Statistical Methods for Experimental
Particle Physics

Tom Junk
2= Fermilab

Pauli Lectures on Physics
ETH Zirich
30 January — 3 February 2012

Day 3:
Bayesian Inference



Reasons for Another Kind of Probability

e So far, we’ve been (mostly) using the notion that probability is
the limit of a fraction of trials that pass a certain criterion to total trials.

e Systematic uncertainties involve many harder issues. Experimentalists

spend much of their time evaluating and reducing the effects of
systematic uncertainty.

e We also want more from our interpretations -- we want to be able to make
decisions about what to do next.

e Which HEP project to fund next?
e Which theories to work on?

e Which analysis topics within an experiment are likely
to be fruitful?

These are all different kinds of bets that we are forced to

make as scientists. They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!



Bayes’ Theorem

Law of Joint Probability:

p(A and B) = p(A|B)p(B) = p(B|A)p(A)
Events A and B interpreted to mean “data” and “hypothesis”
L(datal{v})m(v)

| data) =
p(tv}|data) [ L(data 1 {vHm({v'Hd{v'"}

{x} = set of observations
{v} = set of model parameters

A frequentist would say: Models have no “probability”. One model’s true,
others are false. We just can’t tell which ones (maybe the space of considered
models does not contain a true one).

Better language: p({v} | data)

describes our belief in the different models parameterized by {v}



Bayes’ Theorem

1s called the “posterior probability” of
P ({V} | data) the model parameters

gt({V}) is called the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the
experiment 1s “updated” by having run the experiment.

This is a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times! (groupthink)
We make decisions and bets based on all of our knowledge and prejudices
“Every animal, even a frequentist statistician, is an informal

Bayesian.” See R. Cousins, “Why Isn’t Every Physicist a Bayesian”,
Am. J. P., Volume 63, Issue 5, pp. 398-410



How I remember Bayes’s Theorem

p(hypothesis|data) =

p(datalhypothesis) x p(hypothesis)

Posterior “PDF”’ “Likelihood Function”
(“Credibility”) (“Bayesian Update™)

p(data)
4

Normalize this so that

/p(hypothesis\data)d(hypothesis) =1

for the observed data

[
=

“Prior belief
distribution”



Bayesian Application to HEP Data: Setting
Limits on a new process with systematic uncertainties

L(r.0) = || || Pruldatalr.6)

channels bins

Where r is an overall signal scale factor, and 6 represents
all nuisance parameters.

(rSl-(H) + bl(H))”z e_(rsi (0)+b,;(0))

P, . (datalr,0) =
n,!

where n, is observed in each bin j, s; is the predicted

signal for a fiducial model (SM), and b; is the predicted
background.

Dependence of s;and b, on @includes rate, shape,
and bin-by-bin independent uncertainties in a realistic example.



Bayesian Limits

Including uncertainties on nuisance parameters 6

/ Typically 7a(r) is constant
L'(datalr) = fL(data | 7,0)(0)d0  other options possible.

Sensitivity to priors a

where 71(6) encodes our prior belief in the values of
concern.

the uncertain parameters. Usually Gaussian centered on

the best estimate and with a width given by the systematic.

The integral is high-dimensional. Markov Chain MC integration is
quite useful!
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Bayesian Cross Section Extraction

same handingof 1 \(qatq | r) = [ L(datar,0)m(6)d6

nuisance parameters

as for limits
Thigh —
The measured _ +(Thigh = Tmax )
, —
fL (datalr)m(r)dr cross section 4 MaX ~(%nax ~Tiow )

0.68 = - and its uncertainty
f L'(data |\ r)z(r)dr
0

CDF Run Il Preliminary, L=3.2 !

+0.8
Ogt =16 5, Pb

Usually: shortest interval containing 68%
of the posterior

(other choices possible). Use the word
“credibility” in place of “confidence”

Marginalized Posterior (arb units)

If the 68% CL interval does not contain zero, then
the posterior at the top and bottom are equal R
in magnitude.

The interval can also break up into smaller pieces! (example: WW TGC@LEP2




Extending Our Useful Tip About Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, and no
systematic uncertainties, then the limit will be 3 signal events.

Call s=expected signal, b=expected background. r=s+b is the total prediction.

O_
re’

0!

- _ e—(s+b)

L(n=0,r)= =e

[ L'(data\r)z(r)dr g5+
0.95=-2 == F ¢
f L'(data |\ r)ym(r)ydr ~€ ‘o

0

Nim

The background rate cancels! For O observed events, the signal limit does not
depend on the predicted background (or its uncertainty). This is also
true for CL, limits, but not PCL limits (which get stronger with more background)

If p=0.05, then r=-In(0.05)=2.99573



A Handy Limit Calculator

DO (http://www-d0.fnal.gov/Run2Physics/limit_calc/limit_calc.html)

has a web-based, menu-driven Bayesian limit calculator for a single
counting experiment, with uncorrelated uncertainties on the

acceptance, background, and luminosity. Assumes a uniform prior on the
signal strength. Computes 95% CL limits (“Credibility Level”)
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The cross section 95% CL upper limit is 12.666



95% G.L. upper limit on ¢ (pb)

Sensitivity of upper limit to Even a “flat” Prior
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Figure 1: Bayesian upper limits at the 95% credibility level on a hypothetical
cross section o, as a function of the cutoff o,,x on the flat prior for o.

L. Demortier, Feb. 4, 2005
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Systematic Uncertainties

Encoded as priors on the nuisance parameters t({0}).

Can be quite contentious -- injection of theory
uncertainties and results from other experiments --
how much do we trust them?

Do not inject the same information twice.

Some uncertainties have statistical interpretations --
can be included in L as additional data. Others are
purely about belief. Theory errors often do not have
statistical interpretations.



Aside: Uncertainty on our Cut Values? (answer: no)
« Systematic uncertainty -- covers unknown
differences between model predictions and the “truth”
* We know what values we set our cuts to.

* We aren’t sure the distributions we’re cutting on are properly
modeled.

* Try to constrain modeling with control samples
(extrapolation assumptions)

» Estimating systematic errors by “varying cuts” isn’t optimal
-- try to understand bounds of mismodeling instead.



Integrating over Systematic Uncertainties Helps
Constrain their Values with Data

L'(datar) = f L(data | r,0)m(0)d0

6000 CDF Il 220 pb”’
Nuisance parameters: 6 = 1
Parameter of Interest: r 5000] | jgg fl
"o " 2000 Pl
240000 1 g0t i
Example: suppose we have - 1800
%3000 380 3.85 390 3.95
a background rate prediction g
that’s 50% (fractionally) uncertain S 5 ROV .
-- goes into r(0). But only a 8 )
narrow range of background rates 1000 &S
contributes significantly to the .
integral. The kernel falls to zero rapidly 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

E— 2
outside of that range. Jhyn'n Mass (GeV/c')

Can make a posterior probability distribution for the background too --
narrow belief distribution.



Coping with Systematic Uncertainty

e “Profile:”
« Maximize L over possible values of nuisance parameters
include prior belief densities as part of the y? function
(usually Gaussian constraints)

* “Marginalize:”
 Integrate L over possible values of nuisance parameters
(weighted by their prior belief functions -- Gaussian,
gamma, others...)
» Consistent Bayesian interpretation of uncertainty on nuisance
parameters

« Aside: MC “statistical” uncertainties are systematic uncertainties



Example of a Pitfall in Fitting Models

* Fitting a polynomial with too high a degree

» Can extrapolations be trusted?

Trigger x-section
extrapolation vs.
luminosity
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Other Pitfalls of Fitting

Usually methods relying on profiling and marginalizing provide numerically
similar results, but there are exceptions.

Sometimes a likelihood function has multiple maxima.

Prediction = 10*2,;. Observe data=12. What'’s the best fit /\
nuisance parameter? lts Uncertainty? Integrating over the whole

shape provides the most information. 0

Sometimes a likelihood function has a discontinuous first
derivative (care should be taken to avoid this, but sometimes L
it happens. e.g. using Barlow and Beeston’s TFractionFitter in

a likelihood function).

MINUIT gets stuck in corners. Uncertainty in fit
value is also ill-defined.



Asymmetric Uncertainties and Priors

Measurements, and even theoretical calculations, frequently are assigned
asymmetric uncertainties:

Value = 10*2 ;, or more extremely, 10*2,, (ouch). When the uncertainties have the
same sign on both sides, it is worthwhile to check and see why this is the case.

' . . . ' 6000 CDF Il 220 pb™'
Example — we seek a bump in a mass distribution by counting 2222
events in a small window around where the bump is sought. 50001 | 2100 s'f?
o 1 2000{, {, Tyt \tti ol g
. : : 24000 | et LT
The detector calibration has an energy uncertainty 2 a3
. . . 5 380 385 390 3.95
(magnetic field or chamber alignment for tracks, g0
. . e
or much larger effect, calorimeter energy scales for jets). 22000 et et e
O J o
. : . , _ | X(3872)
Shift the calibration scale up — predicted peak shifts out of the

window = downward shift in expected signal prediction. 0
3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

Jlynn Mass (GeV/cz)

Shift the calibration down — predicted peak shifts out of the other
side of the window = downward shift in expected signal prediction



Treatment of Asymmetric Uncertainties

These cases are pretty clear — the underlying parameter, the energy scale, has a

(Gaussian? Your choice) distribution, while it has a nonlinear, possibly non-monotonic
impact on the model prediction.

The same parameter may have a linear, symmetrical impact on another model prediction,
and we will have to treat them as correlated in statistical analysis tools.

Treatment is ambiguous when little is known why the uncertainties are
asymmetric, or it is not clear how to extrapolate/interpolate them.

See R. Barlow,

“Asymmetric Systematic Errors”, arXiv:physics/0306138
“Asymmetric Statistical Errors”, arXiv:physics/0406120



Quadratic Impacts of Asymmetric Uncertainties

R. Barlow
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Resulting Prior Distributions for alternative handling of Asymmetric Impacts

R. Barlow
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Other Ideas on Handling Asymmetric Uncertainties

* Quadratic interpolation for small values of the uncertain parameter
-- avoids the kink at zero

* Gradual switchover (use an exponential or other asymptotic function)
to linear for large values of the nuisance parameter
-- avoids large quadratic divergence from more sensible linear extrapolation

P

Arbitrary! But this one’s nice. What are our criteria for what’s “nice”?

Preserve the mean of the prior distribution to be the central value.
Otherwise people will complain of bias.

Preserve the median of the prior distribution to be the central value.
Otherwise an up-variation in the parameter will produce a down-variation in the

impacted prediction.

Preserve the mode of the prior distribution
The best fit value should be the central prediction.

We may be asking too much! What does 1*1° ; mean, anyway?



Statistical Uncertainties on Systematic Uncertainties?

Answer: No. But some systematic uncertainties are difficult to evaluate properly.

See Roger Barlow’s “Systematic errors: Facts and Fictions”,
arXiv: hep-ex/0207026

The idea: If a systematic uncertainty is estimated by comparing two data samples or
two MC samples, or data vs. MC, then if one or both of them have a limited size, then
the magnitude of the systematic can be poorly constrained.

Ideally, work harder (run more MC) to get a better prediction of the expected signal
and background, under all assumptions of systematic variation.

Monte Carlo Statistical Uncertainty is a Systematic Uncertainty
but don’t double-count it for each separate MC variation of each
nuisance parameter. Easy to do by comparing central vs. varied MC samples.

Statistically weak tests should be handed as cross checks. If they are consistent,
consider the test to have passed, but do not add systematic uncertainty.

If they fail, however, and a discrepancy between two MC’s or data and MC cannot be
understood and fixed, then a systematic uncertainty is called for.



Even Bayesians have to be a little Frequentist

e A hard-core Bayesian would say that the results of an

experiment should depend only on the data that are observed,
and not on other possible data that were not observed.

Also known as the “likelihood principle”

e But we still want the sensitivity estimated! An experiment
can get a strong upper limit not because it was well designed,
but because it was lucky.

How to optimize an analysis before data are observed?

So -- run Monte Carlo simulated experiments and compute
a Frequentist distribution of possible limits. Take the median--
metric independent and less pulled by tails.

But even Bayesian/Frequentists have to be Bayesian:

use the Prior-Predictive method -- vary the systematics on eachc
pseudoexperiment in calculating expected limits. To omit

this step ignores an important part of their effects.



Bayesian Example: CDF Higgs Search at m;=160 GeV (an older one)

CDF Run II Preliminary, L=3.6 fb™
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%2/ ndf 39.35/61
Prob 0.9859
po 3864 + 1387.5
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What These Look Like for a 5.00 Observation

(a)
SD + MJ Combination

¢ CDF Data
[ Isingle Top
B Background

-0.5

(b)
m200 SD + MJ Combination _
'E e CDF Data ”
o | Signal + Background ﬂ
> —— Background
; W50 *
[ Qo .
02 04 06 08 1 5
L
=100
£
=
(&)
50
0 0.5 1 00 10 20 30 40 50 60 70

log,o(s/b) Integrated Expected Signal

CDF Single Top, 3.2 fb™
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Even Bayesians have to be a little Frequentist

o 3 ;

We would like to know how the cross S 28 |- WM 68% Confidence Interval -
. . . Q o i : '
section calculations behave in 3 2g |- v S%Confidence bnferval .
an ensemble of possible experimental @24f S N T e —
outcomes. G 22 :

ge)

2 2

7 é
Procedure: @18k

a ; ;

=

1.6 i
* Inject a signal. 4

* Vary systematics on each
pseudoexperiment (which
integrates over them in the ensemble)
* Calculate Bayesian cross section for each
outcome and plot distribution.
* Black line is the median, not the mean
* Check the width of the distribution against

AP I Y
12 |l
1 |
0.8
0.6
04

0.2

the quoted uncertainties. Specifically, the 90 02 0.4 06 08 1 12 14 16 18 2
distribution of Input Cross Section 3
(meas-inject)/uncertainty This is in fact a Neyman construction!
Should be a Unit-width Gaussian (when not Can do Feldman-Cousins with this

up against zero). (correct for fit biases, if any).
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Some Features of the Linearity Plot

3
The distribution of fit outcomes at an S S L I
. . . . . .g 2_8 —_— - 68°/° Confldence Interval ............. .............
injected signal of 0 is a delta function at zero 8 sl sw%cConfidencelnterval
with 50% of the total amount. The other 50% p 2'4 * Median
of the distribution has a width from the § T e
measurement resolution. S 99 | ............. ............. .............. ............. o o
R ey
. . g 1.8
When computing pulls, use the up error if the 2" Y
measured value is below the injected rate, bl I R R R
and the down error if it is above. 14 T
1.2
For a fully systematics-dominated measurement, 1
the band edges should be straight lines pointing 0.8 [ AN
at the origin. (e.g, if the only uncertainty were 0.6
acceptance). Also largely the case for high s/b 0.4
statistics-limited measurements. 0.2
0

1 | | I | | | |
0 02040608 1 12 14 16 18 2

For this measurement, there was a small signal Input Cross Section B

and a large, uncertain background. The total uncertainty
on the signal is less dependent on the value of the signal.

Using the fit value of the uncertainty can be biasi.rL —also quote expected fit uncertainty
T. Junik Statistics ETH Zurich=30 Jan - 3 Fe 8



An Example Where Usual Bayesian Software Doesn’t Work

e Typical Bayesian code assumes fixed background, signal shapes (with
systematics) -- scale signal with a scale factor and set the limit on the scale factor
e But what if the kinematics of the signal depend on the cross section? Example --

MSSM Higgs boson decay width scales with tan?3, as does the production cross
section.

e Solution -- do a 2D scan and a two-hypothesis test at each m,,tanf3 point

events/(15 GeV/c?)

fraction/(15 GeV/c?)

CDF Run Il Preliminary (1.9/fb)
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Priors in Non-Cross-Section Parameters

Example: take a flat prior in m;
can we discover the Higgs boson

by process of elimination?

(assumes exactly one Higgs boson :
exists, and other SM assumptions) sl -

Example: Flat priorin
log(tanf}) -- even with no
sensitivity, can set non-trivial
limits..
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Bayesian Discovery?

Bayes Factor

B=L'(datalr_ )/L'(datalr=0)

ax
Similar definition to the profile likelihood ratio, but instead of maximizing

L, it is averaged over nuisance parameters in the numerator and
denominator.

Similar criteria for evidence, discovery as profile likelihood.

Physicists would like to check the false discovery rate,
and then we’re back to p-values.

But -- odd behavior of B compared with p-value for even a simple case

J. Heinrich, CDF 9678
http://newton.hep.upenn.edu/~heinrich/bfexample.pdf



Tevatron Higgs Combination Cross-Checked Two Ways
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Very similar results --

e Comparable exclusion regions

e Same pattern of excess/deficit
relative to expectation

n.b. Using CL,,, limits instead of

CL, or Bayesian limits would extend the
bottom of the yellow band to zero in the
above plot, and the observed limit

would fluctuate accordingly. We’d have

to explain the 5% of m,, values we randomly
excluded without sufficient sensitivity.
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Measurement and Discovery are Very Different

Buzzwords:
e Measurement = “Point Estimation”
e Discovery = “Hypothesis Testing”

You can have a discovery and a poor measurement!
Example: Expected b=2x10"7 events, expected signal=1
event, observe 1 event, no systematics.

p-value ~2x107 is a discovery! (hard to explain that event
with just the background model). But have +100%
uncertainty on the measured cross section!

In a one-bin search, all test statistics are equivalent. But
add in a second bin, and the measured cross section becomes
a poorer test statistic than the ratio of profile likelihoods.

In all practicality, discriminant distributions have a wide
spectrum of s/b, even in the same histogram. But some good
bins with b<1 event



Advantages and Disadvantages of Bayesian Inference

* Advantages:
 Allows input of a priori knowledge:
 positive cross-sections
 positive masses
* Gives you “reasonable” confidence intervals which don’t
conflict with a priori knowledge
 Easy to produce cross-section limits
* Depends only on observed data and not other possible data
» No other way to treat uncertainty in model-derived parameters
* Disadvantages:
 Allows input of a priori knowledge (AKA “prejudice”)
(be sure not to put it in twice...)
« Results are metric-dependent (limit on cross section or
coupling constant? -- square it to get cross section).
« Coverage not guaranteed
 Arbitrary edges of credibility interval (see freq. explanation)



Another Application of Bayesian Reasoning: The Kalman Filter

Used in HEP to fit tracks in a particle detector

Prediction step

Prior knowledge 11k
of sta?:e — I;("'_l“"_l —> Based on e.g.
‘ k—1lk—1 physical model
Next timestep l?k-lk.—l
k+k+1 Xk|k—1
P k|k Update step Measurements
)A(k;|la: <«—Compare prediction «— y
" to measurements Bl

Output estimate
of state

From the Wikipedia article



Outliers

» Sometimes they’re obvious, often they are not.

» Best to make sure that the uncertainties on all points honestly

include all known effects. Understand them!
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Instantaneous
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Summary

Statistics, like physics, is a lot of fun!

It’s central to our job as scientists, and about how human
knowledge is obtained from observation.

Lots of ways to address the same problems.

Many questions do not have a single answer. Room
for uncertainty. Probability and uncertainty are different

but related.

Think about how your final result will be extracted from the
data before you design your experiment/analysis -- keep
thinking about it as you improve and optimize it.



Extra Material



Bayesian Upper Limit Calculation

(s + b)re”(s+b)

n!

L(s) =

data=n
b = background rate
s = signal rate (= cross section when luminosity=1)

Multiply by a flat prior m(s) = 1 and find the limit by integrating:

0.95 = /O M (s (s)ds

Not too tricky; easy to explain.
* But where did nt(s) come from?
* What to do about systematic uncertainty on signal and background?



Frequentist Analysis of Significance of Data

* Most experiments yield outcomes with measure ~0

» A better question: Assuming the null hypothesis is true,
what are the chances of observing something as much
like the test hypothesis as we did (or more)?

used to reject the null hypothesis if small

» Another question: If test hypothesis is true, what are the chances
that we’d see something as much like the null hypothesis
as we did (or more)?
used to reject the test hypothesis if small

It 1s possible to reject both hypotheses! (but not with C+F or
Bayesian techniques).



Frequentist Interpretation of Data

» Relies on an abstraction -- an infinite ensemble of repetitions of
the experiment. Can speak of probabilities as fractions of
experiments.

* Constructed to give proper coverage:

95% CL intervals contain the true value 95% of the time, and
do not contain the true value 5% of the time, if the experiment
1s repeated.

» Two kinds of errors:
» Accepting test hypothesis if it 1s false
» Excluding test hypothesis if it is true
* Two kinds of success Difference between
» Accepting test hypothsis if it is true “power” and
» Excluding test hypothesis if it 1s false “coverage”



Undesirable Behavior of Limit-Setting Procedures

« Empty confidence intervals: we know with 100% certainty
that an empty confidence interval doesn’t contain the true
value, even though the technique produces correct 95% coverage
in an ensemble of possible experiments. Odd situation when
we know we’re in the “unlucky” 5%.

« Ability of an experiment to exclude a model to which there
1S no sensitivity.
Classic example: fewer selected data events than predicted by
SM background. Can sometimes rule out SM b.g. hypothesis
at 95% CL and also any signal+background hypothesis,
regardless of how small the signal is.

Annoying, but not actually flaws of a technique

« Experiments with less sensitivity (lower s, or higher b, or bigger
errors) can set more stringent limits if they are lucky than
more sensitive experiments

* Increasing systematic errors on b can result in more stringent
limits (happens if an excess,is. obseryed. in.data).



Solution to Annoying Problems -- Expected Limits

 Sensitivity ought to be quoted as the median expected limit
(or median discovery probability) or median expected error
bar in a large ensemble of possible experiments, not the observed
one. Called “a priori limits” in CDF Run 1 parlance.

 Systematic errors will always weaken the expected limits
(observed limits may do anything!)

* Best way to compare which analysis is best among several
choices -- optimize cuts based on expected limits 1s optimal

Approximations to expected limit:

s/vs+b

Approximation to expected discovery significance

s/V'b



Systematic Uncertainties in Fequentist Approaches

* Can construct multi-dimensional Confidence intervals,

with each nuisance parameter (=source of uncertainty)
constrained by some measurement.

 Not all nuisance paramters can be constrained this way --
some are theoretical guesses with belief distributions instead
of pure statistical experimental errors.

« Systematic uncertainty 1s uncertainty in the predictions of
our model: e.g., p(data|Standard Model) is not completely well

determined due to nuisance parameters

* One approach -- “ensemble of ensembles” -- include in the
ensemble variations of the nuisance parameters.

(even Frequentists haye to.be a little Bayesian.sometimes)



Individual Candidates Can Make a Big Difference

At LEP -- can follow individual candidates’ interpretations
as functions of test mass
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A Pitfall -- Not Enough MC (or data in sideband regions)
To Make Adequate Predictions

An Extreme Example (names removed)
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Cousins, Tucker and
Linnemann tell us prior
predictive p-values
undercover with 0+0
events are predicted

in a control sample.

CTL Propose a flat prior in
true rate, use joint LF

in control and signal
samples. Problemis, the
mean expected event rate
in the control sample is
n,,+1 in control sample.
Fine binning — bias in
background prediction.

Overcovers for discovery,
undercovers for limits?



