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Hypothesis Testing

e Simplest case: Deciding between two hypotheses.
Typically called the null hypothesis H, and the
test hypothesis H,

e Can’t we be even simpler and just test one hypothesis H,?
e Data are random -- if we don’t have another
explanation of the data, we’d be forced to call it a
random fluctuation. Is this enough?
e H, may be broadly right but the predictions slightly flawed
e Look at enough distributions and for sure you’ll spot one
that’s mismodeled. A second hypothesis provides guidance

of where to look.

e Popper: You can only prove models wrong, never All models are wrong;
prove one right. some are useful.

e Proving one hypothesis wrong
doesn’t mean the proposed alternative must be right.



A Dilemma - Can’t we test just one model?

Something experimentalists come up with from time to time:

* Make distributions of every conceivable reconstructed quantity

e Compare data with Standard Model Predictions
* Use to test whether the Standard Model can be excluded
* Example: CDF’s Global Search for New Physics Phys.Rev. D 79 (2009) 011101

The case for doing this:

* We might miss something big and obvious in the data if we didn’t
* Searches that are motivated by specific new physics models may point us
away from actual new physics.

More potential for discovery if you look in more places.
Example: Discovery of Pluto. Calculations from Uranus’s orbit perturbations were

flawed, but if you look in the sky long enough and hard enough you’ll find stuff.
Even without calculations it’s still a good idea to look in the sky for planetoids.



Testing Just One Model — Difficulties in Interpretation

* Look in enough places and you’ll eventually find a statistical fluctuation
-- you may find some new physics, but probably also some statistical
fluctuations along the way.

This is straightforward to correct for — called the “Trials Factor” or the “Look Elsewhere
Effect”, or the effect of multiple testing. To be discussed later.

* More worrisome is what to do when systematic flaws in the modeling are discovered.
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Testing Just One Model — Difficulties in Interpretation

* What do you do when you see a discrepancy between data and prediction?
1. Attribute it to a statistical fluctuation
2. Attribute it to a systematic defect in the modeling of SM physics processes,
the detector, or trigger and event selection effects
* No matter how hard we work, there will always be some residual
mismodeling.
Collect more and more data, and smaller and smaller defects in the
modeling will become visible
3. Attribute it to new physics

* Looking in many distributions will inevitably produce situations in which 1 and 2
are the right answer. Possibly 3, but if we only knew the truth! Trouble is,

we’d always like to discover new physics as quickly as possible, so there is a reason
to point out those discrepancies that are only marginal.

* In order to compute the look-elsewhere-effect, we need to have a prescription for
how to respond to each possible discrepancy in any distribution.

-- Run Monte Carlo simulations of possible statistical fluctuations and run each through
the same interpretation machinery as used for the data to characterize its performance



Testing Just One Model — Difficulties in Interpretation

» Systematic effects in the modeling or new physics? (“old” physics vs. “new” physics)

* Use the data to constrain the “old” physics and improve the modeling

* Tune Monte Carlo models to match data in samples known not to contain
new physics.

* Already a problem — how do we know this?

* Examples: lower-energy colliders, e.g. LEP and LEP2, are great for tuning up
simulations.

* Extrapolation of modeling from control samples to “interesting” signal samples —

this step is fraught with assumptions which are guaranteed to be at least
a little bit incorrect.

* But extrapolations with assumptions are useful! So we assign uncertainties, which
we hope cover the differences between our assumptions and the truth

e Butin a “global” search, it is less clear what’s “signal” and what’s “background”.

Which discrepancies can be used to “fix the Monte Carlo” and which are interesting
enough to make discovery claims? It’s a judgement call.

* Need to formalize judgement calls so that they can be simulated many times!



Testing Just One Model — Difficulties in Interpretation

* Need a definition of what counts as “interesting” and what’s not. Already, using
triggered events at a high-energy collider is a motivation for seeking highly-energetic
processes, or signatures of massive new particles previously inaccessible.

* Analyzers chose to make 2P, distributions for all topologies and investigate the
high ends, seeking discrepancies.

We just lost some generality! Some new physics may now escape detection.

But we now have alternate hypotheses — no longer are we just testing the SM
(really our clumsy Monte Carlo representation of it).

Boxed into a corner trying to test just one model

* Of course our MC is wrong (that’s what systematic uncertainty is for)
* Of course the SM is incomplete (but is it enough to describe our data?)

But without specifying an alternative hypothesis, we cannot exclude the null
hypothesis (“maybe it’s a fluctuation. Maybe it’s mismodeling.”)



The Most Discrepant 2P, distributions

+ g+ ot 1
mrr P = 0.00055 i
i} a0f ® CDF Run Il data d s [ e CDFRunlldata
s o | Pythia Z(—tt) : 23% a1 SM=26 S 25k Alpgen W(—uv) jjj : 18%
> [ | Pythia Z(—up) : 22% E d=49 £ L ) MadEvent W(—iv)jy : 13%
w - 1 Pythia jj : 20% A - Hervig tt : 13%
©® 5[ E0 MadEventZ(—uu)j:65% 9 © 0 MadEvent Z(—uy) jj : 11%
= . I Other 4 5 I Other
2 - 3 a 2__
E - 2 E N
z 20 1 32
: ’ 1.5
15— -
; 1_— ’e o o [ L
10[— i
5| 0.5
oL ) RIS ol S AP Y Y R IR PR
0 50 100 150 200 250 0 200 400 600 800 1000 1200
GeV,
68 2P, (@Y 342 PLAC
It py P =0.0042 T py P =0.0047
2 [ e CDFRunlicata £ BF e CDFAunlidata e
S [ Baur W(—uv)y :33% c F L | MadEvent Z(—uu) y :50% SM=0.39
2 16F T pythia Z(—uw) : 17% £ E 1 PythiaWz:33% h d=4
C Alpgen W(—wuv) j : 9.9% W 7F 1 MadEvent Z(—uy) | : 4.6%
B 4f T MadEvent W(—iv)iy : 7% k) | 0 Pythia Z(—x) : 3.2% I
= | EEEEN Other 5 | I Other !
2 o ] SF
g 12 £ . 1.5
z - Z s 05
10} E %50 300 350
ai_ 4;— '
o[- 3
a4 2
2 1
0 T : E A I I |
o . i
0 50 100 150 200 250 300 Eisieev?oo 0 100 200 300 200 500
GeV,
169 : oi8 2P (@eV)

like-sign dileptons, missing p; — modeling of fakes and mismeasurement

is always a question.
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Searching for Everything All at Once

* A global search also is less optimal than a targeted search
» Targeted searches can take advantage of more features of the signal
(and background) processes than just particle content and ZP;.
* The Global search suffers from a much larger Look-Elsewhere Effect
e The Global search may not benefit as much from sideband constraints
of backgrounds, although CDF’s did adjust some non-new-physics nuisance
parameters to fit the data the best.

* Global Search distributions must be hidden from blind analyzers — they unblind
everything.

In practice, this isn’t much of a problem due to different event selection criteria

In spite of all of the difficulties, it is still a good idea to do this. We absolutely
do not want to miss anything.

But a signal of new physics would have to be pretty big for us to stumble on it.
It’s hard to manufacture serendipity.



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 1: Devise a quantity that depends on the observed
data that ranks outcomes as being more signal-like or
more background-like.

Called a test statistic. Simplest case: Searching for a new
particle by counting events passing a selection requirement.

Expect b events in H,, s+b in H,.
The event count n_, . is a good test statistic.

Step 2: Predict the distributions of the test statistic separately
assuming:
H, is true
H, is true
(Two distributions. More on this later)



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 3: Run the experiment,

get observed value of test g 830
statistic. (1] /.
0,14 +
u=6
0,12 + —
Step 4: Compute p-value m
0,10 +
0,02+ H
p(n=n_, |H,) N
0,06 +
Example: 0,04 1 1
Ho:b=u=6 0,02.;]_[ l
nobs =10 0,00 I—
p_value — 00839 0 2 4 6 8 1012 14 16 18 20 22 24
But many

. . ) often say that.
A p-value is not the “probability H, is true” Especially the popular media!



So what is the p-Value?

A p-value is not the “probability H, is true” -- this isn’t even a Frequentist thing to

say anyway. If we have a large ensemble of repeated experiments, it is not true
that H, is true in some fraction of them!

p-values are uniformly distributed assuming that the hypothesis they are testing is
true (and outcomes are not too discretized).

Why not ask the question —what’s the chance N=N_, . (no inequality). Each outcome
may be vanishingly improbable. What’s the chance of getting exactly 10,000 events when
a mean of 10,000 are expected? (it’s small). 1 of 1 is expected?

If p < p: then we can make a statement. Say p_,.=0.05. If we find p < p_,;., then we
can exclude the hypothesis under test at the 95% CL.

What does the 95% CL mean? It’s a statement of the error rate.

In no more than 5% of repeated experiments, a false exclusion of a
hypothesis is expected to happen if exclusions are quoted at the 95% CL.



Type | and Type Il Error Rates

(statistics jargon, not very common in HEP, but people will understand)

* Type | Error rate: The probability of excluding the Null Hypothesis H, when H, is true.
Also known as the False Discovery Rate.

* Type Il Error rate: The probability of excluding the Test Hypothesis H, when H, is true.
The false exclusion rate.

Typically a desired false discovery rate is chosen — this is the value of p_;, also known
as a. Then if p < a, we can claim evidence or discovery, at the significance level given
by a.

We discover new phenomena by ruling out the SM explanation of the data!
-- the Popperian way to do it — we can only prove hypotheses to be false.



Common Standards of Evidence

Physicists like to talk about how many “sigma” a result Folklore:

corresponds to and generally have less feel for p-values.

The number of “sigma” is called a “z-value” and is just
a translation of a p-value using the integral of one

tail of a Gaussian

95% CL -- good
for exclusion

30: “evidence”

50: “observation’

Some argue for

a more subjective

U

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue) scale.
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Why 5 Sigma for Discovery?

From what | hear: It was proposed in the 1970’s (or earlier) when the technology
of the day was bubble chambers.

Meant to account for the Look Elsewhere Effect. A physicist estimated how many
histograms would be looked at, and wanted to keep the error rate low.

Also too many 20 and 3o effects “go away” when more data are collected.

My personal opinion — not all estimations of systematic uncertainties are perfect —
some effects go away when additional uncertainties are considered. Example —
CDF Run | High-E; jets. Not quark compositeness, but the effect could be folded
into the PDFs.

If a signal is truly present, and data keep coming in, the expected
significance quickly grows (s/sqrt(b) grows as sqrt(integerated luminosity)).
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A Cautionary Tale — The Pentaquark “Discoveries”

Watch out for the
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CLAS Collab., Phys.Rev.Lett. 100 (2008) 052001

background function
parameterization!

n.b. the Bayesian analysis in this paper is flawed —
see the criticism by R. Cousins, Phys.Rev.Lett. 101 (2008) 029101



Another Bump That Went Away

A preliminary set of distributions shown at a LEPC presentation
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Benefit of having four LEP experiments — at the very least, there’s more data.
This one was handled very well — cross checked carefully.
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But, they shared models — Monte Carlo programs, and theoretical calculations.
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The Literature is Full of Bumps that Went Away

See Sheldon Stone, “Pathological Science”, hep-ph/0010295

My personal favorite is the “Split A, resonance”
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Figure 3: (a-c) Evidence for A2 splitting in 7~ p — pX ~ collisions in the two CERN exper-
iments, (d) same as (c) in 5 MeV bins fit to two hypotheses.

Text from Sheldon’s article:

How did this happen? I have heard several possible explanations. In the
MMS experiment, I was told that they adjusted the beam energy so the dip
always lined up! Another possibility was revealed in a conversation I had with
Schiibelin, one of the CBS physicists. He said: “The dip was a clear feature.
Whenever we didn’t see the dip during a run we checked the apparatus and
always found something wrong.” I then asked him if they checked the apparatus
when they did see the dip, and he didn’t answer.

What about the other experiments that did see the dip? Well there were
several experiments that didn’t see it. Most people who didn’t see it had less
statistics or poorer resolution than the CERN experiments, so they just kept
quiet. Those that had a small fluctuation toward a dip worked on it until it
was publishable; they looked at different decay modes or ¢ intervals, etc. (This
is my guess.)



At Least ALEPH Explained what They Did
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Sociological Issues

e Discovery is conventionally 50. In a Gaussian asymptotic
case, that would correspond to a £20% measurement.

e Less precise measurements are called “measurements”
all the time

e We are used to measuring undiscovered particles and
processes. In the case of a background-dominated search,
it can take years to climb up the sensitivity curve and
get an observation, while evidence, measurements, etc.
proceed.

e Journal Referees can be confused.



Coverage

A statistical method is said to cover if the Type-| error rate is no more than the
claimed error rate a. Exclusions of test hypotheses (Type-Il errors) also must
cover — the error rate cannot be larger than stated.

95% CL limits should not be wrong more than 5% of the time if a true signal is present.

If the results are wrong a smaller fraction of the time, the method overcovers.
If the results are wrong a larger fraction of the time, the method undercovers.

Undercoverage is a serious accusation — it has a similar impact as saying that the
qguoted uncertainties on a result are too small (overselling the ability of an experiment
to distinguish hypotheses).

Note: Coverage is a property of a method, not of an individual result. In some cases we
may even know that a result is in the unlucky 5% of outcomes, but that individual outcome
does not have a coverage property — only the set of possible outcomes.

The word coverage comes from confidence intervals — are they big enough to contain
the true value of a parameter being measured and what fraction of the time they do.



A More Sophisticated Test Statistic
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p-values and -2InQ

p-value for testing H, = p(-2InQ < -2InQ,, | H,)
The yellow-shaded area to the right.

sity

The “or-equal-to” is important here. For highly
discrete distributions of possible outcomes —
say an experiment with a background rate of
0.01 events (99% of the time you observe zero
events, all the same outcome), then observing

Probability den

0 events gives a p-value of 1 and not 0.01. 0.02 i

Shouldn’t make a discovery with 0 observed events, 0

no matter how small the background expectation!
(or we would run the LHC with just one bunch
crossing!).

This p-value is often called “1-CL,” in HEP. (apologies for the
notation! It’s historical)
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p-values and -2InQ

p-value for testing H, = p(-2InQ > -2InQ
The green-shaded area to the right.
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If it is small, reject H,
The “or-equal-to” has similar effect here too.

This one is called CL,,, (again, not my choice

of words). p-values are not confidence levels.

Note: If we quote the CL as the p-value, we
will always exclude H,, just at different CL's
each time.

Lucky outcome: exclude at 97% CL
Do we exclude at the 50% CL?

No! Set a once and for all (say 0.05). Then
coverage is defined.
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More Sensitivity or Less Sensitivity
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likelihood ratio

LLR Is not only used in Search Contexts — Precision Measurements too!
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Power

The Type-| Error Rate is a or less for a method that covers. But | can cover with an analysis
that just gives a random outcome —in a of the cases, reject H,, and in 1-a of the cases,

do not reject H,,.
But we would like to reject H; when it is false.

The quoted Type-Il error rate is usually given the symbol B (but some use 1-B).

For excluding models of new physics, we typically choose B=0.05, but sometimes 0.1 is used
(90% CL limits are quoted sometimes but not usually in HEP).

Classical two-hypothesis testing (not used much in HEP, but the LHC may lean towards it).

H, is the null hypothesis, and H, is its “negative”. We know a priori either H, or H, is true.
Rejecting H, means accepting H, and vice versa (n.b. not used much in HEP)

Example: H,: The data are described by SM backgrounds
H;: There is a signal present of strength u>0. Can also be pu#z0 but most
models of new physics add events. (Some subtract events! Or add
in some places and subtract in others!! More on this later.)



The Classical Two-Hypothesis Likelihood Ratio

Distinguishing between pu=0 (zero signal, SM, Null Hypothesis) and pu>0 (the test hypothesis)

~ is the best-fit value

L(data | ‘l/:t,é) u of the signal rate.

Can be zero. Your

Assumption Warning!
Signal rates scale with
a single parameter pu

q,=2In

L(data | M,é) choice to allow it to

L is quadratically dependent on go negative.

coupling parameters (or worse. More on this later).

Larger q, is more signal-like
f(a,ln) ——
j Goos | flq,lw)

/ p-value q,>0 always because H,
is a superset of H, and

therefore always fits
at least as well.

9,
ATLAS performance projections, CERN-OPEN-2008-020



Wilks’s theorem

If the true value of the signal rate is given by y, then q, is distributed according
to a X2 distribution with one degree of freedom.

Assumptions: Underlying PDFs are Gaussian (this is never the case)
Systematic uncertainties also complicate matters. If a systematic uncertainty
which has no a priori constraint can fake a signal, then there is no sensitivity
in the analysis.

Example: data = signal + background, single counting experiment.

If the background is completely unknown a priori, there is no way to make any

statement about the possibility of a signal. So q,=0 for all outcomes for all .

Poisson Discreteness also makes Wilkes’s theorem only approximate.

@ ;" ATLAS H—W'W (Ojet) | ?;"1 ATLAS H—>WW (Ojet) | ®
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Altered parameters
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ATLAS performance projections, CERN-OPEN-2008-020
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Figure 8: The distribution of the test statistic go for H 4+ 0j — WW + 0, under the background-only hypothesis,
with the same fixed QCD WW shape parameters used at both the generator and the fit level, for my = 150 GeV
and for an integrated luminosity of 10 fb~! (a) with the same shape parameters for event generation and fitting; (b)
with altered shape parameters. A % X12 distribution is superimposed.



Multibin Searches and Discreteness

A discrete example with two bins, no systematic errors, very

different s/b: —fuenfampe |
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Multibin Searches and Discreteness

* The p-value you get for a 1-bin search can be modified
by as much as the probability of a particular outcome
by adding in a second bin with almost no power.

» Consequence of discreteness and the definition of p-value

Spht Olltcomes 1'CLb: p-Value(bg) - p('zan < '21nQobs|bg hyp)

* An indication that your analysis can be optimized further
 Distribution of p-value(bg) 1s not uniform but discrete
in this case, and really 1s a convolution of discrete outcomes

* Many bins of different s/b cure this apparent problem.



The Classical Two-Hypothesis Likelihood Ratio
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Figure 6: The distribution of the test statistic gg (for H — yy), under the null background only hypothesis, for
my = 120 GeV with an integrated luminosity of 2 (a) and 10 (b) fb~!. A % x12 distribution is superimposed.

ATLAS performance projections, CERN-OPEN-2008-020

The big 6-function at q,=0 is for those outcomes for which the best signal fit
is zero or negative. The null hypothesis is exactly as good a description as the
test hypothesis. If the null is really true, this should happen % of the time.



The Classical Two-Hypothesis Test

In the case that one or the other, H, or H; must be true, then B is a function of a for
a single requirement on q.

This is useful when testing very discrete possibilities — for example, the charge of the

k . CDF Run Il preliminary L = 5.6 o'
tO p q U a r . 180F CDF Run Il preliminary L=5.6 fb"
£ Ew-HF i
u [[IMistag E
[[Isingle Top
[ piboson
[aco

Ot events

" Data

-
B
o

T T T T T

H,: q(top) = 2e/3
H,: q(top) = 4e/3.

XM like

Number of pseudoexperiments

G0 o5 00 o5 o
Q(W) * Q(b-jet)

These are the only allowed possiblities assuming t>Wb (Wbbar) proceeds.

See: CDF Collab., Phys.Rev.Lett. 105 (2010) 101801. Even here we introduced
no-decision regions to keep with our 95% CL exclusion and 30, 50 conventions

For problems with a more continuous test hypothesis,
LEP and the Tevatron choose not to fit for the signal rate p in the test statistic as it
makes for a more symmetrical presentation, and one can read off CL,,



Conditioning the Ensemble and the Stopping Rule

* Something the analyzers did a few years ago (smaller data sample)
which wasn’t optimal (it wasn’t wrong, just not optimal):

All pseudoexperiments to compute the
p-values were generated with the same total number of events.

Test statistic — counting same charge vs. opposite charge events and form
an asymmetry:

A = (Ngy-Nyw)/(Ngpi+Ny)

—very discrete!

Each possible experimental outcome had a high probability of occurring. An asymmetry
of zero in particular was highly likely! The “or-equal-to” part of the p-value rule

was a large piece of the expected p-value (and we want small p-values for making
significant tests)

Jargon: The ensemble was Conditioned on N, .,;=N4.:.

This is a “Slippery Slope”! How much like the observed data must the simulated
outcomes be? At least in this case there’s a clear answer.



The Stopping Rule

* Statisticians always ask: “When do you stop taking data and analyze and
publish the results?”

* Important in order to define the sample space from which an experimental
outcome has been drawn (cannot compute p-values without an answer to this).

Some options:

* Run until you get a desired N, events (hardly anyone does this — although one year,
SLC ran until 10,000 Z’s were detected offline by SLD. Ambiguous, because extra ones
can be found by changing cuts or unearthing unanalyzed tapes).

* Run until you get a desired N, ...q €vENts passing some analysis requirement.

If you are looking for a rare process with little or no background, you could be running
for a long time! Also, the distribution of -2InQ looks odd in this case. Worries of
bias (the last event is always a selected one!).

» Stop when you get a small p-value. Possible, since p-values fluctuate between 0 and 1.
As more data arrive, newer data overwhelm older data and the p-value is effectively
re-sampled from [0,1] (takes exponentially more data to do this). See the “Law of the
Iterated Logarithm”. Called “Sampling
to a foregone conclusion.” Avoid at all costs even the perception of this.

* The most common case: HEP experiments run until the money runs out. Analyze all
the data (if possible), and assume the experimental outcome was drawn from a large
sample of experiments with the same total integrated luminosity.

* Variation: It can be an individual’s money (or time, or patience) that limits a specific analysis

* Variation: Analyze a subset of the data that can be processed in time for a major
conference.



Back to the Q,,, Example

* Sampling outcomes from a Poisson-distributed N,,,, based on a predicted
event rate provided more distinct values of

A = (Ngy-Nyp)/ (Nt Ny ); - = N/ N
Example: for an odd N,,,,, A=0 is impossible. For even N,,,,,, A=0 is likely!

The median expected p-value for a signal was smaller. And believable since
the data are drawn from a Poisson distribution and not fixed a priori.
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No-Decision Regions
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Gauging the Sensitivity of an Analysis

We need this for many, many reasons!

* Decide which experiments to fund and build

* Decide how long to run them

* Decide how to trigger on events

* Decide how to optimize the analysis

* Compare competing efforts. Some experiment may get “lucky” — that does not mean
that they were necessarily better at what they were doing.

The classical B is not used (much, if at all) in HEP. Mostly because we allow for
no-decision regions, and outcomes that do not look like either hypothesis, and because
we stick to the 95% for exclusion, and 3o and 50 evidence and discovery error rates.
Today’s currancy:

1) Median Expected p-value assuming a signal is present

2) Median Expected limit on cross section assuming a signal is absent

3) Median Expected width of the measurement interval for measured parameters



Fraction of Experiments

0 2 4 5 s 10

On any given roll of the dice

CDF+D0, m,;=115 GeV

12 14
Integrated Luminosity/Exp ()

Dashed: 1.5*Improvement
Solid: 2.25*Improvement

Fraction of Experiments

CDF+D0, m, =160 GeV

L1

24 6 s 0 14
Integrated Luminosity/Exp (fb )

Dashed: 1.5*Improvement
Solid: 2.25*Improvement

“further” @ 115 GeV

7 fbl => 70% experiments w/20
30% experiments w/30

“further” @ 160 GeV

7 fbl => 95% experiments w/20
75% experiments w/ 30

Tevatron experiments have achieved the 1.5 factor improvement already.



The “Asimov” Approximation for Computing
Median Expected Sensitivity

We seek the median of some distribution, say a p-value or a limit (more on limits later).

* CPU constraints computing p-values, limits, and cross sections

* Need quite a few samples to get a reliable median Usually many thousands.

* | use the uncertainty on the mean to guess the uncertainty on the median (not true
for very discrete or non-Gaussian distributions

O, = RMS/Nn -1

* Often have to compute median expectations many times when optimizing an analysis
But: The median of a distribution is the entry in the middle.

Let’s consider a simulated outcome where data = signal(pred)+background(pred),

and compute only one limit, p-value, or cross section, and call that the median
expectation.

Named after Isaac Asimov’s idea of holding elections by having just one voter, the “most typical one”
cast a single vote, in the short story Franchise.



A Case in which the Asimov Approximation Breaks Down

Usually it’s a very good approximation.
Poisson discreteness can make it break down, however.

Example: signal(pred)=0.1 events, background(pred)=0.1 events.

The median outcome is O events, not 0.2 events.
In fact, 0.2 events is not a possible outcome of the experiment at all!
For an observed data count that’s not an integer, the Poisson probability must be
generalized a bit (seems to work okay):
r'e”’

(n,r)=———
pPozss( ) F(n + 1)



Some Comments on Fitting

e Fitting is an optimization step and is not needed for
correctly handling systematic uncertainties on nuisance
parameters.

More on systematics later

e Some advocate just using -2InQ with fits as the final
step in quoting significance (Fisher, Rolke, Conrad, Lopez)

e Fits can “fail” -- MINUIT can give strange answers
(often not MINUIT’s fault). Good to explore distributions
of possible fits, not just the one found in the data.



Incorporating Systematic Uncertainties into the p-Value

Two plausible options:
“Supremum p-value”

Choose ranges of nuisance parameters for which the
p-value is to be valid

Scan over space of nuisance parameters and calculate the
p-value for each point in this space.

Take the largest (i.e., least significant, most “conservative”) p-value.

“Frequentist” -- at least it’s not Bayesian. Although the choice of the range

of nuisance parameter values to consider has the same pitfalls as the arbitrary choice of
prior in a Bayesian calculation.

“Prior Predictive p-value”

When evaluating the distribution of the test statistic, vary the nuisance

parameters within their prior distributions. “Cousins and Highland”
p(x) = [ p(x16)p(6)d6

Resulting p-values are no longer fully frequentist but are a mixture of

Bayesian and Frequentist reasoning. In fact, adding statistical errors

and systematic errors in quadrature is a mixture of Bayesian and

Frequentist reasoning. But very popular. Used in ttbar discovery, single top discovery.



Other Possible ways to Incorporate Systematic Uncertainties in P-Values

For a nice (lengthy) review, see

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

Confidence interval method

Use the data twice — once to calculate an

interval for a nuisance parameter, and a second time to compute supremum p-values
in that interval, and correct for the chance that the nuisance parameter is outside the
interval.

Hard to extend to cases with many (hundreds!) of nuisance parameters
Plug-in p-value
Find the best-fit values of the uncertain parameters and calculate

the tail probability assuming those values.

Double use of the data; ignores uncertainty in best-fit values of uncertain parameters.



Other Possible ways to Incorporate Systematic

Uncertainties in P-Values
Fiducial method — See Luc’s note. | do not know of a use of this in a publication

Posterior Predictive p-value

Probability that a future observation will be at least as extreme as the current
observation assuming that the null hypothesis is true.

Advantages: Uses measured constraints on nuisance parameters
Disadvantages: Cannot use it to compute the sensitivity of an experiment you have
yet to run.

In fact, all methods that use the data to bound the nuisance parameters in the
pseudoexperiment ensemble generation cannot be used to compute the
a priori sensitivity of an experiment with systematic uncertainties.

Of course the sensitivity of an experiment is a function of the true values of
the nuisance parameters.



The Traditional Solution to Large, Uncertain Backgrounds: Sideband Fits
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Guess a shape that fits the backgrounds, and fit it with a signal.
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Va\

What’s with@ and é?

L(data | H,,0)

—2InQ=LLR=-2In x
L(data | H,,0)

We parameterize our ignorance of the model predictions
with nuisance parameters.

A model with a lot of uncertainty is hard to rule out!

-- either many nuisance parameters, or one parameter
that has a big effect on its predictions and whose
value cannot be determined in other ways

N\
H maximizes L under H,

A\
N\

H maximizes L under H,



What’s with @ and é ?

A simple hypothesis is one for which the only free
parameters are parameters of interest.

A compound hypothesis is less specific. It may have
parameters whose values we are not particularly
concerned about but which affects its predictions.
These are called nuisance parameters, labeled 6.

Example: H,=SM. H,=MSSM. Both make predictions
about what may be seen in an experiment. A nuisance
parameter would be, for example, the b-tagging efficiency.
It affects the predictions but in the end of the day we

are really concerned about H, and H,.



30

0 5 10 15 20 25 30

Fit twice! Once assuming H,, once assuming H,

Example: flat background, 30 bins, 10 bg/bin, Gaussian signal.
Run a pseudoexperiment (assuming s+b).

Fit to flat bg, Separate fit to flat bg + known signal shape.
The background rate is a nuisance parameter 6 ="b
Use fit signal and bg rates to calculate Q.

Fitting the signal is a separate option.
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Fitting Nuisance Parameters to Reduce Sensitivity to Mismodeling

No Background Fit Still some sensitivity in PDF’s
.gzsoo I it N E ke ] residual due to prob. of each
a0 ] outcome varies with bg estimate.
l;%1500 : -
e Including Background Fits
500 — 00 : : | 00 : :
0 ol g - Backgroundx0.8 § I Bdckgroundx1.0
10 gzsoo S s S Ezsoo i :
-21nQ
& 1500 |- -v-~|,:"' | - & 1500

—B
..-.S5+B

B L Bdckgroundx1.2

__...S+B

Means of PDF’s of -2InQ e

very sensitive to background . _
rate estimation. ' 2100
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Fitting and Fluctuating

CDF Run Il Preliminary, L = 3.2 fb
0| '

vy

L(data | s+ b,0)

—2InQ=LLR =-2In x
L(data | b,0)

—
o

eriments

p

Pseudo-Ex
<Dv o

e Monte Carlo simulations
are used to get p-values.

e Test statistic -2InQ is not uncertain
for the data.

e Distribution from which -2InQ is

0 200 00 o 100 drawn is uncertain!
Test Statistic [-2In(Q)]

e Nuisance parameter fits in numerator and denominator of -2InQ do not incorporate

systematics into the result.
Example -- 1-bin search; all test statistics are equivalent to the event count, fit or no fit.

-
o

e Instead, we fluctuate the probabilities of getting each outcome since those are
what we do not know. Each pseudoexperiment gets random values of nuisance parameters.

e Why fit at all? It’s an optimization. Fitting reduces sensitivity to the uncertain true

values and the fluctuated values. For stability and speed, you
can choose to fit a subset of nuisance parameters (the ones that are constrained
by the data). Or do constrained or unconstrained fits, it’s your choice.

e If not using pseudoexperiments but using Wilk’s theorem, then
the fits are important for correctness, not just optimality.



Consequences of Not Fitting

See Favara and Pieri, hep-ex/9706016

They found that channels, or bins within channels are better off being neglected
in the interpretation of an analysis in order to optimize its sensitivity.

If the systematic uncertainty on the background b exceeds the expected signal s,

then that search isn’t of much use. Fitting backgrounds helps constrain them however,
and sidebands with little or no signal still provide useful information, but you have

to fit to get it.

We also initially tried running LEP-style CL, programs on the Tevatron Higgs searches,
and got limits that were a factor of two worse than with fitting. The limits with
fitting matched older ones done by a Bayesian prescription (more on that later)



The “On-Off Problem”

Banff Challenge |

http://newton.hep.upenn.edu/~heinrich/birs/

Single counting experiment — select events in a “signal region” n_,..

Don’t need a signal model, other than that more events is more signal-like.
All test statistics are equivalent, ranking outcomes by n_..

Background is uncertain: rate p, is unknown. Constrain p, with an auxiliary
data sample (events failing the signal region requirements but passing
other requirements — usually a subset of the signal region requirements).
Measure n« events in the auxiliary sample.
Assume there is no signal in the “off sample”
Suppose further we know the value of t=p /1, .

(note: this is almost never true — we have some uncertainty on T, but

more on uncertainties later).

See also Cousins, Linnemann, and Tucker, NIM A 595 (2008)



The “On-Off Problem”

 Still an oversimplification of a real HEP search.

e Cousins, Linnemann, and Tucker explored methods that are always conservative
for computing discovery p-values.

 Joint binomial probablity for on vs. off counts works well.

* Bayesian analysis taking a uniform prior for p 4 (proportional to p,) ended up
being numerically coincident with joint binomial probability. More on Bayesian
techniques later.

But It’s biased! The average of the posteriors for repeated outcomes
in the off sample is p4+1. Bin more finely, can make the total background estimate
on average as big as you like.

Conservative for p-values — overestimates the background on average.
Aggressive for limits!

Other techniques are biased as well — observe n_=0 = if you infer p_=0+0
gives p-values too small some of the time. See later talk on smoothing and
density estimation.

Making Cousins, Linnemann, and Tucker — make sure Tt > 5 (my thesis advisor said
run 5x as much MC as you have data). Sometimes you cannot, howeuver.



The Trials Factor

e Also called the “Look Elsewhere Effect”
e Bump-hunters are familiar with it.

What is the probability of an upward fluctuation as big as the
one | saw anywhere in my histogram?

-- Lots of bins — Lots of chances at a false discovery
-- Approximation (Bonferroni): Multiply smallest p-value by the number of
“independent” models sought (not histogram bins!).
Bump hunters: roughly (histogram width)/(mass resolution)
Criticisms:
Adjusted p-value can now exceed unity!
What if histogram bins are empty?
What if we seek things that have been ruled out already?

Just as easy: The Sidak correction, still assumes independence.
Pcorrected = 1- (1_pmin)n



The Trials Factor

More seriously, what to do if the p-value comes from
a big combination of many channels each optimized at each
m, sought?
e Channels have different resolutions (or is resolution even
the right word for a multivariate discriminant?
e Channels vary their weight in the combination as
cross sections and branching ratios change with m,

Proper treatment -- want a p-value of p-values!

(use the p-value as a test statistic)

Run pseudoexperiments and analyze each one at

each m, studied. Look for the distribution of smallest p-values.

Next to impossible unless somehow analyzers supply
how each pseudo-dataset looks at each test mass.



An mternal CDF study that didn’t make 1t to prime time

— dimuon mass spectrum with signal fit

O e e e e e
. QC-Run 1A+ 1B
1600 .
I +Data—OS
1400 - i
| — Fit
~~
7 1200 1" .
S ---- Data - SS
o
wv
~
% 1000
=]
o)
>
m I
800 |-
600 |-
400 - Tl 4
200-111l||||l||||I||||I||||I||||I||||I||||I||||I||||l||||
65 675 7 725 75 775 8 825 85 875 9
Mass (GeV)

249.7+60.9 events fit in bigger
signal peak (40? No!)

(not enough PE’s)

Significance Tests on the Dimuon Mass Bump
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Looks like a lot of spectra in S. Stone’s article
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Looking Everywhere in a m_, plot

* method: Single Pseudoexperiment
scan along the mass spectrum in 1 GeV Probability of the Background Fluctuatingto = N_,
steps 2
at each point, work out prob for the bkg -fl
to fluctuate > data in a window centred  §
on that point *g!
e window size is 2 times the width g 107
of a Z' peak at that mass s F
sys. included by smearing with Gaussian 'g -
with mean and sigma = bkg + bkg error & _2_
1071
- j L dt = 370 pb”
i 20 GeV/c® Window
10.3IlllllIIIIIIIllll[llllllllllllllllll

150 200 250 300 350 400 450

) ) ) DiElectron Mass (GeVIcz)
use pseudo experiements to determine how often a given probability will

occur e.g. a prob <0.001 will occur somewhere 5-10% of the time



An Approximate LEE Correction for Peak Hunting

See E. Gross and O. Vitells, Eur.Phys.J. C70 (2010) 525-530.

Approximate formula applies to bump hunts on a smooth background.

Not all searches are like this — Multivariate Analyses are usually trained up
at each mass separately, and there is not a single distribution we can look elsewhere in.

An interesting, very general feature:

As the expected significance goes up, so does the LEE correction

In hindsight, this makes lots of sense: LEE depends on the number of separate
models that can be tested. As we collect more data, we can measure the position

of the peak more precisely.

So we can tell more peaks apart from each other, even with the same reconstruction
resolution.



CDF’s 2011 H->yy Search
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Insufficient sensitivity to a SM Higgs boson.
Rate ruled out by other searches (gg2>H>WW
for example). So we know the bump is a stat
fluctuation.
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Where is “Elsewhere?”

* Most searches for new physics have a “region of interest”

 Definition is a choice of the analyzer/collaboration

» Often bounded below by previous searches, bounded above by kinematic
reach of the accelerator/detector

* Limits the amount of work involved in preparing an analysis. Sometimes a 2D
search involves lots of training of MVA’s and checking sidebands and validation
of inputs and outputs

CDF Run Il Preliminary I Lat=261"

“z [ = Observed Limit (95% CL)

> 120 e xpected Limit (+16
Example: A search for g p e
pair-produced stop quarks g
which decay to c+Neutralino geop S £
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3 eof
fM = 1 *
| stop>mW+mb+mneutralino 40 R coF 295 pb!
then another analysis takes over. 7, Woossse

”60” 80 100 120 140 160 180
Stop Mass [GeV/c?]



Where is “Elsewhere?”

A collider collaboration is typically very large; >1000 Ph.D. students. ATLAS+CMS is another
factor of two. (Four LEP collaborations, Two Tevatron collaborations).

Many ongoing analyses for new physics. The chance of seeing a bump somewhere is
large. What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop: LEE should correct only for those
models that are tested within a single published analysis. Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

Caveat lector.



Where is “Elsewhere?”

LEE is often hard enough to evaluate. Right way to do it — compute p-value of p-values
simulate experiment assuming zero signal many times and for each simulated outcome
find the model with the smallest p-value.

Multidimensional models are harder, and LEE is worse.

Kane, Wang, Nelson, Wang, Phys. Rev. D 71, 035006 (2005)
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ALEPH, DELPHI, L3, OPAL, and the LHWG Eur.Phys.). €47 (2006) 547-587

Phys.Lett. B565 (2003) 61-75 . .
Two excesses seen; proposed models explain both with two

Higgs bosons. Combined local significance is greater, but LEE
now is much larger (and unevaluated). Published plot grays out region

beyond experimental sensitivity.
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Search for structures in J/y¢ mass--Data

* We model the Signal (S) and Background (B) as:
S: S-wave relativistic Breit-Wigner  B: Three-body decay Phase Space

CDF Il Preliminary, 2.7 fb™ Convoluted with resolution
Yield =145 (1.7 MeV)

Am =1046.3% 2.9 (stat) MeV/c?

Width = 11.7 *83 | (stat) MeV Slide from K. Yi,
| Fermilab Joint

Experimental/Theoretical

Physics Seminar,
March 17, 2009

How many bumps do
you see?

Candidates/10 MeV/c?
O a N W b O O N OO

1 1.1 1.2 1.3 1.4 1.5
AM=m(p*wKK)-m(pn) AM (GeV/cz)

V(-2log(L,.,/L,))=5.3, need Toy MC to determine significance for low statistics

What if we don’t have a signal model, and we’re just on a hunting expedition? What’s LEE now?

T. Junk Statistics ETH Zurich 30 Jan - 3 Feb



Choosing a Region of Interest

* | do not have a foolproof prescription for this, just some thoughts.

* Analyses are designed to optimize sensitivity, but LEE dilutes sensitivity. There is a
penalty for looking for many independently testable models. Can we optimize this?

e But you should always do a search anyway! If you expect to be able to test
a model, you should.

» Testing previously excluded models? We do this anyway, just in case some new physics
shows up in a way that evaded the previous test.

* There is no such thing as a model-independent search. Merely building the LHC or the
Tevatron means we had something in mind. And the SM (or just our implementation
of it) is wrong, but possibly not in a way that is both interesting and testable.



Blind Analysis

e Fear of intentional or even unintentional biasing of results
by experimenters modifying the analysis procedure after
the data have been collected.

e Problem is bigger when event counts are small -- cuts
can be designed around individual observed events.

e |deal case -- construct and optimize experiment before the
experiment is run. Almost as good -- just don’t look at the data

e Hadron collider environment requires data calibration of
backgrounds and efficiencies

e Often necessary to look at “control regions” (“sidebands”)
to do calibrations. Be careful not to look “inside the box”
until analysis is finalized. Systematic uncertainties must be
finalized, too!



LEP2’s Energy Strategy, Blindness, and LEE

Every month brought a new beam energy. Sometimes new energies would be
introduced at the end of a fill (“mini-ramps”).

Experimenters did not have time to re-optimize analyses for the new energies —
same cuts applied to new data; effectively blind.

But lots of new MC had to be generated, and lots of validation work for the new data.

Any experiment that rapidly doubles its dataset is in a luxurious position! Bumps in the data
(even non-blind ones) can quickly be confirmed or refuted with new data.

Similarly, the untested window of m, that was left from the previous year that was tested
with the new data was small at the end — very little LEE!

LHC is now in its best phase! New energies, and rapid doubling of the data sample
make most questions much cleaner!

Conversely, slowly-increasing data samples, or analyzing the data of a completed
experiment favors blinding analyses.



Non-Blind Analyses

* More of a concern, but many factors keep analyzers from selecting (or excluding) only
their favorite events

» Standardized jet definition. Jet energy scale, resolution, modeling is typically
approved for a small number of jet algorithms and parameter choices

* Jet and lepton E; and n requirements are typically standardized so previous
signal efficiency and background estimate tools can be re-used.

* Changes to an analysis — new selection requirements, or new MVA’s must be
justified in terms of improved sensitivity (better discovery chances, lower
expected limits, or smaller cross section uncertainties)

-- Still possible to devise many improvements to an analysis, all of which improve
the sensitivity, but only those that push the observed result in a desired direction
are chosen. We frequently discuss all kinds of improvements so it is not that
frequent that we throw a good one away for an unjustifiable reason.

-- Always a concern — Analyzers keep working and fixing bugs until they get the
answer they like, and then stop. We would like review to be exhaustive!

A special case — re-doing an analysis with a slightly larger data set.
Good practice for future work. If a flaw was found in the previous work, all the better!



No Discovery and No Measurement? No Problem!

e Often we are just not sensitive enough (yet) to discover

a particular new particle we’re looking for, even if it’s
truly there.

e Or we’d like to test a lot of models (each SUSY parameter
choice is a model) and they can’t all be true.

e |tis our job as scientists to explain what we could have
found had it been there. “How hard did you look?”

Strategy -- exclude models: set limits!
e Frequentist

e Semi-Frequentist

e Bayesian
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Probability density

CL, Limits -- extension of the p-value argument

- @ LEP . .
(apologies for the notation)

I — Observed my, =115 Gev/c?
----- Expected for background
--- Expected for signal

Pl backerong p-values:

CL, = P(-2InQ = -2InQ_,.| b only)
Green area = CL,,, = P(-2InQ = -2InQ,, | s+b)
Yellow area = “1-CL,” = P(-2InQ=-2InQ_, .| b only)

-
—

o®
T T

B L ... . j
-15 -10 -5 0 5 10 15

CL,=CL.,,/CL, 2 CL,,

-2In(Q) Exclude at 95% CL if CL.<0.05
Scale r until CL.=0.05 to get r, —  Thisstep
e Advantages: can jcz?ke
e Exclusion and Discovery p-values are consistent. gga'ﬁca”t

Example -- a 20 upward fluctuation of the data
with respect to the background prediciton appears
both in the limit and the p-value as such

e Does not exclude where there is no sensitivity
(big enough search region with small enough resolution
and you get a 5% dusting of random exclusions with

CI's+b)



Overcoverage on Exclusion

Coverage: The “false exclusion rate” should @ 007 ¢
. = =
be no more than 1-Confidence Level 0 006 E
'S 005 - oot ctetec® e tnnger sty
: P & -
In this case, if a signal were truly there, m 00 E
. . b~ F =
we’d exclude it no more than 5% of the time. SRl
. . © 002 i
“Type-Il Error rate” Excluding H; when it is S0
CE . - i
true e IS S N T B E T S S S
1

| L1 L1 L1l L1l
2 3 4 5 6 1 8 9 10
Signal rate (events)

Exact coverage: 5% error rate (at 95% CL)
Overcoverage: <5% error rate
Undercoverge: >5% error rate

T. Junk, NIM A434 (1999) 435.

Overcoverage introduced by the ratio CL=CL,,/CL,
It’s the price we pay for not excluding what we have no
sensitivity to.

No similar penalty for the discovery p-value 1-CL,.



A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will

be 3 signal events.
0 -r

re ,
=e

pPoiss(n = O’r) =

If p=0.05, then r=-In(0.05)=2.99573

You can discover with just one event and very low background, however!
Example: The Q discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery.

But MVA’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution



Different kinds of analyses switching on and off

OPAL’s flavor-independent
hadronically-decaying
Higgs boson search.

Two overlapping analyses:
Can pick the one with the
smallest median CL, or
separate them into
mutually exclusive sets.

Important for SUSY Higgs
searches.

Kos

10

10
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Probability density

0.04 -

Power Constrained Limits (PCL)

L @ LEP
—— Observed

[ ---- Expected for signal
plus backgroun

m, =115 GeV/c*
------- Expected for background

.. )
5 10 15

-2In(Q)

——
600 ATLAS Preliminary
\s=7TeV

T
J‘Ldt=39pb'1—:

—— Observed limit
EEsss  Expected limit

Just use CL,,,<0.05 to determine exclusion.

But if the resulting limit is more than 16 more
stringent than the median expectation, quote
the 1o limit instead

Advantages:
* More powerful than CL, or Bayesian limits while still covering
* Does not exclude where there is no sensitivity
Disadvantage:
* 10 constraint is arbitrary — balance desire for a more powerful method with

acceptability of limits. A 20 constraint defeats the purpose entirely for example.

= - T T
o 10° g_ ATLAS Prellmmary 43
© - —e— Observed PCL Ldt=35pb 3
o e Expected PCL \s=7TeV -
E 10° E B+ 1o —=— Observed CLs 3
:: - Clvzo - - - Expected CLs
(@) L |
(]

b 10F E
°® E :
1 PR s = =
= Tevatron <L>=5.9fb Tevat =
- —#— Observed Cls <4+ evatron 7
B --- Expected CLs Echu3|on 7]

Lt L i

10 70 780 190 200

120 130 140 150 160

my [GeV]
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An Interesting Feature of Power Constrained Limits

As with CL, (and Bayesian limits, see later), if we observe 0 events and expect
b=0 events, then the limit on the signal rate is r=-In(0.05)=2.99573 ~ 3 events at 95% CL

The median expected limit is also 3 events since the median observation assuming
the null hypothesis is 0 events (can rank outcomes easily with just one bin).

What if we expect some background b?

Observe 0 events, and CL,,<0.05 means s+b<3. So the limit will be 3-b events.
You get a better observed limit with more background expectation.

Not in itself a problem — a feature of most limit procedures.

But the median expectation is still 0 events for b<-In(0.5) = 0.69 events. So the

median expected limit decreases as the background rate increases. We get rewarded
for designing a worse analysis!

(exercise: show why the median outcome is O events for a rate of 0.69)



Interesting Behavior of CL,

CL, may not be a monotonic function of -2InQ

Tails in the -2InQ distribution shared in the s+b and b-only hypothesis
(fit failures)

sy
o

— s+b

Distributions
are sums of

-t

two Gaussiar}s 0] CL.=1 for

each. The wide

Gaussian is 1021 -2InQ < -15 or
centered on zero. -2InQ > +15

Pseudoexperiments (arbitrary units)

Practical reason this

could happen — 107
every thousandth
experimental outcome, 10°]
the fit program “fails” g
and gives a random answer o
g . 20 -5 -10 5 0 5 10 15 20
-2InQ

Not really a pathology of the method, but rather a reflection that the
test statistic isn’t always doing its job of separating s+b-like outcomes from
b-like outcomes in some fraction of the cases.



Interesting Behavior of CL,

Poisson Discreteness and ordering of outcomes can make the result “jump”
when the model parameters tested vary by small amounts.

This is a hint of non-optimality — add more bins with different s/b usually fixes this
problem. But there’s another effect going on here.

-2InQ = LLR is, without fits is given by the log of a ratio of Poisson probabilites, and
serves as an Ordering Principle to sort outcomes as more signal-like or less.

Nping e—(si +b; )(Sl + bi)ni

—2InQ =LLR = 2’%2 S; — 2’§ln(l + Z’)

i=1 i=1 i

Aside from constant offsets and scales that do not affect the ordering of outcomes, it
is a weighted sum of events where the weight is In(1+s,/b.) where s./b. is the local signal
to background ratio. Each event can be assigned an s/b value.



Interesting Behavior of CL,

In a calculation of -2InQ without fits, events are weighted by their local s/b with
the function In(1+s/b).

So which outcome is more signal-like in a two-bin example:

1 1.0 20 16

is more
signal-like

2 5.0 20 21
otantiirs/) | e a7

Let’s now scale the s/b’s down by a factor of 10 (looking for a smaller signal). If the
events were weighted with s/b, this wouldn’t matter. But In(1+s/b) is a nonlinear function
(which is approximately s/b only for small s/b)

Bin | Predicteds/b | Outcome1 | Outccome2
1 0.1 20 16

Outcome 2
IS more
signal-like

2 0.5 20 21
Totaln'iniivs/b) | 1001 | i0os
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The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a i i
“calibration curve” i =D(o)=

e Pick an observable x
somehow related to the
parameter 6 you'd like
to measure

e Figure out what —_—
distribution of observed
x would be for each value
of 6 possible.

e Draw bands containing - -
68% (or 95% or whatever) Possible experimental values x
of the outcomes

e Invert the relationship using A pathology: can get an

the prescription on this page empty interval. But the error
P P PAge. rate has to be the specified one.

] Imagine publishing that all branching ratios
Proper Coverage is Guaranteed! between 0 and 1 are excluded at 95% CL.

parameter 6
e
2
_QD
)

Xl(IOO) Xzfeo)




Some Properties of Frequentist Confidence Intervals

e Really just one: coverage. If the experiment is repeated many times,
the intervals obtained will include the true value at the specified rate
(say, 68% or 95%).

Conversely, the rest of them (1-a) of them, must not contain the true value.

e But the interval obtained on a particular experiment may obviously be in
the unlucky fraction. Intervals may lack credibility but still cover.

Example: 68% of the intervals are from - to +, and 32% of them are empty.
Coverage is good, but power is terrible.

FC solves some of these problems, but not all.
Can get a 68% CL interval that spans the entire domain of 0.
Imagine publishing that a branching ratio is between 0 and 1 at 68% CL.

Still possible to exclude models to which there is no sensitivity.
FC assumes model parameter space is complete -- one of the models in there

is the truth. If you find it, you can rule out others even if we cannot test them
directly.



A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

Each horizontal band contains 68% of
the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe which 68%
of the outcomes you need to take!

Take lowest x values: get lower limits.
Take highest x values: get upper limits.

Cousins and Feldman: Sort outcomes by
the likelihood ratio.

R = L(X | 6)/L(X | ebest)
R=1 for all x for some 6.
Picks 1-sided or 2-sided intervals --

no flip-flopping between limits and 2-sided
intervals.

parameter 6

Xl(le(i) Xzfeo)

Possible experimental values x

G. Feldman and R. Cousins,

“A Unified approach to the
classical statistical

analysis of small signals”
Phys.Rev.D57:3873-3889,1998.
arXiv:physics/9711021

No empty intervals!



Treat Nuisance Parameters as Parameters of Interest!

* Somewhat arbitrary distinction, anyhow CDF Run Il Preliminary (5.8 fb™)
. . ~ 1 5._
Although you could argue this is what the : ALn(LL_ ) Contours, 1+22-tag events
Scientific Method is all about; separating 5 1
nuisance parameters from parameters of 2
interest. asf
e Really only good if you have one dominant o
source of systematic uncertainty, and you :
want to show your joint measurement "03" X Fitted Vales
. | — -Ln(L/L__)=4.
of the nuisance parameter and the i L":LL"*“: :z
: A — -l )=2
parameter of interest. [ L =05
-1.54' l 1 1 1 l 1 1 1 I 1 Lod l ] 1 I l I 1 | I | Lod l 3 1 2 I

166 168 170 172 174 176 178 180
M,, [GeV/c]

Doesn’t generalize all that well.

Example: top quark mass (parameter of interest), vs.
CDF’s jet energy scale in all-hadronic ttbar
events.



