Exercise 1. Gell-Mann-Okubo Mass Formula and Weinberg Ratio of Quark Masses

Start from the Lagrangian of chiral perturbation theory at order p^{2} as stated in the lecture:

$$
\begin{gather*}
\mathcal{L}_{\chi \mathrm{PT}, p^{2}}=\frac{v^{2}}{4} \operatorname{tr}\left(D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right) \tag{1}\\
U=\exp (i \sqrt{2} \Phi / v), \quad \Phi=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -2 \frac{\eta_{8}}{\sqrt{6}} .
\end{array}\right) . \tag{2}
\end{gather*}
$$

Calculate the masses of the particles by inserting $D_{\mu}=\partial_{\mu}, \chi=2 B M, M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$ and expanding the Lagrangian up to the second order in Φ. Verify the Gell-Mann-Okubo mass formula

$$
\begin{equation*}
4 m_{K}^{2}-3 m_{\eta}^{2}-m_{\pi}^{2}=0 \tag{3}
\end{equation*}
$$

and the Weinberg ratio of quark masses

$$
\begin{equation*}
\frac{2 m_{K}^{2}-m_{\pi}^{2}}{m_{\pi}^{2}}=\frac{2 m_{s}}{m_{d}+m_{u}} \tag{4}
\end{equation*}
$$

where $m_{\pi}^{2} \equiv \frac{1}{3}\left(m_{\pi^{+}}^{2}+m_{\pi^{-}}^{2}+m_{\pi^{0}}^{2}\right), m_{K}^{2} \equiv \frac{1}{4}\left(m_{K^{0}}^{2}+m_{\bar{K}^{0}}^{2}+m_{K^{-}}^{2}+m_{K^{+}}^{2}\right)$.

Solution. We expand up to second order in Φ :

$$
\begin{equation*}
U \approx 1+i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2} \tag{S.1}
\end{equation*}
$$

which gives us the Lagrangian (inserting $D_{\mu}=\partial_{\mu}$ and $\chi=2 B M$ as well)

$$
\begin{equation*}
\frac{v^{2}}{4} \operatorname{tr}\left(\frac{2}{v^{2}} \partial_{\mu} \Phi \partial^{\mu} \Phi+2 B M\left(1-i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2}\right)+2 B M\left(1+i \frac{\sqrt{2}}{v} \Phi-\frac{2}{v^{2}} \Phi^{2}\right)\right) \tag{S.2}
\end{equation*}
$$

we omit a constant term and have

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \operatorname{tr}\left(\partial_{\mu} \Phi \partial^{\mu} \Phi\right)-\operatorname{tr}\left(2 B M \Phi^{2}\right) \tag{S.3}
\end{equation*}
$$

We can write this Lagrangian as a sum of Lagrangians for scalar and complex fields plus a pion eta interaction

$$
\begin{align*}
\mathcal{L}= & \frac{1}{2}\left(\partial_{\mu} \pi^{0}\right)\left(\partial^{\mu} \pi^{0}\right)-\frac{1}{2} m_{\pi^{0}}^{2}\left(\pi^{0}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \eta_{8}\right)\left(\partial^{\mu} \eta_{8}\right)-\frac{1}{2} m_{\eta_{8}}^{2}\left(\eta_{8}\right)^{2}+\left(\partial_{\mu} \pi^{+}\right)\left(\partial^{\mu} \pi^{-}\right)-m_{\pi^{+}}^{2} \pi^{+} \pi^{-} \tag{S.4}\\
& +\left(\partial_{\mu} K^{0}\right)\left(\partial^{\mu} \bar{K}^{0}\right)-m_{K^{0}}^{2} K^{0} \bar{K}^{0}+\left(\partial_{\mu} K^{+}\right)\left(\partial^{\mu} K^{-}\right)-m_{K^{+}}^{2} K^{+} K^{-}+\frac{2 B}{\sqrt{3}}\left(m_{d}-m_{u}\right)\left(\pi^{0} \eta_{8}\right) \tag{S.5}
\end{align*}
$$

with the mass parameters

$$
\begin{array}{r}
m_{\pi^{0}}^{2}=2 B\left(m_{d}+m_{u}\right), \quad m_{\eta_{8}}^{2}=\frac{2 B}{3}\left(m_{u}+m_{d}+4 m_{s}\right) \\
m_{\pi^{+}}^{2}=2 B\left(m_{u}+m_{d}\right), \quad m_{K^{+}}^{2}=2 B\left(m_{u}+m_{s}\right), \quad m_{K^{0}}^{2}=2 B\left(m_{d}+m_{s}\right) \tag{S.7}
\end{array}
$$

which obey the Gell-Mann-Okubo relation and the Weinberg ratio of quark masses.

Exercise 2. Semileptonic tau decay

We consider the partial width of the semileptonic decay of the tau: $\tau^{+} \rightarrow \bar{\nu}_{\tau} \pi^{+}$. This process is related to $\pi^{+}(p) \rightarrow \ell^{+}(k) \nu_{\ell}(q)$ treated in exercise 3.
(a) Starting from

$$
\begin{equation*}
\overline{\left|\mathcal{M}_{\pi^{+} \rightarrow \ell^{+} \nu_{\ell}}\right|^{2}}=8 G_{F}^{2} f_{\pi}^{2}\left(2(q \cdot p)(k \cdot p)-p^{2}(q \cdot k)\right) \tag{5}
\end{equation*}
$$

cross the lepton to the initial state, the pion to the final state, to show that

$$
\begin{equation*}
\Gamma=\frac{1}{8 \pi} G_{F}^{2} f_{\pi}^{2} m_{\ell}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right)^{2} \tag{6}
\end{equation*}
$$

(b) Is this process allowed for all lepton flavours? Why?

Solution.

(a) We cross $k \rightarrow-k, p \rightarrow-p$, adding an overall (-1) because we have crossed a fermion and a prefactor $1 / 2$ because we are now averaging over the spin of the incoming tau to arrive at

$$
\begin{equation*}
\overline{\left|\mathcal{M}_{\ell^{-} \rightarrow \pi^{-} \nu_{\ell}}\right|^{2}}=\frac{1}{2} \sum_{\text {spins }}\left|\mathcal{M}_{\ell^{-} \rightarrow \pi^{-} \nu_{\ell}}\right|^{2}=4 G_{F}^{2} f_{\pi}^{2}\left(2(q \cdot p)(k \cdot p)-p^{2}(q \cdot k)\right) . \tag{S.8}
\end{equation*}
$$

We determine the scalar products from $k=p+q, k^{2}=m_{\ell}^{2}, p^{2}=m_{\pi}^{2}$ and $q^{2}=0$ as

$$
\begin{equation*}
p \cdot q=\frac{1}{2}\left(m_{\ell}^{2}-m_{\pi}^{2}\right), \quad k \cdot q=\frac{1}{2}\left(m_{\ell}^{2}-m_{\pi}^{2}\right), \quad k \cdot p=\frac{1}{2}\left(m_{\ell}^{2}+m_{\pi}^{2}\right) \tag{S.9}
\end{equation*}
$$

which we insert to have

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}}=2 G_{F}^{2} f_{\pi}^{2} m_{\ell}^{4}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right) . \tag{S.10}
\end{equation*}
$$

We combine this with the integrated two-particle phase space

$$
\begin{equation*}
\Phi_{1 \rightarrow 2}=\frac{1}{8 \pi}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right) \tag{S.11}
\end{equation*}
$$

to arrive at

$$
\begin{equation*}
\Gamma=\frac{1}{2 m_{\ell}} \overline{|\mathcal{M}|^{2}} \Phi_{1 \rightarrow 2}=\frac{1}{8 \pi} G_{F}^{2} f_{\pi}^{2} m_{\ell}^{3}\left(1-\frac{m_{\pi}^{2}}{m_{\ell}^{2}}\right)^{2} \tag{S.12}
\end{equation*}
$$

(b) No. Look at the masses!

