Exercise 1. Abelian anomaly in the path integral formalism

In this exercise, we will consider the anomaly of a local chiral transformation in the path integral formalism.

The measure of the path integral for fermionic fields transforms as follows under a gauge transformation:

$$
\begin{equation*}
[d \psi][d \bar{\psi}] \rightarrow(\operatorname{det} \mathcal{U} \operatorname{det} \overline{\mathcal{U}})^{-1}[d \psi][d \bar{\psi}] \tag{1}
\end{equation*}
$$

where $\left(\gamma_{4} \equiv i \gamma_{0}\right)$,

$$
\begin{align*}
\mathcal{U}(x, y) & \equiv U(x) \delta^{(4)}(x-y) \tag{2}\\
\overline{\mathcal{U}}(x, y) & \equiv\left(\gamma_{4} \otimes \mathbb{1}\right) U^{\dagger}(x)\left(\gamma_{4} \otimes \mathbb{1}\right) \delta^{(4)}(x-y) \tag{3}
\end{align*}
$$

and $U(x)=D \otimes F$ is a matrix in with Dirac and flavour indices.
(a) Show that for a unitary local non-chiral transformation

$$
\begin{equation*}
U(x)=\exp [i \alpha(x)(\mathbb{1} \otimes t)] \tag{4}
\end{equation*}
$$

where t is Hermitian, \mathcal{U} is pseudo-unitary, i.e. $\int d^{4} y \overline{\mathcal{U}}(x, y) \mathcal{U}(y, z)=\mathbb{1} \delta^{(4)}(x-z)$.
(b) Show that for a unitary local chiral transformation

$$
\begin{equation*}
U(x)=\exp \left[i \alpha(x)\left(\gamma_{5} \otimes t\right)\right] \tag{5}
\end{equation*}
$$

where t is Hermitian, \mathcal{U} is pseudo-hermitian, i.e. $\overline{\mathcal{U}}(x, y)=\mathcal{U}(x, y)$.
(c) We now focus on infinitesimal local chiral transformations. Using the property that $\operatorname{det} A=$ $\exp \operatorname{tr} \ln M$ and the Taylor expansion of the logarithm, show that

$$
\begin{equation*}
(\operatorname{det} \mathcal{U})^{-2}=\exp \left[i \int d^{4} x \alpha(x) \mathcal{A}(x)\right] \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{A}(x)=-2 \operatorname{tr}\left[\gamma_{5} \otimes t\right] \delta^{(4)}(x-x) \tag{7}
\end{equation*}
$$

The " $\delta{ }^{(4)}(x-x)$ " comes about by taking the analogue of the trace (summing over the diagonal) for the continuous variable: integrating over the "diagonal" $x=y$.

This expression needs to be regularized. We achieve that by replacing \mathcal{A} with

$$
\begin{equation*}
\mathcal{A}(x)=\lim _{y \rightarrow x}-2 \operatorname{tr}\left[\left(\gamma_{5} \otimes t\right) f\left(-\not D^{2} / M^{2}\right)\right] \delta^{(4)}(x-y) \tag{8}
\end{equation*}
$$

where $D_{\mu}=\partial_{\mu} \otimes \mathbb{1}-i\left(\mathbb{1} \otimes t^{a}\right) A_{\mu}^{a}, M$ is the regulator (to be taken to infinity at the end) and f is such that,

$$
\begin{equation*}
f(0)=1, \quad f(\infty)=0, \quad s f^{\prime}(s)=0 \text { for } s=0, \infty \tag{9}
\end{equation*}
$$

(d) Propose functions satisfying (9).
(e) Use the Fourier representation of the δ-function and a clever rescaling to show that you can bring (8) into

$$
\begin{equation*}
\mathcal{A}(x)=-2 M^{4} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[\left(\gamma_{5} \otimes t\right) f\left(-(i \not k+\not D / M)^{2}\right)\right] \tag{10}
\end{equation*}
$$

(f) Expanding the argument of f and performing a formal Taylor expansion of f around k^{2}, show that one can bring it further to the form,

$$
\begin{equation*}
\mathcal{A}(x)=-\int \frac{d^{4} k}{(2 \pi)^{4}} f^{\prime \prime}\left(k^{2}\right) \operatorname{tr}\left[\left(\gamma_{5} \otimes t\right) \not D^{4}\right]+\mathcal{O}(1 / M) \tag{11}
\end{equation*}
$$

Hint. Count the powers of M and the number of γ-matrices you need to get there and argue why the other terms can be ignored/vanish.
(g) Compute the integral over k (Minkowski!) using the properties (9). You should obtain,

$$
\begin{equation*}
\int d^{4} k f^{\prime \prime}\left(k^{2}\right)=i \pi^{2} \tag{12}
\end{equation*}
$$

(h) Show that

$$
\begin{equation*}
\not D^{2}=D^{2} \mathbb{1}-\frac{1}{4} t^{a} F_{\mu \nu}^{a}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{13}
\end{equation*}
$$

(i) Wrapping up and taking the (partial) trace over the Dirac indices, perform the last steps leading you to the anomaly function:

$$
\begin{equation*}
\mathcal{A}(x)=-\frac{1}{16 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a}(x) F_{\rho \sigma}^{b}(x) \operatorname{tr}\left[t^{a} t^{b} t\right] \tag{14}
\end{equation*}
$$

For a analysis of the problem with Euclidian path integrals, you might want to read the original paper: K. Fujikawa, Phys. Rev. Lett. 42, 1195-1198 (1979).

Solution. Weinberg II, Section 22.2 (pp. 362-365).

Exercise 2. Magnetic monopoles

Consider the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu, a}+\frac{1}{2} D_{\mu} \varphi D^{\mu} \varphi-\frac{\lambda}{8}\left(\varphi^{2}-\eta^{2}\right)^{2} \tag{15}
\end{equation*}
$$

where φ is a scalar field in the three-dimensional representation of $S O(3)$, the covariant derivative is given by

$$
\begin{equation*}
D_{\mu} \varphi_{a}=\partial_{\mu} \varphi_{a}-g \varepsilon_{a b c} A_{\mu}^{b} \varphi_{c} \tag{16}
\end{equation*}
$$

and the field strength tensor is

$$
\begin{equation*}
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g \varepsilon_{a b c} A_{\mu}^{b} A_{\nu}^{c} \tag{17}
\end{equation*}
$$

The magnetic monopole solution can be parametrised by the ansatz

$$
\begin{gather*}
\varphi_{a}=\frac{H(\xi)}{\xi} \eta \frac{x_{a}}{r} \tag{18}\\
A_{i}^{a}=\frac{\varepsilon_{a i j} x_{j}}{g r^{2}}(K(\xi)-1) \tag{19}
\end{gather*}
$$

where $\xi=g \eta r$.
(a) Show that the covariant derivative is given in terms of this ansatz by

$$
\begin{equation*}
D_{i} \varphi_{a}=\frac{K(\xi) H(\xi)}{g r^{4}}\left(r^{2} \delta_{a i}-x_{a} x_{i}\right)+\left(\xi H^{\prime}(\xi)-H(\xi)\right) \frac{x_{a} x_{i}}{g r^{4}} \tag{20}
\end{equation*}
$$

(b) Show that the energy of the magnetic monopole is then given by

$$
\begin{align*}
E & =\frac{4 \pi \eta}{g} \int_{0}^{\infty} d \xi \frac{1}{\xi^{2}}\left[\frac{1}{2}\left(\xi H^{\prime}-H\right)^{2}+H^{2} K^{2}+\left(\xi K^{\prime}\right)^{2}\right. \tag{21}\\
& \left.+\frac{1}{2}\left(K^{2}-1\right)^{2}+\frac{\lambda}{8 g^{2}}\left(H^{2}-\xi^{2}\right)^{2}\right] \tag{22}
\end{align*}
$$

(c) Show that this energy is minimised for

$$
\begin{align*}
& \xi^{2} K^{\prime \prime}=K H^{2}+K\left(K^{2}-1\right) \tag{23}\\
& \xi^{2} H^{\prime \prime}=2 K^{2} H+\frac{\lambda}{2 g^{2}} H\left(H^{2}-\xi^{2}\right) \tag{24}
\end{align*}
$$

Solution. We insert the ansatz

$$
\begin{equation*}
\varphi_{a}=\frac{H(\xi)}{\xi} \eta \frac{x_{a}}{r}, \quad A_{i}^{a}=\frac{\varepsilon_{a i j} x_{j}}{g r^{2}}(K(\xi)-1) \tag{S.1}
\end{equation*}
$$

(a) We remark

$$
\begin{equation*}
\partial_{i} \frac{x_{a}}{r}=\frac{\delta_{a i}}{r}-\frac{x_{i} x_{a}}{r^{3}}, \quad \partial_{i} \xi=g \eta \frac{x_{i}}{r}=g^{2} \eta^{2} \frac{x_{i}}{\xi}, \quad \partial_{i} r^{n}=n x_{i} r^{n-2} . \tag{S.2}
\end{equation*}
$$

We calculate the parts in order:

$$
\begin{align*}
\partial_{i} \varphi_{a} & =\partial_{i}\left(\frac{H}{\xi} \eta \frac{x_{a}}{r}\right) \tag{S.3}\\
& =\eta\left(\frac{x_{i} x_{a}}{r^{3}} \xi\left[\frac{H^{\prime}}{\xi}-\frac{H}{\xi^{2}}\right]+\frac{H}{\xi}\left[\frac{\delta_{a i}}{r}-\frac{x_{i} x_{a}}{r^{3}}\right]\right) \tag{S.4}\\
& =\eta\left(\frac{x_{i} x_{a}}{r^{3}}\left[H^{\prime}-2 \frac{H}{\xi}\right]+\frac{\delta_{a i}}{r} \frac{H}{\xi}\right) \tag{S.5}
\end{align*}
$$

$$
\begin{align*}
-g \varepsilon_{a b c} A_{i}^{b} \varphi_{c} & =-g \varepsilon_{a b c} \frac{\varepsilon_{b i k} x_{k}}{g r^{2}}(K-1) \frac{H}{\xi} \eta \frac{x_{c}}{r} \tag{S.6}\\
& =-\eta \frac{H}{\xi} \frac{1}{r^{3}}(K-1)\left(x_{i} x_{a}-r^{2} \delta_{a i}\right) \tag{S.7}\\
& =\eta\left(\frac{x_{i} x_{a}}{r^{3}}\left[-\frac{H}{\xi}(K-1)\right]+\frac{\delta_{a i}}{r} \frac{H}{\xi}(K-1)\right) \tag{S.8}
\end{align*}
$$

adding up to

$$
\begin{align*}
\partial_{i} \varphi_{a}-g \varepsilon_{a b c} A_{i}^{b} \varphi_{c} & =\eta\left(\frac{x_{i} x_{a}}{r^{3}}\left[H^{\prime}-\frac{H}{\xi}-\frac{H K}{\xi}\right]+\frac{\delta_{a i}}{r} \frac{H}{\xi} K\right) \tag{S.9}\\
& =K H \frac{1}{g r^{4}}\left(r^{2} \delta_{a i}-x_{i} x_{a}\right)+\frac{x_{i} x_{a}}{g r^{4}}\left(\xi H^{\prime}-H\right) \tag{S.10}
\end{align*}
$$

(b) For the square we need

$$
\begin{gather*}
\left(r^{2} \delta_{a i}-x_{i} x_{a}\right)\left(r^{2} \delta_{a i}-x_{i} x_{a}\right)=r^{4} \delta_{i i}+x_{i} x_{i} x_{a} x_{a}-2 r^{2} x_{i} x_{i}=2 r^{4} \tag{S.11}\\
\left(r^{3} \delta_{a i}-x_{i} x_{a}\right) x_{i} x_{a}=r^{4}-r^{4}=0 \tag{S.12}
\end{gather*}
$$

and therefore we have for the kinetic term

$$
\begin{equation*}
\frac{1}{2}\left(D_{\mu} \varphi\right)\left(D^{\mu} \varphi\right)=\frac{-1}{2}\left(D_{i} \varphi\right)\left(D_{i} \varphi\right)=\frac{-1}{2} \frac{g^{2} \eta^{4}}{\xi^{4}}\left(2 K^{2} H^{2}+\left(\xi H^{\prime}-H\right)^{2}\right) \tag{S.13}
\end{equation*}
$$

We proceed with the field strength term, we have

$$
\begin{align*}
\partial_{i} A_{j}^{a} & =\frac{1}{g} \varepsilon_{a j k} \partial_{i}\left(x_{k} \frac{1}{r^{2}}(K-1)\right) \tag{S.14}\\
& =\frac{1}{g} \varepsilon_{a j k}\left(\delta_{i k} r^{-2}(K-1)-2 x_{i} x_{k} r^{-4}(K-1)+x_{k} r^{-2} K^{\prime} g \eta \frac{x_{i}}{r}\right) \tag{S.15}\\
& =\frac{1}{g} \varepsilon_{a j i} \frac{K-1}{r^{2}}+\frac{1}{g} x_{i} \varepsilon_{a j k} x_{k}\left(-2 r^{-4}(K-1)+g \eta r^{-3} K^{\prime}\right) \tag{S.16}\\
& =\frac{-1}{g} \frac{K-1}{r^{2}} \varepsilon_{a i j}+\frac{1}{g} x_{i} \varepsilon_{a j k} x_{k} r^{-4}\left(\xi K^{\prime}-2(K-1)\right) \tag{S.17}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\partial_{i} A_{j}^{a}-\partial_{j} A_{i}^{a}=\frac{-2}{g} \frac{K-1}{r^{2}} \varepsilon_{a i j}+\frac{1}{g}\left(x_{i} \varepsilon_{a j k} x_{k}-x_{j} \varepsilon_{a i k} x_{k}\right) r^{-4}\left(\xi K^{\prime}-2(K-1)\right) . \tag{S.18}
\end{equation*}
$$

For the non-abelian part we have

$$
\begin{align*}
\varepsilon_{a b c} A_{i}^{b} A_{j}^{c} & =\varepsilon_{a b c} \varepsilon_{b i k} x_{k} \varepsilon_{c j m} x_{m} \frac{1}{g^{2}} \frac{1}{r^{4}}(K-1)^{2} \tag{S.19}\\
& =\left(\delta_{c i} \delta_{a k}-\delta_{c k} \delta_{a i}\right) x_{k} \varepsilon_{c j m} x_{m} \frac{1}{g^{2}} \frac{1}{r^{4}}(K-1)^{2} \tag{S.20}\\
& =x_{a} \varepsilon_{i j m} x_{m} \frac{1}{g^{2}} \frac{1}{r^{4}}(K-1)^{2} \tag{S.21}
\end{align*}
$$

giving us

$$
\begin{equation*}
F_{i j}^{a}=\frac{-2}{g} \frac{K-1}{r^{2}} \varepsilon_{a i j}+\frac{1}{g}\left(x_{i} \varepsilon_{a j k} x_{k}-x_{j} \varepsilon_{a i m} x_{m}\right) r^{-4}\left(\xi K^{\prime}-2(K-1)\right)-\frac{1}{g} \frac{(K-1)^{2}}{r^{4}} x_{a} \varepsilon_{i j m} x_{m} \tag{S.22}
\end{equation*}
$$

In preparation for the contraction, we calculate

$$
\begin{align*}
\varepsilon_{a i j} \varepsilon_{a i j} & =6 & x_{i} \varepsilon_{a j k} x_{k} x_{i} \varepsilon_{a j m} x_{m} & =2 r^{4} \tag{S.23}\\
x_{i} \varepsilon_{a j k} x_{k} x_{j} \varepsilon_{a j m} x_{m} & =0 & \left(x_{i} \varepsilon_{a j k} x_{k}-x_{j} \varepsilon_{a i k} x_{k}\right)^{2} & =4 r^{4} \tag{S.24}\\
x_{a} x_{a} \varepsilon_{i j m} \varepsilon_{i j k} x_{m} x_{k} & =2 r^{4} & \varepsilon_{a i j}\left(x_{i} \varepsilon_{a j k} x_{k}-x_{j} \varepsilon_{a i k} x_{k}\right) & =-4 r^{2} \tag{S.25}\\
\varepsilon_{a i j} x_{a} \varepsilon_{i j m} x_{m} & =2 r^{2} & \left(x_{i} \varepsilon_{a j k} x_{k}-x_{j} \varepsilon_{a i k} x_{k}\right) x_{a} \varepsilon_{i j m} x_{m} & =0 \tag{S.26}
\end{align*}
$$

We insert this into $F_{i j}^{a} F^{i j, a}=F_{i j}^{a} F_{i j}^{a}=\left(F_{i j}^{a}\right)^{2}$:

$$
\begin{align*}
\left(F_{i j}^{a}\right)^{2}= & \frac{24}{g^{2}} \frac{(K-1)^{2}}{r^{4}}+\frac{1}{g^{2}} 4 r^{-4}\left(\xi K^{\prime}-2(K-1)^{2}\right)^{2}+\frac{1}{g^{2}} \frac{(K-1)^{4}}{r^{8}} \cdot 2 r^{4} \tag{S.27}\\
& -\frac{4}{g^{2}}(K-1)\left(\xi K^{\prime}-2(K-1)\right)\left(-4 r^{2}\right) r^{-6}+\frac{4}{g^{2}} \frac{(K-1)^{3}}{r^{6}} \cdot 2 r^{2} \tag{S.28}\\
= & \frac{1}{g^{2} r^{4}}\left[8(K-1)^{2}+2(K-1)^{4}+8(K-1)^{3}+4\left(\xi K^{\prime}\right)^{2}\right] \tag{S.29}\\
= & \frac{1}{g^{2} r^{4}}\left[2\left(K^{2}-1\right)^{2}+4\left(\xi K^{\prime}\right)^{2}\right] \tag{S.30}
\end{align*}
$$

$$
\begin{equation*}
\frac{-1}{4}\left(F_{i j}^{a}\right)^{2}=\frac{-g^{2} \eta^{4}}{2 \xi^{4}}\left[\left(K^{2}-1\right)^{2}+2\left(\xi K^{\prime}\right)^{2}\right] \tag{S.31}
\end{equation*}
$$

We do need the potential term as well, we have

$$
\begin{equation*}
\frac{-\lambda}{8}\left(\varphi^{2}-\eta^{2}\right)^{2}=\frac{-\lambda}{8} \frac{\eta^{4}}{\xi^{4}}\left(H^{2}-\xi^{2}\right)^{2} . \tag{S.32}
\end{equation*}
$$

Now we add things up to arrive at the energy

$$
\begin{align*}
E & =-\int d \vec{x} \mathcal{L}=-\int \frac{4 \pi}{g^{3} \eta^{3}} \xi^{2} d \xi \mathcal{L}=\frac{4 \pi}{g^{3} \eta^{3}} \int \xi^{2} d \xi\left(\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu, a}-\frac{1}{2} D_{\mu} \varphi D^{\mu} \varphi+\frac{\lambda}{8}\left(\varphi^{2}-\eta^{2}\right)^{2}\right) \tag{S.33}\\
& =\frac{4 \pi \eta}{g} \int d \xi \frac{1}{\xi^{2}}\left(\frac{1}{2}\left(K^{2}-1\right)^{2}+\left(\xi K^{\prime}\right)^{2}+K^{2} H^{2}+\frac{1}{2}\left(\xi H^{\prime}-H\right)^{2}+\frac{\lambda}{8 g^{2}}\left(H^{2}-\xi^{2}\right)^{2}\right) . \tag{S.34}
\end{align*}
$$

(c) We assume $E[g]=\int f\left(g(x), g^{\prime}(x)\right) d x$ and we recall

$$
\begin{align*}
\frac{\delta E}{\delta g}[\varphi] & =\left.\frac{d}{d \varepsilon} \int f\left(g+\varepsilon \varphi, g^{\prime}+\varepsilon \varphi^{\prime}\right) d x\right|_{\varepsilon=0} \tag{S.35}\\
& =\int \frac{\partial f\left(g, g^{\prime}\right)}{\partial g} \varphi+\frac{\partial f\left(g, g^{\prime}\right)}{\partial g^{\prime}} \varphi^{\prime} d x \tag{S.36}\\
& =\int\left(\frac{\partial f\left(g, g^{\prime}\right)}{\partial g}-\frac{\partial}{\partial x} \frac{\partial f\left(g, g^{\prime}\right)}{\partial g^{\prime}}\right) \varphi d x \tag{S.37}
\end{align*}
$$

where we have assumed that the boundary terms of the partial integration vanish. Therefore we get from the condition that the derivatives of the energy with respect to K and H should vanish:

$$
\begin{align*}
& \frac{\delta E}{\delta K}=0 \Rightarrow K^{\prime \prime}=\frac{1}{\xi^{2}}\left(K\left(K^{2}-1\right)+2 K H^{2}\right) \tag{S.38}\\
& \frac{\delta E}{\delta H}=0 \Rightarrow H^{\prime \prime}-\frac{H^{\prime}}{\xi}+\frac{H}{\xi^{2}}=\frac{2 K^{2} H}{\xi^{2}}-\frac{H^{\prime}}{\xi}+\frac{H}{\xi^{2}}+\frac{1}{\xi^{2}} \frac{\lambda}{2 g^{2}} H\left(H^{2}-\xi^{2}\right) . \tag{S.39}
\end{align*}
$$

