Exercise 1. Phase transitions in the electroweak theory

We will consider the electroweak theory a $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ broken by a Higgs scalar. The Lagragian density of this model has the form

$$
\begin{equation*}
\mathcal{L} \supset \mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }} \tag{1}
\end{equation*}
$$

where the gauge part consists of the usual field strength tensors:

$$
\begin{equation*}
\mathcal{L}_{\text {gauge }}=-\frac{1}{4} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}, \quad a=1,2,3 \tag{2}
\end{equation*}
$$

with the $\mathrm{SU}(2)_{L} W_{\mu \nu}^{a} \equiv \partial_{\mu} W_{\nu}^{a}-\partial_{\nu} W_{\mu}^{a}-g \varepsilon^{a b c} W_{\mu}^{b} W_{\nu}^{c}$ and $\mathrm{U}(1)_{Y} B_{\mu \nu} \equiv \partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}$. The Higgs is now an $\operatorname{SU}(2)_{L}$ doublet,

$$
\begin{equation*}
H=\binom{H^{+}}{H^{0}} \tag{3}
\end{equation*}
$$

with Lagrangian density

$$
\begin{equation*}
\mathcal{L}_{\text {Higgs }}=\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)-m^{2} H^{\dagger} H-\lambda\left(H^{\dagger} H\right)^{2} \tag{4}
\end{equation*}
$$

and covariant derivative

$$
\begin{equation*}
D_{\mu} H=\left(\partial_{\mu}+i g \frac{\sigma^{a}}{2} W_{\mu}^{a}+i g^{\prime} \frac{1}{2} B_{\mu}\right) H \tag{5}
\end{equation*}
$$

The fermions acquire their mass through their Yukawa couplings to the Higgs field:

$$
\begin{equation*}
\mathcal{L}_{\text {Yukawa }}=-\sum_{f} y_{f} F_{L}^{T} i \sigma^{2} H f_{R}+\text { h.c. } \tag{6}
\end{equation*}
$$

where y_{f} denotes the Yukawa coupling, $F_{L} \equiv\binom{u_{f}}{d_{f}}_{L}$ denotes the left-handed doublet, and f_{R} the right-handed singlet.

In the electroweak theory the symmetry is spontaneously broken, by the Higgs field acquiring a VEV

$$
\begin{equation*}
\langle H\rangle=\binom{0}{\varphi_{c} / \sqrt{2}} \tag{7}
\end{equation*}
$$

(a) Compute the masses of the fermions as a function of φ_{c}.
(b) Defining the photon, Z and $\mathrm{W}^{ \pm}$by

$$
\begin{equation*}
A_{\mu} \equiv \cos \theta_{W} B_{\mu}+\sin \theta_{W} W_{\mu}^{3}, \quad Z_{\mu} \equiv-\sin \theta_{W} B_{\mu}+\cos \theta_{W} W_{\mu}^{3}, \quad W_{\mu}^{ \pm} \equiv W_{\mu}^{1} \pm i W_{\mu}^{2} \tag{8}
\end{equation*}
$$

compute their masses as a function of φ_{c}.
When fermions are involved the result from the last exercise sheet needs to be adapted as follows:

$$
\begin{align*}
& \bar{V}_{1}^{T=0}\left(\varphi_{c}\right)=B^{\prime} \varphi_{c}^{4}\left[\ln \frac{\varphi_{c}^{2}}{v^{\prime 2}}-\frac{25}{6}\right], \tag{9}\\
& \bar{V}_{1}^{T \neq 0}\left(\varphi_{c}\right)=-\frac{\pi^{2} T^{4}}{90}\left(n_{S}+n_{V}+\frac{7}{8} n_{F}\right)+\frac{T^{2}}{24}\left[t_{S}+3 t_{V}+2 t_{F}\right]-\frac{C^{\prime} T}{3}, \quad(T \gg 0) \tag{10}
\end{align*}
$$

where the the unprimed parameters are the same as previously.
(c) With this result compute the 1-loop effective potential $\bar{V}(\varphi)$ and show that

$$
\begin{equation*}
m^{2}(T)=m^{2}+\left(\frac{\lambda}{2}+\frac{e^{2}\left(1+2 \cos ^{2} \theta_{W}\right)}{4 \sin ^{2} 2 \theta_{W}}+\sum_{f} \frac{y_{f}^{2}}{12}\right) T^{2} \tag{11}
\end{equation*}
$$

(d) Retaining only the gauge boson contribution to the φ_{c}^{3}-term in $\bar{V}(\varphi)$ show that

$$
\begin{equation*}
C^{\prime} \approx \frac{3 e^{3}\left(1+2 \cos ^{3} \theta_{W}\right)}{4 \pi \sin ^{3} 2 \theta_{W}} \tag{12}
\end{equation*}
$$

Dropping the λ^{2} contributions to the radiative corrections one can prove that

$$
\begin{equation*}
B^{\prime} \approx \frac{3}{4}\left(\frac{e^{2}}{4 \pi}\right)^{2} \frac{1+2 \cos ^{4} \theta_{W}}{\sin ^{4} 2 \theta_{W}}-\frac{1}{64 \pi^{2}} \sum_{f} y_{f}^{2} \tag{13}
\end{equation*}
$$

(e) Find the sign of B^{\prime} with the values of the parameters in the standard model $\left(e^{2} / 4 \pi \approx\right.$ $1 / 137, \ldots$). Write the numerial values and comment on which terms are essentially important and which ones are not.

