Statistical Tools in Collider Experiments

Multivariate analysis
in high energy physics

Lecture 2

Pauli Lectures - 07/02/2012

Nicolas Chanon - ETH Zurich

ETH Institute for
Particle Physics

Outline

1.Introduction

2.Multivariate methods

3.0Optimization of MVA methods
4.Application of MVA methods in HEP
5.Understanding Tevatron and LHC results

Lecture 2. Multivariate methods

Multivariate analysis : Definitions

MultiVariate Analysis :

- Set of statistical analysis methods that simultaneously analyze multiple
measurements (variables) on the object studied

- Variables can be dependent or correlated in various ways

Classification / regression :

- Classification : discriminant analysis to separate classes of events, given
already known results on a training sample

- Regression : analysis which provides an output variable taken into account the

correlations of the input variables

Statistical learning :

- Supervised learning : the multivariate method is trained over a sample were
the result is known (e.g. Monte-Carlo simulation of signal and background)

- Unsupervised learning : no prior knowledge is required. The algorithm will
cluster events in an optimal way

Event classification

- Focus here on supervised learning for classification.
- Use case in particle physics : signal/background discrimination

- Assume we have two populations (signal and background) and two variables

N10_IIII rTrryrrrryrrrryrrrTTryrrTrprirTry rTTT T T TIT T I T i
ST :
95 E
8 . -
7e" . I =
E . . ™ ® ‘. .‘.0 L] E
Py e s L
55‘ ...' l‘. o “ }~ $.‘.. . .® .“ _:
: 3..@3: :’:.?c.'?‘l“-'ﬁ':. ‘e 3
A Tt ety T el
35_ 0'"" .Q.‘.‘. ‘ °e ™ —:
- “~ . .:. . L E
20+ T vl E
= e =
O:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII:
0 1 2 3 4 56 7 8 9 10

- How to decorrelate, what decision
boundary (on X1 and X2) to
choose, to decide if an event is
signal or background ?

- Possible solutions :

Rectangular cuts

Event classification

rectangular cuts, Fisher, non-linear contour

Linear (Fisher)

~ 10
X

a N WO b O O N 00 ©
T[T T[T T T T [TT T T[T T T T T T I T @ T 7T

~ 10
X

2 N W b OO N 00 ©
|

~ 10
X

Sra

—‘-IlllllIII|IIII|I.II|IIII|‘III|IIII|IIII|IIII|IIII-

X
-—
<
3
-—

—_llllIIIII|lllllllII|IIIllllllllllIllllllllll[IIII_

X

Non-linear
(BDT, NN...)

= N W b O O N 00 ©
TTTT T T T TTTT TT I TTT]T

[
11

O?IH

—‘_IllllllII|IIII|II.I|II‘I|II

Regression

- Assume we have one set of measurements.
- How to approximate the law underlying such measurement ?
- If the value of the function in each point is known, this is an example of

supervised regression.

- If F(X) is not known this is an example of unsupervised regression

O T T N R .
X F -
L 9F E
8E =
6 RO

C .« ® «%

51 RO

C . g e]

C } .

41— o0 "'. « %% ‘m:.c’ . =

C . % a-:o,..‘a P r

3E o, M3, . =

F o Tl s -

2__.. z.:.'t ..:. ° ¢]

Ce _

1 =
03.,..1..lllllll|....|....1....1..“1“..111..|...F

0 1 2 3 4 5 6 7 8 9 1

X

F(X)

= N W b OO O N 0 ©
TTTTTTTTTTTTTTTT

oolll

IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIII§
1.2 3 4 5 6 7 8 9 1
X

F(X)

= N WO & O O N 0 ©
III|IIlIIIIII

OOIIII

||| =
s . .o'é
3 c. v
-]

L] .

. *

¢ -

o 7

..‘.. . P .
C L]]
1||1|||1||||1||||||||11|l||||l|1||||1|||||||||1|1:
1 2 3 4 5 6 7 8 9 1

X

Plenty of multivariate methods...

Example of MVA methods :

- Rectangular cut optimization
- Fisher

- Likelihood

- Neural network

- Decision tree

- Support Vector Machine

Characteristics :

- Level of complexity and transparency

- Performance in term of background rejection

- Way of dealing with non-linear correlations

- Speed of training

- Robustness while increasing the number of input variables
- Robustness against overtraining

Rectangular cuts

- Simplest multivariate method, very intuitive
- All HEP analyses are using rectangular cuts, not
always completely optimized

Rectangular cuts optimization :

- Grid search, Monte-Carlo sampling
- Genetic algorithm

- Simulated annealing

Characteristics :

- Difficult to discriminate signal from background if
too much correlations

- Optimization difficult to handle with high number of
variables

o~ 10E

= N WO b O O N 00 ©
TTTTTTTTTTTT[TTTTRETTTT TTT]TTTTTT

II

()
o TTTT

Define the signal region :
al <x1<a2,
b1 <x2 <b2

Cut optimization

How to find the best set of cuts for a given criterion ?

Grid search

- Try N points (usually very large) of the phase-space

equally spaced in each dimensions

Parameter B

=> Impossible with high number of variables (too much

CPU time)

Monte-Carlo sampling
- Try N points randomly chosen in the phase space
=> Usually performs better, but still non optimal

Both are good global minimum finder but have poor
accuracy

Examples of criterion :
- Maximize the signal efficiency for a given background rejection
- Maximize the significance

Parameter A

10

Curse of dimensionality

Grid search and Monte-Carlo sampling suffer from the curse of
dimensionality :

- For one variables, trying 100 working points is easy
- For two variables, 100 working points will lead to not well covered phase-space
because each points have more distance between them

- 100x100 points should be used

- Increasing number of variables will lead this algorithm to be impossible in
practice

11

Optimization methods

Quadratic interpolation

- Compute the function (say the significance) in 3 points.
Interpolate with a quadratic function and go to the minimum.
Repeat the operation.

=> Problem if no minimum but a maximum is found (work around

exist)

Gradient descent

- At each point, go in the gradient direction. This should lead to a
minimum.

=> This method is not the fastest since the gradient direction at

each step is not always the direction of the minimum.

Both methods are good to find local minima

- MINUIT package uses a combination : gradient-driven search,

using variable metric, can use quadratic Newton-type solution
- Other methods exist : genetic algorithms, simulated
annealing

Parameter B

Parameter A

Parameter B

Py

Parameter A

12

Neural network

- Most commonly used : the multi-layer perceptron

- Composed of neurons taking as input a linear combination of the previous
neuron outputs

- Activation function (usually tanh) transforms the linear combination

- Weights for each neurons are found during the training phase by minimizing
the error on the neural network output

Input Layer Hidden Layer Output Layer

Wy Y% - Neural networks are universal
H @@ W, approximators : takes advantage of
}QQI//’ ¥3 correlations
Xy [§‘gl'l/
}‘;{}é’% y3 y?HyANN - Quite stable against overtraining and
X3 = g{(‘)‘o against increasing number of
"l&&@ variables
IL

@ 13

Neural network : structure

Hidden layer
Input variables o
Input Layer Hidden Layer Output Layer — Activation
functions
Multi-layer —
perceptron : T

Yann

most popular neural
network —

- Here : only one
hidden layer

Output variable

Weights used for the linear combination 14

Neural network : structure

Given input values for the variables, how to compute the output ?

- Start from a set of input variables fed to the input layer

- For each neuron in the hidden layer : yr .
- Compute a weighted sum of the input variables ys '
(linear combination) fed as input to the hidden neuron 51 1
Yn
- Transform the input with an activation function : L Sigmoid
usually tanh or sigmoid e

€ —C€ _ Tanh,
e +e

L e=e/2 Radial.
- If there is more hidden layers, repeat the operation for each neuron of the new
hidden layer, taken as input the output of the previous layer

Nvar

- The output layer performs a weighted sum , — yPu® = Ztanh (Z e (1))
of the previous hidden layer output

2)

15

Neural network : training

How to compute the weights ? N 4
- By minimization of the error, defined as : : Z 5 (YANN.q — @a)z
a=1

Where yANN is the output and y is the desired response : -1 for background, +1
for signal.

Remember that we have : yann = Z 2 (2) Ztanh (Z LW) 'wﬁ)

We will minimize the error using the gradlent descent method : this is called the
back-propagation of errors : (p+1) _ (o) 77V o

Weights connected to the output layer are updated by :
OFq e
o (2) — 1N Z (yANN,a - ya,) y] a
=1 a=1
And weights connected to the hidden layer are therefore updated with :

— —772 8 (1) — —UZ yANNa ya) y§¢3(y§£)w§1)xza

a=1

Awﬁ> — 77

16

Neural network : input

Input variables :

- Can be correlated (NN uses correlations)

- To improve the NN performance, should avoid unuseful variables (too much
correlated, too low discrimination power)

- They can be transformed to improve their discrimination power before the
training

Input variable: X1 Input variable: X2

E—i lstglnél L) l L] L] L] I L] L] L) I L] L) L] ;
0.7 H 7] Background E
0.6 -
0.5 E

(1/N) dN/ 0.169 F
(1/N) dN/ 0.15 F

0.4 -
0.3 3
0.2 .

6 8

0 2 4 10
X1 [F]

UIO-flow (s.é)': (0.0, o.ois". 1{0.0, 0.0)%
U/O-flow (S,B): (0.0, 0.0)% / {0.0, 0.0)%

Neural network : neurons

| NN, hidden layer 1, node 0 | Signal
F — Background
1=
10'15—
107
10° =
10+
PP 3| AT 1 1 | N N A AU IR B B
-1 08 -0. 04 -0.2 0 02 04 06 038 1

| NN, hidden layer 1, node 2 |

— Signal

10

102

-

<
«
I

v e by by e by b by b by Ly

— Background

.
-

-0.8

04 -0.2 0 02 04 06 08 1

| NN, hidden layer 1, node 1 | Signal
= — Background
1
10'1|§—
102
107
10-4 5_
0% e
-1 08 06 -04 -0.2 0.2 0.4 0.6 0.8 1
| NN, hidden layer 1, node 3 | Signal
= — Background
16
10" E
10'2|§—
10° =
104
10'5 _l 1 L l 1 L 1 l 1 1 1 I L 1 L l L L 1 l L L L I L 1 L l 1 L 1 I L 1
-1 08 -06 -04 -0.2 0 0.2 0.4 06 0.8 1

18

Neural network : neurons

| NN, hidden layer 2, node 0 |

— Signal

— Background

-
IIIIIIl TTT

10"

107

IIIIIIIl T

107

10+

T IIIIIIII T I]III|T|

oSl Lo o b b e Ll L L
1 -08 -06 -04 -02 0 02 04 06 08 1

[NN, hidden layer 2, node 1 | — Signal [_NN, hidden layer 2, node 2_| — Signal

— Background

— Background

10
10"

102
102

T lIIIIII|

107

10
104

I IIIII|T|

4
v o e by b by by by b by by 10

Ev o o o by b by by by by by by

08 -06 -04 -0.2 0 02 04 06 038 1 -1 08 -06 -04 -0.2 0 02 04 06 0.8 1

(]
-

Neural network : output

- The neural network output can be real or integer

- For most of the HEP applications it is more interesting to have a a real-valued
variable

- If the training is successful, background should peak at -1 (or 0) and signal at +1

- Shape depends a lot on the NN parameters (layers, epochs...)

- Discrimination power achieved depend a lot on the problems.

TMVA response for classifier: MLP TMVA
T T T T I T T T I T T T I T T T I T T T I T T T
.5 [L__] Signal

/| Background

(1/N) dN/ dx

N
(=]

IIIIIIIIIIIIIIIIIIIIII

15

Illlllllllllllllt—

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

10

-0.2 0 0.2 04 0.6 0.8 1
MLP response

Neural network : error

N

. 1 . N\2
- Training error : : Z 5 (yANN,a - ya) "MLP Convergence Test |
a=1 ' -
5 0'55 Training Sample
- One can compare, at each iteration (epoch), T Test sample

what is the NN error for the training and oaslll]
the test sample.

0.44 |

0.42]

- Errors decrease with epochs in both training

and test samples. o4l il
- Usually it stabilizes 0.38
- But with more epochs, it can happen 0.36]

50 100 150 200 250 300 350 400 450 500

that the test sample will have an error Epochs
which will increase again

=> Overtraining :
- The neural network was trained to recognize even the statistical fluctuations
of the training sample and is therefore not suitable for any test sample

21

Neural network : overtraining

- Simple check : NN output for the training and test sample.
- Both samples should have the same shape, with the statistical uncertainties

Not overtrained

TMVA overtraining check for classifier: MLP

(1/N) dN/ dx

N
(5]

N
(=]

15

10

_-|' 7 Sighal (test sample) | | '| « Signal (traihing sample) =
Background (test sample) | | « Background (training sample)

| B oy

Kolmogorov-Smirnov test: signal (background) probability = 0.492 (0.822)

-0.2 0 0.2 0.4 0.6 0.8 1
MLP response

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

Overtrained

TMVA overtraining check for classifier: BDT |

Normalized [|

-
N

e
o

_- Sibna‘l (t'est'sallnplle) -

7@ Background (test sample)

. Si'gn:'all (ﬂrairliiné sellmﬁle)I b
- Background (training sample)__

t

-0.4 -0.2

- Kolmogorov-Smirnov test: si.FnaI (background) probability= 0(0)

0.2 0.4
BDT response

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

22

Background rejection

Neural network : performance

Usual figure of merit to check the performance :
- Scan the performance varying the cut on the network output
- Plot the signal efficiency versus background efficiency (or background
rejection). Each cut on the NN output is one point on the figure.
- The NN performs (almost all the time) better than the rectangular cut

=
o

=
(3]

=
F

=
w

o
[X)

/A Method:

MLP

—: Cuts

0.1

0.2 0.

3

04 05 06 07 08 09

1

Signal efficiency

Background rejection

-

=
©

=
©

—
-~

=
o

=
(2]

=
K

=
w

—
(%)

3 corrélatlon

- ;(and"few statlsti'c's)" """

E_ M\'IAMetﬁod """

- MLP

S e I E
0 01 02 03 04 05 06 07 08 09 1

Signal efficiency

23

Neural network : examples in HEP

Photon identification at DO and applications

- DO, 4.2 fb” TRK ECAL HCAL
, 035 % +
% 0.3 o Z->I'Ty (I=e,u) data <D
> 0.25] — v MC
S o20i 77 jet MC
-f_,—> 0.151:
O - |
© 0.1
"“ 0.05F i- et
. g e LT SRR PR DTN R
0 0.10.203 04050607 0.809 1 o
ONN

Goal : discriminate photons against neutral mesons in jets
Neural network input variables :

- Shape of the calorimeter energy deposit

- Track variables in an isolation cone around the photon

Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of
the input variables

- Repeated yes/no decisions on each variables are taken for an event until a
stop criterion is fulfilled

- Trained to maximize the purity of signal nodes (or the impurity of background
nodes)

- Decision trees are extremely
sensitive to the training samples,
Q Q therefore to overtraining
(x> c2] [xj<c2) (xj > c3) (xj <c3]
@/ \@ £ \S - To stabilize their performance, one
. uses different techniques :
> cd) [xk < cd - Boosting
/N .
° - Bagging
- Random forests

25

Decision tree : structure

- Similar to rectangular cuts, but each cut depends on the previous one
- Classifies from a set of attributes. Each node splits the data according to one
attribute

Root node Internal node

Decision

: Terminal node
Assigned class

(here, signal/background)

26

Decision tree : training

- Training a decision tree : process that defines the splitting criteria for each node.

- Start with the root node, the split in two subsets of training events. Go through the
same algorithm for the next splitting operation

- Repeat until the whole tree is built

- Splitting criterion found maximizing the signal/background separation.
- Different criteria available. Usually one uses the
Gini Index : p.(1-p) where p is the signal purity
- Note that it is symmetric between signal and background
- Selects the variable and cut value that optimises the increase in the separation
index between the parent node and the sum of the indices of the two daughter
nodes, weighted by their relative fraction of events.

00 01 02 03 04 05

27

0.0 0.2 0.4 0.6 0.8 1.0

Decision tree : overtraining

Advantages :
- Decision trees are independent of monotonous variable transformations
- Weak variables are ignored and do not deteriorate performance

- But Decision trees are extremely sensitive to the training samples,
therefore to overtraining
- Slightly different training samples can lead to radically different DT

- To stabilize Decision Tree performance, one can use different techniques.
- Boosting
- Bagging
- Random forests
- Pruning

28

Decision tree : boosting

Za T (x)
f

Boosting: ~ (Weighted Sample) e > Ty
- Sequentially apply the DT algorithm to reweighted T

(boosted)_versions c_)f t_he training data @ __________________________________ . T,®)
- Take a weighted majority vote of the sequence of DT

algorithms produced. Fogea s> . T
- Boosting allows also to increase the performance.

- Works very well on non-optimal decision tree (small —
-------------------------------- - T
number of nodes...)

. . . . FIG. 2: Schematic of a boosting procedure.
Most famous implementation in AdaBoost (adaptive

boost) : . misclassified events
- Events misclassified during the training of a decision er — all events
tree are given a higher event weight
- Events are reweighted depending on the error of the o — 1 —err
previous tree err
1 Ncollection

- The output of the BDT is : yBoost(X) —
where hi=+1 or -1. Neollection

Z ln(ai) . hz (X)

2 29

error on the AdaBoost : event weight

mth tree
N |=1 if the event is
\ : A (y; #= T,))€
err,, = 2= Wi (]\y[z # Im(2i)) misclassified (0 otherwise)
D im1 Wi
weight of the ith event :
Q= [% In((1 —erry,)/erry,) w; — w; X em ! WiFTm (@)
Start here: mISCIaSSITIed events get | pr—
equal event weights larger weights
Q signal O backgroind ————- current tree all trees
2 O T T T 1 2 [" T T . T 1 2 .) T
| 0O 1sttree » 10thtree | « 150th tree
(0] 00 p % 8 . g °* * q
| | 0.] J |IL_L
T8 9 5 |] Q1° V..
o | [~~~ o .,
%06 0,80 ° 00
2f 070 2 e 2t 9+
o 1 I
-1 0 1 2 -1 0 1 2 -1 0 1 2

30

BDT : example

The example: (somewhat artificial...but nice for demonstration) :
» Data file with three “bumps”

» Weak classifier (i.e. one single simple “cut”

TIT TTLT TTTT LI IIIIIIIIIII_ I I—:

E 2.5_i$léﬂal . E 3
"] Backgrgund g_ " 3 g_
E oF 1= E 3s
2 — - 12 2 E
1.5 -% —E

B 1= ==
L 1= 1=
1F 1= =
; 12 EE
- Je= E|

0.5} 1% 12

[1% _'=|

o= 'g 0 -g

45 0 05 1 15 06 04 02 0 02 04 06 038

varlQ vari

Two reasonable cuts: a) Var0 > 0.5 2 €45,,=66% €, = 0%

or
b) Var0 < -0.5 2 £€45n,=33% €,q = 0%

the training of a single decision tree stump will find “cut a)”

< decision tree stumps)

var(i) > x | | var(i) <= x

-0.2f

0.4}

0.6)

- Signal

- Background

TR T T Y T O N v v by 1
-1.5 -1 0.5 0 0.5 1 1.5

varQ

misclassified events in total 16.5%

misclassified events in total 33%

Helge Voss TMVA-Workshop, CERN, 21. January 2011 — Decision Trees and Boosting

31

BDT : example

The first “tree”, choosing cut a) will give an error fraction: err = 0.165
=» before building the next “tree”. weight wrong classified training events by (1-err/err)) =5

=» the next “tree” sees essentially the following data sample:

'E 25i'$iéﬁ'a'l'l""""I""I""I: E 2-5'$iglll15lll| i ”'I""I""II‘:)
= Background re-weight E Backgfound i.. and hence will
B T 2] 13 ”
£ of s i 1chose: “cut b)”
Z C []
o5t 15 1 Var0 <-0.5
i: - — 1f
0.5: “-55
0 --1.5 1 05 0 05 1 1.5- 095 1 95 0 05 1 15
varQ var(
E] sigral’ = "] | I
E ges Background
. . 5 i
The combined classifier: Tree1 + Tree2 = 801

the (weighted) average of the response to so Il
a test event from both trees is able to '
separate signal from background as
good as one would expect from the most 2° ‘
powerful classifier o o o

UiO-flow (S,B): (0.0, 0.0)% I (0.0, 0.0)%

Helge Voss TMVA-Workshop

32

Decision tree : output

Decision tree

+

- A single decision tree can be trained to gives always +
an integer response, : signal (+1) / background (-1)

Boosted decision trees give a Real-valued output :

- The output is a linear combination of +1 and -1, because of the weights over
the different training decision trees during boosting

- Output is quasi-continuous. The number of classes depends on the number of
trees used in the boosting process

TMVA overtraining check for classifier: BDT Ty TMVA response for classifier: BD T™MVA
T T T T T T T T T T T T » T 1 1 LRI I L LA L B L L LENLEL I L L |
S 60 [7] Signal (test samplie) I« 'signal (training sample) = T 1 e Signal ! !]
% Background (test sample) | | « Background (training sample) | 2 Background
2 50 :Kolmogorov-Smirnov test: signal (background) probability = 1(1) . f g2 i]
< C E - I]
= B i = 10 %l _
a0 [- i :
; e % 2
i B s [s
= [/]
o f- 1 tree - 850 trees
i = 6 —=
; 15 u s
20 :— —: g. 4 ;_ _— ;:
i i P)
10 Ha e E %
B i g S
i g
| | | 12 R | T R 5
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -
1 0.5 0 05 1 0.4 0.6 0.8

BDT response BDT response

Decision tree : bagging, random
forests, pruning

- One can also use different techniques such as bagging and random forest
- Improves the stability against fluctuations, not much the performance
- Both of them makes use of the idea of randomizing trees.

Bagging :
- Resampling technique. Training is repeated on “bootstrap” samples (i.e re-
sample training data with replacement), then combined

Random forests :
- Training repeated on random bootstrap (or subsets) of the training data only
- Consider at each node only a random subsets of variables for the split

Pruning :
- Grow tree to the end and “cut back”, nodes that seem statistically dominated

34

Decision tree : example in HEP

Examples in CMS : H-WW, H—bb analyses

o data [l Z+jets CMS preliminary

-'(2 | T T T | T T T | T T T T T T | T T T | T T T
— m=130 top L=46f"' | & 10% & CMS Preliminary = e
i i kT = \s=7TeV,L=4.71b" =W
WW . WZ/z27Z - W(uv)H(bb) 5 ¥V++bubgscg
40 [H Whets - 10° = EhiT
B 1 E % %8 uncertainty
102 =

2
K
5P
PSP
Q>

v
t:.
55
TR
B

XXX

vv
K8
2R
2L

X

20_—+ + ++ﬁﬁ) K:

o1 — . 06 04 02 0 02 04 06
1 -0.5 0 0.5 1 BDT output

BDT Output

The package TMVA

IMVA
- Package widely used in HEP

- Root-based implementation (included in every recent ROOT release)

TMVA functionalities :
- Allows to check input variables, correlations, overtraining, performance
- Many multivariate methods available : rectangular cuts, likelihood,
various decision trees, SVM...
- Classification and regression
- Tuning of parameters relatively easy
- Training is user-friendly and fast enough to be manageable on a laptop
- Application is less user friendly : basically have to do it by hand in ROOT

36

// ——— Cut optimisation

Use["Cuts"]
Use["CutsD"]
Use["CutsPCA"]
Use["CutsGA"]
Use["CutsSA"]
//

Available classifiers

[SESRSRSN

’
’
’
’
’

// ——— 1-dimensional llkellhood ("naive Bayes estimator")

Use["Likelihood"]
Use["LikelihoodD"]
Use["LikelihoodPCA"]
Use["LikelihoodKDE"]
Use["LikelihoodMIX"]
//

// ——— Mutidimensional
Use["PDERS"]
Use["PDERSD"]
Use["PDERSPCA"]
Use["PDEFoam"]
Use["PDEFoamBoost"]
Use["KNN"]

//

L T VO T I T | r—‘

S

// the "D" extension indicates decorrelated input variables (see option strings)

0
0; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
0;
0;

elihood and Nearest-Neighbour methods

; // uses generalised MVA method boosting
; // k-nearest neighbour method

// ——— Linear Dlscrlmlnant Analysis

Use["LD"]
Use["Fisher"]
Use["FisherG"]
Use["BoostedFisher"]
Use["HMatrix"]

//

// Linear Discriminant identical to Fisher

[SES)
~

// uses generalised MVA method boosting

// ——— Function Discriminant analysis

Use["FDA_GA"]
Use["FDA_SA"]
Use["FDA_MC"]
Use["FDA_MT"]
Use["FDA_GAMT"]
Use["FDA_MCMT"]
//

// ——— Neural Networks
Use["MLP"]

Use ["MLPBFGS"]
Use ["MLPBNN"]
Use["CFM1pANN"]
Use["TMT1pANN"]
//

o nmnn
[SESESESRS]

~e e e e

i nnn—

Q

[SESESRSN e

0; // minimisation of user-defined function using Genetics Algorithm

~-

—

are feed-forward Multilayer Perceptrons)

// Recommended ANN

// Recommended ANN with optional training method

// Recommended ANN with BFGS training method and bayesian regulator
// Depreciated ANN from ALEPH

// ROOT's own ANN

e we we s s

// ——— Support Vector Machine

Use["SVM"]
//

0;

// ——— Boosted Decision Trees

Use["BDT"]
Use["BDTG"]
Use["BDTB"]
Use["BDTD"]
//

0; // uses Adaptive Boost

0; // uses Gradient Boost

0; // uses Bagging

0; // decorrelation + Adaptive Boost

// ——— Friedman's RuleFlt method, ie, an optimised series of cuts ("rules")

Use["RuleFit"]

0'

37

Functionalities : correlations

- Linear correlations are easily investigated via the GUI :
- (Here, no correlation)

X2 versus X1 (Signal)_Id

X2 [F]

- N w A O OO N =}
llllll'l LI LI rrrprrrryrrrrprrei

"IIIIIIIIIIilflllilllIIIIIIlllllllllllllllllllllll'

1 2 3 4 5 6 7 8 9
X1 [F]

X2 versus X1 (Background)_Id

X2 [F]

- N WA OO OO N ®
LILELIL llll. . rFrerryT

- .
"lll'

1 2 3 4 5 6 7 8 9
X1 [F]

38

Functionalities : correlations

- Linear correlations are easily investigated via the GUI :
- Signal and background input variables can be correlated differently

Correlation Matrix (signal)

lil_sumiso04

iil_sumiso03

hotrail_brem

photrail_r9

Linear correlation coefficients in %

100

Correlation Matrix (background)

Linear correlation coefficients in %

100
80
60

lil_sumiso04

lil_sumiso03

hotrail_brem

photrail_r9 - - E
-80

-100

, , , ,
"%m "%ai/ "%ai/ "°bai/
3 004

39

Functionalities : performance

- Many classifiers can be trained in one shot
- Useful for performance comparison

1:|ll||ﬁx||....|...fﬁ=i_! |||||||| |||||:
0.9 [R

08

0.7 Fo

Background rejection

;¢ | M SO SU— - § T— S — e g
MVA Method:

0.5 [—=m——_ |_|ke||hood
04— — BDT]

03

0.2llllillllilll|i|llli|l|li|l|li|l|lill|lill|lillll
0 01 02 03 04 05 06 07 08 09 1

Signal efficiency

Advantages and drawbacks of
different classifiers

From TMVA manual
MVA METHOD
CRITERIA Cuts Likeli- PDE- PDE- H- Fisher MLP BDT Rule- SVM
hood RS / Foam Matrix / LD Fit
k-NN

No or linear * ok * * * ok ok * *ok *
Perfor- correlations
mance Nonlinear o 0 Kk Kok o o Kk Kk Kk *ok

correlations

Training o *k *k ok *ok ok * o * o
Speed

Response *k ok o * Kk *k *k *k *
Robust- Overtraining Kk * * *k Hok * o * *k
ness Weak variables *k * o o *k *k * *k * *
Curse of dimensionality o ok o o ok *k * * *
Transparency *k *k * * Kk *k o o o o

41

Exercises

- Problem inspired by Higgs searches in H->2photons channel at LHC

- Goal : be able to estimate the sensitivity of a search for a small peak over a
huge background, using multivariate methods

- 3 exercises :
- Setting up Root and TMVA environment, TMVA basics
- Using a MVA method inside the analysis
- Estimation of analysis sensitivity

42

