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Relativistic Kinematics
Just a quick recall of the basic ideas and the most useful formulas we will need. 

Galilean relativity = physics in all inertial system is the same 
Special relativity  = Galilean relativity + constant speed of light 

Lorentz transformations. 
Consider two systems (inertial frames). One is moving at a constant velocity v w.r.t to the 
other along the axis x (it can be any direction) 

a constant with the dimensions of the velocity. A physical entity moving at speed c

in a reference frame moves with the same speed in any other frame. In other words,

c is invariant under Lorentz transformations. It is the propagation speed of all the

fundamental perturbations: light and gravitational waves (Poincaré 1905).

The same relationships are valid for any four-vector. Of special importance is

the energy-momentum vector (E/c, p) of a free particle

px0 ¼ c px " b
E

c

! "

py0 ¼ py

pz0 ¼ pz

E0

c
¼ c

E

c
" bpx

! "
:

ð1:4Þ

The transformations that give the components in S as functions of those in S0, the

inverse of (1.3) and (1.4), can be most simply obtained by changing the sign of the

speed V.
The norm of the energy-momentum vector is, as for all the four-vectors, an

invariant; the square of the mass of the system multiplied by the invariant factor c4

m2c4 ¼ E2 " p2c2: ð1:5Þ

This is a fundamental expression: it is the definition of the mass. It is, we repeat,

valid only for a free body but is completely general: for point-like bodies, such as

elementary particles, and for composite systems, such as nuclei or atoms, even in

the presence of internal forces.

The most general relationship between the linear momentum (we shall call it

simply momentum) p, the energy E and the speed v is

p ¼ E

c2
v ð1:6Þ
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Fig. 1.1. Two reference frames in rectilinear relative motion.

2 Preliminary notions

1

Preliminary notions

1.1 Mass, energy, linear momentum

Elementary particles have generally very high speeds, close to that of light.

Therefore, we recall a few simple properties of relativistic kinematics and

dynamics in this section and in the next three.

Let us consider two reference frames in rectilinear uniform relative motion

S(t,x,y,z) and S0(t0,x0,y0,z0). We choose the axes as represented in Fig. 1.1. At a

certain moment, which we take as t0 ¼ t¼ 0, the origins and the axes coincide. The

frame S0 moves relative to S with speed V, in the direction of the x-axis.

We introduce the following two dimensionless quantities relative to the motion

in S of the origin of S0

b " V

c
ð1:1Þ

and

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% b2

q ð1:2Þ

called the ‘Lorentz factor’. An event is defined by the four-vector of the coord-

inates (ct,r). Its components in the two frames (t,x,y,z) and (t0,x0,y0,z0) are linked by

the Lorentz transformations (Lorentz 1904, Poincaré 1905)

x0 ¼ c x% bctð Þ
y0 ¼ y

z0 ¼ z

ct0 ¼ c ct % bxð Þ:

ð1:3Þ

The Lorentz transformations form a group that H. Poincaré, who first recognised

this property in 1905, called the Lorentz group. The group contains the parameter c,

1

Synchronise the clocks in the two frameworks 
when x = x’ = 0 t = t’ = 0.  
How is the “event” (t,x,y,z) in S seen in the S’ frame ? 
(t,x,y,z) is called a four-vector

<— Lorentz Transformations

Q: What is the opposite transformation ?  
(instead S—>S’  go S’ —>S)

where 
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x0 ¼ c x% bctð Þ
y0 ¼ y

z0 ¼ z

ct0 ¼ c ct % bxð Þ:

ð1:3Þ

The Lorentz transformations form a group that H. Poincaré, who first recognised
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Because v < c —> β < 1    and   γ > 1

34 KAPITEL 2. THEORETISCHE KONZEPTE
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Boost in z-Richtung :

Für einen Boost entlang der z-Richtung gilt:

vx = vy = 0 & vz = |*v |
)�x = �y = 0 & �z = � .

(2.15)

Daraus folgt nun mit Gleichung 2.13:
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Unter Berücksichtigung der Gleichung 2.14 erhalten wir somit folgendes Er-
gebnis:
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. Beispielende X
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Zusammenhang mit der klassischen kinetischen Energie :

Wenn die Geschwindigkeit viel kleiner ist als die Lichtgeschwindigkeit c,
können wir den Faktor 1p

1��2
entwickeln:
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In diesem Limit ergibt sich die Energie eines Teilchens also aus seiner Ruhe-
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Lorentz Transformations
Q: What is the opposite transformation ?  (instead S—>S’  go S’ —>S)

Just invert the previous system of equations 
Can you see intuitively why without the math ?
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Relativistic Kinematics
Consequences of the Lorentz transformations: 

- Relativity of simultaneity: 
     events simultaneous in one frame are not simultaneous in the other 

- Lorentz space contraction 
     moving objects are shortened by γ   L = L’ / γ 

- Lorentz time dilation 
   moving clocks run slower by γ          T = γT’ 

- Modified velocity addition 
  a particle is moving at speed u’ wrt S’, it’s speed w.r.t S is  

      —> for v<<c it goes back to the normal addition 
 —> if one of the two velocities is c, the sum is c  
        (can’t go faster than c or c is the same in all inertial frames)

u =
u0 + v

1 + (u0v/c2)

Q: Can you prove this relation ?
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Relativity of simultaneity

Relativistic sum of velocitites

Relativistic Kinematics
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Relativistic Kinematics
We will work mainly with one four-vector:  
(Energy, momentum) = (E,p) = (E/c, px, py, pz) 

The spatial component is: 

The  time component is: 

The relativistic energy is: 

~p = �mv =
mvp

1� v2/c2

p0 = �mc = E/c

E = �mc2 =
mc2p

1� v2/c2

Q: Can you explain why muons (lifetime=2 10-6 sec) make it to earth ?
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Lorentz Transformations
Q: Can you explain why muons (lifetime=2 10-6 sec) make it to earth ?

Exercise 3 [Time dilation]

What energy a muon created by a cosmic ray in the upper atmosphere (10 km) has to have

to get to the sea level before decaying ?

(PDG: ⌧µ = 2.197 10�6s, mµ = 105.658 MeV/c2)

Exercise 4 [2 ! 2 scattering]

For a 2 ! 2 scattering,

p1 + p2 ! p3 + p4, p2i = m2
i ,

consider the following in the center of mass frame.

a) The Mandelstam variables s ⌘ (p1 + p2)2, t ⌘ (p1 � p3)2 and u ⌘ (p1 � p4)2 are not

independent. Convince yourself of that by showing that they fulfill

s+ t+ u =
4X

i=1

m2
i .

b) Calculate the energies and momenta of each particle before and after the scattering and

determine their asymptotic behaviour (s � m2
i ).

c) Using the above results, show that the scattering angle #⇤ (defined as being between 1

and 3 in the center of mass frame) is given by

cos#⇤ =
s(t� u) + (m2

1 �m2
2)(m

2
3 �m2

4)p
�(s,m2

1,m
2
2)
p

�(s,m2
3,m

2
4)

,

with

�(x, y, z) = (x� y � z)2 � 4yz.

d) From the allowed values of the scattering angle determine tmin and tmax in terms of the

masses mi and s. Derive their asymptotic behaviour (s � m2
i ).

Exercise 5 [Antiproton production]

Consider the following process in the laboratory frame:

p+A ! p+A+ p+ p̄,

where a proton scatters o↵ a nucleus of mass number A (we assume mn = mp), resulting in

an additional proton-antiproton pair. This is the typical method used in particular at CERN

for the Antiproton Decelerator experiments or at Fermilab for the Tevatron.

a) What is the threshold energy in the center of mass frame for a proton collision? In other

words, how large must the total energy of the two colliding particles be for the process to

be kinematically allowed?

Exercises for PPPI Sheet 1

Exercise 2 [Kinetic Energy]

a) The total energy of a particle is given by the sum of its rest mass and its kinetic energy:

E = T +m0 and can be written as E = �m0.

So:

T = E �m0 = �m0 �m0

To have the kinetic energy equal to the rest mass of the particle:

�m0 �m0 = m0

�m0 = 2m0 ) � = 2

Out of which we can get the speed solving:

� =
1p

1� �2
) � =

r
1� 1

�2
) � = 0.86

v = �c = 2.6 108m/s

b) A proton with � = 1010 has an energy of (mp = 0.938 GeV/c
2):

E = �m ⇠ 1019eV

If we equate this energy to the kinetic energy of the bullet, we get (1 eV = 1.6 10�19 J)

1

2
mv

2 = 1019eV = 1.6J ) v =

s
1, 6J

0.5kg
⇠ 1.8m/s

Exercise 3 [Time dilation]

The muon lifetime is ⌧ = 2.197 10�6s; c⌧ = 658.654 m = L’.

To travel L= 10 km it needs a � factor of:

L = �L
0 ) L

L0 = �

� =
10000 m

658.654 m
= 15.182

Knowing its mass mµ = 105.658 MeV/c
2 we can compute the energy of the muon:

Eµ = �mµ = 15.182⇥ 105.658MeV/c
2 = 1.6 GeV
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Relativistic Kinematics
We will work mainly with one four-vector:  
(Energy, momentum) = (E,p) = (E/c, px, py, pz) 

The spatial component is: 

The  time component is: 

The relativistic energy is: 

Four vector multiplications:

86 3/RELATIVISTIC KINEMATICS 

sociate a covariant four-vector a,, obtained by simply changing the signs of the 
spatial components, or, more formally 

a, = g’ua” (3.18) 

Of course, we can go back from covariant to contravariant by reversing the signs 
again: 

a’ = glrvay (3.19) 

where g”” are technically the elements in the matrix g-’ (however, since our 
metric is its own inverse, g’” is the same as gpv). Given any two four-vectors, a” 
and b“, the quantity 

a’b, = a,b“ = aObO - a’b’ - a2b2 - a3b3 (3.20) 

is invariant (the same number in any inertial system). We shall refer to it as the 
scalar product of a and b; it is the four-dimensional analog to the dot product 
of two three-vectors (there is no four-vector analog to the cross product).* If you 
get tired of writing indices, feel free to use the dot notation: 

a * b = a,b” (3.21) 

However, you will then need a way to distinguish this four-dimensional scalar 
product from the ordinary dot product of two three-vectors. The best way is to 
be scrupulously careful to put an arrow over all three-vectors (except perhaps 
the velocity, v, which, since it is not part of a four-vector, is not subject to 
ambiguity). In this book, I use boldface for three-vectors. Thus 

a - b  = aobo - a - b  (3.22) 

We also use the notation a* for the scalar product of a’ with itself: 

a2 a .  a = (a012 - a2 (3.23) 

Notice, however, that a2 need not be positive. Indeed, we can classify all four- 
vectors according to the sign of a2: 

If a2 > 0, 
If a2 < 0, 
If a’ = 0, 

a’ is called tirnelike 
a’ is called spacelike 
a’ is called lightlike 

(3.24) 

From vectors it is a short step to tensors: a second-rank tensor, s””, carries 
two indices, has 42 = 16 components, and transforms with two factors of A: 

sW1 = A:AZs““ (3.25) 

a third-rank tensor, tpuX, has three indices, 43 = 64 components, and transforms 
with three factors of A: 

t W A l  = A;A”,:tKCT (3.26) 

* The closest thing is (a%” - a”@), but this is a second-rank tensor, not a four-vector (see 
below). 
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that momentum is conserved; that’s a matter for experiments to decide. But it 
does say that if we’re hoping to extend momentum conservation to the relativistic 
domain, we had better not define momentum as mv, whereas mq is perfectly 
acceptable. 

That’s a tricky argument, and if you didn’t follow it, try reading that last 
paragraph again. The upshot is that in relativity, momentum is defined as mass 
times proper velocity: 

p = mq (3.36) 
Since proper velocity is part of a four-vector, the same goes for momentum: 

p” = m$ (3.37) 

The spatial components ofp” constitute the (relativistic) momentum three-vector: 

mv 
V i T F p  p = ymv = (3.38) 

Meanwhile, the “time” component is 

po = ymc (3.39) 

For reasons that will appear in a moment, we define the “relativistic energy,” 
E, as 

me2 E = ymc2 = (3.40) 

The zeroth component ofp”, then, is E/c. Thus energy and momentum together 
make up a four-vector-the energy-momentum four-vector: 

(3.41) 

Incidentally, from equations (3.35) and (3.37) we have 

(3.42) 
E 2  
c2  

which, again, is manifestly invariant. 
The relativistic momentum (3.38) reduces to the classical expression in 

the nonrelativistic regime (v  < c), but the same cannot be said for relativistic 
energy (3.40). To see how this quantity comes to be called “energy,” we expand 
the radical in a Taylor series: 

p@p’ = - - p2 = m2c2 

(3.43) 1 3 v4 
2 8 c  

1 v2 3 v4 E =  mc2 1 + - - +- - +  . . ( 2 c 2 8 c 4  
= m c 2 + - m u 2 + - m T +  . . . 

Notice that the second term here corresponds to the classical kinetic energy, 
while the leading term (me2) is a constant. Now you may recall that in classical 
mechanics only changes in energy are physically significant-you can add a 
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~p = �mv =
mvp

1� v2/c2

p0 = �mc = E/c

E = �mc2 =
mc2p

1� v2/c2
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Massless particles
Massless particles are nonsense in classical non relativistic mechanics. 
It the mass is zero, the momentum is zero, the energy is zero. 

Massless particles makes their appearance with special relativity. 
Handwaving argument: look at the energy
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constant with impunity. In this sense the relativistic formula is consistent with 
the classical one, in the limit o 4 c where the higher terms in the expansion are 
negligible. The constant term, which survives even when o = 0, is called the rest 
energy; 

R = me2 (3.44) 

the remainder, which is energy attributable to the motion of the particle, is the 
relativistic kinetic energy: 

(3.45) 

(Notice that I have never mentioned relativistic mass in all this. It is a superfluous 
quantity that serves no useful function. In case you encounter it, the definition 
is mrel = ym; it has died out because it differs from E only by a factor of c2. 
Whatever can be said about mrel could just as well be said about E, for instance, 
the “conservation of relativistic mass” is nothing but conservation of energy, 
with a factor of c2 divided out.) 

In classical mechanics there is no such thing as a massless particle; its 
momentum (mv) would be zero, its kinetic energy (4 mu2) would be zero, it 
could sustain no force, since F = ma-it would be a dynamical cipher. At first 
glance you might suppose that the same would be true in relativity, but a careful 
inspection of the formulas 

(3.46) 

reveals a loophole: When m = 0 the numerators are zero, but if o = c, the 
denominators also vanish, and these equations are indeterminate (O/O). So it is 
just possible that we could allow m = 0, provided the particle always travels at 
the speed of light. In this case equations (3.46) will not serve to define E and p; 
nevertheless, equation (3.42) presumably still applies, so that 

E = lPlC (3.47) 

for massless particles. Personally, I would regard this “argument” as a joke, were 
it not for the fact that at least two types of massless particles (the photon and 
the neutrinos) are known to exist in nature. They do indeed travel at the speed 
of light, and their energy and momentum are related by equation (3.47). So 
evidently we must take the loophole seriously. You may well ask: If equations 
(3.46) do not define p and E, what does determine the momentum and energy 
of a massless particle? Not the mass (that’s zero by assumption); not the speed 
(that’s always c). How, then, does a photon with an energy of 2 eV differ from 
a photon with an energy of 3 eV? Relativity offers no answer to this question, 
but curiously enough quantum mechanics does, in the form of Planck‘s formula: 

E = hv (3.48) 

when m=0 —> E =0. But if at the same time v = c, we get something mathematically 
interesting 0 / 0. A massless particle can exist if it moves at the speed of light (photons)  

Special relativity has little to say about the photon energy: just E = p 
The energy of a photon is given by QM: E = hν
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Natural Units
Quantities computed in QFT have typically a bunch of ħ and c in their expression. 
We can redefine our units to get rid of them 

c = ħ = 1 
In these units mass (m), momentum (mc) and energy (mc2) have the same units. 
As energy, mass, momentum units we will typically use GeV: 109 eV 
                                                                                   [mass]=[momentum]=[energy] = GeV 
Using the values of c and ħ in another set of units (here GeV-m-s) we get all the conversion 
factors: 
ħ = 6.6 10-25 GeV sec  ⇒ 1 = 6.6 10-25 GeV s 
                                         1 GeV = 1/6.6 1025 s-1 

                                                              1 s     = 1/6.6 1025 GeV-1      [time] = GeV-1 

c = 3 108 m/s               ⇒ 1 = 3 108 m/s  
                                         1 s = 3 108 m                      [length] = GeV-1 

With these you can do all combinations: 
1 fm  ~ 5 GeV-1  

1 mb = 10-27 cm ~ 2.6 GeV-2                                                           [area] = GeV-2 
…


