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Exercise 1. Gell-Mann–Okubo Mass Formula and Weinberg Ratio of Quark Masses

Start from the Lagrangian of chiral perturbation theory at order p2 as stated in the lecture:
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 . (2)

Calculate the masses of the particles by inserting Dµ = ∂µ, χ = 2BM , M = diag(mu,md,ms)
and expanding the Lagrangian up to the second order in Φ. Verify the Gell-Mann–Okubo mass
formula
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and the Weinberg ratio of quark masses
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Solution. We expand up to second order in Φ:
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which gives us the Lagrangian (inserting Dµ = ∂µ and χ = 2BM as well)
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(S.2)

we omit a constant term and have
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(
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We can write this Lagrangian as a sum of Lagrangians for scalar and complex fields plus a pion eta interaction
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with the mass parameters

m2
π0 = 2B(md +mu), m2
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3
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m2
π+ = 2B(mu +md), m2

K+ = 2B(mu +ms), m2
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which obey the Gell-Mann–Okubo relation and the Weinberg ratio of quark masses.
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Exercise 2. Semileptonic tau decay

We consider the partial width of the semileptonic decay of the tau: τ+ → ν̄τπ
+. This process is

related to π+(p)→ `+(k)ν`(q) treated in exercise 3.

(a) Starting from ∣∣Mπ+→`+ν`
∣∣2 = 8G2

F f
2
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(
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)
, (5)

cross the lepton to the initial state, the pion to the final state, to show that
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(b) Is this process allowed for all lepton flavours? Why?

Solution.

(a) We cross k → −k, p→ −p, adding an overall (−1) because we have crossed a fermion and a prefactor 1/2
because we are now averaging over the spin of the incoming tau to arrive at∣∣M`−→π−ν`
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We determine the scalar products from k = p+ q, k2 = m2
` , p

2 = m2
π and q2 = 0 as
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which we insert to have
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We combine this with the integrated two-particle phase space
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to arrive at
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(b) No. Look at the masses!
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