Exercise 1. γ-matrices in dimensional regularization

In dimensional regularization (DREG), the Clifford algebra of γ-matrices,

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1} \tag{1}
\end{equation*}
$$

is maintained and $\operatorname{tr} \mathbb{1}=4$, but the indices are now d-dimensional:

$$
\begin{equation*}
g_{\mu}^{\mu}=g^{\mu \nu} g_{\mu \nu} \equiv d \tag{2}
\end{equation*}
$$

(a) Prove the following contraction identities:

$$
\begin{align*}
\gamma^{\mu} \gamma_{\mu} & =d \mathbb{1} \tag{3}\\
\gamma^{\mu} \phi \gamma_{\mu} & =-(d-2) \phi \tag{4}\\
\gamma^{\mu} \phi \dot{b} b \gamma_{\mu} & =4 a \cdot b \mathbb{1}+(d-4) \phi b b \tag{5}\\
\gamma^{\mu} \phi \dot{d} b \phi \gamma_{\mu} & =-2 \phi b \phi \phi-(d-4) \phi \not b \phi . \tag{6}
\end{align*}
$$

In four dimensions, γ_{5} can be defined by its two properties:

$$
\begin{align*}
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5}\right) & =4 i \varepsilon_{\mu \nu \rho \sigma} \tag{7}\\
\left\{\gamma_{\mu}, \gamma_{5}\right\} & =0 \tag{8}
\end{align*}
$$

(b) Show that those two properties cannot be maintained simultaneously in d dimensions.

Hint. Assuming that the trace is meromorphic function of the dimension d, show that (8) leads to a vanishing trace (7).

Exercise 2. Tools for loop integrals

(a) Prove the following identities:

$$
\begin{align*}
& \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-\Delta\right)^{n}}=\frac{(-1)^{n} i}{(4 \pi)^{d / 2}} \frac{\Gamma(n-d / 2)}{\Gamma(n)} \Delta^{d / 2-n} \tag{9}\\
& \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu} k^{\nu}}{\left(k^{2}-\Delta\right)^{n}}=\frac{(-1)^{n-1}}{(4 \pi)^{d / 2}} \frac{g^{\mu \nu}}{2} \frac{\Gamma(n-d / 2-1)}{\Gamma(n)} \Delta^{1+d / 2-n} \tag{10}
\end{align*}
$$

(b) Convince yourself that integral with an odd number of loop momenta vanish.

Hint. You will need to use a Wick rotation, the integral representation of the beta function

$$
\begin{equation*}
\int_{0}^{1} d x x^{a}(1-x)^{b}=B(a+1, b+1)=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+2)} \tag{11}
\end{equation*}
$$

and the integral over the d-dimensional solid angle

$$
\begin{equation*}
\int d \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{12}
\end{equation*}
$$

Exercise 3. Triangle topology I

We consider a general triangle topology shown in Fig 1 in massless ϕ^{3} theory.
(a) Write down the expression for this diagram.
(b) Use Feynman parameters and a momentum shift to combine the denominators.
(c) Use the relevant identity of Ex. 22 and integrate the Feynman parameters to obtain the expression for the diagram as a function of $s=\left(p_{1}+p_{2}\right)^{2}$.
(d) Writing $d=4-2 \varepsilon$, convince yourself that this expression has a pole in ε.

Figure 1: Triangle diagram.

