Niklas Beisert - 2020 HS

Copyright

© 2019-2020 Niklas Beisert.

Dieses Dokument sowie seine Teile sind urheberrechtlich geschützt. Dieses Werk ist lizensiert unter der Creative Commons Lizenz "Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International" (CC BY-SA 4.0).

Die Lizenz kann eingesehen werden unter:

https://creativecommons.org/licenses/by-sa/4.0/.

Die aktuelle Version dieses Werks befindet sich unter:

http://people.phys.ethz.ch/~nbeisert/ClimateBreak/.

Abbildungsquellen verlinkt; Warming Stripes: Ed Hawkins, G.S. Völker

Kommen wir jetzt zu etwas völlig anderem:

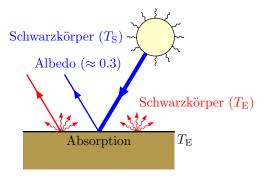
Ziele

- Sensibilisierung stärken
- Grundlegendes Verständnis der Mechanismen
- zu Gesprächen in einem alltäglichen Kontext ermuntern
- andere interessierte Leute treffen (mögen Sie Ihr Video anschalten?)
- ETH Zürich / Forschung hat signifikanten Einfluss auf das Klima;
 müssen eigene Handlung verstehen um sie angemessen anzupassen
- Grundlagen für eine Karriere in anderen Institutionen, Wirtschaftszweigen, Lehre, Industrie, etc.

Mögliche Themen

- Mikro-Präsentationen:
 - Physik der globalen Erwärmung
 - Beitragende Sektoren
 - Reduktionspfade, Umsetzungen
 - Reduktionsmöglichkeiten, Vergleiche
 - CO₂ Fussabdruck messen
 - Gesellschaftliche Mechanismen
 - Misskonzeptionen, gedankliche Fallen
 - Institutionen ETH Nachhaltigkeit
 - D-PHYS & Nachhaltigkeit
- Diskussionen, Ihre Beiträge
- Was können wir tun? In unserer unmittelbaren Umgebung?
- aktuelle Entwicklungen, Anlässe und Ereignisse
- Fragen stellen, Antworten finden
- Was wünschen Sie? Lassen Sie es mich bitte wissen!

Aktuelle Anlässe

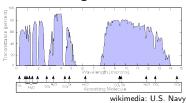

- Physik-Kolloquium 28. Oktober:
 Sonia I. Seneviratne (ETH Zürich, Koautorin IPCC Berichte)
 Limiting Global Warming to 1.5°C:
 Our Physical Insights on the Climate Emergency
- Idee: Regelmässige Fernseh-Kurzsendungen zum Thema Klima;
 Analogie/Ersatz für Börsensendung (SRF Börse, ARD Börse vor 8);
 aktuell: Petitionen, Crowdfunding
- Klimastreiks (Aktionswoche in Bern / Globaler Klimastreik 25.09.)
 - Klimastreiks haben Auswirkung auf Gesellschaft
 - Drängen auf Umsetzung von Einsichten aus der Wissenschaft
- Interdisziplinäre Kurse/Veranstaltungen an der ETH
- Student Sustainability Commission (Veranstaltungen, Mitarbeit)

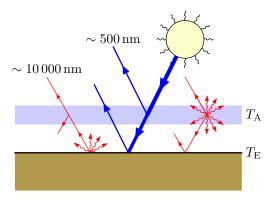
Ihre Anregungen? Fragen? Anmerkungen?

Energiebilanz

Die Erdoberflächentemperatur $T_{\rm E}$ wird bestimmt durch Strahlungsbilanz. Effekt der führenden Ordnung:

Resultierende Oberflächentemperatur der blanken Erde im Gleichgewicht:


$$T_{\rm E} \simeq -18^{\circ}{
m C}$$


Energiebilanz inklusive Atmosphäre

Berücksichtige (eine Schicht) Atmosphäre (Gas, Wolken, Aerosole, ...)

Effekt der Atmosphäre:

- Reflexion, Absorption, Transmission
- weiss: hohe Transmission
- IR: niedrige Transmission

Resultierende Erdoberflächentemperatur im Gleichgewicht:

$$T_{\rm E} \simeq +14^{\circ}{\rm C}$$

Atmosphäre und Temperatur

Genauer: Modell der Atmosphäre mit vielen Schichten. Dann:

- Temperaturgradient in der Atmosphäre.
- Schwarzkörperstrahlung $-18^{\circ}\mathrm{C}$ effektiv auf gewisser Höhe.
- Höhere Oberflächentemperatur (steigt mit effektiver SKS Höhe).

Asymptotische Temperatur hängt ab von:

- Atmospherischer Zusammensetzung (Wasserdampf, CO₂, Methan, ...),
- Albedo (Eis, Wasser, Stein, Wüste, Pflanzen, Wolken, ...).

Parameter der Atmosphäre und Oberfläche können sich ändern. Derzeit:

$$T_{\rm E} \approx +14.9^{\circ}{\rm C}$$

Äquilibrium/Dynamik:

- Wärmeüberschuss wird in Weltraum abgestrahlt,
- Abklingkonstante ∼ Monat(e),
- Wärmetransport in Boden und Ozeane langsam (Ozeane dämpfen).

Klimamodelle

Viele ausgeklügeltere und genauere Modelle:

- Auflösung der Oberflächenbeschaffenheit (Wasser, Wüste, Pflanzen)
- räumliche Auflösung der Atmosphäre (Wolken, Aerosole, Gase)
- zeitliche Entwicklung, Dynamik
- Treibhausgas absorption/emission (Wasser, Permafrost, Pflanzen)
- Zyklen der Luft- und Wassenmassen (horizontale/vertikale Mischung)
- nicht-linear, statistisch, Monte Carlo
- . . .

Modelle sagen Entwicklung des Klimas gut voraus (auch rückwirkend).

D-PHYS Arbeitsgruppe CO₂

Aktueller Anlass:

- D-PHYS hat Anfang 2020 Arbeitsgruppe zum Thema "CO₂" eingesetzt.
- Arbeitsgruppe hat Situation zum Betrieb des Departments untersucht und Lösungsansätze und Massnahmen diskutiert.
- D-PHYS hat am Freitag Plan zu mehr Nachhaltigkeit verabschiedet.

Frage: Wie können wir unsere Forschung nachhaltiger gestalten?

Fragen an Sie:

- Was verursacht in unserem Wissenschaftsbetrieb (Forschung, Lehre, Verwaltung) Emissionen, die das Klima beeinträchtigen?
- Welche Dienststellen und Initiativen zum Thema Klima & Nachhaltigkeit an der ETH Zürich kennen Sie?

D-PHYS Massnahmen

Nachhaltigkeits-Plan definiert **Soll-Verhalten** (nicht müssen, nicht können)

Verstärkter Einsatz von Videokonferenzen:

- ermöglicht Teilnahme an Konferenzen, Sitzungen ohne Anreise, Hotel
- Alle Tagungen am D-PHYS mit virtuellem Zugang:
 - Teilnehmer, Sprecher
- Erfahrungen sammeln und virtuellen Austausch verbessern
- benötigte Infrastruktur aufbauen
- erweitert Zugang zu aktueller Forschung:
 - finanzieller & zeitlicher Aufwand
 - Lebenssituationen, Entwicklungsländer, Krisensituationen

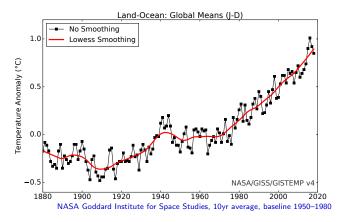
Dienstreisen:

- Reise per Zug bis 6h Fahrt (analog Dienstreisen Bundesverwaltung)
- Reise per Zug erwünscht wo möglich, Entscheidungstools
- Gäste werden zu Anreise per Zug animiert
- Sensibilisierung: Mitarbeiter, Gäste, Nachwuchs

D-PHYS Massnahmen (Fortsetzung)

Emissionen und Ziele:

- Emissionsziele mit Übereinkommen von Paris und nationaler Gesetzgebung in Einklang bringen
- Ziele zu Flugreisen (ETH Mobilitätsplattform) verschärfen:
 - 0-20% Reduktion bis 2025 genügen nicht, 30-50% benötigt
- Mit gutem Beispiel vorangehen


Lehre und Öffentlichkeitsarbeit:

- Sensibilisierung für Massnahmen und durch Massnahmen
- Massnahmen wirken lokal, möglicher Effekt klein
- Massnahmen beeinträchtigen "alltägliche Arbeitsweise"
- Für breitere Wirksamkeit: Lehre, akademisches Umfeld, Öffentlichkeit
- Massnahmen bewerben: R-Faktor > 1 !?

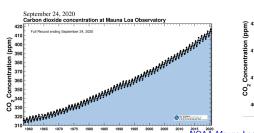
Anomalie der Oberflächentemperatur

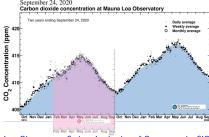
Anstieg der Mittleren Oberflächentemperatur beobachtet:

Derzeit: $\approx +1^{\circ}$ gegenüber vorindustrieller Ära um 1800–1850.

CO₂-Konzentration

Anstieg der atmospherischen CO₂-Konzentration (Keeling-Kurve):

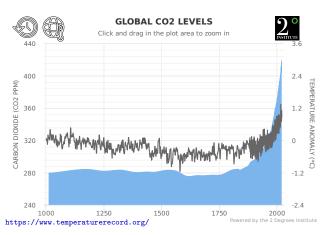

Höchste Konzentration: $415 \cdot 10^{-6}$ im Mai 2019.


- Jährliche Oszillationen: Biomasse-Zyklen in der nördlichen Halbkugel.
- Jährliches Mittel: Linearer Trend +2.4·10⁻⁶/a, beschleunigt; konsistent als dominante Ursache für Trend der Oberflächentemperatur.

Climate Break, HS20, Niklas Beisert 21

CO₂-Konzentration (2020)

Anstieg der atmospherischen CO₂-Konzentration (Keeling-Kurve):

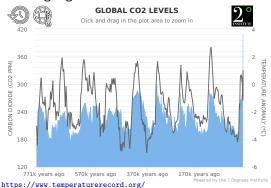

NOAA Mauna Loa Observatory: Scripps Institution of Oceanography SIO

Höchste Konzentration: 417·10⁻⁶ im Mai 2020.

- keine signifikante Abweichung von langfristiger Entwicklung durch Verhaltensänderung während COVID-19 Pandemie erkennbar
- Anstieg von $+2.6 \cdot 10^{-6}$, konsistent mit längjährigem Trend

Historische Daten

Gab es einen solchen Anstieg bereits in der Vergangenheit?



Daten verfügbar für 2000 Jahre:

• See- und Ozeansedimente, Eis-Bohrkerne, Stalagmiten, Baumringe

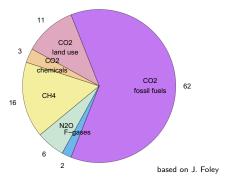
Paleoklimatologie

Noch weiter in die Vergangenheit:

- CO₂ von antarktischen Eis-Bohrkernen;
 Temperatur (indirekt) von Ozeansediment-Bohrkernen
- CO₂-Konzentration blieb unter $300 \cdot 10^{-6}$ (jetzt $> 400 \cdot 10^{-6}$)
- ullet Temperatur geeicht an Übergänge $\Delta T pprox 4^\circ$ Glaziale/Interglaziale
- Aktuelle Erwärmungsrate 10–20 mal höher als Austritt aus Eiszeiten

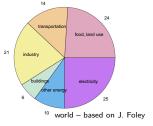
Woche 4 - Referenzen

Referenzen


Referenzen, Daten:

- NASA Goddard Institute for Space Studies Temperaturanomalie: http://data.giss.nasa.gov/gistemp/graphs/
- NOAA Mauna Loa Observatory, Keeling Kurve: https://scripps.ucsd.edu/programs/keelingcurve/
- Datensammlungen: https://www.2degreesinstitute.org/ https://climate.nasa.gov/
- IPCC Berichte, 1.5° Sonderbericht; Zusammenfassungskapitel: https://www.ipcc.ch/reports/
- Finden Sie selbst Referenzen . . .
- Lesen Sie das Kleingedruckte: Was beschreiben die Daten wirklich (im Detail)?

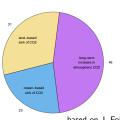
Arten von Treibhausgasen


Welche Arten von Treibhausgasen werden emittiert?

- CO2 trägt dominant zur Verstärkung des Treibhauseffekts bei
- ullet $\sim ^2/_3$ der Emissionen aus fossilen Quellen (Erdöl, Kohle, Erdgas, ...)
- andere Gase können in CO2 Äquivalent (100-jähriges Mittel) umgerechnet werden; Verwechslungsmöglichkeiten: Dauer der Aktivität, nur CO2/alle Treibhausgase, Menge C/CO2

Treibhausgasemissionen

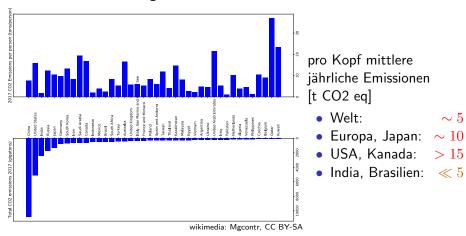
Was verusacht Emissionen von Treibhausgasen in die Atmosphäre?



Grosse Unterschiede für:

- Industrienationen / Entwicklungsländer
- städtisch / ländlich
- gewisse Länder (Kohlenutzung)

Verbleib von CO2:


- Absorption im Boden, Ozeanen
- $\bullet \sim 1/2$ hebt atmosphärische Konzentration an

based on J. Folev

Emissionen nach Land

Wer emittiert Treibhausgase?

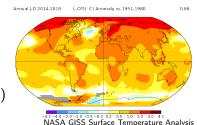
Beachte: + hohe indirekte Emissionen durch Industrienationen (Konsum)

Fragen an die Teilnehmer

Zwei Fragen an Sie:

- Angenommen, die Treibhausgas-Emissionen bleiben gleich oder steigen weiter mit aktueller Rate:
 - Was denken Sie, wie Sie hier von der Globalen Erwärmung betroffen sein werden?
 - Was könnte ein signifikates Ereignis sein, welches die fortschreitende Klimakrise verkörperen wird?
- Was gedenken Sie persönlich im kommenden Jahr zu tun, um der Klimakrise entgegenzuwirken?

 Nannen Sie die Aktion die Sie für am wirkungsvollsten halten
 - Nennen Sie die Aktion, die Sie für am wirkungsvollsten halten.


Auswirkungen

Zu erwartende Effekte bei höherer mittlerer Erdoberflächentemperatur: IPCC Berichte, 1.5° Sonderbericht (Okt. 2018)

- Hitzewellen, Trockenheit
- Grössere Wettervariabilität, Wetterextreme, intensive Regenfälle
- Steigende Meeresspiegel (langsam): Eisschmelze, Wasserdichte
- Unbewohnbare Gegenden (Überflutung, Wüstenbildung)
- Kipppunkte: plötzliche, irreversible Prozesse (Permafrost CO₂ Speicher)
- Biodiversität, Artensterben, Nahrungsketten
- ..., siehe IPCC Berichte
- Unvorhergesehene Effekte

Geographische Verteilung der Erwärmung:

- Karte: Vergleich zu 0.88° Mittelwert
- Landflächen, Städten höher (Faktor 1–3)
- Wärmekapazität Ozeane (Verzögerung)

Aussichten

Gesichert:

- Emissionen steigern Temperatur;
 nahe Zukunft, Jahre: linearer Zusammenhang
 mittlere Zukuft, Jahrzehnt(e): nichtlineare Effekte
 (Simulationen, unvorhergesehene, unberechenbare Effekte)
- Höhere Temperaturen reduzieren bewohnbare Erdfläche
- Endlichkeit der fossilen Ressourcen (vollständige Ausbeutung der Kohlevorräte nicht realistisch)
- Erneuerbare, nachhaltige Technologien verfügbar (teilweise, eingeschränkt wettbewerbsfähig, Subventionen für Fossile)

Ungewiss:

- Kipppunkte (nichtlinear, Einbahnstrasse; z.B. Permafrost Tauen)
- technologischer Fortschritt (Carbon-Capture, Power-to-Gas, Fusion?)
- Globale Gesellschaft (Akzeptanz, Reaktion, Bereitschaft zum Wandel)

Risikobewertung

Kein Determinismus - keine Gewisskeit.

Risikoanalyse:

- Wie wahrscheinlich?
- Wie ausgeprägt?
- Wie schlimm?

Risiken der Erderwärmung sind ausgesprochen ernst.

Einfach denken: Was wollen wir als gegeben voraussetzen?

- Essen im (Super)markt
- Trinkwasser aus der Leitung
- Strom aus der Steckdose
- Frieden

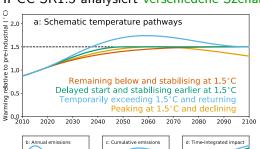
Effekte der Erwärmung treten (traten, werden eintreten) ein:

- Wir können die Stärke und den Verlauf beeinflussen.
- Können wir Verzögerungen in der Umsetzung verantworten?

Abkommen von Paris

Abkommen von Paris (Dezember 2015):

- Anstieg der Oberflächentemperatur auf deutlich unter 2° begrenzen (mittle Temperatur im Vergleich zu vorindustriellem Niveau),
- Anstrengungen unternehmen den Anstieg unter 1.5° zu halten,
- niedrigere THG-Emissionen erleichtern; Widerstandsfähigkeit stärken,
- Finanzflüsse auf Klimaneutralität ausrichten.


Internationes Abkommen, unterzeichnet von fast allen UNFCCC Nationen.

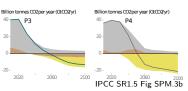
Status und Aussichten:

- derzeit: $\approx +1^{\circ}$,
- verbleibend: +0.5-1.0° (magnitude will affect intensity),
- derzeitige Rate: +0.2° pro Jahrzehnt (beschleunigend),
- Schätzung ohne Strategiewechsel: +3–5° bis 2100.

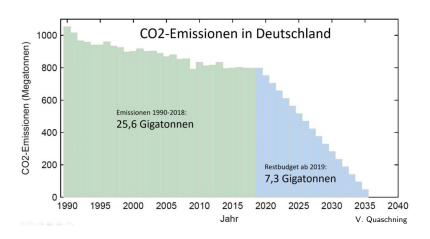
Reduktion-Szenarien

IPCC SR1.5 analysiert verschiedene Szenarien:

Billion tonnes CO2 per year (GtCO2/yr)


IPCC SR1.5 Fig 1.4

Billion tonnes CO2per year (GtCO2/yr)


gemeinsame Punkte P1-3:

- Reduktion auf 1/2 bis 2035
- Netto Null vor 2060
- benötigen einiges
 CO₂ Capture (Risiko!)

P4 (Verzögerungen); benötigt viel CO₂-Capture

Reduktions-Szenarien (Forts.)

Zur Klima-Neutralität

Reduktions-Möglichkeiten:

- Ernährung (Fleisch, Milchprodukte)
- Verkehr (individual, kommerziell, Flüge)
- Gebäude (Betonherstellung, Heizung/Klimatisierung)
- Elektrizitätsversorgung (Kohle, Gas)
- Konsum (kurzlebig, unnötig)
- CO₂ Capture (Aufforstung, Solar to Liquid, künftige Entwicklungen)
- nützliche Ideen siehe z.B. "Project Drawdown"

Wichtig: alle Bereiche benötigt (UND nicht ODER) / überall

Weiterhin:

- Wandel (Überzeugung, Gesetzgebung, Durchführung) benötigt Zeit; jetzt beginnen.
- Benötigen Toleranzen um allfällige Verzögerungen auszugleichen.
- Anpassungen zu einer nachhaltigen Zukunft sind nützlich an sich! Können wir Verzögerungen verantworten?

Relevante Zahlen

Es ist nützlich, einige Kennzahlen zu haben:

verbleibendes CO₂ Budget: 300–1000 Gt (Ziele Pariser Abkommen)

aktuelle Emissionsrate: $40\,\mathrm{Gt/yr}$

Weltbevölkerung: 7.5 G (unintuitiv gross)

Budget pro Kopf: 50–150 t (bis CO₂-Capture verfügbar)

Abschätzungen hängen von genauer Definition und Risikobereitschaft ab!

Wir können unser Budget aufteilen. Einige Zahlen zu CO₂ Emissionen:

 \varnothing pro Kopf Emissionen (wir): $\gtrsim 10 \, \mathrm{t/yr}$

 1ℓ Benzin: 2.3 kg (0.1-0.2 t/1000 km)

Herstellung Auto: 10 t (Grössenordnung)

kontinentaler Hin-/Rückflug: 0.3–1.5 t (mit RFI)

Ubersee Hin-/Rückflug: 2–12 t (mit RFI)

Lebensunterhalt: (!) ... (Footprint-Rechner)

Öffentlicher Dienst (Basis): ... (Verwaltung, Armee, Einrichtungen)

Keine scharfe Grenze; globales Mittel relevant; Überschuss \rightarrow Intensität.

Einleitung

These:

Wer klimaschonend leben will, muss sich vegan ernähren.

Einerseits:

- Mag stimmen.
- Für Fussabdruck mit wenigen t[CO₂]/Jahr Ernährung essentiell.

Aber:

- Forderung alleine wird nicht ausreichen dass Sie auf vegane oder vegetarische Ernärung umstellen.
- Forderung führt zu Abwehrhaltung, Blockade.
- Ausgewogenheit.

Disclaimer:

Kein Experte in Sachen Ernährung!

Informieren wir uns; reden wir drüber...

Überblick

Bereitstellung von Nahrung hat grossen Einfluss auf Klima ($\sim 2 \text{ t/Jahr}$):

- Bewirtschaftung, Bewässerung, Treibhaus, Ernte
- Flächennutzung, Waldrodung
- Methan-Emissionen (Rinder, Reis, . . .)
- Transport, Verpackung
- Aufbewahrung, Kühlung
- Verdauung

Weitere wichtige Aspekte der Ernährung:

- Gesundheit, Ausgewogenheit
- Sozialisierung, Essen in Gemeinschaft
- Ethik, emotional
- Ernährung der (wachsenden) Weltbevölkerung
- Biodiversität, Antibiotikaresistenzen
- Nährstoffgehalt des Bodens, Verfügbarkeit von Wasser
- Klimatische Bedingungen (Feedback)

nicht schwarz/weiss: Differenzieren!

Kriterien

Sinnvoller Ansatz:

Wie kann man bei Ernährung am effektivsten Klima schonen?

Regional:

- \bullet Transport nutzt (noch) fossile Energieträger: LKW $\sim 0.1~\text{kg}[\text{CO}_2]/\text{t}$ km
- Eingeflogene Nahrung konsequent meiden ($> 10 \text{ kg}[\text{CO}_2]/\text{kg}$).

Saisonal:

Vermeidung von langfristiger Kühlung, Transport aus Ausland

Fleisch, Milchprodukte:

- grösster Effekt: weniger, selten, "Genuss"
- Art des Fleiches: Rind (> 10 kg[CO₂]/kg) vs. Schwein vs. Huhn
- Thematische Allianzen: Gesundheit, Ethik

Konsum:

- Übermässige Verpackung
- Food waste

Informieren! Internet...

Antworten an Klimaskeptiker

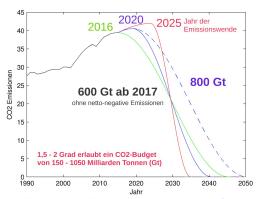
Es ist leicht, plausible Behauptungen aufzustellen und Zweifel zu streuen.

Web-Ressourcen um Zweifeln, Verweigerung, Misinformation zu begegnen:

- skepticalscience.com Katalog
- Scientists for Future Infomaterial

Vielleicht sogar relevanter:

- Grosse Teile der Bevölkerung bezüglich Klimawandel nicht ablehnend, grundlegend informiert, besorgt, usw., ...
 - ... möchten aber relativ ungestört weitermachen, oder haben sich andere Ausflüchte zurechtgelegt.
- Es gibt viele dringende globale Probleme. Wirklich? Hängen sie zusammen?
- Diskutiert, informiert, zeigt Möglichkeiten, drückt Bedenken aus, . . .



Abkommen von Paris

5 Jahre Abkommen von Paris:

12. Dezember 2015

Emissionspfade:

Können wir die globale Erwärmung rechtzeitig stoppen? Stefan Rahmstorf, spektrum.de SciLogs (CC BY-SA 4.0)

Emissionswende: Wann? Wie? Geht das überhaupt?

Project Drawdown

Konkrete Massnahmen zur Reduktion von Treibhausgasen:

- Machbarkeit, Inspiration, Priorisierung
- $\bullet \sim 1000$ Gt Potential 2020–2050
- Website
- Übersicht
- Webinar Mittwoch 19:00

Das Ende

Wo sind wir angelangt?

- Sensibilisierung
- einige grundlegende Fakten und Einsichten gelernt/aufgefrischt
- Gedanken zu Mechanismen der Gesellschaft
- Forum f
 ür Diskussionen

Das Ende? Der Anfang? Es ist Ihre Entscheidung:

- Leben und f\u00f6rdern Sie eine nachhaltige Lebensweise
- Fördern Sie die Diskussion in Ihrer Umgebung; Zeigen Sie Unterstützung wo angebracht
- Wissenschaftler: Stellen Sie sich gegen Fehlinformation und Falschdarstellungen, ...; informieren Sie
- Verlassen Sie sich nicht lediglich auf Zusammenfassungen;
 Lesen Sie auch (einige) Originalquellen!
- Erwarten Sie keinen (schnellen) Fortschritt ...
- Wie können Sie sich hilfreich, effektiv einsetzen?
 Verbinden Sie die Punkte . . .

Vielen Dank für Ihre Aufmerksamkeit!