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Outline of the lecture

Optimization of the multi-variate methods

- Mainly tricks to improve the performance

- Check that the performance is stable

- These are possibilities that have to be tried, no recipe which would work in all cases

Systematic uncertainties

- How to estimate systematics on a multivariate method output ?
- It depends on how it is used in the analysis

- If control samples are available

- Depends a lot on the problem



Optimization

The problem.

- Once a multi-variate method is trained (say a NN or BDT), how do we know
that the best performance is reached ?

- How to test that the results are stable ?

- Optimization is an iterative process, there is no recipe to make it work out of
the box

- There are many things that one has to be careful of

- Possibilities for improvement :
- Number of variables
- Preselection
- Classifier parameters
- Training error / overtraining
- Weighting events
- Choosing a selection criterion on the output



Number of variables

Optimizing the number of variables :

- How to know if the set of variables used for the training is the optimal one ?

- This is a difficult question which depends a lot on the problem

- What is more manageable is to know if among all the variables, some are unuseful.

Variable ranking :
- Variable ranking in TMVA is NOT satisfactory!!
- Importance of input variables in MLP in TMVA depends on the mean of the variable
and the sum of the weights for the first layer ni
- Imagine with variables having values with different I — & Iy
I — aj. w' A
orders of magnitudes..... ‘ ’ Z Y
J

- A more meaningful estimate of the importance was proposed Zj Wi
- Does not depend on the variable mean Sl = N <1 | Iy
- Is a relative fraction of importance (all importance sums up to 1) 2.i Zj Wi

- Problem : again rely only on the first layer. What happens if more hidden layers ?
6




Number of variables

Proposed procedure (A. Hoecker) :

N-1 iterative procedure

- Start with a set of variables

- Remove variables one by one, keeping all
the remaining as input. Check the
performance

- The removed variables which worsens the
more the performance is the best variable.

- Remove this variable definitively from the

Background rejection versus Signal efficiency
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But : This ignores if a smaller set of
correlated variables would have performed
better if used together

Removing X1 gives the
worst performance



Selection

How to deal with ‘difficult’ events ?

- E.g. events in a sample with high weight (difficult
signal-like event in background sample with large
cross-section)

. . . e
- If including, might decrease the performance (few o[BI Sigar T T

Background
10 —

statistics)
- If excluding, the output on test sample can be
random...

(1/N) dN/ dx

Tightness of the preselection s

- Generally speaking, multivariate methods performs 2

better if a large phase-space is available ol

- On the other hand applying relatively tight cuts
before training might help to focus on some small
region of the phase-space where discrimination is
difficult...

oS ,’B): (0.0, 0.0)% / (0.0, 0.0)%

Vetoing signal events in background samples
- Try to have only signal event in signal samples (etc) 8



Variables definition

Variables with different orders of magnitude :
- Not a problem for BDT
- Normalizing them can help for NN

Undefined values for some events.

- BDT has problems if putting arbitrary numbers for those ones. How to cut on a

value which is meaningless ?

- This is how BDT can be overtrained...

- Example : distance of a photon with respect to the closest track in a cone 0.4,
in events where no track is there

TMVA overtraining check for classifier: BDT |
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Classifier parameters

Neural network parameters optimization :

- Vary number of neurons, and hidden layers : TMVA authors recommend one
hidden layers with N+5 neurons for MLP

- Vary number of epochs (although performance might stabilize)

- Different activation function should give same performance

BDT parameters optimization

- Vary number of cycles

- Vary the tree depth, number of cuts on one variable

- Different decision function should give same performance

- Combination of boosting/bagging/random forest : TMVA authors recommend to
boost simple trees with small depth
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Preparing training samples

- Training and test samples have to be different events

Number of events in training samples :

- Sometime good to have as many events in the signal and the background.

- Number of events is shaping the output.

- A asymmetric number of events can lead to the same discrimination power,
BUT at the price of more events needed => lower significance

Using samples with different (fixed) weights :
- It is clearly not optimal, but sometimes we can not do otherwise
- If one sample with too few events and large weight, better to drop it
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Weighting events

Weighting events for particular purposes :

- One can weight events to improve the performance on some region of the
phase-space

- E.g. : events with high pile-up or with high energy resolution

£.12|_|11IIIITIIIIIIIIII Irlrl[llllllll I | | l]l]l]l]L

; i CMS preliminary |

- \s =7 TeV Run2011B -

0.1- -

[ 7IMC Z—sun ]

0.08- e DataZoun -

0.06 -

0.04+ -
0.02

0 _"l'l:"'-l.”‘ Vo rn~r.

e P R AOANE R TE ER TR
0 5 10 15 20 25 30 35 40 45 50
number of vertices



Error and overtraining

- Overtraining has to be checked
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Using the output

- The multivariate discriminant is trained. How to use it in the analysis ?

Selection criteria :
- On the performance curve, choose a working point for a given s/b or
background rejection
- Choose the working point maximizing S/sqrt(S+B) (approximate
significance)
- Maximize significance or exclusion limits

If two values per event, which one to use ?
- E.g. for particle identification
- min, max value of the output ?
- Leading/subleading ? Both ?
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Optimization

MiniBoone [arxiv:0408124v2]
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FIG. 3: Top: the number of background events kept divided
by the number kept for 50% intrinsic v. selection efficiency
and Ni¢ree = 1000 versus the intrinsic v. CCQE selection effi-
ciency. Bottom: AdaBoost output, All kinds of backgrounds
are combined for the boosting training.
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FIG. 4: Comparison of ANN and AdaBoost performance for
test samples. Relative ratio(defined as the number of back-
ground events kept for ANN divided by the events kept for
AdaBoost) versus the intrinsic v. CCQE selection efficiency.
a) all kinds of backgrounds are combined for the training
against the signal. b) trained by signal and neutral current 7°
background. c) relative ratio is re-defined as the number of
background events kept for AdaBoost with 21(red)/22(black)
training variables divided by that for AdaBoost with 52 train-
ing variables. All error bars shown in the figures are for Monte
Carlo statistical errors only.

15



Systematic uncertainties

How to deal with systematics in an analysis using multivariate methods ?
- Usual cases of the signal/background discrimination :

- Cut on the MVA output

- Categories

- Using the shape
- Systematic on the training ? On the application ?

- Importance of the control samples.
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Training systematics ?

Should we consider systematic uncertainties due to the training ?

- General answer : No.

- If the classifier is overtrained, better redo the training properly (redo the
optimization phase)

- Imagine a complicated expression for an observable with many fixed
parameters. Would you move the parameters within some uncertainties if the
variables is used in the analysis ? Generally speaking, no.

- This is the same for classifiers. The MVA is one way of computing a variable.

One should not change the definition of the variable.

- Sometimes found in the litterature : remove one variable, redo the training,
check the output, derive the uncertainty. BUT : it is changing the definition of
the classifier output. Furthermore, too much variation if changing the input
variables

17



Control samples

A control sample is a data sample used to :

- Validate the variables modeling

- Estimate the systematic uncertainties

- It should be independent from the signal region looked at in the analysis
=> Crucial for classifiers validation and systematics !

Data/MC agreement is fundamental to show that we understand the classifier
behavior

(But if the mismodeling is “small”, it means the correlations are wrong, it would
just lead to a non-optimal result, as long as the background is estimated from
data)

How to build a control sample ?

- Depending on the observable and the process, it can be easier to build control
sample for the signal or the background

- This is really analysis dependent but there are some general rules

- One still have to rely on the Monte-Carlo to go from the control sample to the

region of interest 18



Control samples : signal

Control samples for particle identification:

Signal control sample :

- Usually use a resonance. Apply high quality cuts.

- Electrons : Z—ee

- Photons : Z—ee (electrons / photons are somehow similar), Z— uuy
- Muons : Z—up

- b-jets : top events
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Control samples : background

Control samples for experimental particle identification:

Background control sample :

- Cut inversion to enrich the sample in background events (sideband method)
- Revert isolation cut

- Revert cuts on the shape of the electromagnetic energy deposit in the ECAL

Cut Signal region Sideband region
Photon conversion method
H/E < 0.05 < 0.05
Isotrk (GeV) | < (2.040.001Et) (2.0+0.001Et) — (5.0 4+ 0.001ET)
Isogcar (GeV) | < (4.2 + 0.003ET) < (4.2 4 0.003ET)
Isogcar (GeV) | < (22 + 0001ET) < (22 -+ 0001ET)
barrel: oy, < 0.010 0.010 - 0.015
endcap: 0y, < 0.030 0.030 — 0.045
Isolation method
H/E < 0.05 < 0.05
barrel: oy, < 0.010 0.0110-0.0115
endcap: 0y, < 0.028 > 0.038




Fraction of events

Control samples : examples

DO photon identification with NN

Photon control sample
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Estimating systematics

- Perform the training. This defines the classifier (set of weights, input variables)

- Usual cases of the signal/background discrimination :
- Cut on the MVA output
- Categories
- Using the shape

- At each time a different way of dealing with systematics

- For particle identification, systematics are usually estimated from a control
sample in data

- For kinematics, control samples can be checked but are rarely used to
estimate the systematics. Indeed : what sample to use for e.g. Higgs
kinematics ?

- Systematic uncertainty estimated from control samples turn out to be statistical
uncertainty on this control sample

22



Uncertainties : cut on MVA output

TMVA response for classifier: MLP MVA
12 | | Isilgll‘all LA B R L L B B N BB N BN  LANLE B N I_T—
Background ) ]

10 —

(1/N) dN/ dx

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

MLP response

The simplest use of a classifier is to cut on the output

- To select the “signal region”, enhances s/b ratio

- The uncertainty comes only from this cuts : uncertainty on selection
efficiency for signal (and background)

- To estimate the uncertainty, e.g. for particle identification one can use control
samples.

- E.g. for photon identification. Use Z—ee in data and MC. Difference is used to
correct the efficiency from data. Systematic is the signal efficiency difference
between Z—ee and Photon MC.

- The same can be done for the background with jets faking photons (not
obvious to build a non-biased control sample however...)
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Uncertainties : categories

TMVA response for classifier: MLP

o Sighal T T A
777 Background

“F Cat 1

Categories :
- Events are divided in several categories
- E.g.: NNoutput<0.6,
0.6<NNoutput<0.8,
NNoutput>0.8
- Extension of cut (cut can be seen as one category)

(1/N) dN/ dx

0.8 1
MLP response

Uncertainty for categorization :

- Category migration : possible migration of events in data from the bin where it
is expected in MC to another because of mismodeling.

- Category migration depends on the slope of the distribution at the cut

- Estimated by varying up and down parameters => changes input distributions
=> impact the output and the selection efficiency in each bin

- Alternatively, control samples can be used to give ‘low’ and ‘high’ distributions

24
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Uncertainties : output shape

What do we call shape ?

- Categories can be seen as binned shapes. Usually we select this category and
then look at other observable to compute the sensitivity.

- But the whole (unbinned) shape, is used if 1) the classifier is the input of
another classifier 2) if the classifier output is used to compute the analysis
sensitivity (CLs method, exclusion or discovery)

- Estimating the uncertainty on a shape is not an easy task

- Solution commonly accepted : varying the input distributions according to
reasonable or meaningful values of parameters

- One obtains different output distributions

- Experimental uncertainties : control samples
- Theory uncertainties. Varying the renormalization/factorization scales => vary
the shapes of the kinematical variables

25



Note on the signal region

Extra-care is needed for the signal region!
- Especially for kinematics MVA, generally no control sample
- This region drives the analysis sensitivity

- E.g. in the case of DO H->2photons searches, the background shape is
measured from the sidebands.
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