

University of London

Defects in Classical and Quantum WZW models

Ingo Runkel (King's College London)

joint work with

Rafał Suszek (King's College London)

0808.1419 [hep-th]

<u>Outline</u>

- Defects in classical sigma models
- Jump defects in WZW models
- Defects in conformal quantum field theory & defect junctions
- Comparison of classical and quantum WZW model with jump defects
- Orbifolds

Applications of defects in 2d CFT

- (continuum limit of) order-disorder duality in lattice models
- perturbative symmetries of string theory, in particular T-duality
- functors between D-brane categories

<u>Classical σ-models</u>

world sheet Σ (metric γ)

target space M (metric G, closed 3-form H)

 $X : \Sigma \rightarrow M$ once differentiable

 $S[X] = S_{kin}[X] + S_{top}[X]$

Topological term

If
$$H = dB$$
 : $S_{top}[X] = i \int_{\Sigma} X^* B$
If $[H] \in H^3(M, 2\pi\mathbb{Z})$: $exp(-S_{top})$
Alvarez '85
Gawedzki '88
Brylinski '93
 $= "exp(-i \int_{\Sigma} X^* G) "$
gerbe

 $\begin{array}{ll} U_i : \text{good open cover of } M \\ \mathcal{G} = \left(\begin{array}{cc} B_i & :2\text{-form on } U_i \ , & dB_i = H \\ & A_{ij} & :1\text{-form on } U_i \cap U_j \\ & g_{ijk} & :\text{function } U_i \cap U_j \cap U_k \rightarrow U(1) \end{array} \right) \end{array}$

Boundaries

Target space : D-brane $\iota : D \hookrightarrow M$ 2-form ω on D s.t. $\iota^* H = d\omega$ If H=dB : twisted line bundle with connection ∇ on D, $\omega = B + F$

(bulk action) + log Hol_{∇}(X(∂ Σ))

Gawedzki '99, Kapustin '99 General: gerbe module on D = stable isomorphism $\Phi : \iota^* \mathcal{G} \to I_{\iota\nu}$ on D

Target space : "bi-brane" $(\iota_1, \iota_2) : Q \hookrightarrow M \times M$ 2-form ω on \mathbb{Q} s.t. $\iota_1^* H - \iota_2^* H = d\omega$

If H=dB: twisted line bundle with connection ∇ on Q, $\omega = \iota_1^* B - \iota_2^* B + F$

(bulk action) + log Hol_{∇}((X₁,X₂)(Λ))

General: gerbe bimodule on Q

= stable isomorphism $\Phi: \iota_1^*\mathcal{G} \to \iota_2^*\mathcal{G} \star I_\omega$ on Q

Defect condition for fields

1)
$$(X_1(p), X_2(p)) \in Q \subset M \times M$$

2) for all $\mathbf{v}_1 \oplus \mathbf{v}_2 \in \mathbf{T}_{(X1,X2)}\mathbf{Q}$ Suszek, IR '08
 $G_{X_1(p)}(v_1, \partial_y X_1) - G_{X_2(p)}(v_2, \partial_y X_2)$
 $= \frac{i}{2}\omega_{(X_1,X_2)(p)}(v_1 \oplus v_2, \partial_x(X_1,X_2))$

... defect condition for fields

$$G_{X_1(p)}(v_1, \partial_y X_1) - G_{X_2(p)}(v_2, \partial_y X_2)$$

= $\frac{i}{2}\omega_{(X_1, X_2)(p)}(v_1 \oplus v_2, \partial_x(X_1, X_2))$

- boundary term in variation of action
- world sheet boundary : usual mixed D/N condition
- with $T=G(\partial X,\partial X)$, $\ \bar{T}=G(\bar{\partial}X,\bar{\partial}X)$:

 $T_1(p) - \bar{T}_1(p) = T_2(p) - \bar{T}_2(p)$ on defect

 \rightarrow defect is conformal

Moving defects

1) $\iota_1 \circ \widehat{X}|_{\overline{U}_1} = X_1$, $\iota_2 \circ \widehat{X}|_{\overline{U}_2} = X_2$ 2) for all $v \in T_{\widehat{X}(q)}Q$, $q \in U$, u_1, u_2 oriented ON-basis at q $\Delta G_{\widehat{X}(q)}(v, \widehat{X}_* u_2) = \frac{i}{2} \omega_{\widehat{X}(q)}(v, \widehat{X}_* u_1)$ where $\Delta C = \iota^* C = \iota^* C$

where $\Delta G = \iota_1^* G - \iota_2^* G$

- if \widehat{X} exists it is unique
- $T_1 = T_2$ and $\overline{T}_1 = \overline{T}_2$ on defect line

 \rightarrow defect is topological

Jump defects in WZW model

M = G : compact, simple, connected and simply connected Lie group

- H : Cartan 3-form
- \mathcal{G} : basic gerbe on **G**

Gawedzki, Reis '02 Meinrenken '02

 $k \in \mathbb{Z}_{>0}$: level

use gerbe $\mathcal{G}^{\star k}$, curvature k \cdot H

... jump defects in WZW model

Z(G) : centre of G

jump defects : for $z \in Z(G)$ $Q_z = \{(zg, g) | g \in G\}$ $\omega = 0$

stable isomorphism $\iota_1^* \mathcal{G}^{\star k} \to \iota_2^* \mathcal{G}^{\star k}$ from Gawedzki, Reis '03

Defects in 2d conformal quantum field theory

Afflek, Oshikawa '96

Conformal defects $T_1(p) - \overline{T}_1(p) = T_2(p) - \overline{T}_2(p)$

Petkova, Zuber '00

Topological defects $T_1 = T_2$ $\bar{T}_1 = \bar{T}_2$

Defects in quantum WZW model

- g : (complexified) Lie algebra of Lie group G
- \widehat{g}_k : affine Lie algebra at level k
- \widehat{V}_{λ} : irreducible highest weight representations, $\lambda \in P_k^+$
- Space of states on the circle $\mathcal{H}=\bigoplus_{\lambda\in P_k^+}\widehat{V}_\lambda\otimes_{\mathbb{C}}\widehat{V}_{\bar{\lambda}}$
- (Fusion product $\widehat{V}_{\lambda} \otimes \widehat{V}_{\mu} \cong \bigoplus_{\nu \in P_k^+} (\widehat{V}_{\nu})^{\bigoplus N_{\lambda_{\mu}}^{\nu}}$)

... defects in quantum WZW model

Conformal defects :

difficult, mostly examples

Bachas, de Boer, Dijkgraaf, Ooguri '01 Quella, Schomerus '02 Bachas, Gaberdiel '04 Quella, Watts, IR '06 Bachas, Brunner '07

full set only known for $\widehat{su}(2)_1$

Fuchs, Gaberdiel, Schweigert, IR '07

Topological defects preserving $\widehat{g}_k \oplus \widehat{g}_k$ all known

Petkova, Zuber '00 Fröhlich, Fuchs, Schweigert, IR '06

 \equiv integrable highest weight reps. of \widehat{g}_k

Defect junctions

Twisted state space $\mathcal{H}_{\lambda_{1}\cdots\lambda_{n}} = \bigoplus_{\alpha,\beta\in P_{k}^{+}} \left(\widehat{V}_{\alpha}\otimes_{\mathbb{C}}\widehat{V}_{\beta}\right)^{\bigoplus N_{\lambda_{1}\cdots\lambda_{n}\alpha\beta^{0}}}$

... defect junctions

Remarks:

 $\begin{array}{ccc} & & & & & & \\ & & & & & & \\ &$

2) jump defects \equiv simple currents

Fuchs '91

Z(G) iso to simple current group (except $\hat{e}(8)_2$)

... defect junctions

3) in the classical theory

Suszek, IR '08

such that $\pi_{12}^*\omega + \pi_{23}^*\omega = \pi_{13}^*\omega$ on T₃

twisted scalar field φ with values in U(I) \equiv 2-morphism $\varphi : (\pi_{23}^* \Phi \star id) \circ \pi_{12}^* \Phi \Longrightarrow \pi_{13}^* \Phi$

G compact, simple, connected and simply connected Lie group, centre Z(G)

Pick $X_L : \Sigma_L \to G$, fix $X_R : \Sigma_R \to G$ as X_L outside shaded region and $y \cdot X_L$ inside shaded region

<u>classical</u> $e^{-S[\Sigma_L, X_L]} = \psi_{\mathcal{G}^{\star k}}(x, y, z) e^{-S[\Sigma_R, X_R]}$

(geometric calculation using gerbe data from Gawedzki, Reis '03)

<u>quantum</u> $\operatorname{Corr}_{\Sigma_L} = \psi_{\widehat{g}_k}(x, y, z) \operatorname{Corr}_{\Sigma_R}$ (representation theory of \widehat{g}_k , quantum 6j symbols restricted to simple current sector)

$$\psi_{\mathcal{G}^{\star k}}$$
 and $\psi_{\widehat{g}_k}$

• are defined up to $\lambda_{x,y} \in U(I)$ $\psi(x, y, z) \mapsto \psi(x, y, z) \cdot \frac{\lambda_{y,z} \lambda_{x,yz}}{\lambda_{xy,z} \lambda_{x,y}}$

• obey
$$\frac{\psi(y, z, w) \psi(x, yz, w) \psi(x, y, z)}{\psi(xy, z, w) \psi(x, y, zw)} = 1$$

- contain information independent of choices $[\psi] \in H^3(\,Z(G)\,,\,U(1)\,)$

• find that, for all (compact, simple, connected and simply connected) Lie groups G and levels $k \in \mathbb{Z}_{>0}$

 $\left[\psi_{\mathcal{G}^{\star k}}\right] = \left[\psi_{\widehat{g}_k}\right]$

Comments:

- I) discrete symmetry group S of CFT implemented by defects → $[Ψ] ∈ H^3(S, U(I))$
- 2) [Ψ] gives obstruction to orbifolding by S (classically : equivariant structure on gerbe quantum : consistent 3-string interactions)

Can orbifold by S if and only if $[\Psi] = I$.

Gawedzki, Reis '02'03

3) Relation [ψ_{G*k}] = [ψ_{ĝk}] already partially known from orbifolding obstruction: Fix S ⊂ Z(G), then the values k for which [ψ_{G*k}|_S] = 1 are precisely those for which [ψ_{ĝk}|_S] = 1.

Orbifolds

Take superposition of symmetry generating defects

if $[\Psi] = I$ choose • twisted scalar φ on T₃ (classical) • $\varphi \in Hom(B \hat{\otimes} B, B)$ (quantum)

+ non-degeneracy condition

... orbifolds

orbifold amplitude: embed fine enough defect network

e.g. torus:

... orbifolds

In CFT:

- $B = \bigoplus_{z \in Z(G)} \widehat{V}_{\lambda_z}$ is special case
- in general: B integrable highest weight rep of \widehat{g}_k with associative $\varphi \in \operatorname{Hom}(B \hat{\otimes} B, B)$
 - + non-degeneray condition

- Fuchs, Schweigert, IR '02
- get 'generalised' orbifold e.g. for E₇ invariant of $\widehat{su}(2)_{16}$ take $B = \widehat{V}_{(0)} \oplus \widehat{V}_{(8)} \oplus \widehat{V}_{(16)}$

... orbifolds

In fact:

Kong, IR '08

- <u>all</u> CFTs well-defined at genus 0 and 1, with
 - $\widehat{g}_k \oplus \widehat{g}_k$ symmetry
 - unique vacuum state
 - non-degenerate two-point function are orbifolds of the charge-conjugate theory
 - in above sense.
- holds for rational vertex operator algebras

<u>Summary</u>

- defects in classical sigma models
- classical and quantum defect junctions
- 3-cocycle from symmetry implemented by defects
- 3-cocycle agrees for jump defects in classical and quantum WZW models
- relation to orbifolds