ETH Zurich - Homepage

ETH Zurich - D-PHYS - Institute for Theoretical Physics - Mathematical Physics - String Theory - Prof. Matthias Gaberdiel

Proseminar String Theory

Matthias Gaberdiel, Ilka Brunner,
Ingo Kirsch, Marco Baumgartl, Christoph Keller, Giuseppe Milanesi , Sebastiano Rossi, Cornelius Schmidt-Colinet,

The proseminar will take place on Mondays, 10:45 - 12:30, HPZ E9.

The requirements to obtain a Testat are the following:

You must give a 90 minute presentation on the chosen topic.
One week before the talk you must hand in a written report of your seminar to your tutor.
You must attend at least 80% of the talks.

Date and TimeTalkSpeakerTutor
15.10. 10.45 The classical bosonic string Stephan Bühler Ilka Brunner
22.10. 10.45The free boson Jakob Salfeld-Nebgen Marco Baumgartl
29.10. 10.45 Light-cone quantisation Patrick Nüesch Sebastiano Rossi
05.11. 10.45 Superconformal Field Theory Bastien Milani Cornelius Schmidt-Colinet
12.11. 10.45 Superstrings Mathias Brucherseifer Ingo Kirsch
19.11. 10.45 GSO projection and modular invariance Roger Sax Marco Baumgartl
26.11. 10.45 Vertex operators and the Veneziano amplitude Marco de Stefani Giuseppe Milanesi
03.12. 10.45 Torus compactifications and T-duality Raphael Honegger Ingo Kirsch
10.12. 08.45 Orbifolds Roland Bauerschmidt Matthias Gaberdiel
10.12. 10.45 Kaluza-Klein compactification and 4d physics Michael Kay Stefan Hohenegger
17.12. 10.45 D-branes Claude Eicher Ilka Brunner

The Topics

  1. The classical bosonic string
    Nambu-Goto action, Polyakov action and its symmetries, oscillator expansion [LT §2], [GSWI §2.1], [Z], [OY].
  2. The free boson
    Conformal invariance of the free boson theory, the Virasoro algebra and its central extension [Ga §3.1 - 3.2].
  3. Light-cone quantisation
    Light-cone quantisation, D=26 from Lorentz symmetry, the spectrum (tachyon) [GSWI §2.3], [LT §3.2, 3.3], [Z], [S], [GGRT].
  4. Superconformal Field Theory
    The free boson and free fermion theory, supersymmetry, N=1 superconformal algebra, [GSWI §4.1], [Ga §3.3] .
  5. Superstrings
    Covariant and light-cone quantisation of the NS-R action, [LT §8], [GSWI §4.2 and 4.3].
  6. GSO-projection and modular invariance
    GSO-projection, spin structures and modular invariance, Type II theories and their spectrum [LT §8 and 9], [GSWI §4.3.3 and 5.3].
  7. Vertex operators and the Veneziano amplitude
    Vertex operators, n-point functions of tachyons [GSWI §7.1], [PI §6.4], [Z §22].
  8. Torus compactifications and T-duality
    Bosonic strings on tori and their duality symmetries [P §8], [G §8.1], [LT §10.1-10.2], [OY].
  9. Orbifolds
    Construction of orbifolds, in particular S1/Z2, non-abelian orbifolds [G §8.3 - 8.5], [O], [OY].
  10. Kaluza-Klein compactification and 4d physics
    Kaluza-Klein reduction on compact manifolds, 4d spectrum [GSW §14.1 & §14.2].
  11. D-branes
    Boundary conditions, Chan-Paton factors, T-duality, BPS spectrum of Type II theories [PI §8 and PII §13], [PT], [B].

List of references

[LT] D. Lüst, S. Theisen, Lectures on string theory , Lecture Notes in Physics, Springer (1989).
[GSW] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I and II , Cambridge University Press (1987) and (1988).
[Z] B. Zwiebach, A first Course in String Theory, Cambridge University Press (2004).
[G] P. Ginsparg, Applied Conformal Field Theory, in : Les Houches Summer School 1988, 1-168,
[Ga] M.R. Gaberdiel, Konforme Feldtheorie, Vorlesungsskript ETH Zürich (2003).
[GT] P. Goddard, C.B. Thorn, Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett. B40, 235 (1972).
[GGRT] P. Goddard, J. Goldstone, C. Rebbi, C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B56, 109 (1973).
[P] J. Polchinski, String Theory I & II, Cambridge University Press (1998).
[PT] J. Polchinski, TASI Lectures on D-Branes,
[O] L. Dixon, J. Harvey, C. Vafa, E. Witten, Strings on orbifolds I and II, Nucl. Phys. B261, 678 (1985) and Nucl. Phys. B274, 295 (1986).
[B] C.P. Bachas, Lectures on D-branes,
[CFT] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, Springer Verlag New York (1997).
[H] D.J. Gross, J.A. Harvey, E.J. Martinec, R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B256, 253 (1985).
[OY] H. Ooguri, Z. Yin, Lectures on perturbative string theories,
[S] B. Schellekens, Introduction to string theory,

Some online links to journals and the arXiv

written and maintained by Matthias Gaberdiel.