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Main goals of these lessons

- Have an understanding of what are multivariate analyses
- How they are used in high energy physics

- Answer to the questions : what is a neural network ? a boosted decision
tree ? what are the multivariate methods currently used in HEP ?

- Become familiar with problems related with training and application of
multivariate methods

- Be aware of the systematic uncertainties related to multivariate techniques
- Be able to understand the results of new physics searches at Tevatron or

LHC in the form where they are presented usually, and how they were
produced



Introductory comments

- In these lectures, examples will be mainly taken from Higgs boson
searches at LHC

- Will focus on multivariate methods commonly used in the high energy
physics community

- Theory will be addressed as a tool for practical usage



Exercises

- Proposed exercises will follow the progress of the lecture
- Problem inspired by Higgs searches in H->2photons channel at LHC

- Goal : be able to estimate the sensitivity of a search for a small peak over a
huge background, using multivariate methods

- 3 exercises :
- Setting up Root and TMVA environment, TMVA basics
- Using a MVA method inside the analysis
- Estimation of analysis sensitivity



Outline

1.Introduction

2.Multivariate methods

3.0Optimization of MVA methods
4.Application of MVA methods in HEP
5.Understanding Tevatron and LHC results



Lecture 1. Introduction



Content of this lecture

- Introduction
- Experimental problems in high energy physics
- The problem : how to distinguish signal from background ?

- Multivariate analyses examples in HEP
- At the Tevatron
- At the LHC

- Presentation of commonly used multivariate methods



Searching for rare signals

Higgs and new physics cross-sections are small...
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Over huge backgrounds

LHC (14 TeV)
' TOT

To achieve a discovery, huge background reduction rate g
needed ©

- Example of H—yy : typically 9 orders of magnitude under the 1
QCD jets background 10°}
- Reducible background : jet-jet, photon-jet 10°k
- Jets can be mis-identified as photons '
=> can be suppressed by tight photon identification criteria
- Irreducible background : photon-photon
- Non-resonant diphoton continuum
=> Can be discriminated using kinematic properties ad
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With a given detector
(here, CMS)

SILICON TRACKER .
HCAL |n| <5 Pixels (100 x 150 um?) Measurement made within

ECAL |fl| <3.0 ~1m? 66M channels
Tracker [n]| < 2.5 Microstrips (50-100um) Tracker acceptance Inl <25

Pixels Muons |n| <2.4 ~210Mm 9.6M channels
. CRYSTAL ELECTROMAGNETIC

' R ALORIMETER (ECAL)
Tracker \ CALORIMETER (ECAL
EC AI_ - B 76k scintillating PbWO, crystals

HCAL

Solenoid .
PRESHOWER

~ Silicon strips
~16m* 137k channels
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STEEL RETURN YOKE
~13000 tonnes

SUPERCON DUC Tl ’\’C
SOLENOID /
Niobium-titanium coil _ I,
carrying ~18000 A il e FORWARD
iy Ny CALORIMETER
Steel + quartz fibres

. HADRON CALORIMETER (HCAL)
Total weight : 14000 tonnes Brass + plastic scintillator MUON CHAMBERS
Overall diameter :15.0 m Barrel: Drift Tubes & Resistive Plate Chambers
Overall length :28.7m Endcaps: Cathode Strip Chambers & Resistive Plate Chambers

:3.8 T




Experimental issues

Experimental challenges : |

- Detector calibration e s 5

Identification of the tracks / energy deposits .

in the sub-detectors

Particle reconstruction

Particle identification

Finding the vertex of hard interaction among

all pile-up vertices

- Discriminate the signal process against all
other background processes

- Multivariate methods can help for that

Collision with 20 pile-up events recorded with
the ATLAS detector



Multivariate analysis : Definitions

MultiVariate Analysis :

- Set of statistical analysis methods that simultaneously analyze multiple
measurements (variables) on the object studied

- Variables can be dependent or correlated in various ways

Classification / regression :

- Classification : discriminant analysis to separate classes of events, given
already known results on a training sample

- Regression : analysis which provides an output variable taken into account the

correlations of the input variables

Statistical learning :

- Supervised learning : the multivariate method is trained over a sample were
the result is known (e.g. Monte-Carlo simulation of signal and background)

- Unsupervised learning : no prior knowledge is required. The algorithm will
cluster events in an optimal way

12



Event classification

- Focus here on supervised learning for classification.
- Use case in particle physics : signal/background discrimination

- Assume we have two populations (signal and background) and two variables

N10_IIII rTrryrrrryrrrryrrrTTryrrTrprirTry rTTT T T TIT T I T i
ST :
95 E
8 . -
7e" . I =
E . . ™ ® ‘. .‘.0 L] E
Py e s L
55‘ ...' l‘. o “ }~ $.‘.. . .® .“ _:
: 3..@3: :’:.?c.'?‘l“-'ﬁ':. ‘e 3
A Tt ety T el
35_ 0'"" .Q.‘.‘. ‘ °e ™ —:
- “~ . .:. . L E
20+ T vl E
= e =
O:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII:
0 1 2 3 4 56 7 8 9 10

- How to decorrelate, what decision
boundary (on X1 and X2) to
choose, to decide if an event is
signal or background ?
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Event classification

- Possible solutions : rectangular cuts, Fisher, non-linear contour

Rectangular cuts Linear (Fisher) Non-linear
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Multivariate analyses in HEP

- Signal/background discrimination :

- Object reconstruction : discriminate against instrumental background
(electronic noise...)

- Object identification : e.g. electron, bottom quark identification, to
improve the rejection other objects resembling (e.g. jets)

- Discriminating physics process against physics backgrounds. Many
examples, e.g. single top against W+jets, H->WW against WW
background...

- Improving the energy measurement, via regression. Allows to narrow the
reconstructed mass peak, improve the resolution.

- Estimate the sensitivity of the analysis :
- Sensitivity to signal exclusion or discoveries : Likelihood of the data to
be consistent with background only or signal+background hypothesis
- Combination of many channels
=> exclusion limits or discoveries
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MVA examples in HEP : Tevatron

Single top discovery

- When published, very controversial

- 36 boosted decision trees used to
discriminate signal from background

- First measurement of the single top

cross-section, today well established
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Events / 8 GeV

MVA examples in HEP : Tevatron

ZH—1lbb searches at CDF  prL 105, 251802 (2010)
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- b-jet energy estimated with a regression neural network, to improve dijet mass

resolution
- b-tagging with neural networks, used to compute the final limits 17



MVA examples in HEP : Tevatron

Photon identification at DO and applications arxiv:1002.4917v3
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MVA examples in HEP : Tevatron

H—vy searches at DO DQ Note 6177-CONF
100 o 80
S0 ; * §_[ DO preliminary, 8.2
S10°= Dg preliminary, 8.2 f 1o0f . o+ > 20b preliminary, o.
= sof- = -
g10° oty o " 2 — Observed limit
I.u105 ) data 22(5_ 0.1 0.2 0.3 0.‘4 0.‘5 0:6 0.‘7 0‘8 0:9' IE 60 :_ ------- EXPECted Iimit
10° background 0 gl 1 Expected limit + 1 s.d.
= 50F
_ - —
(&) -
102 0 o 0 o o 0 4 _._—o——0—+ i R E
10 ﬂ i3
107 10F
10.2 L1 Lo v b b v b v v by —
- 0 02 04 06 08 1 o, | | | | |
MVA output 100 110 120 130 140 150

M, [GeV]
(c) My =120 GeV

|dentify photons with the neural network (reduces fake photons processes)
Boosted decision tree with kinematic variables to improve the sensitivity against
the diphoton continuum (+30%)

- The BDT includes the invariant mass of the diphoton system as input
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95% CL limit on o/ogy

MVA examples in HEP : LHC

H->WW-Ilvv searches in CMS

- 3 channels : O-jet, 1-jet, 2-jet

- Electron identification with a multivariate technique : 50%
more background rejection for the same signal efficiency

- Boosted decision tree in 0-jet and 1-jet channels : kinematic
variables

- Limits improved by using BDT
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95% C.L. Limit on o/cg,
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MVA examples in HEP : LHC

H-’bb searches in CMS cMSs-PAS-HIG-11-031

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
110 115 120 125 130 135
Higgs Mass [GeV]

- Searches for VH, H—bb
- 5 channels : W—ev,uv, Z—ee,u, Z— Vv

- B-tagging selection on a likelihood
discriminant (track impact parameter +

secondary vertices information)
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MVA examples in HEP : LHC

H—vyy searches in CMS  cms-pas-HIG-11-030
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- Hard interaction vertex identified with a BDT using diphoton kinematics and
track variables

- Photon energy estimated with a BDT regression from geometry and energy
deposit variables (10% improvement on the limit)
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95% CL limit on o/og,,

102 £ CMS Prellmlnary Ns=7TeV “Combined
- _ 1 H— bb (4.7 fo')
o ,CQfT‘b,'”,ed ,I,‘in,t B 4647fb [ T H— 1t (4.6 fb)
[ e, H— vy (4.7 b
[ R [Py H— Ww (4.6 b
B —_— HZZ (4.7 o)
10 =
1: i :/ﬁ
! \\.\\\\\\\\\.\\\\\\\\\.\\\\;\\\\
100 200 300 400 500 600

Combination of aII channels iIn CMS

MVA examples in HEP : LHC

Higgs boson mass (GeV/c?)
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- Combination can be seen as a grand multivariate analysis
- Limits are set with CLs method

- Exclusion at 95% confidence level :

127-600 GeV
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Plenty of multivariate methods...

Example of MVA methods :
- Rectangular cut optimization
- Fisher

- Likelihood

- Neural network

- Decision tree

- Support Vector Machine

Characteristics :

- Level of complexity and transparency

- Performance in term of background rejection

- Way of dealing with non-linear correlations

- Speed of training

- Robustness while increasing the number of input variables
- Robustness against overtraining
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Rectangular cuts

- Simplest multivariate method, very intuitive
- All HEP analyses are using rectangular cuts, not
always completely optimized

Rectangular cuts optimization :

- Grid search, Monte-Carlo sampling
- Genetic algorithm

- Simulated annealing

Characteristics :

- Difficult to discriminate signal from background if
non-linear correlations

- Optimization difficult to handle with high number of
variables
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Define the signal region :
al <x1<a2,
b1 <x2 <b2

25



Fisher discriminant
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Fisher method : X
- Cut on a linear combination of the input
variables
y <a.xl +b.x2
- This corresponds to an hyper-plan in the
variable phase-space
- Very efficient if linear correlations

- Again, difficult to handle non-linear correlations
- More easily trained than rectangular cuts
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Likelihood estimator

Ls(7)
i) + Lp(1,

- The likelihood ratio is defined by : ye(i) = Lg(
S

Nvar

Lspy(t) = HPS(B),k(iUk(i))
k=1

is the product of the probability function for each variables.

- Optimal when no correlation between the variables

- This likelihood method does not take into account the correlations and is
therefore sub-optimal in presence of correlations

- Refinements exist to take into account the correlations
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Neural network

- Most commonly used : the multi-layer perceptron

- Composed of neurons taking as input a linear combination of the previous
neuron outputs

- Activation function (usually tanh) transforms the linear combination

- Weights for each neurons are found during the training phase by minimizing the
error on the neural network output

Input Layer Hidden Layer Output Layer

Wy Y% - Neural networks are universal
H @@ W, approximators : takes advantage of
}QQI//’ ¥3 correlations
Xy [ §‘gl'l/
}‘;{}é’% y3 y?HyANN - Quite stable against overtraining and
X3 = g{(‘)‘o against increasing number of
"l&&@ variables
IL
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Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of
the input variables

- Repeated yes/no decisions on each variables are taken for an event until a
stop criterion is fulfilled

- Trained to maximize the purity of signal nodes (or the impurity of background
nodes)

- Decision trees are extremely
sensitive to the training samples,
Q Q therefore to overtraining
(x> c2] [xj<c2) (xj > c3) (xj <c3]
@/ \@ £ \S - To stabilize their performance, one
. uses different techniques :
> cd) [xk < cd - Boosting
/N .
° - Bagging
- Random forests

29



Support Vector Machine

- Idea : build a hyperplane that separate signal and background vectors (events)
using only a subset of all training vectors (support vectors)

- Position of the hyperplane found by maximizing the margin between it and the
support vectors

- Higher dimensions spaces are used by non-linear transformation, using kernel
functions such as the gaussian basis

- SVM can be competitive with NN and BDT
but is often less discriminant : often data
are non-separable, therefore sensitive to all
the SVM parameters

- In some cases this method performs very
well

y=-1

X,, X,, X, X, — support vectors



Training and application

Training / test samples
- For all multivariate methods, two samples are

used :
' ?a't”'”g S?mp'e
- Test sample y
.. .. g Sighal (test sample) | '| | « Signal (traihing sample) = = 1
) ThIS 1S mandatory to CheCk that the tralnlng haS E 25 _f_/-v'f,,--"j_, Background (test sample) = Background (training sample) -
. . kel - __
Converged to a Solutlon WhICh doeS not depend g :Kolmogorov-Smirnovtest: signal (background) probability = 0.492 (0.822) -
on the statistical fluctuations of the training T 20 =
sample F -
- Generally speaking, MVA should be applied (or : ]
tested) in events where the response is not 10 [- -
known -

- Training is time-consuming, especially while

-0.2 0 0.2 0.4 0.6 0.8 1

increasing the number of variables (and MLP response
depending on the method)

- Application is usually faster : it uses a set of
weights used in the MVA output computation
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Which method to choose ?

From TMVA manual
MVA METHOD
CRITERIA Cuts Likeli- PDE- PDE- H- Fisher MLP BDT Rule- SVM
hood RS / Foam Matrix / LD Fit
k-NN

No or linear * ok * * * ok ok * *ok *
Perfor- correlations
mance Nonlinear o 0 Kk Kk o o Kk Kk Kk *k

correlations

Training o *k *k ok *ok ok * o * o
Speed

Response *k ok o * Kk *k *k * *k
Robust- Overtraining Kk * * * Hok Hok * o * *k
ness Weak variables *k * o o *k *k * *k * *
Curse of dimensionality o ok o o ok *k * * *

Transparency *k *k * * Kk *k o o o o




