

)
+ [cfA]2

(
1−

4m2
f

M2
Z

)}
.

Neglecting mf , one finds that the total Z width is proportional to the sum

fermions∑

mf<MZ/2

(
[cfV ]2 + [cfA]2

)

which can be calculated using Tab. 11.3. Note that only the following fermionic final states
contribute:

• three neutrino pairs: νeν̄e, νµν̄µ, ντ ν̄τ ;

• three other halves of the doublets: e+e−, µ+µ−, τ+τ−;

• two quark pairs with T3 = +1/2: uū, cc̄ and finally

• three quark pairs with T3 = −1/2: dd̄, ss̄, bb̄.

Assuming sin2 θw = 0.23, the total Z width is

ΓT (Z) =
g2MZ

48π cos2 θw

fermions∑

mf<MZ/2

(
[cfV ]2 + [cfA]2

)
= 2.41 GeV.
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(a) (b)

Figure 11.12: ALEPH event displays of Z decays and Z jets cross-section as function of√
s. Subfigure (a) shows typical events in the ALEPH detector. Starting in the top left cor-

ner and proceeding in clockwise order, one has e+e− → hadrons, e+e− → e+e−, e+e− →
µ+µ− and e+e− → τ+τ−. Source: [61, p. 15]. The Z cross section fit is shown in (b). The
dots show the measurement while the expectation from scenarios with different number
of neutrino families are shown by the continuous and dashed lines. Source: [8, p. 312].

One can measure the hadronic cross section for e+e− annihilation around the Z peak as
a function of

√
s to constrain the number of neutrino families. This is done by a fit to a

modified Breit-Wigner distribution,

σ(s) =
12πΓ(e+e−)Γ(ff̄)

M2
Z

s

(s−M2
Z)2 +M2

ZΓ2
T (Z)

, (11.68)

for the Z resonance. One also has to take into account γ/Z interference, the 1/s dependent
QED contribution, and quite substantial corrections due to initial and final state radiation.
To measure the relevant cross sections, one selects (e. g. hadronic) events, which is done
using on their basic properties, such as number of tracks (see Fig. 11.12(a)). Since the cross
section is given by σ = N/(εLint), the precision of the result depends on the precision of
the integrated luminosity measurement, as well as the trigger and its efficiency. A best fit
to the hadronic cross section yields for the number of light neutrino families

Nν = 2.994± 0.012

(see Fig. 11.12(b)). Note that because of the kinematics of 1 → 2 decay, this does not
exclude heavy (mν > MZ/2) quark and neutrino families.

As we have seen, since the cross section is inversely proportional to the integrated luminos-
ity, the luminosity error propagates into the cross section error. Therefore, it is essential

9http://www.itp.uzh.ch/~pfmonni/PPPII_FS10/sheet9.pdf
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Figure 11.13: Luminosity measurement in ALEPH using the Bhabha scattering. On the
left a small angle electron-positron scattering event is shown. (a) shows a cut including
the beam direction and (b) is a view along the beam of the two luminosity calorimeters.
A comparison of measured and simulated polar angle of the scattered electron is shown
on the right. Source: [61, p. 20].

to determine the luminosity with high accuracy. This is done by measuring the rate of
Bhabha scattering, which can be precisely calculated. As we have seen in Sect. 6.2.4,
the corresponding cross section is divergent as the electron polar angle goes to zero (see
also Fig. 11.13). This procedure yields a final precision of about 3% for the luminosity
measurement.

Selecting leptonic events, one can perform the same measurement as the one shown for
the hadronic case (see Fig. 11.14(a); note that the cross sections are considerably smaller).
This delivers the partial widths Γ(ll̄) and thus allows for a test of lepton universality.
Remembering our discussion of the total Z width, one finds for the leptonic widths (e. g.
for muons) the following prediction:

Γ(µ+µ−)

ΓT
=

[cµV ]2 + [cµA]2

∑fermions
mf<MZ/2

(
[cfV ]2 + [cfA]2

) = 3.4%.

The corresponding experimental result is

Γ(µ+µ−)

ΓT
= (3.366± 0.007)%.

A summary of the LEP results for the Z boson width is shown in Fig. 11.14(b). To conclude
this section, let us put our discussion into an historic and energetic context: Figure 11.15
shows the cross section for e+e− → hadrons as measured by various experiments at center
of mass energies up to 200 GeV. For center of mass energies smaller than about 50 GeV, the
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(a) (b)

Figure 11.14: Cross sections for electron-positron annihilation into leptons around the Z
pole measured by ALEPH (a) and LEP summary of the Z width measurements (b). Source:
[61, p. 24].

cross section agrees with the 1/s prediction obtained by QED alone (quark mass effects
included, see Sect. 8.1). Around 90 GeV the Z resonance is the dominant contribution.
The figure shows also the cross section for W production from e+e− → W+W−.

11.13.3 Forward-backward asymmetries

As we have begun to discuss in Sect. 6.2.5, the weak contributions to electron-positron
annihilation cross sections result in forward-backward asymmetries (in the angle between
the outgoing fermion and the incident positron), which are not predicted by QED alone
(see e. g. Fig. 6.17). Solving exercise sheet 810, we showed that the differential cross section
for e+e− → ff̄ , obtained by squaring the sum of the γ and the Z exchange diagram, can
be written as

dσf
dΩ

=
α2N f

c

4s

[
F1(s)(1 + cos2 θ) + 2F2(s) cos θ

]
(11.69)

where

F1(s) = Q2
f − 2vevfQfReχ+ (v2

e + a2
e)(v

2
f + a2

f )|χ|2

F2(s) = −2aeafQfReχ+ 4veaevfaf |χ|2

10http://www-theorie.physik.unizh.ch/~pfmonni/PPPII_FS10/sheet8.pdf
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Figure 11.15: Summary of the e+e− → hadrons cross section measurements as a function
of the center of mass energy

√
s.

with

χ =
s

s−M2
z + iMZΓT (Z)

the Breit-Wigner term (compare Eq. (11.68)) and

vf ≡
cfV

2 sin θw cos θw

af ≡
cfA

2 sin θw cos θw
.

To get a quantitative estimate of the forward-backward asymmetry, we define the following
quantity

AFB =
I(0, 1)− I(−1, 0)

I(0, 1) + I(−1, 0)
(11.70)

where we have defined the integral I(a, b) as

I(a, b) ≡
b∫

a

d cos θ
dσ

d cos θ
. (11.71)



11.13. Tests of electroweak theory 323

Ecm [GeV]
!

ha
d [

nb
]

! from fit
QED corrected

measurements (error bars
increased by factor 10)

ALEPH
DELPHI
L3
OPAL

!0

"Z

MZ

10

20

30

40

86 88 90 92 94

Ecm [GeV]

A
FB

(µ
)

AFB from fit

QED corrected
average  measurements

ALEPH
DELPHI
L3
OPAL

MZ

AFB
0

-0.4

-0.2

0

0.2

0.4

88 90 92 94

(a)

ALEPH

DELPHI

L3

OPAL

LEP

91.1893±0.0031

91.1863±0.0028

91.1894±0.0030

91.1853±0.0029

91.1875±0.0021
common:  0.0017
!2/DoF = 2.2/3

mZ [GeV]
91.18 91.19 91.2

ALEPH

DELPHI

L3

OPAL

LEP

 2.4959±0.0043

 2.4876±0.0041

 2.5025±0.0041

 2.4947±0.0041

 2.4952±0.0023
common:  0.0012
!2/DoF = 7.3/3

"Z [GeV]
2.48 2.49 2.5 2.51

ALEPH

DELPHI

L3

OPAL

LEP

41.559±0.057

41.578±0.069

41.536±0.055

41.502±0.055

41.540±0.037
common: 0.028
!2/DoF = 1.2/3

#0  
had  [nb]

41.4 41.5 41.6 41.7

ALEPH

DELPHI

L3

OPAL

LEP

20.729±0.039

20.730±0.060

20.809±0.060

20.822±0.044

20.767±0.025
common: 0.007
!2/DoF = 3.5/3

     R0
l

20.7 20.8 20.9

ALEPH

DELPHI

L3

OPAL

LEP

0.0173±0.0016

0.0187±0.0019

0.0192±0.0024

0.0145±0.0017

0.0171±0.0010
common: 0.0003
!2/DoF = 3.9/3

Afb
0,l

0.015 0.02 0.025

(b)

Figure 11.16: LEP results for forward-backward asymmetry AFB. (a) shows a plot of the
LEP data for AFB as a function of

√
s and (b) shows a summary of the numerical values

at
√
s = MZ and the combined result.

Thus forward-backward asymmetry means AFB 6= 0. In terms of F1, F2 defined above, we
have

AFB =
3

4

F2

F1

=
3veaevfaf

(v2
e + a2

e)(v
2
f + a2

f )
= 3

(v/a)e(v/a)f
[1 + (v/a)2

e][1 + (v/a)2
f ]
. (11.72)

Therefore, at the Z peak the asymmetry AFB is sensitive to the ratio of vector to axial
vector couplings v/a = cfV /c

f
A. Recalling the definition of cfV and cfA (see Sect. 11.7), we

see that in the electroweak theory the cV /cA ratio depends on sin2 θw:

cV /cA = 1− 4|Q| sin2 θw. (11.73)

Furthermore, rewriting Eq. (11.69) using Eq. (11.72) yields

dσ

d cos θ
∝ 1 + cos2 θ +

8

3
AFB cos θ (11.74)

(see Fig. 6.17). Figure 11.16(a) shows results for AFB by the four LEP experiments. The
corresponding numerical values are shown in Fig. 11.16(b). Combining these results gives

AFB = 0.0171± 0.0010

for the forward-backward asymmetry at
√
s = MZ .
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� W+

W−

H

ν̄l

l−

νl

l+

Figure 11.17: Feynman diagram for the decay of a heavy Higgs into a W+W− pair.

11.13.4 Searches for heavy Higgs decays into W pairs

Having studied extensively the observable consequences of non-vanishing gauge boson
masses, we now turn to the source of this phenomenon. In Sect. 11.12 we discussed prop-
erties of the Higgs boson, including its partial widths for decay into W and Z boson pairs.
Sect. 10.9 introduces the principles of Higgs production and searches; here we focus on
searches of heavy Higgs in the the H → W+W− channel.

Recall from Sect. 10.9 that for mH ' 140−175 GeV the important Higgs discovery channel
is H → W+W−, which yields two leptons and missing transverse energy in the final state
(see Fig. 11.17).

Figure 11.18 shows the orders of magnitude of various production cross sections at Teva-
tron. Note the difference of about ten orders of magnitude between the production cross
sections for heavy flavors and Higgs bosons. In addition, also the production cross sections
for Z/γ? and standard model W+W− pair production not involving Higgs boson exchange
are orders of magnitude larger than the Higgs production cross section.

How does one select events in the desired final states? To reduce the background as much
as possible, the following cuts are applied:

• Total missing energy larger than 20 GeV.
This requirement reduces the Z/γ? → leptons background.

• Invariant mass of two leptons larger than 15 GeV.
This requirement reduces the background from semi-leptonic decays of heavy quarks.

The remaining background is due to standard model W pair production not involving
Higgs bosons (see Fig. 11.19). Therefore, the remaining task is to reject this kind of elec-
troweak background obscuring the H → W+W− signal. To achieve this aim, one can
exploit the fact that the standard model Higgs is a scalar (i. e. it has spin 0). W bosons,
on the other hand, have spin 1. To conserve angular momentum, the two decay leptons
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Figure 11.18: Various production cross sections at Tevatron. Note that the scale is loga-
rithmic.

are almost collinear. Therefore, it is convenient to measure the opening angle between the
lepton pair in the transverse plane, ∆φl+l− . This allows to select only events with small
opening angle: ∆φ < 2 rad. Figure 11.20 shows plots for the ee, µµ and eµ case: The left
column shows the signal plus a considerable amount of background by various processes
unrelated to Higgs production. The right column shows ∆φ after all cuts but the ∆φ < 2
cut are applied (the ∆φ cut is indicated by arrows). If no event survives all cuts, it is
possible to set an exclusion limit on the Higgs mass. A combined Tevatron (DØ and CDF)
result using an amount of data corresponding to Lint ∼ 5 fb−1 excluding the mass range
from 162 to 166 GeV at 95% CL is shown in Fig. 11.21. The current combined Tevatron
and LEP standard model Higgs mass fit and excluded regions11 are shown in Fig. 10.2.

11http://lepewwg.web.cern.ch/LEPEWWG/
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�
q̄

q

W−

W+

� Z/γ?

q̄

q

W−

W+

Figure 11.19: Examples of W+W− production diagrams at hadron colliders not involving
Higgs boson exchange.
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are MH dependent [10]. Six Higgs boson masses from
100 GeV to 200 GeV have been studied.

In all three channels, two leptons originating from the
same vertex are required to be of opposite charge, and
must have transverse momenta pT > 15 GeV for the lead-
ing lepton and pT > 10 GeV for the trailing one (Cut 1).
Figure 1 shows the good agreement between data and
Monte Carlo simulation (MC) in distributions of the az-
imuthal opening angle ∆φ!!′ between the two leptons for
the ee (a), the µµ (c) and the eµ channel (e) after apply-
ing the lepton transverse momentum cuts.

In all cases, the background is largely dominated by
Z/γ∗ production which is further suppressed by requiring
E/T > 20 GeV in all three channels (Cut 2). Background
events are also removed if the E/T has a large contribution
from the mis-measurement of jet energy. The fluctuation
in the measurement of jet energy in the transverse plane
can be approximated by ∆Ejet · sin θjet where ∆Ejet is
proportional to

√
Ejet. The opening angle ∆φ (jet, E/T )

between this projected energy fluctuation and the miss-
ing transverse momentum provides a measure of the con-
tribution of the jet to the missing transverse energy. The
scaled missing transverse energy defined as

E/
Sc
T =

E/T√∑
jets (∆Ejet · sin θjet · cos∆φ (jet, E/T ))

2
(1)

is required to be greater than 15 (Cut 3).
The charged lepton system and the neutrinos are emit-

ted mostly back–to–back, so the invariant mass for the
leptons from the Higgs decay is restricted to MH/2.
Thus, the invariant mass m!! is required to be m!! <
MH/2 (Cut 4). In the ee channel the cut is altered to
mee < min(80 GeV, MH/2). In the µµ channel a lower
cut boundary with mµµ > 20GeV is required to remove
events from J/ψ, Υ and Z/γ∗ production. The sum of
the pT of the leptons and E/T is required to be in the range

MH/2 + 20 GeV < p!1
T + p!2

T + E/T < MH for the ee and

eµ channel and MH/2 + 10 GeV < p!1
T + p!2

T + E/T < MH

for the µµ channel (Cut 5). The transverse mass, defined

as m!!′
T =

√
2p!!′

T E/T (1 − cos∆φ(p!!′
T , E/T )), with the di-

lepton transverse momentum p!!′
T , should be in the range

MH/2 < m!!′
T < MH − 10 GeV (Cut 6). The latter two

cuts reject events from W+jet/γ and WW production
and further reduce backgrounds from Z/γ∗ production.
Finally, to suppress the background from tt̄ production,
the scalar sum of the transverse energies of all jets with
Ejet

T > 20 GeV and |η| < 2.5, HT , is required to be less
than 100 GeV (Cut 7). Remaining Z boson and multi-jet
events can be rejected with a cut on the opening angle,
∆φ!!′ < 2.0 (Cut 8), since most of the backgrounds ex-
hibit a back–to–back topology. This is not the case for
Higgs boson decays because of the spin correlations in the
decay. Figure 1 shows the distributions of the azimuthal
opening angle ∆φ!!′ between the two leptons for the ee
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FIG. 1: Distribution of the opening angle ∆φ!!′ after ap-
plying the initial transverse momentum cuts in the (a) ee,
(c) µµ and (e) eµ channel. Figures (b), (d) and (f) show
the ∆φ!!′ distributions after the final selection except for the
∆φ!!′ criterion for the ee, µµ, and eµ channel, respectively.
The arrows indicate the cut values. The QCD contribution is
negligible in Figs. (c) and (d).

(b), the µµ (d) and the eµ channel (f) before applying
the final cut on ∆φ!!′ .

To maximize the sensitivity, the selection in the µµ
channel is slightly changed for Higgs boson masses MH=
140 and 160 GeV. For a better Z/γ∗ background sup-
pression cuts 4, 5 and 6 are replaced by the following
cuts: the invariant mass mµµ should be in the range
20 GeV < mµµ < 80 GeV (Cut 4). Since the momentum
resolution is degraded for high pT tracks, an additional
constrained fit is performed to reject events compatible
with Z boson production (Cut 5). The sum of the muon
transverse momenta and the missing transverse energy
should be pµ1

T + pµ2
T + E/T > 90 GeV (Cut 6).

The efficiency for H → WW (∗) → &ν &′ν′ signal events
to pass the acceptance and selection criteria is deter-
mined using the pythia 6.2 [11] event generator followed
by a detailed geant-based [12] simulation of the DØ de-
tector. All trigger, reconstruction and identification effi-

Figure 11.20: Distribution of the opening angle ∆φll′ after applying the initial transverse
momentum cuts (a), (c), (e) and after all cuts, except for the ∆φ cut (b), (d), (f). Source:
[64].
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9

and 4 described below.
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FIG. 2: (color online). Distributions of LLR as functions of
the Higgs boson mass. We display the median values of the
LLR distribution for the b-only hypothesis (LLRb), the s+b
hypothesis (LLRs+b), and for the data (LLRobs). The shaded
bands indicate the 68% and 95% probability regions in which
the LLR is expected to fluctuate, in the absence of signal.

We extract limits on SM Higgs boson production in
pp̄ collisions at

√
s = 1.96 TeV in the mH = 130-200 GeV

mass range. We present our results in terms of Rlim, the
ratio of the limits obtained to the rate predicted by the
SM, as a function of the Higgs boson mass. We assume
the production fractions for WH , ZH , gg→H , and VBF,
and the Higgs boson decay branching fractions, are those
predicted by the SM. A value of Rlim less than or equal
to one indicates a Higgs boson mass that is excluded at
the 95% C.L.

The ratios of the expected and observed limits to the
SM cross section are shown in Fig. 3 as a function of mH .
The observed and median expected ratios are listed in Ta-
ble I, with observed (expected) values for the Bayesian
method of 1.04 (0.92) at mH = 160 GeV, 0.93 (0.87) at
mH = 165 GeV, and 1.26 (1.04) at mH = 170 GeV. We
use piecewise linear interpolations to display the combi-
nation results in Figs. 2–4, and to quote the observed
and expected excluded mass ranges. We exclude the
SM Higgs boson in the mass range 162 to 166 GeV. The
Bayesian calculation, chosen a priori, was used for this
exclusion. The corresponding expected exclusion, from
159 to 169 GeV, encompasses the observed exclusion.
The CLs calculation yields similar results, as shown in
Fig. 4. The 1-CLs distribution, which can be directly
interpreted as the level of exclusion of our search, is dis-
played as a function of the Higgs boson mass. For in-
stance, our expected limit shows that in the absence of
signal the median 1-CLs value with which we expect to
exclude a SM Higgs boson of mass 165 GeV is 97%.

In summary, we present the first combined Teva-
tron search for the SM Higgs boson using the
H→W+W− decay mode. No significant excess of can-
didates is found above the background expectation for
130<mH<200 GeV. We exclude the mass range from

1
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SM=1

FIG. 3: (color online). Observed and expected (median, for
the background-only hypothesis) 95% C.L. upper limits on
SM Higgs boson production. The shaded bands indicate the
68% and 95% probability regions in which Rlim is expected
to fluctuate, in the absence of signal. The limits displayed in
this figure are obtained with the Bayesian calculation.
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FIG. 4: (color online). Distribution of 1-CLs as a function
of the Higgs boson mass obtained with the CLs method. The
shaded bands indicate the 68% and 95% probability regions
in which the LLR is expected to fluctuate, in the absence of
signal.

162 to 166 GeV at the 95% C.L. This is the first di-
rect constraint on the mass of the Higgs boson beyond
that obtained at LEP.
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Chapter 12

Flavor physics

Quarks and leptons can be ordered in flavour doublets, each column being called a family,

Quarks:

(
u
d

) (
c
s

) (
t
b

)
Q = 2

3

Q = −1
3

,

Leptons:

(
νe
e

) (
νµ
µ

) (
ντ
τ

)
Q = 0
Q = −1

.

These arrangements correspond to an approximate flavor SU(6) symmetry. The isospin
SU(2) of p, n (Sect. 7, p. 127) or the flavor SU(3) symmetry of u, d, s (Sect. 7.3, p. 133) are
much better fulfilled since the mass differences between the different particles are much
smaller than the masses themselves.

12.1 Cabibbo angle

The structure of the charged currents,

j±µ = χ̄Lγµτ±χL,

allows transitions within a single doublet, e.g. d → u, c → s, t → b, but not between
different doublets. This would imply that the lightest particle of each doublet should be
stable (the electromagnetic and strong interactions do not allow flavor changing processes,
since photons and gluons do not carry any flavor quantum numbers), a fact which is in
contradiction with the observation that our universe is composed almost exclusively of
particles of the first family, consisting of the lightest particles.

Assuming that the weak eigenstates of the d-type quarks 1 are linear combinations of the
mass eigenstates one can reproduce the observed phenomenology. Let us first consider the

1Some authors prefer to rotate the u-type quarks. We follow here the most common version.
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case of two quark families for simplicity. We have the weak eigenstate doublets,

(
u
d′

) (
c
s′

)
,

and we assume that the weak eigenstates |d′〉 and |s′〉 are linear combinations of the mass
eigenstates |d〉 and |s〉,

|d′〉 = cos θc |d〉+ sin θc |s〉
|s′〉 = − sin θc |d〉+ cos θc |s〉 , (12.1)

where θc is called the Cabibbo angle.

Since decaying particles and decay products are mass eigenstates, this trick allows tran-
sitions between different families. Using Eq. (12.1), we can write vertex factors between
mass eigenstates,

�W+

d

u

∝ cos θc �W+

s

c

∝ cos θc,

called Cabibbo preferred decays, and,

�W+

s

u

∝ sin θc �W+

d

c

∝ − sin θc,

called Cabibbo suppressed decays. If the weak and mass eigenstates would be the
same, θc = 0 and the second series of decay could not occur. The kaons are unstable but
have a relatively long lifetime, since the decay of the s quark is Cabibbo supressed.

The introduction of the Cabibbo angle also destroys the universality of the Fermi constant,

Gn→pe−ν̄e
F = cos θcG

µ−→e−νµν̄e
F , (12.2)

with the experimentally measured value,

cos θc ≈ 0.974. (12.3)



12.2. Cabibbo-Kobayashi-Maskawa matrix 331

We can now rewrite the interaction Lagrangian for the charged current coupling to quarks,

iLW±,qint =− i g√
2

(
ū c̄

)
γµ

1− γ5

2
U

(
d
s

)
W+µ

− i g√
2

(
d̄ s̄

)
UTγµ

1− γ5

2

(
u
c

)
W−µ, (12.4)

with,

U =

(
cos θc sin θc
− sin θc cos θc

)
∈ U(2). (12.5)

We remark at this point, that U = U∗ or in other words U ∈ O(2) implying that U † = UT .

12.2 Cabibbo-Kobayashi-Maskawa matrix

In 1973, before the observation of c, b and t quarks, the existence of three families and its
implications were already hypothesised.

Analogously to Eq. (12.4), we write for three families,

iLW±,qint =− i g√
2

(
ū c̄ t̄

)
γµ

1− γ5

2
V




d
s
b


W+µ

− i g√
2

(
d̄ s̄ b̄

)
V †γµ

1− γ5

2




u
c
t


W−µ, (12.6)

where V ∈ U(3).

Recall that for a matrix V ∈ U(N):

• V contains N2 real parameters (2N2 entries minus N2 from the unitarity condition
V †V = 1),

• 2N − 1 relative phases can be factorized by a phase redefinition of the quantum
fields.

Thus V contains N2 − (2N − 1) = (N − 1)2 independent real parameters. On the other
hand, a matrix O ∈ O(N) is determined by 1

2
N(N − 1) independent real parameters

(Euler angles).

Comparing V and O, we have, Na = 1
2
N(N − 1) real angles and Np = (N − 1)2 −Na =

1
2
(N − 1)(N − 2) complex phases. It then easy to see that we always have complex phases

for N ≥ 3, implying V ∗ 6= V .
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Looking at the vertex factors connected through a CP -transformation,

�W+

i

j

∝ Vji 6= �W−

j

i

∝ V ∗ij ,

we conclude that the weak interaction violates CP invariance for N ≥ 3 through complex
phases in the CKM matrix V .

12.3 Neutrino mixing

Literature:

• Fukugita/Yanagida [66]

As in the case of d-type quarks, one can consider the phenomenology implied by neutrinos
whose mass eigenstates (ν1, ν2 and ν3) are not the same as the weak eigenstates (νe, νµ
and ντ ). The interaction Lagrangian becomes,

iLW±,lint =− i g√
2

(
ν̄1 ν̄2 ν̄3

)
U †γµ

1− γ5

2




e
µ
τ


W+µ

− i g√
2

(
ē µ̄ τ̄

)
γµ

1− γ5

2
U




ν1

ν2

ν3


W−µ, (12.7)

with U the unitary neutrino mixing matrix, also called Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix. As in the case of quarks, the existence of three neutrino
families would let room for a CP violation in the neutrino sector . Up to now, it has not
been possible to observe it experimentally.

In order to treat neutrino oscillations, it is important to remember the following facts
about neutrinos:

• They are always produced as eigenstates of the weak interaction, e.g. π− → µ−ν̄µ,

• They are always detected as eigenstates of the weak interaction, e.g. νµp→ µ−X,

• But they propagate in the vacuum as mass eigenstates.
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Assuming two lepton families (e, µ), we write the weak eigenstates as,

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉 . (12.8)

The time evolution of the mass eigenstates is given by,

|νi, t〉 = e−iEit |νi, 0〉 , (12.9)

such that the evolution of the weak eigenstates is given by,

|να, t〉 =
∑

i

Uαie
−iEit |νi, 0〉 . (12.10)

Since we know experimentally that mνi < eV, keV � E ≈ MeV, we can safely assume
that they are ultrarelativistic and make the approximation,

Ei =
√

#»p 2 +m2
i ≈ | #»p |+

m2
i

2| #»p | = | #»p |+ m2
i

2E
(| #»p | � mi) (12.11)

Inserting this in Eq. (12.9) we get,

|να, t〉 = e−i|
#»p |t


U


 e−i

m2
1t

2E 0

0 e−i
m2

2t

2E


U †



αβ

|νβ, t〉

≈ e−i|
#»p |t
(
U

[
1− im2

1t

2E
0

0 1− im2
2t

2E

]
U †
)

αβ

|νβ, t〉 ,

and, using,

U †m†mU = m2
Diag =

(
m2

1 0
0 m2

2

)
,

we obtain (reexpressing 1 + iX = eiX),

|να, t〉 = e−i|
#»p |t
(

e−i
m†m
2E

t
)
αβ
|νβ, 0〉 . (12.12)

We can interpret Eq. (12.12) as the solution of the Schrödinger equation,

i
d

dt
|να, t〉 =

(
| #»p |δαβ +

(m†m)αβ
2E

)
|νβ, t〉 . (12.13)
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We now compute the m†m matrix,

m†m = Um2
DiagU

† =

(
m2

1 cos2 θ +m2 sin2 θ 1
2
(m2

2 −m2
1) sin 2θ

1
2
(m2

2 −m2
1) sin 2θ m2

1 sin2 θ +m2
2 cos2 θ

)

=
m2

1 +m2
2

2
1 +

∆m2

2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
,

with ∆m2 = m2
2 −m2

1. The term proportional to the identity does not induce a mixing
and corresponds to a trivial phase factor. Inserting this result in Eq. (12.13) and dropping
the diagonal term, we get,

i
d

dt

(
|νe, t〉
|νµ, t〉

)
=

∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)(
|νe, t〉
|νµ, t〉

)

= Hvac

(
|νe, t〉
|νµ, t〉

)
,

with solution,
(
|νe, t〉
|νµ, t〉

)
= e−iHvact

(
|νe, 0〉
|νµ, 0〉

)
.

Writing,

e−iHvact =

(
Aee(t) Aeµ(t)
Aµe(t) Aµµ(t)

)
,

and using,

Hvac =
∆m2

2E
(sin(2θ)σ1 − cos(2θ)σ3) ,

we get,

e−iHvact = cos

(
∆m2

2E
t

)
1− i sin

(
∆m2

2E
t

)
(sin(2θ)σ1 + cos(2θ)σ3) . (12.14)

We finally get the transition amplitude from the projection of |νe, t〉 onto 〈νe| :

〈νe|νe, t〉 = Aee(t) = cos

(
∆m2

2E
t

)
− i sin

(
∆m2

2E
t

)
cos 2θ,

and the transition probability,

Pνe→νe(t) = |〈νe|νe, t〉|2 = 1− sin2(2θ) sin2

(
∆m2

2E
t

)
(12.15)

Pνe→νµ(t) = |〈νµ|νe, t〉|2 = sin2(2θ) sin2

(
∆m2

2E
t

)
(12.16)

A useful formula to estimate the distance over which full oscillations take place is (since
the neutrino is ultrarelativistic L = t),

∆m2L

4E
≈ 1.27

∆m2[eV2]L[m]

E[MeV]
. (12.17)
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(a) (b)

Figure 12.1: Neutrino production and detection. During a sufficiently long journey, the
neutrinos may change character (b). Source: B. Kayser.

12.4 Neutrino physics

In the previous sections we have seen that neutrino oscillation can be accounted for by
assuming that neutrino flavor eigenstates are not identical to the mass eigenstates. Here
we will again take a look at the two-neutrino case, discuss what can be measured in
experiment and extend the theoretical treatment of oscillation to the three-neutrino case.
Based on these results, we will proceed to the discussion of phenomenological aspects. It
will become clear that to measure absolute neutrino masses, different experiments than
the ones documenting neutrino oscillations are necessary. Their discussion will conclude
this section.2

12.4.1 Neutrino oscillation theory revisited

Consider the charged-current interaction or W boson decay W → eνe (see Fig. 12.1(a)).
Since the electron (positron) produced together with its anti-neutrino (neutrino) can be
detected and identified, the neutrino flavor at the time of production is fixed and in
principle known (see also [70]). Detection of the neutrino proceeds via the inverse process,
by lepton number conservation producing again an electron (positron), if the flavor is
conserved while the neutrino travels from its place of production to the detector. The
analogue holds for µ and τ .

However, if neutrinos have mass, it is possible for them to change their flavor, given the
journey to the detector is long enough (see Fig. 12.1(b)). As we have seen, a difference in
the mass eigenvalues δm 6= 0 is a necessary condition for oscillation to occur. Recently,
a first candidate for a direct observation of the flavor change νµ → ντ was reported.3

2This section is heavily based on lectures by E. Lisi at the CHIPP PhD school, Jan. 2010 [67, 68, 69].
3http://operaweb.lngs.infn.it/IMG/pdf/OPERA_press_release_May_2010_english-5.pdf
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= +να

ν1

ν2

(a)

At Detection (L=ct):
mixure of  flavour eigen-states

+ = = +
ν1

ν2

να

νβ

(b)

Figure 12.2: Neutrino mixing in the two-neutrino case.

In Sect. 12.4.2 we will discuss further experimental evidence that such flavor oscillations
actually occur. This means that neutrino flavor is not a constant of motion. From elec-
troweak theory we know that left-handed neutrinos νl are produced together with the
corresponding lepton l in charged-current interactions (see Sect. 11.5). Recall that the
right-handed neutrino carries neither SU(2)L nor U(1)Y charge and thus decouples from
the electroweak interactions. Recent experiments, probing probabilities P (να → νβ), have
found that flavor is not conserved over macroscopic distances, especially in the so-called
disappearance mode:

P (νe → νe) < 1

P (νµ → νµ) < 1

means that one finds less events than expected from the production rate, i. e. individual
lepton number is not conserved.

These phenomena can be explained by neutrino mixing: For neutrinos, flavor eigenstates
{να} are not identical to mass eigenstates {νi} and thus they can be expressed as linear
combinations of each other. For the left-handed fields this reads, in analogy to the CKM
matrix,

ναL =
3∑

i=1

UαiνiL (12.18)

for α = e, µ, τ . Here U = U † is called PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix
with U → U∗ for ν → ν̄.

So, how does this setup bring about neutrino mixing? At production we start out with a
pure flavor eigenstate να which is according to Eq. (12.18) a certain superposition of mass
eigenstates, say ν1 and ν2 (see Fig. 12.2(a)). If the eigenvalues of the mass eigenstates are
different, so are their energies: E1 6= E2. Thus the free time evolution operator introduces
different phases and the superposition changes while traveling the distance L ' ct. Now,
neutrino detection is a projection to one flavor eigenstate, such that, depending on the
mixing angle θ and the mass difference δm2, the number of produced neutrinos of flavor α
may differ from the number of detected neutrinos of this flavor (see Fig. 12.2(b)). Recall
that for the two-neutrino case the superpositions can be written as

(
να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
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where θ is the mixing angle. This ansatz predicts the phenomena of “disappearance”,

P (να → να) = P (νβ → νβ) = P (ν̄α → ν̄α) = P (ν̄β → ν̄β) = 1− sin2 2θ sin2 ∆12

2
,

and “appearance”,

P (να → νβ) = P (νβ → να) = P (ν̄α → ν̄β) = P (ν̄β → ν̄α) = sin2 2θ sin2 ∆12

2

where ∆12 ≡ ∆m2t/(2E) ' ∆m2L/(2E). Stating the above in another way, we can say
that in the two-neutrino case the transition probability is

P (να → νβ) = sin2 2θ sin2 ∆m2L

4E

where

∆m2L

4E
= 1.27

(
∆m2

eV2

)(
L

km

)(
GeV

E

)
.

Let us define the oscillation wavelength

λosc =
4πE

∆m2

and rewrite the transition probability accordingly:

P (να → νβ) = sin2(2θ)︸ ︷︷ ︸
mixing term

sin2

(
π
L

λosc

)

︸ ︷︷ ︸
oscillation term

. (12.19)

The LHS of Eq. (12.19) is determined in experiment by counting events and normalizing.
Since the mixing angle θ is fixed, so is the mixing term on the RHS. However the os-
cillation term can be influenced by the experimental design: Although ∆m2 is fixed, the
experimenter is free to choose the source-detector distance L and can, by selecting the
production process, influence the neutrino energy E and thus λosc. We now discuss the
behavior of Eq. (12.19) for different sizes of L/λosc.

A) L/λosc � 1. E. g. this is realized for ∆m2 ∼ 10−5 eV2 and E ∼ 1 MeV which is
the energy scale of nuclear reactions; at the same time L needs to be small, e. g.
L ∼ 1 km. Since the argument of the oscillation term is small, it can be approximated
by the first term of the Taylor series:

sin2

(
π
L

λosc

)
'
(
π
L

λosc

)2

.

Therefore the transition probability is small and the effect might be very difficult
to measure, depending on the experimental resolution.
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B) πL/λosc ' 1. E. g. consider the case that L and E are such that πL/λosc '
π/2, i. e. the oscillation term is at its first maximum. Possible numbers are:
∆m2 ' 10−3 eV2, E = 1 GeV (energy scale of accelerators and cosmic rays) and
L ' 1000 km. In this case

1.27∆m2 L

E
' 1.3 ' π

2

such that the sensitivity to the mixing term is maximized.

C) L/λosc � 1: For instance, this is the case if ∆m2 ' 10−5 eV2, L =
distance earth-sun ∼ 150 · 106 km, E ∼ 1 MeV. Therefore, fast oscillation is taking
place which leads to a measurement of the average due to uncertainties in E and L:

〈
sin2

(
π
L

λosc

)〉
=

1

2
⇒ P (να → νβ) =

1

2
sin2(2θ).

To conclude this comment on orders of magnitude, let us take a look at the detector sizes
needed in neutrino experiments. The number of events is given by the product of cross
section and integrated luminosity:

Nevents = ΦσνpTNp (12.20)

where Φ ∼ 1010−12 m−2s−1 is the flux of incoming neutrinos, σνp ∼ 10−45 m−2 is the cross
section4 of neutrino-proton scattering, T ∼ 1y ' 107 s is the observation time and Np is
the number of protons in the target. One can see that, although one can try to increase
the flux or measure longer, the main problem is the small cross section σνp. The only
parameter left to tune is the number of protons Np: To find a reasonable number of
events, one has to choose e. g. Np > 1030 which corresponds to about 107 mol, i. e. we are
talking about detector sizes of tons and kilotons.

Having discussed the behavior of the oscillation term, we can think about what an ex-
periment may be sensitive to. As we have seen, for fast oscillations (large ∆m2) the sin2

is averaged over and there is, due to uncertainty in E and L no sensitivity on the mass
difference (see Fig. 12.3). If the experiment does not find an oscillation signal, one can ex-
clude the RHS region of the curve. To constrain the parameter space, various experiments
with different sensibilities are needed.

To attack the case of three light neutrinos, we have to consider a 3 × 3 mixing matrix.
One possible parametrization is (Γδ = diag(1, 1, eiδ))

U = O23ΓδO13Γ†δO12

=




1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23






cos θ13 0 sin θ13e
−iδ

0 1 0
− sin θ13e

iδ 0 cos θ13






cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


 .

4This is only a rough estimate.
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Figure 12.3: Oscillation experiment sensitivity. Source: [71].

Experiment shows that sin2 θ23 ∼ 0.5 which means almost maximal mixing, sin2 θ13 .
few %, δ = ? (small) and sin2 θ12 ∼ 0.3. This structure is very different from the CKM
case, where the diagonal elements are dominant. What about mass differences in the three-
neutrino case? We do not know the absolute ν masses, but they roughly fulfill mi . 1 eV.
For ultrarelativistic neutrinos in vacuum we may expand the energy as

E =
√

#»p 2 +m2
i ' | #»p |+

m2
i

2E
.

Since the oscillation phase is caused by ∆E ∝ ∆m2
ij, this is what oscillation experiments

probe. For three neutrinos there are two independent mass differences. For historical
reasons the small splitting δm2 is called “solar” mass2 splitting:

δm2 ' 7.7 · 10−5 eV2,

for the same reason the large splitting is called “atmospheric” mass2 splitting:

∆m2 ' 2.4 · 10−3 eV2.

Note that, because δm2/∆m2 ' 1/30, it is very difficult to be sensitive to both mass
splittings in the same experiment (L/E is fixed). The absolute masses mi are unknown,
and thus it is possible to arrange the mass eigenstates in two ways, corresponding to the
labeling convention

δm2 = m2
2 −m2

1 > 0

|∆m2| = |m2
3 −m2

1,2|
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Figure 12.4: Normal and inverted mass hierarchies for the three-neutrino case. Source:
[71].

(see Fig. 12.4).

To find simple expressions for the oscillation probabilities in the three-neutrino case, we
apply two approximations: We neglect the complex phase (δ = 0) and we assume that
only one mass scale is relevant:

|δm2| � |∆m2| and |δm2| � E

L
.

This simplified three-neutrino oscillation is described by three parameters only: the mass
difference ∆m2, and the mixing angles θ13 and θ23. This allows to write the oscillation
probabilities as follows [72]:

P (νe → νe) = 1− sin2 2θ13 sin2 ∆m2L

4E
(12.21)

P (νe → νµ) = sin2 2θ13 sin2 θ23 sin2 ∆m2L

4E
(12.22)

P (νµ → ντ ) = sin2 2θ13 sin2 θ23 sin2 ∆m2L

4E
(12.23)

P (νe → ντ ) = sin2 2θ13 cos2 θ23 sin2 ∆m2L

4E
(12.24)

P (νµ → ντ ) = cos4 θ13 sin2 2θ23 sin2 ∆m2L

4E
. (12.25)

Note that the last equation gives the oscillation probability measured at the OPERA
experiment (mentioned above). Not neglecting the CP violating phase δ, one has

P (να → νβ) = δαβ − 4
∑

i<j

ReJ ijαβ sin2

(
∆m2

ijL

4E

)
− 2

∑

i<j

ImJ ijαβ sin

(
∆m2

ijL

2E

)
(12.26)

where ∆mij = m2
i −m2

j and J ijαβ = UαiU
∗
βiU

∗
αjUβj. CP violation would be caused by the

imaginary part in Eq. (12.26); if it indeed existed, there would be CP violation not only
in the quark sector, but also in the lepton sector.
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Figure 12.5: Action of CP and T transformations on the να → νβ process from source (S)
to detector (D). Source: [71].

Let us now take a closer look at the justification of the oscillation probabilities in
Eq. (12.21) to (12.25). First consider the influence of symmetries. Figure 12.5 shows the
action of CP and T transformations on the να → νβ process from source (S) to detector
(D). CP mirrors the setup and trades particles for antiparticles while T reverses the flow
of time. This can be summarized as follows:

CP invariance P (να → νβ) = P (ν̄α → ν̄β) (ν ↔ ν̄)

T invariance P (να → νβ) = P (νβ → να) (α↔ β)

P (ν̄α → ν̄β) = P (ν̄β → ν̄α)

CPT invariance P (να → νβ) = P (ν̄β → ν̄α) (ν ↔ ν̄)&(α↔ β)

Looking at Eq. (12.26), one sees that (α ↔ β) or (ν ↔ ν̄) amount to (U ↔ U∗). There-
fore, CP invariance requires U = U∗, while CPT invariance holds in any case. If the
experiments are such that the two approximations used to obtain Eq. (12.21) to (12.25)
are valid, the corresponding expressions read

P (να → να) = 1− 4|Uα3|2(1− |Uα3|2) sin2

(
∆m2L

4E

)

P (να → νβ) = 4|Uα3|2|Uβ3|2 sin2

(
∆m2L

4E

)
α 6= β.

Using |Ue3|2 = sin2 θ13, |Uµ3|2 = cos2 θ13 sin2 θ23, |Uτ3|2 = cos2 θ13 cos2 θ23, one recovers
Eq. (12.21) to (12.25). Measurements based on these results are neither sensitive to the
type of mass hierarchy nor to CP violation. Also there is no sensitivity to δm2 and θ12.
Finally, there is no difference between the expressions for ν and ν̄. Table 12.1 shows a sum-
mary of the experiments for which the said approximation, ∆m2L/(4E) ' 1, holds. These
include atmospheric neutrino experiments (ATM), long-baseline accelerator experiments
(LBL) and short-baseline reactor experiments (SBR). Note that the first two oscillation
probabilities reduce to the two-neutrino form for θ13 → 0 and the second two are constant
for θ13 → 0.

At the other side of the mass spectrum, there are experiments mainly sensitive to δm2
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Experiment Measurement

OPERA (LBL) P (νµ → ντ ) ' c4
13 sin2 2θ23 sin2(∆m2L/(4E))

K2K, MINOS (LBL),
atmospheric

P (νµ → νµ) ' 1− 4c2
13s2

23(1− c2
13s2

23) sin2(∆m2L/(4E))

ATM, LBL P (νµ → νe) ' s2
23 sin2 2θ13 sin2(∆m2L/(4E))

CHOOZ (SRB) P (νe → νe) ' 1− sin2 2θ13 sin2(∆m2L/(4E))

Table 12.1: Summary of neutrino experiments with ∆m2L/(4E) ' ∞. s2
ij = sin2 θij and

c2
ij = cos2 θij.

where

δm2L

4E
' O(1) (12.27)

∆m2L

4E
� 1. (12.28)

In this case

P (νe → νe) ' cos4 θ13

[
1− sin2 2θ12 sin2

(
δm2L

4E

)]
+ sin4 θ13 (12.29)

which holds e. g. for the KamLAND long-baseline reactor experiments. Note that also in
this case there is no dependence on hierarchy, neutrino-antineutrino interchange and CP
violation.

To conclude the theory part, let us summarize the above discussion. We have worked out
approximate oscillation probabilities as a function of dominant mass mixing parameters
for different classes of experiments (see Fig. 12.6). Furthermore, we have seen that the
smallness of θ13 and of δm2/∆m2 make it difficult to probe CP violation and the hierarchy
via oscillations in current experiments. Finally [73, p. 215], matter effects can occur if the
neutrinos under consideration experience different interactions by passing through matter.
In the Sun and the Earth νe can have neutral-current and charged-current interactions
with leptons because of the existence of electrons, while for νµ and ντ only neutral-current
interactions are possible. This is not being discussed any further here, see e. g. [73].

12.4.2 Phenomenology – experiments and current knowledge

Figure 12.7 shows combined results of neutrino experiments. In the excluded regions,
no oscillations are observed; note that the (more or less) symmetric shape in the upper
part of the plot is because for the three-neutrino case (and because of matter effects) the
dependence is not only on sin2 2θ, such that octant symmetry, P (θ) = P (π/2 − θ), (see
also Fig. 12.3) does not hold in general and the second octant has to be unfolded (see
Fig. 12.8). In any case, one realizes that there are many experimental results available.
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Figure 12.6: Summary of experimental sensitivities to the neutrino mixing matrix. Source:
[71].

Figure 12.7: Summary of neutrino oscillation experiments. Source: Particle Data Group
2009.
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Figure 12.8: Oscillation experiment sensitivity as a function of θ, rather than sin2 2θ.
Source: [71].

Their three-neutrino interpretation is summarized in Fig. 12.9; the numerical values (with
one digit accuracy) read:

δm2 ∼ 8 · 10−5 eV2

∆m2 ∼ 3 · 10−3 eV2

mν < O(1) eV

sign(∆m2) = ?

sin2 θ12 ∼ 0.3

sin2 θ23 ∼ 0.5

sin2 θ13 ∼ few %

δ(CP ) = ?.

Figure 12.10 gives an overview of which type of experiment contributed to the individual
parts of the present knowledge on neutrino mass properties. In the following we discuss
how such information is constrained by the following types of experiments:

• Short-baseline reactor;

• Atmospheric;

• Long-baseline accelerator and

• Solar.

The short-baseline reactor experiment CHOOZ. Figure 12.11 shows the general
setup of the CHOOZ experiment. Nuclear fission in a reactor produces antineutrinos via
neutron decay: n→ p+ e− + ν̄e, leading to production rates as high as ∼ 6 · 1020 s−1, the
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Figure 12.9: Summary of the current knowledge on neutrino oscillations. Source: [71].

Figure 12.10: Origin of the current knowledge on neutrino oscillations. Source: B. Kayser.
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Figure 12.11: Setup of short-baseline reactor experiments. Source: [71].

Figure 12.12: Neutrino detection via inverse beta decay.
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energy being of the order of MeV. Detection is accomplished by inverse β-decay: ν̄e+p→
e+ +n; n+p→ d+γ, i. e. an incoming antineutrino hits a proton in the scintillator which
acts both as target and detector, producing a positron and a neutron (see Fig. 12.12).
In the scintillator, the positron annihilates with an electron to produce two photons,
both at 511 keV. Some 210µs later the neutron is captured, producing an excited state,
which decays emitting a photon of about 2.2 MeV. Taken together, due to their energy
and temporal pattern, the three photons produced in total constitute a clear signature. In
particular, the fact that the third γ is delayed allows for good background rejection. What
does one expect assuming that there are no oscillations visible with this setup? The reactor
antineutrino spectrum is shown in Fig. 12.13(a) together with the cross section for inverse
β-decay. Convoluting both distributions yields the observed spectrum. However, if there
are oscillations the picture changes (see Fig. 12.13(b)). As one can see in Fig. 12.13(c),
the CHOOZ results are in agreement (within a few % error) with the assumption that
there are no oscillations happening. Based on the one-mass scale dominance interpretation
discussed above, one uses the disappearance formula in Tab. 12.1 to produce the exclusion
plot shown in Fig. 12.13(d). To reduce systematics (by using a second close detector), there
is worldwide activity to build a new reactor experiment with higher θ13 resolution.

Atmospheric neutrinos: the Super-Kamiokande breakthrough. Figure 12.14(a)
shows the zenith angle dependence of the number of events in the 50 kt Super-Kamiokande
detector. One observes that there is a deficit in µ-like events in the up-going direction,
whereas the electron-like events follow more or less the expectations. Atmospheric neu-
trinos with electron or muon flavor are produced as secondary (anti)particles in decays
of mesons produced by cosmic rays hitting the atmosphere (see Fig. 12.15(b)). Although
the primary flux is affected by large normalization uncertainties, the neutrino flavor ratio
(about twice as much µ neutrinos than electron-neutrinos) is robust within a few per-cent.
As we have seen, the idea is to look up and down, since the neutrino flux from opposite
directions is the same, because for the opposite side the increased flux dilution (∼ 1/r2)
is compensated by the larger production surface (∼ r2) (see Fig. 12.14(b)). The actual
detection employs again charged-current interactions in the target. It is possible to distin-
guish the muonic from the electronic final state by means of the Cherenkov ring sharpness:
Producing showers in the target, the electron/positron smears out its Cherenkov ring (see
Fig. 12.16). This method does not allow for charge discrimination and τ events are not
reconstructed. A summary of the zenith distributions at Super-Kamiokande is shown in
Fig. 12.17. One can observe that the distribution of electronic events is more or less in
agreement with the expectation for no mixing, while there is a deficit in muonic events
from below, compared to the expectation for no oscillation. Observations over several
decades of L/E show the same results. How to interpret them? In terms of oscillations
this means that the channel νµ → νe is non-existing or subdominant (in agreement with
CHOOZ) and that the channel νµ → ντ is dominant. Recall that the one-mass scale
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(a) (b)

(c) (d)

Figure 12.13: Results of the short-baseline reactor experiment CHOOZ.
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            Atmospheric neutrinos: 
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Figure 12.14: Zenith angle dependence of µ-like events in the Super-Kamiokande experi-
ment. Source: T. Kajita at Neutrino ’98, Takayama.

approximation for θ13 = 0 reads

P (νµ → ντ ) = sin2 2θ23 sin2

(
∆m2L

4E

)
. (12.30)

The results are consistent with other atmospheric experiments using different techniques
(MACRO, Soudan2) but with lower statistics. Performing a dedicated L/E analysis in
Super-Kamiokande, it is even possible to “see” one half-period of the oscillation (dis-
torted by convolution with resolution, see Fig. 12.18(a)). Overall, the Super-Kamiokande
measurement yields strong constraints on the parameters ∆m2 and θ23 (see Fig. 12.18(b)).

Long-baseline neutrino experiments. With long-baseline experiments it is possible
to reproduce atmospheric µ-neutrino physics under controlled conditions (known flux
etc.). Sketches of such experiments in the US, Japan and Europe are shown in Fig. 12.19.
An example of neutrino beam production is shown in Fig. 12.20. Protons hitting a fixed
target produce pions which in turn decay into muons and muon neutrinos. To obtain a
focussed beam, the pions have to be focussed in the first place. This is achieved with
magnetic lenses, so called “horns”. Due to the production mode via pion decay, there is a
small contamination by electron neutrinos. Far detection of the neutrinos is achieved by
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(a) (b)

Figure 12.15: Production of atmospheric neutrinos. The absolute value of the primary flux
is not known precisely (a), but the flavor ratio is robust within a few percent (b).

14 

Detection in SK 
Parent neutrinos detected via CC interactions in the target (water). 
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Figure 12.16: Detection in Super-Kamiokande. Parent neutrinos are detected via charged-
current interactions in the water target.
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Figure 12.17: Super-Kamiokande results on atmospheric neutrinos.
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Figure 12.18: Super-Kamiokande results on oscillation period (a) and constraints on the
parameters ∆m2 and θ.
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19 

         Long-baseline neutrino experiments  
             (K2K, MINOS, OPERA) 

“Reproducing atmospheric !! physics” in controlled conditions  

Figure 12.19: Examples of long-baseline neutrino experiments. Source: [71].

the Cherenkov technique at Super-Kamiokande (K2K and T2K) or by a steel/scintillator
detector in the case of MINOS. Both experiments are supplemented by near detectors to
control the flux of muon neutrinos for normalization. Once more the dominant probability
is P (νµ → ντ ) = sin2 2θ23 sin2(∆m2L/4E) such that the results can be compared to the
atmospheric results. Combining the corresponding exclusion plots, one finds the oscillation
parameters to be consistent among the experiments (see Fig. 12.21). The OPERA detector
searches for dominant oscillations via τ appearance. This is done using a hybrid of emulsion
layers and scintillator trackers: If the tracker indicates a candidate event, the layers are
scanned to document tau decays (see Fig. 12.22).

Figure 12.20: Muon-neutrino beam production at hadron accelerators.
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Figure 12.21: Long-baseline neutrino experiments combination and consistency check with
atmospheric results.

Figure 12.22: Sketch of the OPERA detector (LHS) and of a reconstructed event (RHS).
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   Production 

pp (+CNO) cycle 

Figure 12.23: Production of solar neutrinos in the pp cycle.
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Solar neutrinos. We now turn to experiments sensitive to the small mass splitting δm2.
Solar neutrino production proceeds via the pp (and CNO) cycles (see Fig. 12.23), where
the energy spectrum of the neutrinos varies with the stage of their production. There
are different ways to detect “solar neutrinos”. In the radiochemical method, one counts
the decays of unstable final-state nuclei. Advantageous is the low energy threshold of this
method. Problematic is, though, the loss/integration of the energy and time information.
Possible reactions for detection are

37Cl + νe → 37Ar + e− (CC) Homestake
71Ga + νe → 71Ge + e− (CC) GALLEX/GNO, SAGE.

The second detection possibility for solar neutrinos is elastic scattering:

νx + e− → νx + e− (NC,CC) SK, SNO, Borexino

where events are detected in real time with either a high energy threshold (Cherenkov,
directional) or with a low threshold (scintillators). Thirdly, there is the possibility to
detect solar neutrinos via interactions with deuterium, where the charged current events
are detected in real time and the neutral current events are separated statistically and
using neutron counters. The corresponding reactions read:

νe + d→ p+ p+ e− (CC) SNO

νx + d→ p+ n+ νx (NC) (Sudbury Neutrino Observatory).

All CC-sensitive results on solar neutrinos indicated a νe deficit, when compared to solar
model expectations (see Fig. 12.24(a)). Interpreting the results in terms of neutrino oscil-
lations yielded solar constraints on δm2 and θ12 (see Fig. 12.24(b)). A crucial role in this
development was played by the Sudbury Neutrino Observatory. As we have seen, at SNO
deuterium was used as target. In deuterium one can separate CC events (induced by νe
only) from NC events (induced by νe, νµ, ντ ), and double check via elastic scattering
events (due both to NC and CC). In terms of flux this means

CC

NC
' Φ(νe)

Φ(νe) + Φ(νµ,τ )
.

Therefore

CC

NC
< 1⇒ Φ(νµ,τ ) > 0⇒ P (νe → νµ,τ ) 6= 0

since solar neutrinos are produced exclusively as electron neutrinos. It was found that
CC/NC ∼ 1/3 < 1 and the solar model turned out to be adequate. Note also that since
CC/NC ∼ P (νe → νe) ∼ 1/3 < 1/2 this is also evidence of three-neutrino like mixing and
of matter effects. A summary of neutrino mass differences and mixing parameters with
their nσ ranges from a global three-neutrino analysis is shown in Fig. 12.25.
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30 

Results 

All CC-sensitive results indicated a !e deficit…  

…as compared to solar model expectations  
(a) (b)

Figure 12.24: Electron neutrino deficit in solar neutrino measurements as compared to
standard solar model (a) and parameter constraints from interpretation in terms of mixing
(b).

Figure 12.25: Synopsis of neutrino mass splitting and mixing parameters.
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What are the next experimental steps in determining these parameters? First of all it is
important to know θ13 more precisely. Since sin2 θ13 = |Ue3|2, this is the small νe part of ν3.
Thus what is needed is an experiment with L/E sensitive to ∆m (L/E ∼ 500 km/GeV),
and involving νe. One possibility is disappearance of ν̄e produced by a reactor while
traveling L ∼ 1.5 km. This process depends on θ13 alone (recall Eq. (12.21)):

P (ν̄e disappearance) = sin2 2θ13 sin2 ∆m2L

4E
.

Another interesting possibility is the measurement of P (νµ → νe) for νµ produced by
accelerators with L several hundred kilometers. This process depends on θ13, θ23, on
whether the hierarchy is normal or inverted and on whether CP is violated (δ).

12.4.3 Absolute masses

As we have seen, neutrino oscillations constrain neutrino mixings and mass splittings but
not the absolute mass scale. E. g., one can choose the lightest neutrino mass as a free
parameter. However, the lightest neutrino mass cannot be directly observed. There are
three realistic observables to attack neutrino masses:

1. β decay. A non-vanishing neutrino mass can affect the spectrum endpoint in β decay.

2. Neutrinoless double beta decay. This is only possible for Majorana neutrinos, we
will not discuss this possibility here.

3. Cosmology. Non-vanishing neutrino masses can affect large scale structures in the
standard model of cosmology, constrained by CMB and other data. Again, we will
not go into detail here.

One can use the high energy end of a beta decay spectrum like the one shown in Fig. 11.1(a)
to search for neutrino masses. Since beta decay is essentially emission and decay of a W
boson, the matrix element squared is proportional to G2

F . Thus the decay rate reads
dΓ ∝ G2

F × (phase space factor). The energy spectrum can be written as

dΓ

dEe
∝
{
G2
FpeEe(Q− Ee)2 (mν = 0)

G2
FpeEe(Q− Ee)

√
(Q− Ee)2 +m2

ν (mν > 0)

where Q is the high energy endpoint of the electron spectrum. Tritium is well suited for
this experiment, since Q (18.57 keV) and half life (12.32 y) are low. The reaction reads as
follows:

3H→ 3He + e− + ν̄e.

Figure 12.26 shows a close-up of the spectrum around its endpoint. Note that only a very
small fraction of all events lies in the region sensitive to the neutrino mass. To detect its
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effect, good energy resolution is needed. In fact, E0 is not Q, but the end point value
corrected by a recoil contribution which can be assumed to be constant in the region of
interest (Erec = 1.72 eV): E0 = Q− Erec (see [74, 75] for details).

There are three mass eigenstates whose eigenvalues cannot be individually resolved by
this experiment: Beta-decay produces electron neutrinos; as we have seen, these are su-
perpositions of the three mass eigenstates νi. Therefore, the experiment is sensitive to the
sum of the masses mi, weighted by the squared mixing coefficients |Uei|2:

mβ =
√

c2
13c2

12m
2
1 + c2

13s2
12m

2
2 + s2

13m
2
3

which is called “effective electron neutrino mass”. Note that the mass eigenstate with the
largest electron flavor component is ν1, |Ue1|2 ' cos2 θ12 ' 0.7, and it cannot be excluded
that ν1 is nearly massless (in the normal hierarchy, see Fig. 12.4). A historical summary of
the mass limits obtained by the beta-decay method is shown in Fig. 12.27. Latest bounds
are at the level of 2 eV.

The significant improvement in the neutrino mass sensitivity at the Troitsk and the Mainz
experiments (compared to the older ones) is due to so-called MAC-E-Filters (Magnetic
Adiabatic Collimation with an Electrostatic Filter) [74, p. 17]. Figure 12.28 shows the
main features of the MAC-E-Filter. β electrons emitted by the tritium source in the
LHS solenoid into the forward hemisphere are guided magnetically on a cyclotron motion
along the magnetic field lines into the spectrometer, resulting in an accepted solid angle
of nearly 2π. On their way into the center of the spectrometer the magnetic field B
drops adiabatically by several orders of magnitude keeping the ratio of cyclotron energy
and magnetic field constant: E⊥/B = const. Therefore, nearly all cyclotron energy E⊥ is
transformed into longitudinal motion giving rise to a broad beam of electrons flying almost
parallel to the magnetic field lines. Finally, the parallel beam of electrons is energetically
analyzed by applying an electrostatic barrier. The KATRIN experiment, currently under
construction, is expected to improve the mass limit by one order of magnitude to about
0.2 eV.

Neutrino physics is a vast field, accordingly important topics like Majorana neutrinos,
neutrino-less double-beta decay, cosmological bounds on the neutrino mass and future
perspectives in neutrino physics are not discussed here (see lecture on neutrino physics
by Prof. Rubbia5).

5http://neutrino.ethz.ch/Vorlesung/HS2009/
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Figure 4: Expanded β spectrum around its endpoint E0 for m(νe) = 0 (red
line) and for an arbitrarily chosen neutrino mass of 1 eV (blue line). In the
case of tritium, the gray-shaded area corresponds to a fraction of 2 · 10−13 of
all tritium β decays.

numerical calculation of the final states of the T2 molecule. The transition to
the electronic ground state of the 3HeT+ daughter ion is not a single state,
but broadened due to rotational-vibrational excitation with a Gaussian stan-
dard deviation of σ = 0.42 eV. Secondly the first group of excitated states
starts at around Vj = 25 eV. More recent calculations agree to these results
[25].

The neutrino mass influences the β spectrum only at the upper end below
E0, where the neutrino is non-relativistic and can exhibit its massive char-
acter. The relative influence decreases in proportion to m2(νe)/ε

2 (see figure
4) leading far below the endpoint to a small constant offset proportional to
−m2(νe).

Figure 4 defines the requirements of a direct neutrino mass experiment
which investigates a β spectrum: The task is to resolve the tiny change of
the spectral shape due to the neutrino mass in the region just below the
endpoint E0, where the count rate is going to vanish. Therefore, high energy
resolution is required combined with large source strength and acceptance as

12

Figure 12.26: Close-up of the high-energy end of the beta decay spectrum. In the case of
tritium the shaded area corresponds to a fraction of about 2 · 10−13 events. Source: [74,
p. 12].

Figure 6: Recent results of tritium β decay experiments on the observable
m2(νe).The experiments at Los Alamos, Zürich, Tokyo, Beijing and Liver-
more [36, 37, 38, 39, 40] used magnetic spectrometers, the tritium experi-
ments at Mainz and Troitsk [41, 42, 43, 44] are using electrostatic spectrom-
eters of the MAC-E-Filter type (see text).

Livermore National Laboratory and Beijing. The sensitivity on the neutrino
mass have improved a lot but the values for the observable m2(νe) populated
the unphysical negative m2(νe) region. In 1991 and 1994 two new experi-
ments started data taking at Mainz and at Troitsk, which used a new type of
electrostatic spectrometer, so-called MAC-E-Filters, which were superior in
energy resolution and luminosity with respect to the previous magnetic spec-
trometers. However, even their early data were confirming the large negative
m2(νe) values of the LANL and Livermore experiments when being analyzed
over the last 500 eV of the β spectrum below the endpoint E0. But the large
negative values of m2(νe) disappeared when analyzing only small intervals
below the endpoint E0. This effect, which could only be investigated by the
high luminosity MAC-E-Filters, pointed towards an underestimated or miss-
ing energy loss process, seemingly to be present in all experiments. The only

15

Figure 12.27: Recent results of tritium beta decay experiments on the effective electron
neutrino mass. Source: [74, p. 15].
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Figure 7: Principle of the MAC-E-Filter. Top: experimental setup, bot-
tom: momentum transformation due to adiabatic invariance of the orbital
magnetic momentum µ in the inhomogeneous magnetic field.

3.1 MAC-E-Filter

The significant improvement in the neutrino mass sensitivity by the Troitsk
and the Mainz experiments are due to MAC-E-Filters (Magnetic Adiabatic
Collimation with an Electrostatic Filter). This new type of spectrometer
– based on early work by Kruit [46] – was developed for the application
to the tritium β decay at Mainz and Troitsk independently [47, 48]. The
MAC-E-Filter combines high luminosity at low background and a high energy
resolution, which are essential features to measure the neutrino mass from
the endpoint region of a β decay spectrum.

The main features of the MAC-E-Filter are illustrated in figure 7: two su-
perconducting solenoids are producing a magnetic guiding field. The β electrons,
starting from the tritium source in the left solenoid into the forward hemi-
sphere, are guided magnetically on a cyclotron motion along the magnetic

17

Figure 12.28: Sketch of the MAK-E-Filter. Source: [74, p. 17].
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neutral, 293, 312

current-current interaction, 290
current-field interaction Lagrangian, 83
cyclotron, 36

frequency, 38
isochronous, 38

DØ, 255, 261
Dalitz plot, 18, 55

γ → qq̄g, 159
de Broglie equation, 31
decay, 10

three body, 55
two-particle, 11
weak

classification, 285
DESY, 110, 199
detector, 45

colliding beams, 45
elements, 112
fixed target, 45
pixel, 274
silicon vertex, 274

DGLAP equation, 223
coupled, 225
solution, 227

di-jet events, 262
Dirac

equation, 60
free particle, 62
solution, 61
u and v, 62

field, 67
field operator, 67
Lagrangian, 83
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momentum operator, 68
propagator, 70

DIS, 212
lepton-quark, 215

Drell-Yan process, 229, 269, 282
QCD corrections, 230

DURHAM algorithm, 166

e−p-scattering, 201
e+e− → µ+µ−, 94
e−µ−-scattering

in the laboratory frame, 201
effective theory, 292
elastic scattering

scattering angle, 14
electrodynamics

classical, 101
electron

e+e− annihilation, 51, 87
anomalous magnetic moment, 6, 103

electron volt, 5
electroweak theory, 264, 295

Feynman rules, 296
Lagrangian, 304, 307
tests, 311
unification, 285

elementary
interactions, 6
particle, 3

εµνρσ, 288
ermeticity, 45
η (pseudorapidity), 242
η-φ plane, 243
event shape variable, 168

aplanarity, 172
applications, 173
Bengtsson-Zerwas angle, 178
C-parameter, 173
differential two-jet rate, 169
event shape distribution, 170
heavy jet mass, 172
jet mass difference, 173
light jet mass, 172
oblateness, 172

planarity, 172
sphericity, 172
thrust, 169
thrust major, 170
thrust minor, 170
total jet broadening, 173
wide jet broadening, 173

experiment
accelerator-based, 31
fixed target, 33
non-accelerator-based, 31

extra dimension, 240

factorization
cross section, 234
matrix element, 233
phase space, 233

Fermi, 286
constant, 286, 299
golden rule, 23
theory, 285

fermion
family, 329
mass, 306

ferromagnet, 299
Feynman

propagator, 71
rules, 89

application, 90
electroweak theory, 296
momentum space, 95
position space, 84

field
bilinear, 288
conservative, 36
electrostatic, 36
magnetic, 36

Fierz identity, 142
fine structure constant, 6

determination, 108
fixed target

vs. colliding beam, 34
flavour physics, 329
form factor, 199
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four-current, 17
four-momentum, 10
four-vector, 9

time-like, 10
four-velocity, 9
four-vertex, 300
frame

center of mass, 15
laboratory, 15

frequency
positive/negative frequency part, 81

fundamental constant, 4

g-factor, 104
higher order corrections, 104
QED prediction, 108

gamma matrices, 58
Dirac-Pauli representation, 60
γ5, 64, 288

Gargamelle, 308, 312
gauge

boson
mass, 304

field, 101
group, 101
theory, 101, 127

QCD, 140
QED, 127

transformation, 97
Gell-Mann matrices, 141
Gell-Mann-Nishijima formula, 140
gluon, 7, 144, 209, 210

and the parton model, 211
gauge field, 101
radiation, 220, 269, 271, 280
soft, 160
spin, 174
virtual gluon exchange, 220

Goldstone boson, 302
gravitation, 6
Green’s function, 70

hadron
nomenclature, 133

spectroscopy, 133
hadronic tensor, 201
hadronization, 123, 193

string/cluster fragmentation, 195
handedness, 63, 64, 288
hard scattering, 247, 248
helicity, 63, 288

m 6= 0, 65
vs. chirality, 65

HERA, 199
Higgs boson, 238

background, 279
decay, 277

into fermions, 310
into gauge bosons, 310

field, 303
Higgs doublet, 305, 306
Higgs mechanism, 299
mass, 304

constraints, 270
reconstruction, 279

production, 231, 276
properties, 309
search, 276, 324
signatures, 277

high energy limit, 14
hypercharge, 293, 294
hyperon, 135

+iε convention, 71
infrared

cutoff, 221
safety, 163

interaction, 3
electromagnetic, 6, 285
electroweak, 285
strong, 7
weak, 7, 101, 285

chirality, 66
invariant

amplitude, 90
mass, 201

Ising model, 300
isolation, 262
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isospin, 128
doublet, 130, 133
invariant interactions, 131
isovector, 131
multiplets, 130
singlet, 133
triplet, 133

ISR, 312

JADE (PETRA), 164
JADE algorithms, 164
jet, 123, 252

algorithm, 162, 255
kT , 257
anti-kT , 257
Cambridge/Aachen, 257
comparison, 167
CONE, 164
DURHAM, 166
examples, 164
JADE, 164

definition, 162
energy scale (JES), 261
gluon, 174
jet rates, 166
leading, 269
mini-jet, 270
multijet final states, 232
production at hadron collider, 230
quark, 174

quark vs. gluon jets, 179
three-jet event, 51, 160
two-jet event, 49, 160, 230

K2K, 341
Källén function, 13
KamLAND, 342
KATRIN, 358
kinematic variables, 241
kinematical region, 18
kinematics

relativistic, 9
Klein-Gordon equation, 58
Klein-Nishima formula, 99

Kronecker product, 60

laboratory frame, 12
ladder operators, 67
LEP, 51, 312
lepton

families, 133
number, 133, 286
pair production, 118
weak quantum numbers, 294

LHC, 40, 42, 237, 263
early discoveries, 280
new heavy gauge boson Z ′, 282
SUSY, 282

LHCf, 242
Lie algebra, 129
lifetime, 24

strong vs. weak processes, 137
long-baseline experiment, 349
luminosity, 42

integrated, 44, 114

Mfi, 90
MAC-E-Filter, 358
magnet

dipole, 39
quadrupole, 39

Mandelstam variables, 12
mass, 238

factorization, 222
fermion, 306
invariant, 53
mass-shell condition, 10
missing, 51
rest mass, 53

Maxwell’s equations
Lagrangian, 83

Meißner-Ochsenfeld effect, 304
Mellin transformation, 227
meson, 133, 138, 142
metric (jet algorithms), 164
metric tensor, 9
minimal supersymmetric standard model

(MSSM), 307
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MINOS, 341
missing momentum, 209
Møller

flux factor, 15
scattering, 19, 87, 89

momentum
longitudinal, 48
measurement, 46
transverse, 48

Monte Carlo, 193
HERWIG, 168
multiparticle emission, 234, 235

multiparticle production, 232
muon

leptonic decay, 286, 291

Neumann series
time evolution operator, 78

neutrino
CP violation, 340
absolute mass scale, 357
appearance and disappearance, 336
atmospheric, 347
β decay, 286, 357
detection, 51
detector, 338
flavor, 335
mass splitting, 339
mixing, 332
mixing angle, 337
number of neutrino families, 313
oscillations, 31, 335

three-neutrino case, 335
phenomenology, 342
signature, 52, 344
solar, 352

neutron
charge radius, 132
general properties, 134
inner structure, 132

new physics, 104, 248, 258
hadron collider, 231

Newton, 10
normal ordering, 69, 81

vs. time ordering, 81
normalization (state), 69
nucleon, 127
number operator, 68

Ω−, 137
open questions of particle physics, 238
OPERA, 335, 341
optical theorem, 29

P violation, 286, 287
particle

relativistic, 10
zoo, 132

parton, 204, 213
distribution function (PDF), 206, 208

fit, 250
nucleon, 208

model, 204
QCD corrections, 220

multi-parton interactions, 268
shower, 233
spin, 174

Pauli, 286
exclusion principle, 67

in QCD, 140
matrices, 60, 129, 293

PDF, 250
Penning trap, 105
phase space, 26

2→ 2, 26
photon

field operator, 74
gauge field, 101

pile-up events, 244, 247
pion

leptonic decay, 286
π0, 54
π+, 10

polarization
sum, 66
vector, 74

Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, 332, 336
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pp cross section
components, 243
processes, 245

PR,L, 65
probability density, 58
propagator

fermion, 72
corrections, 87

Feynman, 71
massive gauge bosons, 298
photon, 75

corrections, 87
proper time, 9
proton

antiproton production, 34
charge radius, 132
general properties, 134
inner structure, 132
structure, 199, 213

in QCD, 199
pseudorapidity, 48, 242
PSI, 36, 40

QCD, 7, 101, 127, 155
3-gluon vertex, 146, 177
4-gluon vertex, 147
background, 271, 280
β-function, 152, 183
corrections to the parton model, 220
covariant derivative, 144
current, 143
effective coupling, 153
experiments overview, 155
gauge group, 178
gluon propagator, 146
in e+e− annihilations, 155
Lagrangian, 144, 146, 181
observables, 161

inclusive, 186
non-inclusive, 186

perturbative regime, 193
proton structure, 199
strong coupling constant, 181

NNLO prediction, 191

results for αs(MZ), 192
scale dependence, 184

QED, 6, 57, 103
S-matrix, 80

2→ 2, 81
first order, S(1), 84
integral representation, 80
second order, S(2), 85

effective coupling, 151
gauge theory, 100
interaction

Hamiltonian, 83
Lagrangian, 83
timescale, 80

Lagrangian, 82, 101
limits, 124
observables, 100
potential

Coulomb limit, 150
tests, 103

high energy, 110
quantum mechanics, 57
quark, 7, 132

decay, 134
distribution function, 216

mass factorization, 222
renormalization group equation, 223

doublets, 133
families, 133
mass effects, 158
model, 132
momentum density, 216
spin, 174
weak quantum numbers, 294

radiative corrections, 116
rapidity, 241

(pseudo-)rapidity gap, 279
reaction channel

s-channel, 17
t-channel, 17

relative velocity, 15
remnant, 268
renormalization group equation, 223
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renormalization scale, 183
representation

Dirac, 76
Heisenberg, 76
Schrödinger, 76

resolution, 33, 204
resonance, 123
resummation, 166, 167
ρ, 53

S-operator, 22
unitarity, 28

scalar field
complex, 301
real, 300

scalar propagator, 70
scaling, 204, 220
scattering

2→ 2, 26
angle, 14

2→ 2, 14
deep inelastic, 212

kinematics, 219
elastic, 11, 14

angular distribution, 15
e−µ−, 201
e−p, 202
lepton-quark, 219

Schrödinger equation, 57
short-baseline reactor experiment, 344
sideband, 279
Σ±, 55
singularities, 158
SLAC-MIT experiment, 205
slash notation, 61
soft scattering, 244
special relativity

notation, 9
spectroscopic notation, 138
spin, 63

summation, 92
spinor, 60

space
Hamiltonian, 63

operator, 63
splitting function, 211
SPS, 232, 312

Spp̄S, 312
standard model

parameters, 238, 312
strangeness, 134, 135
strong interaction, 127
structure constants, 129
structure function, 201, 202

longitudinal, 220
SU(2), 128

adjoint representation, 132
fundamental representation, 130
isospin, 127

SU(3)
adjoint representation, 142
color and flavor, 135
fundamental representation, 141
Lie algebra, 141

SU(N), 128
dimension of su(N), 129
rank, 129

SU(2)L × U(1)Y , 304
Sudakov form factor, 235
Super-Kamiokande, 31, 347
superconductivity, 304
superposition, 336

principle, 147
supersymmetry (SUSY), 231, 239, 267

event, 283
reconstruction, 283

search, 276
Swiss Light Source, 40
symmetry

approximate, 128
breaking, 300
continuous, 301
crossing, 16
gauge

and mass, 299
QED, 100

internal
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isospin, 127
spontaneous symmetry breaking, 238,

299, 308
unitary, 127

synchrotron, 39
momentum, 40
radiation, 40
radius, 39

Tevatron, 42, 266
luminosity, 44

time evolution operator
interaction picture, 77
perturbation series, 79
properties, 77

time ordering, 73, 78
time ordered exponential, 79
vs. normal ordering, 81

top quark, 270
decay, 271
mass, 270, 276
production, 271

cross section, 276
signatures, 271
Tevatron results, 274

total
decay width, 24

TOTEM, 242
trace theorems, 92
transverse

momentum, 241
region, 269

U(1), 100
UA1, 267, 308, 313
underlying event, 268

observables, 269
unit, 4

Heaviside-Lorentz, 6
natural, 5

unitarity, 29

VA, 290
vacuum

expectation value (VEV), 307
polarization, 150
state, 69, 300

degenerate, 302
expansion, 300

vacuum polarization, 151
vector boson

masses, 299
vector coupling, 297
vertex

secondary, 274

W boson
decay, 52
discovery, 52, 312
experimental signature, 264
gauge field, 101
mass, 305, 312
production, 52, 230, 263
width, 312, 317

weak
interaction
CP violation, 332

isospin, 293
mixing angle, 295

Weinberg angle, 295
Wick’s theorem, 82
Wu experiment, 287

y (rapidity), 241
Yang-Mills theory, 146
Yukawa coupling, 306
Yukawa theory, 7
L′, 131

Z boson, 54
discovery, 312
experimental signature, 264
gauge field, 101
mass, 305, 312
production, 230, 232, 263
width, 312, 318

Z ′, 282
production, 249
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z-variable, 221


