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Outline of the lecture

Optimization of the multi-variate methods
- Mainly tricks to improve the performance
- Check that the performance is stable  
- These are possibilities that have to be tried, no recipe which would work in all cases

Systematic uncertainties
- How to estimate systematics on a multivariate method output ?
- It depends on how it is used in the analysis
- If control samples are available
- Depends a lot on the problem
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Optimization

The problem.
- Once a multi-variate method is trained (say a NN or BDT), how do we know 

that the best performance is reached ?
- How to test that the results are stable ?

- Optimization is an iterative process, there is no recipe to make it work out of 
the box

- There are many things that one has to be careful of

- Possibilities for improvement :
- Number of variables
- Preselection
- Classifier parameters
- Training error / overtraining
- Weighting events
- Choosing a selection criterion on the output
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Number of variables

Optimizing the number of variables :
- How to know if the set of variables used for the training is the optimal one ?
- This is a difficult question which depends a lot on the problem
- What is more manageable is to know if among all the variables, some are unuseful.

Variable ranking :
- Variable ranking in TMVA is NOT satisfactory!!
- Importance of input variables in MLP in TMVA depends on the mean of the variable 

and the sum of the weights for the first layer
- Imagine with variables having values with different
orders of magnitudes.....

- A more meaningful estimate of the importance was proposed
- Does not depend on the variable mean
- Is a relative fraction of importance (all importance sums up to 1)
- Problem : again rely only on the first layer. What happens if more hidden layers ?
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Number of variables

Proposed procedure (A. Hoecker) : 
N-1 iterative procedure
- Start with a set of variables
- Remove variables one by one, keeping all 

the remaining as input. Check the 
performance

- The removed variables which worsens the 
more the performance is the best variable.

- Remove this variable definitively from the 
set.

- Repeat the operation until all variables have 
been removed => Get a ranking of the 
variables

But : This ignores if a smaller set of 
correlated variables would have performed 
better if used together
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Selection
How to deal with ʻdifficultʼ events ?
- E.g. events in a sample with high weight (difficult 

signal-like event in background sample with large 
cross-section)

- If including, might decrease the performance (few 
statistics)

- If excluding, the output on test sample can be 
random...

Tightness of the preselection
- Generally speaking, multivariate methods performs 
better if a large phase-space is available
- On the other hand applying relatively tight cuts 

before training might help to focus on some small 
region of the phase-space where discrimination is 
difficult...

Vetoing signal events in background samples
- Try to have only signal event in signal samples (etc) 8



Variables definition
Variables with different orders of magnitude :
- Not a problem for BDT
- Normalizing them can help for NN

Undefined values for some events. 
- BDT has problems if putting arbitrary numbers for those ones. How to cut on a 
value which is meaningless ?
- This is how BDT can be overtrained...
- Example : distance of a photon with respect to the closest track in a cone 0.4, 

in events where no track is there
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Classifier parameters

Neural network parameters optimization :
- Vary number of neurons, and hidden layers : TMVA authors recommend one 
hidden layers with N+5 neurons for MLP
- Vary number of epochs (although performance might stabilize)
- Different activation function should give same performance

BDT parameters optimization 
- Vary number of cycles
- Vary the tree depth, number of cuts on one variable 
- Different decision function should give same performance
- Combination of boosting/bagging/random forest : TMVA authors recommend to 

boost simple trees with small depth 
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Preparing training samples

- Training and test samples have to be different events

Number of events in training samples : 
- Sometime good to have as many events in the signal and the background. 
- Number of events is shaping the output.
- A asymmetric number of events can lead to the same discrimination power, 

BUT at the price of more events needed => lower significance

Using samples with different (fixed) weights :
- It is clearly not optimal, but sometimes we can not do otherwise
- If one sample with too few events and large weight, better to drop it
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Weighting events

Weighting events for particular purposes :
- One can weight events to improve the performance on some region of the 

phase-space
- E.g. : events with high pile-up or with high energy resolution

12



Error and overtraining

- Overtraining has to be checked
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2.3 Use of an ANN forK0
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Figure 2.9: ANN Training (solid red) and testing (dashed blue) output respect to training
epoch.
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Figure 2.10: ANN output for signal (dashed blue) and background (solid red) events.



Using the output

- The multivariate discriminant is trained. How to use it in the analysis ?

Selection criteria :
- On the performance curve, choose a working point for a given s/b or 

background rejection
- Choose the working point maximizing S/sqrt(S+B) (approximate 

significance)
- Maximize significance or exclusion limits

If two values per event, which one to use ?
- E.g. for particle identification
- min, max value of the output ?
- Leading/subleading ? Both ?
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Optimization : example

MiniBoone [arxiv:0408124v2]
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FIG. 4: Comparison of ANN and AdaBoost performance for
test samples. Relative ratio(defined as the number of back-
ground events kept for ANN divided by the events kept for
AdaBoost) versus the intrinsic νe CCQE selection efficiency.
a) all kinds of backgrounds are combined for the training
against the signal. b) trained by signal and neutral current π

0

background. c) relative ratio is re-defined as the number of
background events kept for AdaBoost with 21(red)/22(black)
training variables divided by that for AdaBoost with 52 train-
ing variables. All error bars shown in the figures are for Monte
Carlo statistical errors only.

nodes, given more nodes in both the input and the hid-
den layers. For the MiniBooNE Monte Carlo samples, the
ANN are optimum for approximately 20 PID variables.
The authors have found a similar number to be true for
several other applications. In general, the optimum num-
ber for ANN may vary depending on the strength of the
PID variables and the correlations between them.

Further evidence of this effect comes from the S-
fitter[10], a second reconstruction–PID program set for
the MiniBooNE. A systematic attempt was made to find
the optimum sets of variables for ANN and for boost-
ing classifiers by using νe CCQE signal and π0 back-
ground (which includes 25 NUANCE reaction channels).
It is found that, for S-fitter, the optimum ANN result is
achieved by a selected set of 22 variables, while for boost-
ing, no obvious improvement is seen after a selected opti-
mum set of 50 variables are used. Comparison of the best
ANN results and the best boosting results indicates that,
for a given fraction of νe CCQE events kept, the ANN
results kept about 1.2 times more π0 background events
than were kept by the boosting algorithms within target
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FIG. 5: Comparison of AdaBoost and ε-Boost performance
with different decision tree sizes (8 and 45 leaves per decision
tree) versus the intrinsic νe CCQE selection efficiency. a)
Relative ratio is defined as the number of background events
kept for decision tree of 8 leaves divided by that for deci-
sion tree of 45 leaves, red dots with error bars represent re-
sults from AdaBoost and black boxes with error bars for ε-
Boost. The tree iterations were 10000 for 8 leaves/tree and
1800 for 45 leaves/tree, respectively. b) Relative ratio here
is the number of background kept for AdaBoost divided by
that for ε-Boost with Nleaves = 45. The performance compar-
isons of AdaBoost and ε-Boost with different tree iterations
are shown in different colors, Ntree = 100(black), 200(cyan),
500(magenta), 1000(yellow), 2000(blue), 5000(red).

range of keeping close to 50% of the νe CCQE events.
As noted in the introduction, two boosting algorithms

are considered in the present paper. The comparison of
AdaBoost and ε-Boost performance is shown in Fig.5,
where parameters β = 0.5 and ε = 0.01 were selected for
AdaBoost and ε-Boost training, respectively. The com-
parison between small tree size (8 leaves) and large tree
size (45 leaves) with a comparable overall number of de-
cision leaves, indicates that large tree size with 45 leaves
yields 10 ∼ 20 % better performance for the MiniBooNE
Monte Carlo samples shown in Fig.5.a. Increasing the
tree size past 45 leaves did not produce appreciable im-
provement

Comparison of AdaBoost and ε-Boost performance for
the background contamination versus the intrinsic νe

CCQE selection efficiency as a function of the number
of decision tree iterations is shown in Fig.5.b. A smaller
relative ratio implies a better performance for AdaBoost.
The performance of AdaBoost is better than that of ε-

4

III. RESULTS

For the νµ → νe oscillation search in the MiniBooNE
experiment[1], the main backgrounds come from intrinsic
νe contamination in the beam, mis-identified νµ quasi-
elastic scattering and mis-identified neutral current π0

production. Since intrinsic νe events are real νe events,
the PID variables cannot distinguish them from oscilla-
tion νe events. This report concentrates on separating
the non-νe events from the νe events. Good sensitiv-
ity for the νe appearance search requires low background
contamination from all kinds of backgrounds. Here, the
ANN and the two boosting algorithms are used to sepa-
rate νe charged current quasi-elastic (CCQE) events from
non-νe background events.

500000 Monte Carlo νµ events distributed among
the many possible final states and 200000 intrinsic νe

CCQE events were fed into the reconstruction package R-
fitter[9]. Among these events, 88233 intrinsic νe CCQE
and 162657 background events passed reconstruction and
pre-selection cuts.

The signature of each event is given by 52 variables
for the R-fitter. All variables are used in the boosting
algorithms for training and testing. It is a challenge to
have agreement between data and Monte Carlo for all
of the PID variables and for the boosting outputs. The
MiniBooNE Collaboration is devoting considerable effort
to achieve it. Monte Carlo samples using 18 different pa-
rameter sets have been generated and run through the
same reconstruction programs. The results for both the
PID variables and the boosting outputs are consistent.
When the present Monte Carlo is compared with the real
data samples, the shapes of the various PID variables and
the boosting outputs match well. Since the recontruc-
tion and PID algorithms are still undergoing continuous
modifications, relative results rather than absolute per-
centages are presented in the following plots.

For the AdaBoost algorithm, the parameter β = 0.5,
the number of leaves Nleaves = 45 and the number of
tree iterations Ntree = 1000 were used. The relative
ratio(defined as the number of background events kept
divided by the number kept for 50% intrinsic νe selection
efficiency and Ntree = 1000) as a function of νe selec-
tion efficiency for various tree iterations is shown in the
top plot of Fig.3 and the AdaBoost output distributions
are shown in the bottom plot. 20000 intrinsic νe CCQE
signal and 30000 background events were used for train-
ing, 68233 νe and 132657 background events were used
for testing. All results shown in the paper are for testing
samples.

In order to quantify the performance of the boosting
algorithm, the AdaBoost results for a particular set of
PID variables were compared with ANN results. The re-
sults, compared as a function of the intrinsic νe CCQE
selection efficiency, are shown in Fig.4. For the intrinsic
νe signal efficiency ranging from 40% to 60%, the per-
formances of AdaBoost were improved by a factor of ap-
proximately 1.5 and 1.8 over the ANN if trained by the
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FIG. 3: Top: the number of background events kept divided
by the number kept for 50% intrinsic νe selection efficiency
and Ntree = 1000 versus the intrinsic νe CCQE selection effi-
ciency. Bottom: AdaBoost output, All kinds of backgrounds
are combined for the boosting training.

signal and all kinds of backgrounds with 21 (red dots)
and 52 (black boxes) input variables respectively, shown
in Fig.4.a. If AdaBoost and ANN were trained by the sig-
nal and neutral current π0 background, the performances
of AdaBoost were improved by a factor of approximately
1.3 and 1.6 over the ANN for 22 (red dots) and 52 (black
boxes) training variables respectively, shown in Fig.4.b.
The best results for the ANN were found with 22 vari-
ables, while the best results for boosting were found with
52 variables. Comparison of the best ANN results and
the best boosting results indicates that, when trained by
the signal and neutral current π0 background, the ANN
results kept approximately 1.5 times more background
events than were kept by the boosting algorithms for
about 50% νe CCQE efficiencies.

In Fig.4.c, the ratio of the background kept for a 52
variable AdaBoost to that for a 21(red dots - results for
AdaBoost trained by the signal and all kinds of back-
grounds) / 22(black boxes - results for AdaBoost trained
by the signal and neutral current π0 background) vari-
ables is shown as a function of νe efficiency. It can be
seen that the AdaBoost performance is improved by the
use of more training variables.

The above ANN and AdaBoost performance compar-
ison with different input variables indicates that Ad-
aBoost can improve the PID performance significantly by
using more input variables, even though many of them
have weak discriminant power; ANN, however, seems un-
likely to make full use of all input variables because it is
more difficult to optimize all the weights between ANN



Systematic uncertainties

How to deal with systematics in an analysis using multivariate methods ?

- Usual cases of the signal/background discrimination :
- Cut on the MVA output
- Categories
- Using the shape

- Systematic on the training ? On the application ?

- Importance of the control samples. 

16



Training systematics ?

Should we consider systematic uncertainties due to the training ? 
- General answer : No.
- If the classifier is overtrained, better redo the training properly (redo the 

optimization phase)

- Imagine a complicated expression for an observable with many fixed 
parameters. Would you move the parameters within some uncertainties if the 
variables is used in the analysis ? Generally speaking, no.
- This is the same for classifiers. The MVA is one way of computing a variable. 

One should not change the definition of the variable.

- Sometimes found in the litterature : remove one variable, redo the training, 
check the output, derive the uncertainty. BUT : it is changing the definition of 
the classifier output. Furthermore, too much variation if changing the input 
variables

17



Control samples

A control sample is a data sample used to :
- Validate the variables modeling
- Estimate the systematic uncertainties
- It should be independent from the signal region looked at in the analysis
=> Crucial for classifiers validation and systematics !

Data/MC agreement is fundamental to show that we understand the classifier 
behavior
(But if the mismodeling is “small”, it means the correlations are wrong, it would 
just lead to a non-optimal result, as long as the background is estimated from 
data)

How to build a control sample ?
- Depending on the observable and the process, it can be easier to build control 

sample for the signal or the background
- This is really analysis dependent but there are some general rules
- One still have to rely on the Monte-Carlo to go from the control sample to the 

region of interest 18



Control samples : signal
Control samples for particle identification:

Signal control sample :
- Usually use a resonance. Apply high quality cuts.
- Electrons : Z→ee 
- Photons : Z→ee (electrons / photons are somehow similar), Z→μμγ
- Muons : Z→μμ
- b-jets : top events

19



Control samples : background

Control samples for experimental particle identification:

Background control sample :
- Cut inversion to enrich the sample in background events (sideband method)
- Revert isolation cut
- Revert cuts on the shape of the electromagnetic energy deposit in the ECAL

20

6 6 Extraction of the Prompt Photon Yield

In each method, one of these variables is chosen as a discriminating observable. A set of prese-
lection criteria is applied to increase the signal fraction of the photon sample; the signal-region
selection criteria are listed in Table 2. The number of signal events N

γ is obtained by fitting
the distribution of the discriminating observable as the sum of two components: signal and
background. The shapes of the component distributions are taken from simulation and are
validated by methods based on data.

Table 2: Signal-region and sideband-region preselection criteria for the photon conversion and
isolation methods.

Cut Signal region Sideband region
Photon conversion method

H/E < 0.05 < 0.05
IsoTRK (GeV) < (2.0 + 0.001ET) (2.0 + 0.001ET) – (5.0 + 0.001ET)

IsoECAL (GeV) < (4.2 + 0.003ET) < (4.2 + 0.003ET)
IsoHCAL (GeV) < (2.2 + 0.001ET) < (2.2 + 0.001ET)

barrel: σηη < 0.010 0.010 – 0.015
endcap: σηη < 0.030 0.030 – 0.045

Isolation method
H/E < 0.05 < 0.05

barrel: σηη < 0.010 0.0110 – 0.0115
endcap: σηη < 0.028 > 0.038

6.1 Photon conversion method

After applying the signal-region preselection criteria in Table 2, converted photons are recon-
structed by combining the information in the ECAL and the tracker. The ECAL clusters, built
and corrected as described in Section 5, are used as starting points for an inward conversion
track search, using the ET of subclusters as an initial guess for the electron or positron trajec-
tory [25, 32]. The innermost point of the resulting tracks is assumed to be close to the conver-
sion point and used as seed for outward track search of the other arm of the conversion. The
pattern recognition includes the average energy loss for electrons passing through the tracker
material. Once all tracks have been found and the track collection cleaned with loose selection
criteria, pairs of oppositely charged tracks belonging to the same cluster are considered as pos-
sible conversion candidates. A vertex fit imposing the condition that these tracks be parallel at
the conversion vertex is required to converge with a χ2 probability greater than 5 × 10−4. The
latter ensures that only good vertices are retained and random or ill-defined pairs are rejected.
Furthermore, since the method is based on the matching between energy-momentum of the
conversions, the requirement ET/pT < 3 is applied.

In each ET bin, the measured ET/pT distribution is fitted using a binned extended maximum
likelihood method, with the likelihood defined as

− ln L = (Ns + Nb)−
n

∑
i=1

Ni ln(NsP i

s + NbP i

s),

where Ns and Nb are the numbers of expected signal and background events, n is the number
of bins, Ni is the number of observed photon candidates in the i

th bin, and P i
s and P i

b
are the

signal and background probability density functions integrated over the i
th bin.



Control samples : examples

21

5

dates with transverse momentum pT > 21 (20) GeV for
the highest (next-to-highest) pT photon candidate and
pseudorapidity |η| < 0.9, for which the trigger require-
ments are > 96% efficient. The minimum pT require-
ments for the two photon candidates are chosen to be
different following theoretical discussions [13, 14] and a
previous measurement [10]. The photon pT is computed
with respect to the reconstructed event primary vertex
(PV) with the highest number of associated tracks. The
PV is required to be within 60 cm of the center of the de-
tector along the beam axis. The PV has a reconstruction
efficiency of about 98% and has about 65% probability
of being the correct vertex corresponding to the hard
pp̄ → γγ +X production.
Photon candidates are formed from clusters of

calorimeter cells within a cone of radius R =
√

(∆η)2 + (∆φ)2 = 0.4 around a seed tower [16]. The
final cluster energy is then recalculated from the inner
core with R = 0.2. The photon candidates are selected
by requiring: (i) ≥ 97% of the cluster energy be deposited
in the EM calorimeter layers; (ii) the calorimeter isola-
tion I = [Etot(0.4)−EEM(0.2)]/EEM(0.2) < 0.10, where
Etot(R) [EEM(R)] is the total [EM only] energy in a cone
of radius R; (iii) the pT scalar sum of all tracks origi-
nating from the PV in an annulus of 0.05 < R < 0.4
around the EM cluster be< 1.5 GeV; and (iv) the energy-
weighted EM shower width be consistent with that ex-
pected for an electromagnetic shower. To suppress elec-
trons misidentified as photons, the EM clusters are re-
quired to not be spatially matched to significant tracker
activity, either a reconstructed track or a density of hits
in the SMT and CFT consistent with that of an elec-
tron [19]. In the following, this requirement will be re-
ferred to as the “track-match veto”.
To further suppress jets misidentified as photons, an

artificial neural network (NN) discriminant which ex-
ploits differences in tracker activity and energy deposits
in the calorimeter and in the CPS between photons and
jets is defined [1]. The NN is trained using γ and jet
pythia MC samples. The shapes of the NN output
(ONN), normalized to unit area and obtained after ap-
plying all data selection criteria, are shown in Figure
2, exhibiting a significant discrimination between pho-
tons and jets. Photon candidates satisfy the requirement
ONN > 0.3, which is ≈ 98% efficient for photons and re-
jects ≈ 40% of the jets misidentified as photons. The
ONN shape is validated in data. For photons a data sam-
ple consisting of photons radiated from charged leptons
in Z boson decays (Z → $+$−γ, $ = e, µ) [20] is used.
The MC modeling of the ONN shape for jets is validated
in a sample of photon candidates selected by inverting
the photon isolation (I > 0.07), a requirement that sig-
nificantly enriches the sample in jets. The data and MC
ONN shapes are compared in Figures 2 and 3 and found
to be in good agreement.
Finally, the two photon candidates are required to be
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FIG. 2: Comparison of the normalized ONN spectra for pho-
tons from DPPMC and Z → !+!−γ data and for misidentified
jets from dijet MC.

spatially separated from each other by a distance in η−φ
space ∆R > 0.4 and to satisfy Mγγ > pγγT . The lat-
ter requirement is satisfied by the majority (≈ 92%) of
DPP events and, together with the photon isolation re-
quirements, allows significant suppression of the contri-
bution from the fragmentation diagrams, thus restricting
the data-to-theory comparison to the region where the
theoretical calculations should have smaller uncertainties
[13].

After imposing all requirements, 10938 events with
diphoton candidates are selected in data. This sam-
ple includes instrumental background contributions from
γ+jet and dijet production, where a jet is misidentified
as a single photon as a result of fluctuations in the parton
fragmentation into a well-isolated neutral meson (π0 or η)
decaying into a final state with two or more photons. An
additional smaller background contribution results from
Z-boson/Drell-Yan production events Z/γ∗ → e+e−

(ZDY) in which both electrons are misidentified as pho-
tons.

The contribution from ZDY events is estimated us-
ing the MC simulation with pythia, normalized to the
NNLO cross section [21]. The selection efficiencies de-
termined from the MC simulation are corrected to those
measured in the data. On average, each electron has
a 2% probability of satisfying the photon selection cri-
teria, mainly due to the inefficiency of the track-match
veto requirements. The total ZDY contribution is es-
timated to be 161 ± 20 events. Backgrounds due to
γ+jet and dijet events are estimated from data by using
a 4 × 4 matrix background estimation method [1]. Af-
ter applying all of the selection criteria described above,
a tighter ONN requirement (ONN > 0.6) is used to
classify the data events into four categories, depend-
ing on whether both photon candidates, only the high-
est pT one, only the next-to-highest pT one, or nei-
ther of the two photon candidates pass (p) or fail (f)
this requirement. The corresponding number of events

6

(after subtraction of the estimated ZDY contribution)
compose a 4-component vector (Npp, Npf , Nfp, Nff ).
The difference in relative efficiencies of the ONN >
0.6 requirement between photons and jets allows es-
timation of the sample composition by solving a lin-
ear system of equations: (Npp, Npf , Nfp, Nff )T = E ×
(Nγγ , Nγj, Njγ , Njj)T , where Nγγ (Njj) is the number
of DPP (dijet) events and Nγj (Njγ) is the number of
γ+jet events with the (next-to-)highest pT photon can-
didate being a photon. The 4 × 4 matrix E contains
the photon εγ and jet εjet efficiencies, estimated using
photon and jet MC samples and validated in data. The
efficiencies are parameterized as a function of the pho-
ton candidate η and vary within (90 − 95)% for εγ and
within (66 − 70)% for εjet. The systematic uncertainty
on εγ is estimated to be 1.5% from a comparison of the
efficiency as a function of η between data and MC using
samples of electrons from Z boson decays and photons
from radiative Z boson decays. In order to estimate the
systematic uncertainty on εjet, two independent control
data samples enriched in jets misidentified as photons are
selected, either by inverting the photon isolation variable
(I > 0.07), or by requiring at least one track in a cone
of R < 0.05 around the photon, while keeping the re-
maining photon selection criteria unchanged. In both
cases the agreement with the MC prediction for εjet is
found to be within 10%, which is taken as the system-
atic uncertainty. The total number of DPP events is
found to be Nγγ = 7307 ± 312(stat.), corresponding to
an average DPP purity of ≈ 67%. Following this pro-
cedure, the number of DPP events is estimated in each
bin of the four kinematic variables considered (Mγγ , p

γγ
T ,

∆φγγ , and | cos θ∗|). The largest kinematic dependence
of the DPP purity is in terms of Mγγ , with a variation
between ≈ 60% at Mγγ ≈ 40 GeV and close to 100% for
Mγγ > 200 GeV. As a function of the other kinematic
variables, the DPP purity varies in the (60−70)% range.
The relative systematic uncertainty on the purity results
from the systematic uncertainties on εγ and εjet, and typ-
ically varies within (11−15)%. As a cross-check, the DPP
purity was also estimated via a fit to the two-dimensional
distribution in data of ONN,γ1

versus ONN,γ2
using tem-

plates constructed from photons and jets in MC. The
result was found to be in good agreement with that from
the 4× 4 matrix method.

The estimated number of DPP events per bin is cor-
rected for the DPP event selection efficiency and accep-
tance. The selection efficiency is calculated using DPP
events generated with pythia and processed through a
geant-based simulation of the D0 detector. In order to
accurately model the effects of multiple pp̄ interactions
and detector noise, data events from random pp̄ cross-
ings with a similar instantaneous luminosity spectrum as
considered in the data analysis are overlaid on the MC
events. These MC events are then processed using the
same reconstruction code as for the data. Small differ-
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FIG. 3: Comparison of the normalized ONN spectra for jets
misidentified as photons in data and in dijet MC.

ences between data and MC in the per-photon selection
efficiencies are corrected for with suitable scale factors
derived using control samples of electrons from Z boson
decays, as well as photons from the radiative Z boson de-
cays. The overall DPP selection efficiency after applying
all selection criteria is estimated as a function of the vari-
able of interest. In the case of pγγT , ∆φγγ , and | cos θ∗|,
it is about 64% with a (2 - 3)% variation across the bins,
while for Mγγ, the efficiency grows from about 60% at
30 < Mγγ < 50 GeV to 69% at Mγγ > 200 GeV. The to-
tal relative systematic uncertainty on the DPP selection
efficiency is 4.3%, dominated by the track-match veto and
photon ONN selections. The acceptance is calculated us-
ing DPP events generated with resbos and is driven by
the selections in ηdet (|ηdet| < 0.9, applied to avoid edge
effects in the central calorimeter region used for the mea-
surement) and φdet (to avoid periodic calorimeter module
boundaries [16] that bias the EM cluster energy and po-
sition measurements), PV misidentification, photon en-
ergy scale, and bin-to-bin migration effects due to the
finite energy and angular resolution of the EM calorime-
ter. The overall DPP acceptance varies within (45−64)%
with a relative systematic uncertainty of (4− 7)%.

The differential cross sections dσ/dMγγ , dσ/dpγγT ,
dσ/d∆φγγ , and dσ/d| cos θ∗| are obtained from the num-
ber of data events corrected for the background contribu-
tion, divided by the trigger, vertex and diphoton selec-
tion efficiencies, acceptance, integrated luminosity, and
the bin width for each kinematic variable. The measured
differential cross sections, compared to the theoretical
predictions from resbos, are presented in Table I. The
average value for each variable in a bin was estimated us-
ing resbos. The statistical uncertainty δstat corresponds
to the statistical precision on Nγγ estimated in the 4× 4
matrix method, which can be sizable when values of εγ
and εjet are numerically close.

Figure 4 shows a comparison of the measured differ-
ential cross sections to the theoretical predictions from
resbos, diphox, and pythia. Systematic uncertainties

Photon control sample Jet control sample

D0 photon identification with NN

- Z→llγ selection - Photon selection + 
Isolation cut inverted



Estimating systematics

- Perform the training. This defines the classifier (set of weights, input variables)

- Usual cases of the signal/background discrimination :
- Cut on the MVA output
- Categories
- Using the shape

- At each time a different way of dealing with systematics

- For particle identification, systematics are usually estimated from a control 
sample in data

- For kinematics, control samples can be checked but are rarely used to 
estimate the systematics. Indeed : what sample to use for e.g. Higgs 
kinematics ?

- Systematic uncertainty estimated from control samples turn out to be statistical 
uncertainty on this control sample
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Uncertainties : cut on MVA output

The simplest use of a classifier is to cut on the output 
- To select the “signal region”, enhances s/b ratio
- The uncertainty comes only from this cuts : uncertainty on selection 

efficiency for signal (and background)

- To estimate the uncertainty, e.g. for particle identification one can use control 
samples. 

- E.g. for photon identification. Use Z→ee in data and MC. Difference is used to 
correct the efficiency from data. Systematic is the signal efficiency difference 
between Z→ee and Photon MC. 

- The same can be done for the background with jets faking photons (not 
obvious to build a non-biased control sample however...) 23



Uncertainties : categories

Categories :
- Events are divided in several categories 
- E.g.:   NNoutput<0.6, 
# # 0.6<NNoutput<0.8, 
# # NNoutput>0.8
- Extension of cut (cut can be seen as one category)

#
Uncertainty for categorization :
- Category migration : possible migration of events in data from the bin where it 

is expected in MC to another because of mismodeling.
- Category migration depends on the slope of the distribution at the cut
- Estimated by varying up and down parameters => changes input distributions 

=> impact the output and the selection efficiency in each bin
- Alternatively, control samples can be used to give ʻlowʼ and ʻhighʼ distributions

24
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Uncertainties : output shape 

What do we call shape ?
- Categories can be seen as binned shapes. Usually we select this category and 

then look at other observable to compute the sensitivity.
- But the whole (unbinned) shape, is used if 1) the classifier is the input of 

another classifier 2) if the classifier output is used to compute the analysis 
sensitivity  (CLs method, exclusion or discovery)

- Estimating the uncertainty on a shape is not an easy task
- Solution commonly accepted : varying the input distributions according to 

reasonable or meaningful values of parameters
- One obtains different output distributions

- Experimental uncertainties : control samples
- Theory uncertainties. Varying the renormalization/factorization scales => vary 

the shapes of the kinematical variables
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Note on the signal region

Extra-care is needed for the signal region!
- Especially for kinematics MVA, generally no control sample
- This region drives the analysis sensitivity
- E.g. in the case of D0 H->2photons searches, the background shape is 

measured from the sidebands.
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(a) MH = 100 GeV
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(b) MH = 110 GeV
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(c) MH = 120 GeV

MVA output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

Ev
en

ts
/0

.0
8

-210

-110

1

10

210

310

410

510

610

710

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
-210

-110

1

10

210

310

410

510

610

710

data
background

=130GeV) x 50
H

signal (M

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
20
40
60
80

100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
20
40
60
80

100
120
140

-1DØ preliminary, 8.2 fb

(d) MH = 130 GeV
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(e) MH = 140 GeV
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(f) MH = 150 GeV

FIG. 3: MVA output distributions for MH = 100 − 150 GeV in 10 GeV intervals within [MH - 30GeV, MH + 30GeV] mass
window. The inset figures show the MVA output distributions for the signal concentrated region [0, 1] in a linear scale.


