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One Systematic at a Time? (No! Need to
simultaneously vary them all)

* Experimental uncertainties are typically evaluated one at a time
* Additional MC and analysis burden to generate samples with varied
parameters — must be done
* Reweighting existing samples lessens the computational task. Sometimes

this is more instructive anyhow (one can examine the weights to see if they
make sense).

Example — alternative PDF sets. Order 40 alternate samples but easy to reuse
existing ones if we write the initial parton momenta into the event record.
* Worse still, analyzers typically generate just +1c variations and extrapolate

* Varying more than one parameter at a time — Must be done to find the best fit
in the nuisance parameter space or to integrate over the whole space.
* Easy case: uncertain parameters affect the predictions multiplicatively

Example: Luminosity, Lepton ID efficiency and B-tag Efficiency
R =R,*M(1+8s;) where &, is a fractional uncertainty due to the it" systematic
uncertainty. s, is the underlying uncertain parameter. It may affect several
predictions with different impact. For example, the B-tat Efficiency

affects single-tag events differently than double-tag events.

* Nonlinearities must be estimated by analyzers — tools cannot know a priori about nonlinear
effects or interactions between parameters. mclimit allows analyzers to specify a parameter
as an arbitrary function of other parameters (say you care about the ratio of two parameters).

* Need also to apply shape interpolations for multiple parameters at a time. Not totally trivial!



Histogram Interpolation

* Needed for several purposes

* Finite grid of signal models are subject to Monte Carlo simulation
example: Tevatron’s m, grid goes from 100 GeV to 200 GeV in 5 GeV steps
What does a 117 GeV Higgs boson look like?

How to fit for m, with only a finite grid of MC?

* Finite grid of nuisance parameter exploration.
* Analyzers typically evaluate 1o variations of their systematics
We need to integrate over, or at least test all values
* Need to figure out what happens when more than one nuisance
parameter is varied at a time.



“Vertical” Interpolation

Linear interpolation within each bin.

Say the central value content of a bin is x (the zero-sigma variation)
For each nuisance parameter, we have a shape histogram with
varied contents v, where /=1 ...N number of nuisance parameters.

Say the shape histogram corresponding to parameter i is a n-sigma variation.

We'd like a smeared shape corresponding to values of nuisance parameters

s, i=1...N N
additive, so

N
Xyar =X F Z s, (vi—x)/n, multiple sources
. R of shape error
 Not quite the formula — separate variations for s>0 and s<0, gre cumulative
and the interpolator can start from a place other than s=0. and commutative

Good for: NN shape histograms, likelihood discriminants.

Not good for: Dijet invariant mass shapes under JES (move left and right).
Uncertainty in m,, when analyzing m,,, for single top
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“Horizontal” Interpolation

Template-morphing interpolation:

See A. Read: Linear Interpolation
of Histograms, NIM A425:357-360,1999.
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Example: Interpolated with csm_interpolate histogram

a component of mclimit_csm.C, .h
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csm_interpolate histogram Works in 2D as well

=1

Many
thanks to

d A. Read

for the
algorithm
example
d_pvmorph_2d

45 4 3 24 0 1 2 3 4 5 4 4 3 2 4 0 1 2 3 4 5 5 4 3 24 0 1 2 3 4 5

Template x=-1 Template x=+1 Interpolated histogram
x=0
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Shape Errors and Interpolation Issues

* Not all shapes are horizontally interpolatable. Example: NN outputs;
two-peaked shapes, etc. Horizontal interpolation slides part of the PDF horizontally —
you can get a third peak in the middle.

x=0 x=0.5 x=1

Can use “vertical” interpolation for these
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Horizontal Interpolation Features and Warnings

You can extrapolate with this method too! “Horizontal” Interpolation

Template-morphing interpolation: See A. Read: Linear Interpolation
of Histograms, NIM A425:357-360,1999.

-

But watch out for histogram edges
min and max — the peak can wander
off the edge!

1o
variation

Central

Also works for interpolating/extrapolating
the width of a peak.

Cumulative probability Distribution

o

arb. variable

§ 50 | DELPHI |
But watch out — a peak can not have less I M. | Diffeentite to gt histograms
than zero width! Symptom of this — B

the cumulative probability curve bends over

backwards.

Vertical interpolation by adding variations from different nuisance parameters was
commutative and cumulative. What is the equivalent for compounding several shape
distortions for horizontal interpolation? Say we want to distort the peak position and
the width independently.



Problems of Compounded Shape Interpolations

Cartoon Example — two systematic shape variations giving similar
shifted templates

Central value +1c systematic +1c systematic
histogram variation variation
parameter #1 parameter #2
“JES1” “JES2”

Problem — What if you want a +1c variation of both parameters, #1 and #2?

First interpolation — gets you to the varied template for parameter #1. Interpolate
from there for parameter #2 and nothing happens.

What's really needed here is an extrapolation.
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Shape Systematic Compounding Procedure in mclimit_csm.C

Old Strategy: Interpolate each shape systematic from the central

value, and average the resulting interpolated histograms

« Commutative, at least

» Biased towards central shape: Add in a shape uncertainty which is
small, and it averages in like the big shape uncertainties.

« Want: SAT-style “analogy” interpolation

A:B as C:D, where

A = central value

B = systematically distorted template

C = result of previous distortions from other nuisance parameters
D = result of all distortions put together.

With one free parameter — how much to vary the nuisance parameter
under consideration.



Shape Systematic Compounding Procedure in mclimit_ csm.C

Result of
Template-morphing compounding: all other
(something like an extrapolation) n.p. interpolations
1 ©) /
[

Cumulative probability Distribution

Central
shape
—

Final shifted
shape (D)
—

arb. variable

DELPHT] / Differentiate to get histograms

Commutative

Commutative! Extrapolates!
12



Another Example — Resonance Peak Position and Width May
Need Simultaneous Interpolation

y ~ [/2
(m-M,)? + (I'/2)?
P > / — N
e T
Vary M Vary r

Frequently MC is generated with a fixed M, and several values of I, and with a fixed
[and several values of M. Need a prediction for arbitrary M, and I'.
Compounded Horizontal Morphing is ideal for this case.



Question — Interpolating Searches with MVA’s tuned up at each m?

Tevatron Run Il Preliminary, L < 8.6 fb™ A common question:

What allows us to draw
straight lines on the observed
limit plot?

Tev?tron

Why quote the m,, limits where
these cross?

CDF Run Il Preliminary J-L =8.21fb"

- OS 0 Jets, High S/B
- M, = 165 GeV/c?

95% CL Limit/SM

-
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A typical MVA output. The MVA is trained P “F
to separate Higgs boson events from *r

backgrounds at m;=160 GeV. Similar shapes are 0 w5 we ed s 6oz o4 o6 08 1
obtained for m,=155 and 165 GeV. o o Noued
The problem lies in interpolating
the data. You can follow individual
Interpolate signal and background prediction events’ NN outputs vs. m, but
histograms to get, say, 157 GeV — dodgy, but you interpolating them on average biases

can test it by interpolating 155 and 165 to get 160’s "¢ most significant ones down.
Makes us uncomfortable — applying a
and compare.

different procedure to data and MC.



A Review of Setting Bayesian Limits and Measuring Quantities

Including uncertainties on nuisance parameters 6

/ Typically 7a(r) is constant
L'(datalr) = fL(data | 7,0)(0)d0  other options possible.

Sensitivity to priors a

where 71(6) encodes our prior belief in the values of
concern.

the uncertain parameters. Usually Gaussian centered on
the best estimate and with a width given by the systematic.
The integral is high-dimensional

CDF Run Il Preliminary, L=3.6 fb"' Mean 0.5284

L'(r)xm(r)

Useful for a variety of results: 1

RMS 0.4487

I A Observed
= sl Limit
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Reminder: Bayesian Cross Section Extraction

same handingof 1 \(qatq | r) = [ L(datar,0)m(6)d6

nuisance parameters
as for limits

Thigh
!/
fL (data | r)zt(r)dr cross section
0.68 = e and its uncertainty

max—( Fnax

The measured r = +(Thigh = Tmax )
_rlow)

CDF Run Il Preliminary, L=3.2 !

}L’(data | r)t(r)dr

Usually: shortest interval containing 68%
of the posterior

(other choices possible). Use the word
“credibility” in place of “confidence”

Marginalized Posterior (arb units)

If the 68% CL interval does not contain zero, then

+0.8
Ogt =16 5, Pb

the posterior at the top and bottom are equal
in magnitude.
The interval can also break up into smaller pieces! (example: WW TGC@LEP2



Integration in Many Dimensions

Even calculation of p-values in the CL, method (CL,,, and 1-CL,) are high-dimensional

integrations over the space of nuisance parameters and the space of possible
experimental outcomes.

There are two techniques that | use that are easy to program:

» Scattershot —sample all variables to be integrated over from their

(uncorrelated) priors. Impacts of nuisance parameters on predictions may be shared,
correlating the predictions, but the parameters themselves should be designed to be
independent from each other.

* Markov Chain — The Metropolis-Hastings algorithm (excellent article on Wikipedia)

-- Pick a point in parameter space. Propose a next step in parameter space from a symmetric
proposal function. Make the step if L(new)/L(old)>a randomly chosen number between

0 and 1 (not including 1). Make a histogram of parameter i’s values as you go. This is

the distribution of parameter i integrated over all the other parameters.



b

N

Events/3.

A Problem with Scattershot Integration

CDF Run Il Preliminary, L=3.2 fb™

* Data B wbb W+LF

o0 5 IV wionn |8 L'(datalr) = [ L(data)r,0)m(60)d6
3000 - . o
2500 |- g g
2000 |- J E:' Suppose we have a large a priori uncertainty
500 | » o i o on the normalization of the yellow background

SR I - d template (say +30%) Most samplings from this
00T e .. prior distribution will “miss” the data by a lot,
500 - T contributing a vanishingly small amount to the

" — 0 integral. You need many more samples to get the

0 05 1 15 2 25 3 35 4 45 5 _
ar, integral to converge well.

This problem becomes exponentially hard if there are more channels being combined

in joint likelihood, and the sampling of the nuisance parameters must predict the data
in all channels simultaneously well.

It would be nice to have a method that samples the peaks in L more than the large
spaces where it (almost) vanishes.



A Metropolis-Hastings Example — Three Markov Chains Exploring the Same Space

From Wikipedia




Checking the Consistency of Highly Correlated Analyses

* Frequently arises in large collaborations focusing on a small number of high-priority
measurements.

* Analysis teams select highly overlapping data samples. Ideally, overlap should be
zero or 100%, but if the teams do not communicate well, the overlap can be partial.

* In the case of zero overlap, to produce a combined result, just treat the results as if
they were different channels (separate final states). Independent outcome
probabilities, so consistency can be determined by computing Ax/.,/()‘lz + ()'g
taking out shared systematic uncertainties from the measurement
uncertainty.

* In the case of 100% overlap, you can use BLUE, or a super-discriminant (an MVA
built on MVA oututs). Example: CDF Single Top Observation,
Phys. Rev. D 82, 112005 (2010). But you should check consistency.



Checking the Consistency of Highly Correlated Analyses

Example — 100% selected event overlap, different analysis techniques.
CDF’s 2.2 fb! single top analysis “Data” points are cartoons for illustration only.

LF-ME 58.9%
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* Can define a p-value for how discrepant analysis results are.

* Above are distributions of possible cross section measurements in three highly
correlated analyses considered pairwise.

* As usual, the ensemble depends on assumptions. In this case, we assumed the SM

production cross section for the signal.

» Suggestion — use the maximum |Ax| to reduce sensitivity to the model assumptions.
(they won’t entirely go away thourgh).



Measured Uncertainties and the Punzi Effect

* Reconstruction algorithms typically supply also an “uncertainty” on reconstructed
parameters.

* At some point, the uncertainties should be checked for proper pulls:
(9-Qlipject)/Uncertainty? should be a unit-width Gaussian centered on zero.

* But not all distributions are Gaussian. Some have tails that carry physics information.

The tails may be a mixture Of phySiCS and Idofrom light quark jets (other taus in evts with taus matching MC)I mﬁ%
. . ""'I""I""I""I""I""I""I"'Mean 0.006378

and misreconstruction. 10° o o
Overflow 558

Integral 1.143e+04

10°

10

—

M
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or TTTTT]



Getting £ wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on £ fits with variable resolution’

Segarate two close signals, when resolution ¢ varies event
y event, and is different for 2 signals

e.g. 1) Signal1  1+cos?0
Signal 2  Isotropic
and different parts of detector give different ¢

2) M (or 1)
Different numbers of tracks - different o, (or ¢,)

L. Lyons

T. Junk Statistics ETH Zurich 30 Jan - 3 Feb 23



L. Lyons

Events characterised by x, and o,
A events centredon x=0

B events centred on x = 1

L(f)wrong = IL [f * G(x,,0,0) + (1-f) * G(x;,1,06))]
L(F) g = IT [F¥p(x;,0,:A) + (1) * p(x,,0;;B)]
p(S,T) = p(SIT) * p(T)
p(x,,0/A) = p(x{o;,A) * p(cA)
= G(x,,0,0) * p(c,A)
So

L(E) ign, = HIE * G(x;,0,6) * p(c]A) + (1-) * G(x;,1,0,) * p(c;|B)]

If p(clA) = p(oIB), £, = £,1n
but NOT otherwise

T. Junk Statistics ETH Zurich 30 Jan - 3 Feb
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Giovanni’s Monte Carlo for A: G(x0,0,)

B: G(x,1, 0p)
f, =1/3
Lorong Liight

Oa Op fa O fa O;
1-0 10 0-336(3) 0-08 Same
1-0 11 0374(4) 008 0-333(0) ©
1-0 20 0645(6) 012 0333(0) O
122 1.5 23 0514(7) 014 0-335(2) 003
1.0 1-2>2 0.482(9) 0.09 0.333(0) O

1) Ly0ng OKfor p(o,) =p(0y), but otherwise BIASSED
2) L

3) £, gives smaller o, than £,

ot Unbiassed, but £, biassed (enormously)!

L. Lyons, G. Punzi



Explanation of Punzi bias /

O\ = 1 OB =2 | '
""/ \ h‘l p _._\.‘.‘.’:'l l'
" A events with o = 1 " "
7N N
".l B events with o =2 |
X =2 X
ACTUAL DISTRIBUTION FITTING FUNCTION

[N /Ny variable, but same for A and B events]

Fit gives upward bias for N,/Ny because (i) that is much better for A events; and

(i1) it does not hurt too much for B events

L. Lyons T. Junk Statistics ETH Zurich 30 Jan - 3 Feb
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Avoiding Punzi Bias

A reconstructed “uncertainty” is an observable!

BASIC RULE: / Treat it like any other reconstructed quantity.
Write pdf for ALL observables, in terms of parameters

* Include p(clA) and p(clIB) in fit

(But then, for example, particle identification may be determined more
by momentum distribution than by PID)

OR

» Fit each range of o, separately, and add (N,), =2
(N a)iotas @Nd similarly for B

Incorrect method using £, uses weighted average
of (f4);, assumed to be in ep%ndent of |

Talk by Catastini at PHYSTATO05 L. Lyons
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The ALEPH Tau Neutrino Mass Constraint

* Tau lepton decays involve at least one neutrino — sometimes two in the case of
a charged lepton in the decay.

* Constraint on m is better if the invariant mass of the visible decay products is
large. Initial tau momentum is not perfectly known (the recoiling tau in Z decay
has its own neutrino(s)).

* All four experiments at LEP attempted this constraint, but ALEPH got very lucky
and observed a tau lepton decay with five charged tracks in it with very little

invisible mass. Did not expect on average to get this lucky.

We learned more from the lucky data than we would have on average. Seems
okay this time.

Eur.Phys.J. C2 (1998) 395-406
Phys.Lett. B349 (1995) 585-596



Banff Challenge 2: Parametric and Nonparametric Discovery Issues

A simple “mock data challenge”

http://www-cdf.fnal.gov/~trj
And also the associated presentations and writeup for PHYSTAT2011.
Several groups supplied solutions to the task of detecting small signals on large,

uncertain backgrounds, with varying degrees of success.

3
c/}lO\ T T 3 Ty
= [ Signal {1 = gV T T ALARRRRRRRN ] 5 [ Slgnal
2 [ Background | Bl Signal ] 3 250 Bl Background2 |
= 1 [ Background ]
e Data e Dat | [ Background 1
102 ata 1 e Data
] 200
10 ¢
; g ] 150
1 - E
100
-1 1 I 1
10 10 F E
F 1 50
2 2|
T T T P NI FORUT RN T 10 TR TTIRIN VIN VRSRNIS TTRReTIe
0 0.1 02 03 04 05 06 0.7 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1 0
X X 0 01 02 03 04 05 06 07 08 09 1
X
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Optimizing MultiVariate Analyses

* Many choices of MVA’s available:

* Neural Networks

* Bayesian Neural Networks (Radford Neal’s work and others)

* Matrix Element-based discriminants

* Decision Trees (J. Friedman), and Boosted Decision Trees (common now)

e Support Vector Machines

* Likelihood Functions (“naive Bayes”)

* K-Nearest-Neighbors

* Pick the right variable(s)! Input variable choice is usually broader than the choice of
MVA method. An MVA output variable really is just another reconstructed
quantity for each event, whose modeling has to be checked. Maybe there really is
only one variable with all the s/b separation power. If you happen to know what it
is, then there’s no need for machine learning!

Frequently though, even though signal and background may differ in a theoretically
tractable way, the detector, trigger, and data selection requirements, and
“instrumental” backgrounds usually mean multiple variables will still carry useful
information.

* | won’t describe these in any detail (subject of next week’s lectures)



Optimizing MultiVariate Analyses

 Just what is the figure of merit? What is optimized?
* Neural networks: Sum of squares of classification errors.
Chosen for easy back-propagation to compute derivatives with respect to
weights
* Boosted Decision Trees: The Gini Coefficient purity*(1-purity).

* Which one is the best? Answer: We don’t care about the sum of squares of
classification errors, or the Gini Coefficient! We care about
* Median Expected Limit if a signal is absent
* Median Expected p-value if a signal is present
* Median Expected Measurement Uncertainty if we are making a
measurement

* These are the things we should optimize — in fact, they should drive most of
the choices we make as experimentalists
* Which MVA to use
* Which variables to put in it
* Which analysis and trigger requirements to place
* Which accelerator and experiment to build



Optimizing MultiVariate Analyses

* Optimization of these things is a bit tedious, but worth it.
* | take issue with a statement in the DO single top evidence PRD:

DO Collab., Phys. Rev. D 78, 12005 (2008).

Optimal event discrimination is a well-defined problem
with a well-defined and unique solution. Given the
probability

p(x|S)p(S)
p(x[S5)p(S) + p(x|B)p(B)

p(S|x) = (5)
that an event described by the variables x is of the signal
class, S, the signal can be extracted optimally, that is,
with the smallest possible uncertainty [53], by weighting
events with p(S|x), or, as we have done, by fitting the
sum of distributions of p(S|x) for signal and background
to data, as described in Sec. In practice, since
any one-to-one function of p(S|x) is equivalent to p(.S|x),
it is sufficient to construct an approximation to the
discriminant

p(x|S)

P = 2515) + pxB)

(6)

built using equal numbers of signal and backeround
8 | g g
events, that is, with p(S) = p(B). Each of the three

Two problems with this
overly optimistic appraisal:

1) Systematic Uncertainties
on the signal and background
rates and shapes

2) Binning (which really is just
case 1 for finite MC or data
sidebands)

Clearly not the case if a measurement
is systematics dominated!



An Example MVA - CDF’s Single Top Analysis with Matrix Elements

Main backgrounds: Wbb, Wcc+Wecj, W+LF, ttbar, Z+jets, diboson, multijets
Discriminant does a great job separating single top signal from the backgrounds.
It is not optimized to separate one background from another, however!

500

Candidate Events

400 |

300 |

CDF Run |l Preliminary, L=3.2 fo!

T Illv

Candidate Events

Q
Q0.7 Q.75 0.8 0.85 0.8 0.85
Event Probability Discriminant

Il schan

Eltchan
[Jwbb

" |[Jwee

Bl mistag
D\\'\\'
Nz
[
zjets
Bl zjet
Cnenw

[Cttbarlj
Il tthardil

uo‘né)!peJd 61' pezuefw'oN

0.2 0.4 0.6 0.8

Event Probability Discriminant

High-score bins
provide sensitivity
to test for the signal.

Low-score bins help
constrain backgrounds

Extrapolation of background
constraints to the signal
region requires knowledge
of shapes (and inclusion

of shape uncertainties!)

Different backgrounds have
different shapes — analysis
is more optimal if these
can be fit separately!



CDF’s ZH->1lbb Analysis Strategy

Tagged Events

tt
Network
Score >
0.5

—7H —Z +LF Z+cc —Z+bb it
I |

Region | I Region Il I Region Il

Jet-Flavor
Separator
>0

ll]llIII|III]I]IlI|I||I|ll|l|l|l||lll

Yes

Region Il Region Il

» Select events with Z—=2 Il + jets with as loose a lepton selection as possible — still quite pure
in Z decays.

* Train NN’s first against ttbar, then to separate out the different flavor Z+jet samples
(Zcc, Zbb, Z+LF (mistag)).

O
©
w
—
—
(&)

2 25 3
Final Discriminant Output



CDF’s ZH->1Ibb Output Disriminants — Electron Channels

100 ZH > e'e’bb _ CDF Run ll Preliminary 7.5fb ZH > e*e'bb  CDF Run Il Preliminary 7.5

o~ 4 Daa  memZH,,- 25 Fakes B dibosca 7 o~ | 4 Daa memZH,,- 25 " Fakes B aivos
g T Bz T Zalee T B mistag g 15 | .7. Bz T za_...c? -mau;“l
E Single Tight Tag I [ Double Loose Tag
5 5 |
> g 10 }
w w

50

0 1Y

0 0.5 1 0 0.5

1
Final Discriminant Network Output (m =120 GeVi/c?) Final Discriminant Network Output (m =120 GeVic?)

ZH > e*ebb CDFRunll Preliminary 7.5fb
10F 4 ocaa  mmzny,. 25 " Fakes B siboson -
T Bz T Zoaee T [ mistag

Double Tight Tag

Events/ 0.02

) ,
0 0.5

1
Final Discriminant Network Output (mH=12O GeV/c?)
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You Can Make a Discovery with Just One Observed Event

But it takes
3 expected
signal
events to
exclude!

H,,= Bearrate=0. H,=Bearrate>0. p-valueis *almost* zero.

Some contributions to the expected background rate:

* People dressing as grizzly bears (good selection requirements can reduce this
background)

* Cardboard cutout pictures of grizzly bears

* Digital photograph manipulation

Each background source needs some kind of prior, or auxiliary measurement if possible.

There is also not much ske1pticism about the discovery claim.
. Junk Statistics ETH Zurich 30 Jan - 3 Feb 36



From a CNN story on January 14, 2012

Okay, it was written by a comedian, and yes, it’s a joke, but the statistics
are obviously messed up.

Yes, some will scoff at Colbert running ahead of Huntsman -- a candidate
running below the margin of error in some polls, meaning he may have zero
support or may actually owe votes -- but keep in mind that in the recent lowa

caucus, Huntsman received 745 votes.

Dean Obedeillah, 2012

“Polling below the margin of error” usually just means scornfully low ratings
for a politician. But it illustrates the lack of usefulness of

measured value/error

as a significance guess. There of course are positive Huntsman supporters.



Extensions of Banff Challenge 1

Ny * T as an estimate of b

n,, is the measurement in the signal region, with an estimated signal
acceptance of . Given n_g, T, €, n,,, set a limit on the signal rate s (where
se is the expected signal yield and b is the background yield)

1) Usually there are multiple background sources b, ... b,

2) Often there’s more than one kind of signal, too. And they don’t have to scale
together (multidimensional signal parameter space). Grizzlies, brown bears, black
bears, sun bears, ....

3) Usually there’s more than one signal region (n,, .-, ... n,, ,), €ach with its
own sets of €’s and T’s. Direct sightings of bears, observation of disturbed garbage
cans, eyewitness accounts, auditory-only incidents, etc.

4) The €’s are uncertain. Sometimes they are just ratios of Poisson distributed numbers,
but often there are more sources of uncertainty than just that. Same with the t’s.
How to convert grizzlies/day to an expected number of pictures of grizzlies/day?

5) Often we have two or more “off-signal” auxiliary experiments used to evaluate b,

each with its . What to do when they disagree?

Banff Challenge 2 samples 1, 3, and 4 above. 2 isn’t so important as long as we can
understand how to deal with the 1-signal problem, although problems occur in
high-dimensional models that are not present in 1D models.



A Comment on low s and low b

Bins with tiny s and tiny b can have large s/b (Louis Lyons: large s/sqrt(b) is suspicious)
Naturally occurring in HEP and others seeking discovery:

1) Each beam crossing has very small s and b but has the same s/b as
neighboring beam crossings. Can make a histogram of the search for new
physics separately for each beam crossing. Same s and b predictions, just
scaled down very small.

Adding is the same as a more elaborate combination if the histograms were
accumulated under identical conditions (all rates, shapes, and systematics are
the same)

2) Surveillance video catching a bear — each frame has a small s, b, but still
worthwhile to collect each frame (and analyze them separately)



Available Software, Tools, Documentation

CDF Statistics Committee
http://www-cdf.fnal.gov/physics/statistics/statistics_home.html
Useful for documentation. Provides advice for common, thorny questions

BaBar Statistics Working Group
http://www.slac.stanford.edu/BFROOT/www/Statistics/

ROOSTATS

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
A very complete toolset. | haven’t used it (but | should have). It’sin
common use at the LHC

MCLIMIT
http://www-cdf.fnal.gov/~trj/mclimit/production/mclimit.html
Used on CDF, some use on DO and LHC. Limits, cross sections, p-values,
both Frequentist and Bayesian tools

PHYSTAT.ORG
http://www.phystat.org
Maintained by Jim Linnemann. We toolsmiths really
should keep it up to date...



Available Software, Tools, Documentation

PDG Probability and Statistics Reviews (ed. Glen Cowan)

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-probability.pdf
http://pdg.Ibl.gov/2011/reviews/rpp2011-rev-statistics.pdf

If these links get out of date, just search pdg.lbl.gov for the mathematical reviews
Excellent brief reference, but maybe a little too brief to learn the material.

Good Reads:

Frederick James, “Statistical Methods in Experimental
Physics”, 2" edition, World Scientific, 2006

Louis Lyons, “Statistics for Nuclear and Particle Physicists”
Cambridge U. Press, 1989

Glen Cowan, “Statistical Data Analysis” Oxford Science Publishing, 1998

Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

Bob Cousins, “Why Isn’t Every Physicist a Bayesian”
Am. J. Phys 63, 398 (1995).



Available Software, Tools, Documentation

A simple web-based limit calculator based on a one-dimensional event count

http://www-d0.fnal.gov/Run2Physics/limit_calc/limit_calc.html



Summary

Statistics, like physics, is a lot of fun!

It’s central to our job as scientists, and about how human
knowledge is obtained from observation.

Lots of ways to address the same problems.

Many questions do not have a single answer. Room
for uncertainty. Probability and uncertainty are different

but related.

Think about how your final result will be extracted from the
data before you design your experiment/analysis -- keep
thinking about it as you improve and optimize it.



