Exercise 1. Linear sigma model

The linear sigma model consists of two Dirac fermions that we arrange in a vector $\psi=\binom{u}{d}$ and four real scalars $\tilde{\sigma}$ and $\vec{\pi}=\left(\pi^{1}, \pi^{2}, \pi^{3}\right)$ descibed by the Lagrangian density

$$
\begin{equation*}
\mathcal{L}_{\sigma}^{\operatorname{lin}}=\frac{1}{2}\left(\partial_{\mu} \tilde{\sigma}\right)\left(\partial^{\mu} \tilde{\sigma}\right)+\frac{1}{2}\left(\partial_{\mu} \vec{\pi}\right) \cdot\left(\partial^{\mu} \vec{\pi}\right)-\frac{\lambda}{4}\left(\tilde{\sigma}^{2}+\vec{\pi} \cdot \vec{\pi}-v^{2}\right)^{2}+\bar{\psi} i \not \partial \psi+g \bar{\psi}\left(\tilde{\sigma}+i \vec{\sigma} \cdot \vec{\pi} \gamma_{5}\right) \psi \tag{1}
\end{equation*}
$$

(a) Show that (1) can be recast as

$$
\begin{equation*}
\mathcal{L}_{\sigma}^{\operatorname{lin}}=\frac{1}{4} \operatorname{tr}\left(\partial_{\mu} \Sigma\right)^{\dagger}\left(\partial^{\mu} \Sigma\right)-\frac{\lambda}{4}\left[\frac{1}{2} \operatorname{tr} \Sigma^{\dagger} \Sigma-v^{2}\right]^{2}+\bar{\psi}_{L} i \not \partial \psi_{L}+\bar{\psi}_{R} i \not \partial \psi_{R}+g \bar{\psi}_{L} \Sigma \psi_{R}+g \bar{\psi}_{R} \Sigma^{\dagger} \psi_{L} \tag{2}
\end{equation*}
$$

where $\Sigma \equiv \tilde{\sigma} \mathbb{1}+i \vec{\sigma} \cdot \vec{\pi}$ and $\psi_{R, L}$ are the right-handed and left-handed parts.

The fields $\psi_{R, L}$ and Σ transform accrording to

$$
\begin{equation*}
\psi_{R, L} \rightarrow U_{L, R} \psi_{R, L}, \quad \Sigma \rightarrow U_{L} \Sigma U_{R}^{\dagger}, \quad U_{R, L} \equiv \exp \left(-\frac{1}{2} \vec{\alpha}_{R, L} \cdot \vec{\sigma}\right) \in \mathrm{SU}(2) \tag{3}
\end{equation*}
$$

(b) Using the properties of the Pauli matrices, recover $\tilde{\sigma}$ and $\vec{\pi}$ from Σ and deduce their transformation properties.

Exercise 2. Non-linear sigma model

(a) Using the properties of the Pauli matrices, prove that

$$
\begin{equation*}
U \equiv \exp \left(i \frac{\vec{\sigma} \cdot \vec{\xi}}{v}\right)=\cos \left(\frac{\xi}{v}\right)+i \frac{\vec{\sigma} \cdot \vec{\xi}}{\xi} \sin \left(\frac{\xi}{v}\right), \quad \xi=|\vec{\xi}| . \tag{4}
\end{equation*}
$$

The Lagrangian of the non-linear sigma model contains the term

$$
\begin{equation*}
\mathcal{L}_{\sigma}^{\text {non-lin }} \supset \Delta \mathcal{L}=\frac{1}{4}(v+S)^{2} \operatorname{tr}\left(\partial_{\mu} U\right)^{\dagger}\left(\partial^{\mu} U\right) . \tag{5}
\end{equation*}
$$

(b) Using (4), express $\Delta \mathcal{L}$ from S and $\vec{\xi}$ retaining only the terms up to $\mathcal{O}(1 / v)$.

Hint. You might find the following relation useful: $\partial_{\mu} \xi=\left(\vec{\xi} \cdot \partial_{\mu} \vec{\xi}\right) / \xi$.
(c) What kind of vertices do these term represent?

