Exercise 1. Feynman parameters

To evaluate loop diagrams one combines propagators with the use of Feynman parameters. The basic version is

$$
\begin{equation*}
\frac{1}{A B}=\int_{0}^{1} \frac{d x}{[x A+(1-x) B]^{2}}, \tag{1}
\end{equation*}
$$

but it can be generalised to n propagators

$$
\begin{equation*}
\frac{1}{\prod_{i=1}^{n} A_{i}}=\Gamma(n) \int_{0}^{1}\left(\prod_{i=1}^{n} d x_{i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)\left[\sum_{i=1}^{n} x_{i} A_{i}\right]^{-n} \tag{2}
\end{equation*}
$$

(a) Prove (1) and (2).

Exercise 2. Dimensional regularization and loop momenta

The momentum of loop integrals are taken to be d-dimensional. We would like to address this a bit more explicitly by defining projectors into the physical and unphysical dimensions:

$$
\begin{align*}
& g_{\|}^{\mu \nu}= \begin{cases}g^{\mu \nu} & \mu, \nu \leq 3 \\
0 & \text { otherwise } .\end{cases} \tag{3}\\
& g_{\perp}^{\mu \nu}= \begin{cases}g^{\mu \nu} & \mu, \nu>3 \\
0 & \text { otherwise }\end{cases} \tag{4}
\end{align*}
$$

It is quite straightforward to see that $g^{\mu \nu}=g_{\perp}^{\mu \nu}+g_{\|}^{\mu \nu}$. Raising and lowering is still performed using $g^{\mu \nu}$.
(a) Infer the value of $g_{\perp}^{\mu \nu} g_{\mu \nu}$ from $g^{\mu \nu} g_{\mu \nu}=d$ and $g_{\|}^{\mu \nu} g_{\mu \nu}=4$.
(b) Using this decomposition and expanding the product, how can the loop integral (10) from last exercise sheet can be decomposed?

Exercise 3. Triangle topology II

Redo the computation of the Adler-Bell-Jackiw anomaly

$$
\begin{equation*}
q_{\mu}\left[A_{5}^{\mu}\left(\left(p_{1}, \varepsilon_{1}\right),\left(p_{2}, \varepsilon_{2}\right)\right)+A_{5}^{\mu}\left(\left(p_{2}, \varepsilon_{2}\right),\left(p_{1}, \varepsilon_{1}\right)\right)\right] \tag{5}
\end{equation*}
$$

that you have seen in the lecture. In particular perform the steps that have not being treated explicitly in the lecture.

