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Passage of particles 
through matter
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Overview
For “interaction of particles with matter” we mean the phenomena we can use  
to build detectors. 

Interactions of particles with matter are qualitatively different depending on: 
- type of interaction: electromagnetic or strong; weak is relevant only for neutrinos 
- charge of the particle 
- mass of the particle 
- energy/momentum of the particle 
- A,Z of the target (incident particles see the structure of the target matter) 
(we will be typically interested in interactions of “high energy” particles (E>MeV)) 

Because of this we typically group them as: 

Heavy particles 
(heavy = not electrons)

Electrons
Photons

Cerenkov 
Radiation

Transition  
Radiation

Electromagnetic  
Showers

Hadronic  
Showers
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One remark
The passage of particles through matter is a very complicated process to model. We get an 
good description only in very idealised situations.  

There are zillions of empirical formulas to describe specific cases. 
We will provide only the most useful ones and focus on the physics of the interaction 
processes.
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Bethe Bloch
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Ionization: heavy particles
Main microscopic processes: 

- elastic    scattering from nuclei 
- inelastic scattering from electrons 

(ionization excitation of target electrons)  

Main macroscopic effect: 
deflection of particle trajectory 
energy loss of the particle

We’ll focus first on the inelastic scattering.  
—> the fraction of energy of the incident particle transferred to the electron in each  

    collision is very small, but the number of collisions is so large that we obtain a  
 macroscopic effect  

e.g. a 10 MeV proton gets stop by 0.25 mm of copper 

We want to get to the value of -dE/dx, i.e. the specific (per unit length) energy loss, 
also known as stopping power 

The first computation of the -dE/dx has been performed using classical 
electromagnetism by Bohr, then Bethe and Bloch gave the QM formulation
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Ionization: heavy particles
Bohr derivation of the -dE/dx: classical derivation  
(no QM, no relativistic treatment of the electric field of the incident particle)
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Ionization: heavy particles

1
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Ionization: heavy particles
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Ionization: heavy particles
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Ionization: heavy particles

Exercise: compute the max  
energy transfer in the  
“low energy” approximation:  
2γme << M 

3

2



Mauro Donegà 124

Ionization: heavy particles
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33. Passage of particles through matter 5

This problem has been investigated by J.D. Jackson [9], who concluded that for hadrons
(but not for large nuclei) corrections to dE/dx are negligible below energies where
radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged heavy particles,
M1/δx, is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2 Z

A

1

β2

[

1

2
ln

2mec2β2γ2Wmax

I2 − β2 −
δ(βγ)

2

]

. (33.5)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and values given in
Table 33.1, the units are MeV g−1cm2. As can be seen from Fig. 33.2, 〈−dE/dx〉 defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dE/dx by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a function
of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dx in the radiative region is not
simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax = 2mec2 β2γ2, valid for
2γme % M , is often implicit. For a pion in copper, the error thus introduced into dE/dx
is greater than 6% at 100 GeV. For 2γme & M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, where hadronic structure effects significantly modify the cross sections.
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Where:

33. Passage of particles through matter 3

Table 33.1: Summary of variables used in this section. The kinematic variables β
and γ have their usual relativistic meanings.

Symbol Definition Value or (usual) units

mec2 electron mass × c2 0.510 998 928(11) MeV

re classical electron radius
e2/4πε0mec2 2.817 940 3267(27) fm

α fine structure constant
e2/4πε0!c 1/137.035 999 074(44)

NA Avogadro’s number 6.022 141 29(27)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
in a single collision

k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
emec2 0.307 075 MeV mol−1 cm2

I mean excitation energy eV (Nota bene! )

δ(βγ) density effect correction to ionization energy loss

!ωp plasma energy
√

ρ 〈Z/A〉 × 28.816 eV
√

4πNer3
e mec2/α |−→ ρ in g cm−3

Ne electron density (units of re)−3

wj weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV
Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec2 21.2052 MeV

RM Molière radius g cm−2

so that M0 is the mean number of collisions in δx, M1 is the mean energy loss in
δx, (M2 − M1)

2 is the variance, etc. The number of collisions is Poisson-distributed
with mean M0. Ne is either measured in electrons/g (Ne = NAZ/A) or electrons/cm3
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This problem has been investigated by J.D. Jackson [9], who concluded that for hadrons
(but not for large nuclei) corrections to dE/dx are negligible below energies where
radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged heavy particles,
M1/δx, is well-described by the “Bethe equation,”

〈

−
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〉

= Kz2 Z
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[
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2
ln

2mec2β2γ2Wmax

I2 − β2 −
δ(βγ)
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. (33.5)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and values given in
Table 33.1, the units are MeV g−1cm2. As can be seen from Fig. 33.2, 〈−dE/dx〉 defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dE/dx by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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I = mean excitation potential = hνmean ; where νmean is a (logarithmic) weighted average 
of the orbital frequencies of the target atoms. 
“The determination of the mean excitation energy is the principal non-trivial task in the evaluation of the 
Bethe stopping-power formula” 
for this reason we use measured values (fit I in a dE/dx measurement) 33. Passage of particles through matter 9
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Figure 33.5: Mean excitation energies (divided by Z) as adopted by the ICRU [11].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid H2; the black
point at 19.2 eV is for H2 gas. The open circles show more recent determinations by
Bichsel [13]. The dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

The remaining relativistic rise comes from the β2γ growth of Wmax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 33.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of of Eq. (33.5) [4,11,13,14]
to correct for atomic binding having been neglected in calculating some of the contribu-
tions to Eq. (33.5). The Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order Born approximation.
Higher-order corrections, again important only at lower energies, are normally included
by adding the “Bloch correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping power for a negative
particle below that for a positive particle with the same mass and velocity. In a 1956
paper, Barkas et al. noted that negative pions had a longer range than positive pions [6].
The effect has been measured for a number of negative/positive particle pairs, including
a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula is given in
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A simple approximation is: 
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radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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Density effect correction to ionization energy loss. 

The electric field of the incident particle polarize atoms on its way. Because of this, 
electrons far from the trajectory of the particle are shielded from the electric field and 
contribute less to the energy loss. 

Typically the Sternheimer parametrization is used: 

8 33. Passage of particles through matter

0.05 0.10.02 0.50.2 1.0 5.02.0 10.0
Pion momentum (GeV/c)

0.1 0.50.2 1.0 5.02.0 10.0 50.020.0

Proton momentum (GeV/c)

0.050.02 0.1 0.50.2 1.0 5.02.0 10.0
Muon momentum (GeV/c)

βγ = p/Mc

    1

    2

    5

   10

   20

   50

  100

  200

  500

 1000

 2000

 5000

10000

20000

50000

R
/M

 (
g
 c

m
−2

  
G

e
V
−1

)

0.1 2 5 1.0 2 5 10.0 2 5 100.0

H2 liquid

He gas

Pb

Fe
C

Figure 33.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the
range is 195 g cm−2 (17 cm).

tion [15]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(33.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 15) is obtained
by equating the high-energy case of Eq. (33.7) with the limit given in Eq. (33.6). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 16. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17],
and is summarized in Ref. 5.
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All parameters in the expression are material dependent and are tabulated (see e.g. PDG)
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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MIP = minimum ionization particle 
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M1/δx, is well-described by the “Bethe equation,”
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It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and values given in
Table 33.1, the units are MeV g−1cm2. As can be seen from Fig. 33.2, 〈−dE/dx〉 defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dE/dx by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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Bethe Bloch

33. Passage of particles through matter 5

This problem has been investigated by J.D. Jackson [9], who concluded that for hadrons
(but not for large nuclei) corrections to dE/dx are negligible below energies where
radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.
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It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and values given in
Table 33.1, the units are MeV g−1cm2. As can be seen from Fig. 33.2, 〈−dE/dx〉 defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dE/dx by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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Figure 33.3: Mass stopping power at minimum ionization for the chemical
elements. The straight line is fitted for Z > 6. A simple functional dependence on
Z is not to be expected, since 〈−dE/dx〉 also depends on other variables.

33.2.4. Mean excitation energy :

“The determination of the mean excitation energy is the principal non-trivial task in the
evaluation of the Bethe stopping-power formula” [10]. Recommended values have varied
substantially with time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-strength distributions and
dielectric-response functions were given in ICRU 49 [4]. See also ICRU 37 [11]. These
values, shown in Fig. 33.5, have since been widely used. Machine-readable versions can
also be found [12].

33.2.5. Density effect :

As the particle energy increases, its electric field flattens and extends, so that the
distant-collision contribution to Eq. (33.5) increases as ln βγ. However, real media
become polarized, limiting the field extension and effectively truncating this part of the
logarithmic rise [2–8,15–16]. At very high energies,

δ/2 → ln(!ωp/I) + lnβγ − 1/2 , (33.6)

where δ(βγ)/2 is the density effect correction introduced in Eq. (33.5) and !ωp is the
plasma energy defined in Table 33.1. A comparison with Eq. (33.5) shows that |dE/dx|
then grows as lnβγ rather than lnβ2γ2, and that the mean excitation energy I is replaced
by the plasma energy !ωp. The ionization stopping power as calculated with and without
the density effect correction is shown in Fig. 33.1. Since the plasma frequency scales as
the square root of the electron density, the correction is much larger for a liquid or solid
than for a gas, as is illustrated by the examples in Fig. 33.2.

The density effect correction is usually computed using Sternheimer’s parameteriza-
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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The dependency is not perfectly linear especially at low Z

-dE/dx at the minimum ionizing point for different materials
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Range of validity of the Bethe Bloch
4 33. Passage of particles through matter

(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a function
of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dx in the radiative region is not
simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax = 2mec2 β2γ2, valid for
2γme % M , is often implicit. For a pion in copper, the error thus introduced into dE/dx
is greater than 6% at 100 GeV. For 2γme & M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, where hadronic structure effects significantly modify the cross sections.
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In class demonstration:
Cloud Chamber



Mauro Donegà 132

Cloud chamber

Dry ice

Aquarium

cloth soaked 
with alcohol

Cold aluminium  
plate covered 
with black tape 
for contrast
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Cloud chamber
The sealed environment contains a supersaturated vapour of alcohol (in our case  
ethyl alcohol). On the cold plate at the bottom a thick fog builds. 
When a charged particle goes through the vapour it ionizes the alcohol (Bethe-Bloch). 
The ionized atoms act as condensation centres around which a trail of small droplets  
is visible by naked eye. The trails persists for a couple of seconds and, while falling to 
the bottom by gravity, dissolve in the cloud because of diffusion.

Charles Wilson (1869 –1959) 
1927  Nobel prize in Physics 
BSc in biology then moved to physics/meteorology and got 
interested in cloud formation. 

Thanks to him it was possible for the first time to see single 
particles ! 

Academic advisors J. J. Thomson 
Doctoral students Cecil Frank Powell
https://www.nobelprize.org/nobel_prizes/physics/laureates/1927/wilson-lecture.pdf
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What particles could these be?
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What particles could these be?
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Momentum dependence

http://cerncourier.com/cws/article/cern/50561

ALICE TPC

PID = Particle identification —> get the mass and charge of a particle 
Knowing  momentum of a particle and measuring its dE/dx you can infer its mass 
This only works at low momenta (velocity) where the 1/β2 rise strongly depends on the mass. 
At high momenta there is no separation

βγ = p /m

The stopping power -dE/dx is “universal” as a function of the speed of the particle, 
it you plot it against the momentum, you bring in a mass dependence

order of 
magnitude of the 
lowest momenta 
measured with  
LHC tracker
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δ-electrons
Delta electrons (or secondary electrons) are electrons from the target knocked out by the 
incident ionizing particle which have enough energy to further ionize.

10 33. Passage of particles through matter

ICRU 49 [4]. When the corrections are properly included, the Bethe treatment is
accurate to about 1% down to β ≈ 0.05, or about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons, one usually relies
on the phenomenological fitting formulae developed by Andersen and Ziegler [4,19]. As
tabulated in ICRU 49 [4], the nuclear plus electronic proton stopping power in copper is
113 MeV cm2 g−1 at T = 10 keV (βγ = 0.005), rises to a maximum of 210 MeV cm2 g−1

at T ≈ 120 keV (βγ = 0.016), then falls to 118 MeV cm2 g−1 at T = 1 MeV (βγ = 0.046).
Above 0.5–1.0 MeV the corrected Bethe theory is adequate.

For particles moving more slowly than ≈ 0.01c (more or less the velocity of the outer
atomic electrons), Lindhard has been quite successful in describing electronic stopping
power, which is proportional to β [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear recoil energy loss
dominates the total energy loss [4,20,21].

33.2.7. Energetic knock-on electrons (δ rays) :

The distribution of secondary electrons with kinetic energies T " I is [2]

d2N

dTdx
=

1

2
Kz2 Z

A

1

β2

F (T )

T 2 (33.8)

for I # T ≤ Wmax, where Wmax is given by Eq. (33.4). Here β is the velocity of the
primary particle. The factor F is spin-dependent, but is about unity for T # Wmax.
For spin-0 particles F (T ) = (1 − β2T/Wmax); forms for spins 1/2 and 1 are also
given by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in Ref. 22.
Equation (33.8) is inaccurate for T close to I [23].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for example, on average
only one collision with Te > 10 keV will occur along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is produced at an
angle θ given by

cos θ = (Te/pe)(pmax/Wmax) , (33.9)

where pmax is the momentum of an electron with the maximum possible energy transfer
Wmax.

33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight can be obtained by
examining the mean energy deposit by an ionizing particle when energy transfers are
restricted to T ≤ Wcut ≤ Wmax. The restricted energy loss rate is
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. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as Wcut → Wmax. It
can be verified that the difference between Eq. (33.5) and Eq. (33.10) is equal to
∫ Wmax
Wcut

T (d2N/dTdx)dT , where d2N/dTdx is given by Eq. (33.8).
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for I <<T << Wmax

The factor F(T) is about unity to T<<Wmax and it depends on the spin of the incident particle 
F(T) = 1-β2 T/Tmax (for spin 0) 

The angle of emission is  
with pe, Te momentum, energy of the emitted photon; pmax momentum of an electron emitted 
with the maximum energy trasfer Wmax
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at T ≈ 120 keV (βγ = 0.016), then falls to 118 MeV cm2 g−1 at T = 1 MeV (βγ = 0.046).
Above 0.5–1.0 MeV the corrected Bethe theory is adequate.

For particles moving more slowly than ≈ 0.01c (more or less the velocity of the outer
atomic electrons), Lindhard has been quite successful in describing electronic stopping
power, which is proportional to β [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear recoil energy loss
dominates the total energy loss [4,20,21].
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for I # T ≤ Wmax, where Wmax is given by Eq. (33.4). Here β is the velocity of the
primary particle. The factor F is spin-dependent, but is about unity for T # Wmax.
For spin-0 particles F (T ) = (1 − β2T/Wmax); forms for spins 1/2 and 1 are also
given by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in Ref. 22.
Equation (33.8) is inaccurate for T close to I [23].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for example, on average
only one collision with Te > 10 keV will occur along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is produced at an
angle θ given by

cos θ = (Te/pe)(pmax/Wmax) , (33.9)

where pmax is the momentum of an electron with the maximum possible energy transfer
Wmax.
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loss rates for relativistic ionizing particles : Further insight can be obtained by
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This form approaches the normal Bethe function (Eq. (33.5)) as Wcut → Wmax. It
can be verified that the difference between Eq. (33.5) and Eq. (33.10) is equal to
∫ Wmax
Wcut

T (d2N/dTdx)dT , where d2N/dTdx is given by Eq. (33.8).
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Bragg peak
-dE/dx vs. penetration depth: at the beginning of the path the particle will have its higher 
energy and sit on the relativistic (log) rise. Then it will slow down and rolls down in -dE/dx to 
the minimum ionizing point and finally, when very slow enter the 1/β2 rise.

Q: Can you plot the dE/dx as a function of the depth in matter ?
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Bragg peak
Q: Can you plot the dE/dx as a function of the depth in matter ?
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Bragg peak
-dE/dx vs. penetration depth: at the beginning of the path the particle will have its higher 
energy and sit on the relativistic (log) rise. Then it will slow down it and roll down in -dE/dx to 
the minimum ionizing point and finally, when very slow enter the 1/β2 rise.

The 1/β2 rise you might have noticed with the cloud chamber: 
(see movie at min 01:57)

slowing down 
more persistent condensation at  
the end of the track (larger ionization)
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Bragg peak
An important application of this is used in cancer treatment (R. Wilson 1946).

The target material for these measurements is water as a proxy for human body

ht
tp

s:
//w

w
w.

na
tu

re
.c

om
/a

rti
cl

es
/s

41
59

8-
01

7-
10

55
4-

0



Mauro Donegà 142

Mixtures and compounds
Tabulated values for the -dE/dx for mixtures and compounds come from direct 
measurements, but a good approximation can be obtained by the weighted average of the 
-dE/dx of the elements (Bragg additivity):

2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions 29 

(2.37) 

where de = pdx. For not too different Z, the ratio (Z/ A), in fact, varies little. This is 
also true of the dependence on I(Z) since it appears in a logarithm. dE/de, therefore, is 
almost independent of material type. A 10 MeV proton, for example, will lose about 
the same amount of energy in 1 g/cm2 of copper as it will in 1 g/cm2 of aluminium or 
iron, etc. As will also be seen, these units are also more convenient when dE/dx's are 
combined for mixed materials. 

2.2.6 dE/tix for Mixtures and Compounds 

The dE/dx formula which we have given so far applies to pure elements. What about 
dE/dx for compounds and mixtures? Here, if accurate values are desired, one must 
usually resort to direct measurements; however, a good approximate value can be 
found in most cases by averaging dE/dx over each element in the compound weighted 
by the fraction of electrons belonging to each element (Bragg's Rule). Thus 

dE + ... , 
p dx Pi dx i P2 dx 2 

(2.38) 

where Wi, W2, etc. are the fractions by weight of elements 1, 2, ... in the compound. 
More explicitly, if ai is the number of atoms of the ith element in the molecule M, then 

(2.39) 

where Ai is the atomic weight of ith element, Am = r aiAi' 
By expanding (2.38) explicitly and regrouping terms, we can define effective values 

for Z, A, I, etc. which may be used directly in (2.27), 

Zeff = r a; Z;, 

Aeff = r ai A ;, 

I I _ a; Z; InI; 
neff-i... , 

Zeff 

s _ aiZitJi 
Ueff - i... , 

Zeff 

C eff = r a;Ci • 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Note here the convenience of working with the mass stopping power, 1/ p(dE/dx) , 
rather than the linear stopping power dE/dx. 

2.2.7 Limitations of the Bethe-Bloch Formula and Other Effects 

The Bethe-Bloch formula as given in (2.27) with the shell and density effect corrections 
is the usual expression employed in most dE/dx calculations. For elementary particles 

where wi are the fractions by weight of the elements in the compound

We will see that the weighted average will be used to get to the behaviour of compounds 
given the values of the single elements for several microscopic quantities. 
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Range
Q: how would you (ideally) measure the range of a proton in copper ?
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Range

particle at a 
given energy

detector

thicker and thicker material

Q: how would you (ideally) measure the range of a proton in copper ?
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Range
The range can be easily obtained integrating the stopping power curve

2.2 Energy Loss of Heavy Charged Particles by Atomic Collisions 31 
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Fig. 2.7. Typical range number-distance curve. The 
distribution of ranges is approximately Gaussian in 
form 
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the ratio of transmitted to incident particles. A typical curve of this ratio versus ab-
sorber thickness, known as a range number-distance curve, is shown in Fig. 2.7. As can 
be seen, for small thicknesses, all (or practically all) the particles manage to pass 
through. As the range is approached this ratio drops. The surprising thing, however, is 
that the ratio does not drop immediately to the background level, as expected of a well 
defined quantity. Instead the curve slopes down over a certain spread of thicknesses. 
This result is due to the fact that the energy loss is not in fact continuous, but statistical 
in nature. Indeed, two identical particles with the same initial energy will not in general 
suffer the same number of collisions and hence the same energy loss. A measurement 
with an ensemble of identical particles, therefore, will show a statistical distribution of 
ranges centered about some mean value. This phenomenon is known as range 
straggling. In a first approximation, this distribution is Gaussian in form. The mean 
value of the distribution is known as the mean range and corresponds to the midpoint 
on the descending slope of Fig. 2.7. This is the thickness at which roughly half the 
particles are absorbed. More commonly, however, what is desired is the thickness at 
which all the particles are absorbed, in which case the point at which the curve drops to 
the background level should be taken. This point is usually found by taking the tangent 
to the curve at the midpoint and extrapolating to the zero-level. This value is known as 
the extrapolated or practical range (see Fig. 2.7). 

From a theoretical point of view, we might be tempted to calculate the mean range 
of a particle of a given energy, To, by integrating the dE/dx formula, 

To ( )-1 
SeTa) = 1 dE. (2.46) 

This yields the approximate pathlength travelled. Equation (2.46) ignores the effect of 
multiple Coulomb scattering, however, which causes the particle to follow a zigzag 
path through the absorber (see Fig. 2.14). Thus, the range, defined as the straight-line 
thickness, will generally be smaller than the total zigzag pathlength. 

As it turns out, however, the effect of mUltiple scattering is generally small for 
heavy charged particles, so that the total path length is, in fact, a relatively good ap-
proximation to the straight-line range. In practice, a semi-empirical formula must be 
used, 
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The smearing observed at the end of the curve, 
comes from the fact that the energy loss is a 
statistical process (“range straggling”). 

The range is typically given as the 50% point,  
i.e. where 50% of the particles are adsorbed.

# particles = background 
level of the detector

(ignoring the fact that the particle doesn’t go straight, but it bounces around in a zig-zag path)

T = kinetic energy

Important to get a first estimate of the size of  
detectors / shielding etc.. (i.e. before running 
a complete simulation —> see later in the course)

Q: how would tracks from an (~monocromatic) 
alpha emitter appear in the cloud chamber ?
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Q: how would tracks from an (~monocromatic) alpha emitter appear in the cloud chamber ?
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Fig. 2.8. Calculated range curves of different heavy 
particles in aluminium 

(2.47) 

where T min is the minimum energy at which the dE/dx formula is valid, and Ro(T min) is 
an empirically determined constant which accounts for the remaining low energy 
behavior of the energy loss. Results accurate to within a few percent can be obtained in 
this manner. 2 Figure 2.8 shows some typical range-energy curves for different particles 
calculated by a numerical integration of the Bethe-Bloch formula. From its almost 
linear form on the log-log scale, one might expect a relation of the type 

(2.48) 

This can also be seen from the stopping power formula, which at not too high energies, 
is dominated by the p-2 term, 

-dE/dx ex P-2 ex T- 1 , 

where T is the kinetic energy. Integrating, we thus find 

Rex T2, 

(2.49) 

(2.50) 

2 We might emphasize here that the range as calculated by (2.47) only takes into account energy losses due to 
atomic collisions and is valid only as long as atomic collisions remain the principal means of energy loss. At 
very high energies, where the range becomes larger than the mean free path for a nuclear interaction or for 
bremsstrahlung emission, this is no longer true and one must take into account these latter interactions as 
well. 

Example of calculated  
range for different heavy  
particles in Al

Al density = 2.7 g/cm3
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Electrons: bremsstrahlung and 
radiation length



Mauro Donegà 149

Electrons/Positrons
(Here, unless otherwise specified, I will say electrons to mean both electrons and positrons)

On top of energy loss by collisions (as heavy particles) electrons also lose energy by  
bremsstrahlung. We will define “critical energy” the energy where the energy loss by 
collisions is equal to the energy loss by bremsstrahlung

2.4 Energy Loss of Electrons and Positrons 37 

Chap. 8). A typical range of sensitivity for these devices (see Fig. 8.2, for example) is 
between 350 nm and 550 nm. Integrating (2.63) over A and evaluating at these limits 
then yields 

(2.64) 

which is not an enormous amount as one can see. 

2.4 Energy Loss of Electrons and Positrons 

Like heavy charged particles, electrons and positrons also suffer a collisional energy 
loss when passing through matter. However, because of their small mass an additional 
energy loss mechanism comes into play: the emission of electromagnetic radiation aris-
ing from scattering in the electric field of a nucleus (bremsstrahlung). Classically, this 
may be understood as radiation arising from the acceleration of the electron (or 
positron) as it is deviated from its straight-line course by the electrical attraction of the 
nucleus. At energies of a few MeV or less, this process is still a relatively small factor. 
However, as the energy is increased, the probability of bremsstrahlung quickly shoots 
up so that at a few lO's of MeV, loss of energy by radiation is comparable to or greater 
than the collision-ionization loss. At energies above this critical energy, bremsstrahlung 
dominates completely. 

The total energy loss of electrons and positrons, therefore, is composed of two 
parts: 

(2.65) 

2.4.1 Collision Loss 

While the basic mechanism of collision loss outlined for heavy charged particles is also 
valid for electrons and positrons, the Bethe-Bloch formula must be modified somewhat 
for two reasons. One, as we have already mentioned, is their small mass. The assump-
tion that the incident particle remains undeflected during the collision process is there-
fore invalid. The second is that for electrons the collisions are between identical 
particles, so that the calculation must take into account their indistinguishability. These 
considerations change a number of terms in the formula, in particular, the maximum 
allowable energy transfer becomes W max = 'Fe /2 where 'Fe is the kinetic energy of the 
incident electron or positron. If one redoes the calculation, the Bethe-Bloch formula 
then becomes 

dE 2 2 Z 1 [ r2(r+2) c] ---=2nNaremec p- -2 In 22 +F(r)-J-2- , 
dx A f3 2(I1mec) Z 

(2.66) 

where r is the kinetic energy of particle in units of me c2, 
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Fig. 2.10. Radiation loss vs. collision loss 
for electrons in copper. For comparison, 
the dEldx for protons is also shown 

(2.76) 

At intermediate values of (2.73) must be integrated numerically. 
It is interesting to compare (2.74) to the ionization loss formula in (2.66) (see Fig. 

2.10). Whereas the ionization loss varies logarithmically with energy and linearly with 
Z, the radiation loss increases almost linearly with E and quadratically with Z. This 
dependence explains the rapid rise of radiation loss. 

Another difference is that unlike the ionization loss which is quasicontinuous along 
the path of the electron or positron, almost all the radiation energy can be emitted in 
one or two photons. There are thus large fluctuations observed for a beam of mono-
energetic electrons or positrons. 

2.4.3 Electron-Electron Bremsstrahlung 

The above formulae represent the mean energy loss from radiation in the field of the 
nucleus. There is, however, also a contribution from bremsstrahlung which arises in the 
field of the atomic electrons. Formulas for electron-electron bremsstrahlung have been 
worked out by several authors and it can be shown that the cross sections are essentially 
given by those above except that Z2 is replaced by Z. This contribution can thus be ap-
proximately taken into account by simply replacing Z2 by Z(Z + 1) in all of the above 
cross-section formulae. 

2.4.4 Critical Energy 

As we have seen the energy loss by radiation depends strongly on the absorbing ma-
terial. For each material, we can define a critical energy, E e , at which the radiation loss 
equals the collision loss. Thus, 

= (:)eoll for E=Ee· (2.77) 



Mauro Donegà 150

Electrons/Positrons

2.4 Energy Loss of Electrons and Positrons 37 

Chap. 8). A typical range of sensitivity for these devices (see Fig. 8.2, for example) is 
between 350 nm and 550 nm. Integrating (2.63) over A and evaluating at these limits 
then yields 

(2.64) 

which is not an enormous amount as one can see. 

2.4 Energy Loss of Electrons and Positrons 

Like heavy charged particles, electrons and positrons also suffer a collisional energy 
loss when passing through matter. However, because of their small mass an additional 
energy loss mechanism comes into play: the emission of electromagnetic radiation aris-
ing from scattering in the electric field of a nucleus (bremsstrahlung). Classically, this 
may be understood as radiation arising from the acceleration of the electron (or 
positron) as it is deviated from its straight-line course by the electrical attraction of the 
nucleus. At energies of a few MeV or less, this process is still a relatively small factor. 
However, as the energy is increased, the probability of bremsstrahlung quickly shoots 
up so that at a few lO's of MeV, loss of energy by radiation is comparable to or greater 
than the collision-ionization loss. At energies above this critical energy, bremsstrahlung 
dominates completely. 

The total energy loss of electrons and positrons, therefore, is composed of two 
parts: 

(2.65) 

2.4.1 Collision Loss 

While the basic mechanism of collision loss outlined for heavy charged particles is also 
valid for electrons and positrons, the Bethe-Bloch formula must be modified somewhat 
for two reasons. One, as we have already mentioned, is their small mass. The assump-
tion that the incident particle remains undeflected during the collision process is there-
fore invalid. The second is that for electrons the collisions are between identical 
particles, so that the calculation must take into account their indistinguishability. These 
considerations change a number of terms in the formula, in particular, the maximum 
allowable energy transfer becomes W max = 'Fe /2 where 'Fe is the kinetic energy of the 
incident electron or positron. If one redoes the calculation, the Bethe-Bloch formula 
then becomes 

dE 2 2 Z 1 [ r2(r+2) c] ---=2nNaremec p- -2 In 22 +F(r)-J-2- , 
dx A f3 2(I1mec) Z 

(2.66) 

where r is the kinetic energy of particle in units of me c2, 

Collision loss 
You can follow the same computation of the Bethe Bloch, but: 
- mass incident particle = mass target = me  (i.e. incident electron will bounce around) 
- incident particle and target are indistinguishable  
The maximum energy transfer is now                       where Te is the kinetic energy of the 
incident electron
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where r is the kinetic energy of particle in units of me c2, 
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The remaining quantities are as described previously in (2.27 - 33). 

2.4.2 Energy Loss by Radiation: Bremsstrahlung 

At energies below a few hundred GeV, electrons and positrons are the only particles 
in which radiation contributes substantially to the energy loss of the particle. This can 
easily be seen from the bremsstrahlung cross-sections which we will present in the 
following section. The emission probability, in fact, varies as the inverse square of the 
particle mass, i.e., = (e 2Imc 2)2. Radiation loss by muons (m = 106 MeV), the 
next lightest particle, for example, is thus some 40000 times smaller than that for elec-
trons! 

Since bremsstrahlung emission depends on the strength of the electric field felt by 
the electron, the amount of screening from the atomic electrons surrounding the 
nucleus plays an important role. The cross section is thus dependent not only on the in-
cident electron energy but also on its impact parameter and the atomic number, Z, of 
the material. 

The effect of screening can be parametrized by the quantity 

= 100 mec2 h v 
Eo EZ 113 

(2.67) 

with Eo: initial total energy of electron (or positron); E: final total energy of electron; 
hv: energy of photon emitted, (Eo-E). This parameter is related to the radius of the 
Thomas-Fermi atom and is small, =::: 0, for complete screening and large, 1, for no 
screening. 

For relativistic energies greater than a few MeV, the bremsstrahlung cross section is 
given [2.12] by the formula 

do = 4 d: {(1 + e2 ) [ - +In Z - feZ)] 

- e [ -+In Z - f(Z)]} ' (2.68) 

with e: EIEo, a: 1/137,f(Z): Coulomb correction, ¢l are screening functions 
depending on This expression is the result of a Born approximation calculation and 
is not valid at low energies. 

For heavy elements (Z ;::: 5), the screening functions ¢l and ¢2 are usually calculated 
using a Thomas-Fermi model of the atom and the values given numerically. A useful 
approximation accurate to =::: 0.50/0 is given [2.13] by the empirical formulae 
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fore invalid. The second is that for electrons the collisions are between identical 
particles, so that the calculation must take into account their indistinguishability. These 
considerations change a number of terms in the formula, in particular, the maximum 
allowable energy transfer becomes W max = 'Fe /2 where 'Fe is the kinetic energy of the 
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(2.66) 

where r is the kinetic energy of particle in units of me c2, = Te/mec2
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where r is the kinetic energy of particle in units of me c2, 

Radiation Loss : Bremsstrahlung 

The only particle for which radiation loss is not negligible (up to several hundreds of GeV) 
is the electron. Already for muons the contribution is 40000 times lower (~100MeV/ 0.5MeV)2

�brem /
✓

e2

mc2

◆2

Bremsstrahlung depends on the electric field seen by the 
incident electron: the screening of the electrons around 
the nucleus play an important role. 
Screening is described with 
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but in the lightest nuclei. e-e bremsstrahlung goes as Z instead of Z2]
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The complete quantum mechanical description was first performed by Bethe and Heitler

depends on 1/m2 and the inverse of the photon energy 
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The functionf(Z) is a small correction to the Born approximation which takes into 
account the Coulomb interaction of the emitting electron in the electric field of the 
nucleus. Davies et al. [2.14] give the formula 
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where a = Z/137. 
In the limiting cases of no screening and complete screening, (2.68) can be expressed 
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We can rewrite this as 

- (dE) = NEo C/Jrad, where 
dx rad (2.74) 
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The motivation behind this is that da/ dv is approximately proportional to v- 1; the 
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meC 3 

The energy loss by bremsstrahlung can be computed as:

where  
N = total number of atoms/cm3 =ρNA/A  

v0 = E0/h
Note that  dσ ∝ 1/v ⇒ the v dependence in the integral vanishes
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da = 4 a d: {(1 + e2_ 23e ) [In(183Z- 1I3 ) - f(Z)] + ; } . (2.72) 

The energy loss due to radiation can now be calculated by integrating the cross-sec-
tion times the photon energy over the allowable energy range, i.e., 

- - =N J hv-(Eo, v)dv ( dE) Vo da 
dx rad 0 dv 

(2.73) 

withN: number of atoms/cm3, N = pNa/A; Vo = Eo/h. 
We can rewrite this as 

- (dE) = NEo C/Jrad, where 
dx rad (2.74) 

1 J da C/Jrad =- hv_(Eo, v)dv. 
Eo dv 

The motivation behind this is that da/ dv is approximately proportional to v- 1; the 
integral C/Jrad is therefore practically independent of v and is a function of the material 
only. 

For mec24,Eo4, 137 mec2 Z -1/3, 1, we have no screening, so that integration 
yields 

C/Jrad = a (In 2E02 - - f(Z») . (2.75) 
meC 3 

Cross section for bremsstrahlung emission:

[the contribution of bremsstrahlung on electrons can be neglected 
but in the lightest nuclei. e-e bremsstrahlung goes as Z instead of Z2]

The complete quantum mechanical description was first performed by Bethe and Heitler
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For 137 mec2 Z -1/3, = 0 (complete screening) 

cPrad = 4Z2 a [In (183 Z -113) + -is -f(Z) ] . 

2. Passage of Radiation Through Matter 

Fig. 2.10. Radiation loss vs. collision loss 
for electrons in copper. For comparison, 
the dEldx for protons is also shown 

(2.76) 

At intermediate values of (2.73) must be integrated numerically. 
It is interesting to compare (2.74) to the ionization loss formula in (2.66) (see Fig. 

2.10). Whereas the ionization loss varies logarithmically with energy and linearly with 
Z, the radiation loss increases almost linearly with E and quadratically with Z. This 
dependence explains the rapid rise of radiation loss. 

Another difference is that unlike the ionization loss which is quasicontinuous along 
the path of the electron or positron, almost all the radiation energy can be emitted in 
one or two photons. There are thus large fluctuations observed for a beam of mono-
energetic electrons or positrons. 

2.4.3 Electron-Electron Bremsstrahlung 

The above formulae represent the mean energy loss from radiation in the field of the 
nucleus. There is, however, also a contribution from bremsstrahlung which arises in the 
field of the atomic electrons. Formulas for electron-electron bremsstrahlung have been 
worked out by several authors and it can be shown that the cross sections are essentially 
given by those above except that Z2 is replaced by Z. This contribution can thus be ap-
proximately taken into account by simply replacing Z2 by Z(Z + 1) in all of the above 
cross-section formulae. 

2.4.4 Critical Energy 

As we have seen the energy loss by radiation depends strongly on the absorbing ma-
terial. For each material, we can define a critical energy, E e , at which the radiation loss 
equals the collision loss. Thus, 

= (:)eoll for E=Ee· (2.77) 

Electrons/Positrons

relativistic log rise

increase ~linearly  
with energy and Z2

Compare bremsstrahlung with collision loss:

Energy loss by collision loss comes from the sum of a large number of scatterings. 
Bremsstrahlung energy can be emitted all in one or few photons —> much larger 
fluctuations the energy in electron beams 

critical energy

2.4 Energy Loss of Electrons and Positions 41 

Table 2.2. Critical energies of some materials 

Material Critical energy 
[MeV] 

Pb 9.51 
Al 51.0 
Fe 27.4 
Cu 24.8 
Air (STP) 102 
Lucite 100 
Polystyrene 109 
NaI 17.4 
Anthracene 105 
H2O 92 

Above this energy, radiation loss will dominate over collision-ionization losses and 
vice-versa below Ec. An approximate formula for Ec given in [2.15] is, 

E == 800 MeV 
c , 

Z+ 1.2 
(2.78) 

Table 2.2 gives a short list of critical energies for various materials so as to give some 
feeling for the order of magnitudes. 

2.4.5 Radiation Length 

A similar quantity known as the radiation length of the material is even more frequent-
ly used. This parameter is defined as the distance over which the electron energy is 
reduced by a factor 1/e due to radiation loss only. Indeed, if we rearrange (2.74), we 
get the differential equation 

-dElE = Nct>raddx. (2.79) 

Considering the high energy limit where collision loss can be ignored relative to radia-
tion loss, ct>rad in (2.76) is independent of E, so that 

E = Eoexp ( -x). (2.80) 
L rad 

where x is the distance travelled and L rad = 1/ N ct>rad is the radiation length. Using 
(2.76), we thus find the formula 

_1_== [4Z(Z+1) PNa ] (2.81) 
L rad A 

where we have included the contribution from electron-electron bremsstrahlung and 
ignored the small constant term. Some values of L rad are given in Table 2.3 for several 
materials. 

electrons in copper
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Electrons/Positrons
33. Passage of particles through matter 19

where wj and Xj are the fraction by weight and the radiation length for the jth element.

Figure 33.11: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [43]

dσ/dk = (1/k)4αr2
e
{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,
(33.29)

where y = k/E is the fraction of the electron’s energy transferred to the radiated photon.
At small y (the “infrared limit”) the term on the second line ranges from 1.7% (low Z) to
2.5% (high Z) of the total. If it is ignored and the first line simplified with the definition
of X0 given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.

October 1, 2016 19:59

e-e- —> e-e-

e+e- —> e+e-

e+e- —>γγ
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Radiation length
Radiation length = distance over which the electron energy is reduced by 1/e due to  
                               radiation only

2.4 Energy Loss of Electrons and Positrons 39 

<1>1 = 20.863 - 21n [1 + (0.55846 4 [1 - 0.6 exp ( - - 0.4 exp( -1.5 
(2.69) 

where 

<1>1 (0) = <1>2(0) + t = 41n 183 as ---+ 0 

<1>1 (00) = <1>2 ( 00) .... d9.19 - 41n as ---+ 00 . 

The functionf(Z) is a small correction to the Born approximation which takes into 
account the Coulomb interaction of the emitting electron in the electric field of the 
nucleus. Davies et al. [2.14] give the formula 

f(Z) =:: a2 [(1 + a2) -1 + 0.20206 - 0.0369a2 + 0.0083 a4 - 0.002a6 ] , (2.70) 

where a = Z/137. 
In the limiting cases of no screening and complete screening, (2.68) can be expressed 

in simpler analytic forms. For 1 (no screening), (2.68) becomes 

(2.71) 

For =:: 0, (complete screening), 

da = 4 a d: {(1 + e2_ 23e ) [In(183Z- 1I3 ) - f(Z)] + ; } . (2.72) 

The energy loss due to radiation can now be calculated by integrating the cross-sec-
tion times the photon energy over the allowable energy range, i.e., 

- - =N J hv-(Eo, v)dv ( dE) Vo da 
dx rad 0 dv 

(2.73) 

withN: number of atoms/cm3, N = pNa/A; Vo = Eo/h. 
We can rewrite this as 

- (dE) = NEo C/Jrad, where 
dx rad (2.74) 

1 J da C/Jrad =- hv_(Eo, v)dv. 
Eo dv 

The motivation behind this is that da/ dv is approximately proportional to v- 1; the 
integral C/Jrad is therefore practically independent of v and is a function of the material 
only. 

For mec24,Eo4, 137 mec2 Z -1/3, 1, we have no screening, so that integration 
yields 

C/Jrad = a (In 2E02 - - f(Z») . (2.75) 
meC 3 

2.4 Energy Loss of Electrons and Positions 41 

Table 2.2. Critical energies of some materials 

Material Critical energy 
[MeV] 

Pb 9.51 
Al 51.0 
Fe 27.4 
Cu 24.8 
Air (STP) 102 
Lucite 100 
Polystyrene 109 
NaI 17.4 
Anthracene 105 
H2O 92 

Above this energy, radiation loss will dominate over collision-ionization losses and 
vice-versa below Ec. An approximate formula for Ec given in [2.15] is, 

E == 800 MeV 
c , 

Z+ 1.2 
(2.78) 

Table 2.2 gives a short list of critical energies for various materials so as to give some 
feeling for the order of magnitudes. 

2.4.5 Radiation Length 

A similar quantity known as the radiation length of the material is even more frequent-
ly used. This parameter is defined as the distance over which the electron energy is 
reduced by a factor 1/e due to radiation loss only. Indeed, if we rearrange (2.74), we 
get the differential equation 

-dElE = Nct>raddx. (2.79) 

Considering the high energy limit where collision loss can be ignored relative to radia-
tion loss, ct>rad in (2.76) is independent of E, so that 

E = Eoexp ( -x). (2.80) 
L rad 

where x is the distance travelled and L rad = 1/ N ct>rad is the radiation length. Using 
(2.76), we thus find the formula 

_1_== [4Z(Z+1) PNa ] (2.81) 
L rad A 

where we have included the contribution from electron-electron bremsstrahlung and 
ignored the small constant term. Some values of L rad are given in Table 2.3 for several 
materials. 
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An approximated formula to compute it is useful to see what it depends on:

42 2. Passage of Radiation Through Matter 

Table 2.3. Radiation lengths for various absorbers 

Material [gm/cm2] [cm] 

Air 36.20 30050 
H2O 36.08 36.1 
NaI 9.49 2.59 
Polystyrene 43.80 42.9 
Pb 6.37 0.56 
eu 12.86 1.43 
Al 24.01 8.9 
Fe 13.84 1.76 
BOO 7.98 1.12 
BaF2 9.91 2.05 
Scint. 43.8 42.4 

A useful approximation [2.15], convenient for quick calculations, is given by 

716.4 g/cm 2 A 

L rad = Z(Z + 1) In (287/Vz) , 
(2.82) 

where Z and A are the atomic number and weight of the material respectively. The 
values obtained are accurate to within 2.5070 except for helium where the result is about 
5% too low. 

The usefulness of the radiation length becomes evident when material thicknesses 
are measured in these units. Clearly, if x is expressed in units of L rad , then (2.74) 
becomes 

- (dE/dt) = Eo, (2.83) 

where t is the distance in radiation lengths. Thus, the radiation energy loss when expres-
sed in terms of radiation length is roughly independent of the material type. 

For compounds and mixtures, the radiation lengths may be computed by applying 
Bragg's rule. Expressing L rad in mass thickness units, we then have 

1 (1) (1) --= WI -- +W2 -- + ... , 
L rad L rad I L rad 2 

(2.84) 

where WI, W2, .•. are the fractions by weight of each element in the mixture as defined 
in (2.39). 

2.4.6 Range of Electrons 

Because of the electron's greater susceptibility to multiple scattering by nuclei, the 
range of electrons is generally very different from the calculated path length obtained 
from an integration of the dEl dx formula. Differences ranging from 20 - 400% 
depending on the energy and material are often found. In addition, the energy loss by 
electrons fluctuates much more than for heavy particles. This is due to the much greater 
energy transfer per collision allowed for electrons and to the emission of bremsstrah-
lung. In both cases, it is possible for a few single collisions (or photons) to absorb the 
major part of the electron's energy. This, of course, results in greater range straggling 
as illustrated by Fig. 2.11 which shows some measured range curves. 

The concept of radiation length is used to express material thickness in detectors,  
because is it roughly independent from the material type:
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with t = x / X0 

For mixtures/compounds we can use the same weighted average as for ionization:
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wi = fraction by weight of the element in the mixture

 X0 
 X0 

 X0 

 X0  X0  X0 

“fraction of a radiation length”
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Radiation length
The radiation length X0 [g/cm2]  is an intrinsic characteristic of the material, x/X0 is a 
normalized unit of length used to measure the size of a piece of material.

40% of a radiation length

Amount of material in the CMS 
tracker simulations expressed  
in “fraction of radiation length”

We express the amount of material in a detector in fraction of a radiation length because it 
can be immediately translated to the effect it has on the traversing particle. 
The actual physical size of the detector depends on the material used: 
for the same radiation length you can have a short/thin (e.g. solid) or long/thick (e.g. gas) 
detector.
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Range of electrons

Because of the much lighter mass electrons trajectories in matter are more affected 
by multiple scattering —> Path from the integral of dE/dx is not accurate and the  
energy fluctuations are large.
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2. Passage of Radiation Through Matter 

Fig. 2.8. Calculated range curves of different heavy 
particles in aluminium 

(2.47) 

where T min is the minimum energy at which the dE/dx formula is valid, and Ro(T min) is 
an empirically determined constant which accounts for the remaining low energy 
behavior of the energy loss. Results accurate to within a few percent can be obtained in 
this manner. 2 Figure 2.8 shows some typical range-energy curves for different particles 
calculated by a numerical integration of the Bethe-Bloch formula. From its almost 
linear form on the log-log scale, one might expect a relation of the type 

(2.48) 

This can also be seen from the stopping power formula, which at not too high energies, 
is dominated by the p-2 term, 

-dE/dx ex P-2 ex T- 1 , 

where T is the kinetic energy. Integrating, we thus find 

Rex T2, 

(2.49) 

(2.50) 

2 We might emphasize here that the range as calculated by (2.47) only takes into account energy losses due to 
atomic collisions and is valid only as long as atomic collisions remain the principal means of energy loss. At 
very high energies, where the range becomes larger than the mean free path for a nuclear interaction or for 
bremsstrahlung emission, this is no longer true and one must take into account these latter interactions as 
well. 
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As for heavy particles, a number of empirical range-energy relations have been 
formulated. Figure 2.12 presents some typical range-energy curves for electrons in vari-
ous materials as calculated assuming a continuous slowing-down process. A tabulation 
of ranges for different materials is also given by Pages et al. [2.17]. 

! 2.4.7 The Absorption of p Electrons 

Because of their continuous spectrum of energies, the absorption of p-decay electrons 
exhibits a behavior which is very well approximated by an exponential form. This is il-
lustrated in Fig. 2.13 which shows the number-distance curves for different absorbers 
plotted on a semi-logarithmic scale. As can be seen, the curves are almost linear and are 
easily fit by 

1 = 10 exp ( - /1x) . (2.85) 
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As for heavy particles, a number of empirical range-energy relations have been 
formulated. Figure 2.12 presents some typical range-energy curves for electrons in vari-
ous materials as calculated assuming a continuous slowing-down process. A tabulation 
of ranges for different materials is also given by Pages et al. [2.17]. 

! 2.4.7 The Absorption of p Electrons 

Because of their continuous spectrum of energies, the absorption of p-decay electrons 
exhibits a behavior which is very well approximated by an exponential form. This is il-
lustrated in Fig. 2.13 which shows the number-distance curves for different absorbers 
plotted on a semi-logarithmic scale. As can be seen, the curves are almost linear and are 
easily fit by 

1 = 10 exp ( - /1x) . (2.85) 
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Multiple scattering

Elastic (Coulomb) scattering of the incident particle with nuclei (without spin effects) is simple 
Rutherford scattering.

44 2. Passage of Radiation Through Matter 

The constant 11 is known as the fJ-absorption coefficient and is found to be directly 
related to the endpoint energy of the fJ-decay. One of the earliest uses of this behavior 
was, in fact, to measure fJ endpoint energies and the thicknesses of thin foils. It is im-
portant to note, however, that exponential absorption is not a general characteristic of 
fJ-decay. Indeed, this behavior only holds in the case of simple allowed decays. In more 
complicated forbidden decays where the shape of the fJ-spectrum is different, devia-
tions become apparent. 

2.5 Multiple Coulomb Scattering 

In addition to inelastic collisions with the atomic electrons, charged particles passing 
through matter also suffer repeated elastic Coulomb scatterings from nuclei although 
with a somewhat smaller probability. Ignoring spin effects and screening, these colli-
sions are individually governed by the well-known Rutherford formula 

(2.86) 

Because of its 1!sin4 (8/2) dependence, the vast majority of these collisions result, 
therefore, in a small angular deflection of the particle. We assume here that the nuclei 
are much more massive than the incident particles so that the small energy transfer to 
the nucleus is negligible. The particle thus follows a random zigzag path as it traverses 
the material. The cumulative effect of these small angle scatterings is, however, a net 
deflection from the original particle direction, as shown in Fig. 2.14. 

In general, the treatment of Coulomb scattering in matter is divided into three 
regions: 

1) Single Scattering. If the absorber is very thin such that the probability of more than 
one Coulomb scattering is small, then the angular distribution will be given by the 
simple Rutherford formula in (2.86). 

2) Plural Scattering. If the average number of scatterings N < 20, then we have plural 
scattering. This is the most difficult case to treat as neither the simple Rutherford 
formula nor statistical methods can be simply applied. Some work in this region has 
been done by Keil et al. [2.19] and the reader is referred there for further informa-
tion. 

3) Multiple Scattering. If the average number of independent scatterings is N> 20, and 
energy loss is small or negligible, the problem can be treated statistically to obtain a 
probability distribution for the net angle of deflection as a function of the thickness 

--

Fig. 2.14. Multiple scattering of a charged parti-
cle. The scale and angles are greatly exaggerated 

most of the collisions only 
make a small deflection

mnucleus >> mincident 
energy transferred to the nucleus is negligible

The typical description of the scattering is divided in : 

- Single scattering —> thin target/foil, mostly one scatter described by Rutherford 

- Multiple scattering —>  thick targets, many small-angle scatters: scattering 
distribution is Gaussian. Less frequent “hard” scatters produce non-Gaussian tails.  

-
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Multiple scattering

33. Passage of particles through matter 15

33.2.11. Ionization yields : Physicists frequently

relate total energy loss to the number of ion pairs produced near the particle’s track.
This relation becomes complicated for relativistic particles due to the wandering of
energetic knock-on electrons whose ranges exceed the dimensions of the fiducial volume.
For a qualitative appraisal of the nonlocality of energy deposition in various media by such
modestly energetic knock-on electrons, see Ref. 30. The mean local energy dissipation per
local ion pair produced, W , while essentially constant for relativistic particles, increases
at slow particle speeds [31]. For gases, W can be surprisingly sensitive to trace amounts
of various contaminants [31]. Furthermore, ionization yields in practical cases may be
greatly influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei as described by the
Rutherford cross section. (However, for hadronic projectiles, the strong interactions also
contribute to multiple scattering.) For many small-angle scatters the net scattering and
displacement distributions are Gaussian via the central limit theorem. Less frequent
“hard” scatters produce non-Gaussian tails. These Coulomb scattering distributions
are well-represented by the theory of Molière [34]. Accessible discussions are given by
Rossi [2] and Jackson [33], and exhaustive reviews have been published by Scott [35] and
Motz et al. [36]. Experimental measurements have been published by Bichsel [37]( low
energy protons) and by Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1√
2

θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with an rms width given by [39,40]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln(x/X0)
]

. (33.15)

Here p, βc, and z are the momentum, velocity, and charge number of the incident particle,
and x/X0 is the thickness of the scattering medium in radiation lengths (defined below).
This value of θ0 is from a fit to Molière distribution for singly charged particles with
β = 1 for all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (33.15) describes scattering from a single material, while the usual problem involves
the multiple scattering of a particle traversing many different layers and mixtures. Since it
is from a fit to a Molière distribution, it is incorrect to add the individual θ0 contributions
in quadrature; the result is systematically too small. It is much more accurate to apply
Eq. (33.15) once, after finding x and X0 for the combined scatterer.

* Shen et al.’s measurements show that Bethe’s simpler methods of including atomic
electron effects agrees better with experiment than does Scott’s treatment.
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Figure 33.10: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [34]
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where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x + θ2
plane,y), where

the x and y axes are orthogonal to the direction of motion, and dΩ ≈ dθplane,x dθplane,y.
Deflections into θplane,x and θplane,y are independent and identically distributed.

Fig. 33.10 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are

ψ rms
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3

θ rms
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3

θ0 , (33.18)

y rms
plane =
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3

x θ rms
plane =

1√
3

x θ0 , (33.19)

s rms
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4
√

3
x θ rms

plane =
1

4
√

3
x θ0 . (33.20)

All the quantitative estimates in this section apply only in the limit of small θ rms
plane and

in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a given plane
are correlated. Obviously, y ≈ xψ. In addition, y and θ have the correlation coefficient
ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane) distribution,

or for other calculations, it may be most convenient to work with independent Gaussian
random variables (z1, z2) with mean zero and variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3 (33.21)

=z1 x θ0/
√

12 + z2 x θ0/2 ; (33.22)

θplane =z2 θ0 . (33.23)
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The typical description of multiple scattering is given the the gaussian approximation:

Defining

we found that a good approximation for the 98% core of the gaussian is given by:

incident particle target radiation length

accurate to 11% or better for 10−3 < x/X0 < 100.
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Assuming the deflections in the two planes are independent and identically distributed



Mauro Donegà 161

Energy loss distribution
So far we looked at the mean energy loss by an incident particle in a layer of material. 
Now we look at how the energy is actually statistically distributed.

The distribution is qualitatively different when thick or thin layers are considered: 
- thick layers: distribution mostly gaussian created by several scatters 
- think layers: gaussian core with large high energy tail created by single scatters

CLT: Central Limit Theorem 
This is probably the most important theorem in statistics and it is the reason why the  
gaussian is so important

36 CHAPTER 2. PROBABILITY DISTRIBUTIONS

The characteristic function as well as its first and second derivative are readily calculated for
the special case where t = 0:

�(0) = 1 (2.3.65)

d�(0)

dt
= i < x > (2.3.66)

d
2�(0)

dt2
= �(�2+ < x >

2) (2.3.67)

What do we need characteristic functions for? They may be useful when performing calcu-
lations with probability densities, for example if the convolution of two probability densities
f1 and f2 for two random variables x1 and x2 should be calculated. A convolution of f1 and
f2 yields a new probability density g(y), according to which the sum of the random variable
y = x1 + x2 is distributed:

g(y) =

Z Z
f1(x1)f2(x2)�(y�x1�x2)dx1dx2 =

Z
f1(x1)f2(y�x1)dx1 =

Z
f2(x2)f1(y�x2)dx2

(2.3.68)
The convolution integral can now be transformed with the help of the characteristic functions:

�g(t) = �f1(t) · �f2(t) (2.3.69)

In words: the characteristic function of the convolution of two variables is obtained by the
product of their characteristic functions. Thus it can be easily shown that the convolution of
two Gaussian distributions with µ1,2 and �1,2 is again a Gaussian distribution with µ = µ1+µ2

and �
2 = �

2
1+�

2
2. Furthermore, the convolution of two Poisson distributions is again a Poisson

distribution. The characteristic functions of some probability densities are given in Tab. 2.3.2.

Table 2.3.2: Characteristic functions of some probability densities.
Distribution Characteristic Function

Binomial �(t) = (peit + q)n

Poisson �(t) = e
�(eit�1)

Gauss �(t) = e
iµt�t

2
�
2
/2

�
2 �(t) = (1� 2it)�n/2

Uniform (from a to b) �(t) = (eibt � e
iat)/(b� a)it

Breit-Wigner �(t) = e
�iE0t�(�/2)|t|

Gamma �(t) = (1� it/µ)�↵

2.4 The Central Limit Theorem

The “Central Limit Theorem” (CLT) is probably the most important theorem in statistics
and it is the reason why the gaussian distribution is so important.
Take n independent variables xi, distributed according to p.d.f.’s fi having mean µi and
variance �

2
i
, then the p.d.f. of the sum of the xi, S =

P
xi, has mean

P
µi and varianceP

�
2
i
and it approaches the normal p.d.f. N(S;

P
µi,

P
�
2
i
) as n ! 1.

The CLT holds under pretty general conditions:

CLT is valid when none of the variables dominate the sum - Lindberg criteria

Defining                         as the ratio between the mean energy loss and the maximum 
allowed in a single collision, we talk about thin layer when    < 10 it’s considered.

50 2. Passage of Radiation Through Matter 

2.6.2 Very Thick Absorbers 

A critical assumption in the above analysis was that the energy loss was small compared 
to the initial energy so that the velocity change of the particle could be ignored. For 
very thick absorbers where a substantial amount of energy is lost, this assumption, of 
course, breaks down. This case has been treated in depth by Tschalar[2.26, 27] and the 
reader is referred to his articles and to the resume by Bichsel [2.28] for details of this 
distribution. 

2.6.3 Thin Absorbers: The Landau and Vavilov Theories 

In contrast to the thick absorber case, the distribution for thin absorbers or gases where 
the number of collisions N is too small for the Central Limit Theorem to hold is ex-
tremely complicated to calculate. This is because of the possibility of large energy 
transfers in a single collision. For heavy particles, this W max is kinematically limited to 
the expression given in (2.28), while for electrons, as much as one-half the initial energy 
can be transferred. In this latter case, there is also the additional possibility of a large 
"one-shot" energy loss from bremsstrahlung as well. While these events are rare, their 
possibility adds a long tail to the high energy side of the energy-loss probability distri-
bution thus giving it a skewed, asymmetric form. Figure 2.18 illustrates this general 
shape. Note that the mean energy loss no longer corresponds to the peak but is dis-
placed because of the high energy tail. In contrast, the position of the peak now defines 
the most probable energy loss. These two quantities may be used to parametrize the 
distribution. 
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Fig. 2.18. Typical distribution of energy loss in a 
thin absorber. Note that it is asymmetric with a long 
high energy tail 

Basic theoretical calculations of this distribution have been carried out by Landau, 
Symon and Vavilov; each of these, however, has a somewhat different region of ap-
plicability. The distinguishing parameter in all these theories is the ratio 

(2.96) 

that is the the ratio between the mean energy loss and the maximum energy transfer al-
lowable in a single collision. The mean energy loss may be calculated from the Bethe-
Bloch formula, however, for most purposes it is usually approximated by taking the 
first multiplicative term only and ignoring the logarithmic term, i.e., 
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Basic theoretical calculations of this distribution have been carried out by Landau, 
Symon and Vavilov; each of these, however, has a somewhat different region of ap-
plicability. The distinguishing parameter in all these theories is the ratio 

(2.96) 

that is the the ratio between the mean energy loss and the maximum energy transfer al-
lowable in a single collision. The mean energy loss may be calculated from the Bethe-
Bloch formula, however, for most purposes it is usually approximated by taking the 
first multiplicative term only and ignoring the logarithmic term, i.e., 
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Energy loss distribution
CLT: Central Limit Theorem

2.5. REFERENCES 37

Figure 2.4.16: Sum of random variables from a uniform distribution in [�2, 2] after the
iterations 1 to 4.

• both mean and variance have to exist for each of the random variables in the sum

• Lindeberg criteria:

yk = xk, if |xk � µk|  ✏k�k

yk = 0, if |xk � µk| > ✏k�k.

Here, ✏k is an arbitrary number. If the variance (y1 + y2 + · · · yn)/�2
y ! 1 for n ! 1,

then this condition is fulfilled for the CLT. In plain English: The Lindeberg criteria
ensures that fluctuations of a single variable does not dominate its sum.

An example of convergence for the CLT is given in Fig. 2.4.16 where a uniform distribution
is used for 4 iterations.

When performing measurements the value obtained is usually a↵ected by a large number
of (hopefully) small uncertainties. If this number of small contributions is large the C.L.T.
tells us that their total sum is Gaussian distributed. This is often the case and is the reason
resolution functions are usually Gaussian. But if there are only a few contributions, or if a
few of the contributions are much larger than the rest, the C.L.T. is not applicable, and the
sum is not necessarily Gaussian.

2.5 References

Pretty much every book about statistics/probability will cover the material of this chapter.
Here are a few examples:

• L. Lyons [5], “Statistics for Nuclear and Particle Physicist”: Ch. 3

Sum of random variables from a uniform  
distribution in [−2,2] after the iterations 1 to 4. 
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Thick layers: the total energy loss is the sum of a large number of collisions, none of which 
is dominating the sum, 

In this conditions the energy is distributed as a gaussian:

Energy loss distribution

2.6 Energy Straggling: The Energy Loss Distribution 49 

2.6 Energy Straggling: The Energy Loss Distribution 

Our discussion of energy loss up until now has been concerned mainly with the mean 
energy loss suffered by charged particles when passing through a thickness of matter. 
For any given particle, however, the amount of energy lost will not, in general, be equal 
to this mean value because of the statistical fluctuations which occur in the number of 
collisions suffered and in the the energy transferred in each collision. An initially 
monoenergetic beam, after passing through a fixed thickness of material, will therefore 
show a distribution in energy rather than a delta-function peak shifted down by the 
mean energy loss as given by the dE/dx formula. We have already seen these fluctua-
tions in the form of range straggling. This, in fact, is the same problem viewed from a 
different angle: instead of observing the fluctuations in energy loss for a fixed thickness 
of absorber, we observe the fluctuations in thickness of pathlength for a fixed loss in 
energy. 

From a theoretical point of view, calculating the distribution of energy losses for 
a given thickness of absorber is a difficult mathematical problem and is generally divid-
ed into two cases: thick absorbers and thin absorbers. 

2.6.1 Thick Absorbers: The Gaussian Limit 

For relatively thick absorbers such that the number of collisions is large, the energy loss 
distribution can easily be shown to be Gaussian in form. This follows directly from the 
Central Limit Theorem in statistics which states that the sum of N random variables, all 
following the same statistical distribution, approaches that of a Gaussian-distributed 
variable in the limit N--+ 00. If we take our random variable to be JE, the energy lost in 
a single atomic collision, and assume that the energy lost in each collision is such that 
the velocity of the particle is negligibly altered (so that the velocity-dependent collision 
cross-section stays constant), then the total energy lost is the sum of many independent 
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where  
Δ is the energy loss in the material 
Δ is the mean energy loss 
σ is the standard deviation

_

The standard deviation can be computed (Bohr) for non relativistic incident particles as:
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Na = Avogadro’s number, re is the classical electron mass, me electron mass, 
x,ρ,Z,A = thickness, density, Z, A of the target
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Thin layers: the number of collisions is small and CLT does not apply. There is the possibility 
that the energy deposited by a single scatter (with delta electrons emission) dominates the 
energy distribution.  
In this case the distribution of the energy loss is given by the Landau-Vavilov theory:

Energy loss distribution

Because of the large high energy tail, the  
distribution is asymmetric (skewed) and the  
mean energy loss is higher than the most  
probable (mode) energy loss

NB: the mean and variance are not defined. 
For this reason in practical applications the 
distribution if often truncated at some high 
value of the energy.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity
at the most probable value δp/x. The width w is the full width at half maximum.

displaces the peak of the distribution, usually toward a higher value. 90% of the collisions
(M1(〈∆〉)/M1(∞)) contribute to energy deposits below the mean. It is the very rare
high-energy-transfer collisions, extending to Wmax at several GeV, that drives the mean
into the tail of the distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe
equation, Eq. (33.5), is thus ill-defined experimentally and is not useful for describing
energy loss by single particles.! It rises as ln γ because Wmax increases as γ at high
energies. The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches of PVT plastic scintillator, the
ratio of the most probable E loss rate to the mean loss rate via the Bethe equation is
[0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses add less
than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is
essentially constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC
cells [1] and Si detectors [26], as shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC
cell. Also see Talman [27]. While ∆p/x may be calculated adequately with Eq. (33.11),
the distributions are significantly wider than the Landau width w = 4ξ [Ref. 26, Fig. 15].
Examples for 500 MeV pions incident on thin silicon detectors are shown in Fig. 33.8.
For very thick absorbers the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization, is

! It does find application in dosimetry, where only bulk deposit is relevant.

October 1, 2016 19:59

When quoting energy loss the most probable 
value should be used.

normalized to unity

(more on this in later in the course)
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Photons
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The photons we are interested in have energies > few keV (X-rays, gamma rays). 

Photons are neutral, so there are no multiple small interactions with matter,  
when the photon interacts is gone. A practical consequence is that a photon beam cannot 
be degraded in energy, only in intensity: 

where x is the thickness of the absorber and μ is the absorption coefficient which depends 
on the absorbing material and it’s related to the total interaction cross section. 

The main interactions above a few keV are: 
- photoelectric effect 
- Compton scatttering 
- pair production (photon conversion) 

Photon interactions

2.7 The Interaction of Photons 53 

To give an idea of Vavilov's results, we show Vavilov's distributions for various 
values of K in Fig. 2.19. These should be compared to the Landau distribution (denoted 
by L) at K = 0, also shown in Fig. 2.19. Note also how the distribution already 
resembles a Gaussian form for K = 1. In the Gaussian limit, Vavilov gives the variance 
as 

2 e 1- fJ2 
a = ----, (2.100) 

K 2 
which agrees with Bohr's formula for heavy particles in (2.95). 

To see how theory compares with experiment, some measured results are also 
shown in Fig. 2.20. 

Corrections to the Landau and Vavilov Distributions. Supplementing the calculations 
by Landau and Vavilov, are also a number of limited modifications made by various 
authors. Blunck and Leisegang [2.35], in particular, have modified Landau's theory to 
include binding effects of the atomic electrons (assumption 2). Needless to say, the re-
sult is complicated, however, a suitable form for calculation may be found in Matthews 
et al. [2.36]. For the Vavilov distribution, a similar modification has been made by 
Shulek et al. [2.37]. Details may be found in their original article. 

2.7 The Interaction of Photons 

The behavior of photons in matter (in our case, x-rays and y-rays) is dramatically dif-
ferent from that of charged particles. In particular, the photon'S lack of an electric 
charge makes impossible the many inelastic collisions with atomic electrons so charac-
teristic of charged particles. Instead, the main interactions of x-rays and y-rays in 
matter are: 

1) Photoelectric Effect 
2) Compton Scattering (including Thomson and Rayleigh Scattering) 
3) Pair Production. 

Also possible, but much less common, are nuclear dissociation reactions, for example, 
(y, n), which we will neglect in our discussion. 

These reactions explain the two principal qualitative features of x-rays and y-rays: 
(1) x-rays and y-rays are many times more penetrating in matter than charged particles, 
and (2) a beam of photons is not degraded in energy as it passes through a thickness of 
matter, only attenuated in intensity. The first feature is, of course, due to the much 
smaller cross section of the three processes relative to the inelastic electron collision 
cross section. The second characteristic, however, is due to the fact the three processes 
above remove the photon from the beam entirely, either by absorption or scattering. 
The photons which pass straight through, therefore, are those which have not suffered 
any interactions at all. They therefore retain their original energy. The total number of 
photons is, however, reduced by the number which have interacted. The attenuation 
suffered by a photon beam can be shown, in fact, to be exponential with respect to the 
thickness, i.e., 

I(x) = 10 exp( - /1x) (2.101) 

with 10: incident beam intensity; x: thickness of absorber; /1: absorption coefficient. 

Low energy interactions (Thomson - classical scattering with free electrons, Rayleigh - 
scattering with the whole atom or coherent scattering) are not relevant for the energy 
range we’re interested in.
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Q: can you draw the Feynman diagram for the photoelectric effect? 

Photoelectric effect
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Q: can you draw the Feynman diagram for the photoelectric effect? 

Photoelectric effect

tim
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Photoelectric effect

54 2. Passage of Radiation Through Matter 

The absorption coefficient is a quantity which is characteristic of the absorbing 
material and is directly related to the total interaction cross-section. This is a quantity 
often referred to when discussing y-ray detectors. However, let us first discuss the three 
processes individually before turning to the calculation of the absorption coefficient. 

2.7.1 Photoelectric Effect 

The photoelectric effect involves the absorption of a photon by an atomic electron with 
the subsequent ejection of the electron from the atom. The energy of the outgoing elec-
tron is then 

E = hv-B.E., (2.102) 

where B. E. is the binding energy of the electron. 
Since a free electron cannot absorb a photon and also conserve momentum, the 

photoelectric effect always occurs on bound electrons with the nucleus absorbing the 
recoil momentum. Figure 2.21 shows a typical photoelectric cross section as a function 
of incident photon energy. As can be seen, at energies above the highest electron bind-
ing energy of the atom (the K shell), the cross section is relatively small but increases 
rapidly as the K-shell energy is approached. Just after this point, the cross section drops 
drastically since the K-electrons are no longer available for the photoelectric effect. 
This drop is known as the K absorption edge. Below this energy, the cross section rises 
once again and dips as the L, M, levels, etc. are passed. These are known respectively as 
the L-absorption edges, M-absorption edge, etc. 

Theoretically, the photoelectric effect is difficult to treat rigorously because of the 
complexity of the Dirac wavefunctions for the atomic electrons. For photon energies 
above the K-shell, however, it is almost always the K electrons which are involved. If 
this is assumed and the energy is nonrelativistic, i.e., the cross-section can 
then be calculated using a Born approximation. In such a case, one obtains 

K-EDGE 

10-2 10° 102 
Fig. 2.21. Calculated photoelectric cross section for lead 

Energy [MeV] 

The cross section for the photoelectric effect shows 
the typical pattern of the binding energies of the 
various shells, K, L,M,… 
For energies above the K-line the cross section goes as:
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(2.103) 

with (/)0 = 8 = 6.651 X 10- 25 cm2; a = 11137 . 

For energies closer to the K-edge,(2.103)must be multiplied by a correction factor to 
give 

m 27n(137)3 [Vk]4 
'Pphoto = (/)0 2 - per atom, 

Z v 1 - exp ( - 2 n 
(2.104) 

wherehvk=(Z-0.03)2mec2a2/2 and For v very close to vb 

C l iP1, so that (2.104) can be simplified to 

_ 6.3xlO- 18 (Vk)8/3 
cf>photo - Z2 --;- (2.105) 

Formulas for the Land M shells have also been calculated, but these are even more 
complicated than those above. The reader is referred to Davisson [2.38] for these 
results. 

It is interesting to note the dependence of the cross section on the atomic number Z. 
This varies somewhat depending on the energy of the photon, however, at MeV ener-
gies, this dependence goes as Z to the 4th or 5th power. Clearly, then, the higher Z 
materials are the most favored for photoelectric absorption, and, as will be seen in later 
chapters, are an important consideration when choosing y-ray detectors. 

2.7.2 Compton Scattering 

Compton scattering is probably one of the best understood processes in photon interac-
tions. As will be recalled, this is the scattering of photons on free electrons. In matter, 
of course, the electrons are bound; however, if the photon energy is high with respect to 
the binding energy, this latter energy can be ignored and the electrons can be considered 
as essentially free. 

Figure 2.22 illustrates this scattering process. Applying energy and momentum con-
servation, the following relations can be obtained. 

hv 
hv'=------

1 + y(l - cos 0) 

T=hv-hv'=hv y(1-cosO) 
1 + y(l-cos 0) 

2 
cosO = 1 - , 

(1 + y)2 tan21fJ+ 1 

o 
cot IfJ = (1 + y) tan - , 

2 

(2.106) 

where y = h vi me c2 . Other relations between the various variables may be found by 
substitution in the above formulae. 

hv 

Fig. 2.22. Kinematics of Comp-
ton scattering 

Note the dependence on the Z of the absorber: Z5
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Compton scattering
Q: can you draw the Feynman diagram for the Compton scattering ?
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Compton scattering
Q: can you draw a Feynman diagram for the Compton scattering ?
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Compton scattering
Applying momentum conservation, you get that the energy of the scattered photon and 
electrons are:
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hv 

Fig. 2.22. Kinematics of Comp-
ton scattering 

The cross section for this process 
can be computed in QED and it is 
given by the Klein-Nishina formula:

56 2. Passage of Radiation Through Matter 

The cross section for Compton scattering was one of the first to be calculated using 
quantum electrodynamics and is known as the Klein-Nishina formula: 

da 1 (1 2 () y2(1 - cos ()2 ) 

dQ = 2 [1 + y(l - cos ()]2 + cos + 1 + y(l - cos () , 
(2.107) 

where re is the classical electron radius. Integration of this formula over dQ, then, gives 
the total probability per electron for a Compton scattering to occur. 

ae = {1 +/ [2(1 + y) 
y _ 1+2y 

1 ] 1 1+3 Y } -In(l +2y) +-In(1 +2y)- 2' 
Y 2y (1 +2y) 

Figure 2.23 plots this total cross section as a function of energy. 
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Two useful quantities which can be calculated from the Klein-Nishina formula are 
the Compton scattered and Compton absorption cross sections. The Compton scatter-
ed cross section, as. is defined as the average fraction of the total energy contained in 
the scattered photon, while the absorption cross section, aa, is the average energy 
transferred to the recoil electron. Since the electron is stopped by the material, this is 
the average energy-fraction absorbed by the material in Compton scattering. Obvious-
ly, the sum must be equal to ae 

(2.109) 

To calculate as. we form 

da s h Vi da 
--=----, 
dQ hv dQ 

(2.110) 

which after integration yields 

s 2[ 1 1 (1 2) 2(1+y)(2y2-2y-l) 8 y2 ] a = nre - n + y + +. 
y3 y2(l+2y)2 3(l+2y)3 

(2.111) 

or integrated over the full solid angle:
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The electron is stopped 
by the material.

The energy of the photon 
cannot be totally transferred 
to the electron

Tmax = h⌫
2�

1 + 2�
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The absorption cross section can then be simply calculated by 

(2.112) 

Another formula which we will make use of very often when discussing detectors is 
the energy distribution of the Compton recoil electrons. By substituting into the Klein-
Nishina formula, one obtains 

do 
dT 

(2.113) 

where s = T Ih v. Figure 2.24 shows this distribution for several incident photon 
energies. The maximum recoil energy allowed by kinematics is given by 

1 +2y 
(2.114) 

[see (2.106)] and is known as the Compton edge. 

Thomson and Rayleigh Scattering. Related to Compton scattering are the classical pro-
cesses of Thomson and Rayleigh scattering. Thomson scattering is the scattering of 
photons by free electrons in the classical limit. At low energies with respect to the elec-
tron mass, the Klein-Nishina formula, in fact, reduces to the Thomson cross-section, 

8n 2 a=--re 
3 

(2.115) 

Rayleigh scattering, on the other hand, is the scattering of photons by atoms as a 
whole. In this process, all the electrons in the atom participate in a coherent manner. 
For this reason it is also called coherent scattering. 

In both processes, the scattering is characterized by the fact that no energy is trans-
ferred to the medium. The atoms are neither excited nor ionized and only the direction 
of the photon is changed. At the relatively high energies of x-rays and y-rays, Thomson 
and Rayleigh scattering are very small and for most purposes can be neglected. 

2.7.3 Pair Production 

The process of pair production involves the transformation of a photon into an elec-
tron-positron pair. In order to conserve momentum, this can only occur in the presence 
of a third body, usually a nucleus. Moreover, to create the pair, the photon must have 
at least an energy of 1.022 MeV. 

Theoretically, pair production is related to bremsstrahlung by a simple substitution 
rule, so that once the calculations for one process are made, results for the other imme-
diately follow. As for bremsstrahlung, the screening by the atomic electrons surround-
ing the nucleus plays an important role in pair production. The cross sections are thus 
dependent on the parameter [see (2.67)], which is now defined by 

100mec2hv 
E+E_Z1l3 

(2.116) 

with E + : total energy of outgoing positron; E _ : total energy of outgoing electron. 

hv = 0.5 MeV 

hv = 1.0 MeV 

hv = 1.5 MeV 

o 0.5 1 1.5 
Energy [MeV] 

Fig. 2.24. Energy distribution of 
Compton recoil electrons. The 
sharp drop at the maximum recoil 
energy is known as the Compton 
edge 
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Pair production
A photon producing an electron-positron pair in HEP is typically called a converted photon.

Q: can you draw the Feynman diagram for the pair production ?  
what is the energy threshold for this process ? 

Can it happen in vacuum ?
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Pair production
Q: can you draw the Feynman diagram for the pair production ?  

what is the energy threshold for this process ? 
At least twice the electron mass 

Can it happen in vacuum ? 
No because of energy momentum conservation

tim
e
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Pair production
A photon producing an electron-positron pair in HEP is typically called a converted photon.

102r-----------, 

58 2. Passage of Radiation Through Matter 

At extreme relativistic energies and arbitrary screening, a Born approximation cal-
culation gives the formula 

dT= 4Z2r2a dE+ {(E 2 +E:) 
e (h v)3 + 4 3 

+ E+E_ -+Inz-/(Z)]} (2.117) 

where !p! and !P2 are the screening functions used in (2.69) and the other variables are as 
defined in (2.68). 

As before, this formula simplifies in the limiting cases of no screening and complete 
screening. Thus for no screening we obtain 

[In 2E+E_ 21 -/(Z)] , 
(h v) hvmec2 

(2.118) 

while for complete screening, 

Because of the Born approximation, these formulae are not very accurate for high Z 
or low energy. A more complicated formula valid for low energies and no screening has 
been derived by Bethe and Heitler and is given in the article by Bethe and Ashkin [2.10] 
along with a somewhat simpler formula from Hough. 

To obtain the total pair production cross section, a numerical integration of the 
above expressions must generally be performed. In the case of no screening with 
mec2 <t, h v <t, 137 mec2 Z - 1/3, an analytic integration is possible yielding 

2 2 [7 ( 2h v ) 109] Tpair=4Z are - In--2 -/(Z) --- . 
9 mec 54 

(2.120) 

Similarly for complete screening, h v 137 me c2 Z -1/3, 

(2.121) 

For all other cases, a numerical integration of (2.117) must be performed. Figure 2.25 
illustrates the energy dependence of the total pair cross section. 

As for bremsstrahlung, pair production may also occur in the field of an atomic 
electron. Not surprisingly, a similar result is obtained for the cross section, but smaller 
by about a factor Z. To approximately account for this interaction, then, one need only 
replace Z2 by Z(Z + 1) in the above formulae. 

1 10 100 From the total cross section, it is interesting to calculate the mean free path, Apain 
Energy [MeV] of a y-ray for pair production. Thus, using (2.121) 

Fig. 2.25. Pair production cross 
section in lead 11 Apair = NTpair =:: f 4Z(Z + a[ln(183 Z -1/3) - /(Z)] , (2.122) 

The pair production raises steeply above twice the 
electron mass and it is practically flat above 1 GeV. 

The probability for a photon “to convert” is:

24 33. Passage of particles through matter

Figure 33.17: Probability P that a photon interaction will result in conversion to
an e+e− pair. Except for a few-percent contribution from photonuclear absorption
around 10 or 20 MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon attenuation length
λ (Fig. 33.16), the probability that a given photon will produce an electron pair
(without first Compton scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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The probability distribution for the energy of the 
outgoing electron wrt the energy of the converting 
photon is almost flat at low energy while it peaks 
at 0/1 at very high energies

The conversion probability in the nuclear electric field is 
at least one order of magnitude larger than in the 
electron field (the ratio depends on the materials)

33. Passage of particles through matter 25

The increasing domination of pair production as the energy increases is shown in
Fig. 33.17. Using approximations similar to those used to obtain Eq. (33.30), Tsai’s
formula for the differential cross section [43] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k is the fractional
energy transfer to the pair-produced electron (or positron), and k is the incident photon
energy. The cross section is very closely related to that for bremsstrahlung, since the
Feynman diagrams are variants of one another. The cross section is of necessity symmetric
between x and 1 − x, as can be seen by the solid curve in Fig. 33.18. See the review by
Motz, Olsen, & Koch for a more detailed treatment [53].

Eq. (33.32) may be integrated to find the high-energy limit for the total e+e−

pair-production cross section:
σ = 7

9 (A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to energies as low as
1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high energies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of quantum mechanical
interference between amplitudes from different scattering centers. Since the longitudinal
momentum transfer to a given center is small (∝ k/E(E − k), in the case of
bremsstrahlung), the interaction is spread over a comparatively long distance called the
formation length (∝ E(E− k)/k) via the uncertainty principle. In alternate language, the
formation length is the distance over which the highly relativistic electron and the photon
“split apart.” The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically based on the average
multiple scattering, or more rigorously using a quantum transport approach [45,46].

In amorphous media, bremsstrahlung is suppressed if the photon energy k is less than
E2/(E + ELPM ) [46], where*

ELPM =
(mec2)2αX0

4π!cρ
= (7.7 TeV/cm) ×

X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The energy-weighted
bremsstrahlung spectrum for lead, k dσLPM/dk, is shown in Fig. 33.12. With appropriate
scaling by X0/ρ, other materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM . The pair-production
cross sections for different photon energies are shown in Fig. 33.18.

If k $ E, several additional mechanisms can also produce suppression. When the
formation length is long, even weak factors can perturb the interaction. For example,
the emitted photon can coherently forward scatter off of the electrons in the media.

* This definition differs from that of Ref. 54 by a factor of two. ELPM scales as the 4th
power of the mass of the incident particle, so that ELPM = (1.4 × 1010 TeV/cm) × X0/ρ
for a muon.
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E =energy of the e-(e+) 
k = photon energy

P=1- e-7/9 x/X0

The e+e- tracks are parallel at the conversion vertex,  
because of  the massless photon. For any decay of  
massive particles there is a finite angle between  
the decay products.
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Photon interactions
Total absorption coefficient i.e. putting it all together

22 33. Passage of particles through matter
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Figure 33.15: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes [51]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [52].
In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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With this you then compute 
the attenuation as:
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energy particles by absorbing the electromagnetic cascades which are induced in the 
bulk of the detector. The materials used in the calorimeter, their size and mass are thus 
determined by the energy loss characteristics of the shower. To absorb a 30 GeV shower 
in iron, for example, would require greater than 20 radiation lengths (or better than 
35 cm of solid iron) as can be seen from Fig. 2.26. Not surprisingly calorimeters are 
among the most complicated and the largest used in particle physics experiments. More 
information on these specialized devices may be found in [2.40, 41]. 

2.7.5 The Total Absorption Coefficient and Photon Attenuation 

The total probability for a photon interaction in matter is the sum of the individual 
cross sections outlined above. If we calculate the cross-section per atom, this yields 

(2.132) 

where we have multiplied the Compton cross-section by Z to take into account the Z 
electrons per atom. This is shown in Fig. 2.29 for the case of lead. If we now multiply a 
by the density of atoms, N, we then obtain the probability per unit length for an inter-
action, 

(2.133) 

with Na: Avogadro's Number; p: density of the material; A: molecular weight. 
This is more commonly known as the total absorption coefficient and is just the in-

verse of the mean free path of the photon. From (2.12), then, it follows that the frac-
tion of photons surviving a distance x is then 

IlIa = exp( - /1x) , (2.134) 

where 10 is the incident intensity. 
For compounds and mixtures, the total absorption coefficient may be calculated us-

ing Bragg's rule (2.38), 
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Electromagnetic Showers
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Electro-magnetic showers
The combined effect of photon pair production and electron bremsstrahlung creates the 
so called electromagnetic showers. 

The shower can be initiated by either a photon or an electron. 

The process continues until the energy of the electron-positron pairs drops below the 
critical energy. At that point the electrons will lose their energy mostly by collisions instead 
of bremsstrahlung  and the shower dies out.

Q: how deep is a shower created by a 10 GeV photon wrt a 100GeV photons ? 
Can you build a simple model for it ?
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Simple shower model
Q: how deeper is a shower created by a 10 GeV photon wrt a 100GeV photons ? 

Can you build a simple model for it ?
Begin with a photon of energy E0 
On average after 1 X0 the photon will convert into an e+e- pair. 
                                    Total 2 particles each  with energy E0/2  
                    after 2 X0 the e+ and e- will both emit a photon with half the energy of the 
                                    initial particle 
                                    Total 4 particles: 2 photons, e+ e- each with energy E0/4 
                    after 3 X0 the photons will have converted into other e+e- pairs and the  
                                   original pair emitted other 2 photons 
                                   Total 4 particles: 4 photons, 2e+ 2e- each with energy E0/8 

                  … 
After n X0 the number of particles will be N = 2n each with energy E0/2n 

Assume the shower stops when E0/2nmax = Ec then  
nmax = ln (E0/Ec) / ln (2) 

and the maximum number of particle produced is Nmax ~ E0/Ec 

The depth of a shower grows logarithmically with the energy of the incident particle.
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To have a better description of the electromagnetic shower we need to use Monte Carlo 
techniques. 

To understand what is a Monte Carlo let’s write a simple piece of pseudo-code for a photon 
initiated em-shower: 
- set the energy of the incident photon 
- slice the target in portions on depth dx: dx1…dxN (this is the granularity of the 

description) 

for i =1..N: 
for each photon: 

- compute the probability Pc for a photon to convert in dxi. 
- throw a random number x in [0,1] 

- if x > Pc: 
- add an electron positron pair in the list of particles 
- throw a random number in [0,1] and assign the electron energy as Egamma*x and for the positron 

Egamma(1-x) 
for each electron / positron: 

- compute the probability Pb to emit a bremsstrahlung of energy Eb 
- throw a random number x in [0,1] 
- if x > Pb: 

- add a photon to the list with energy Eb 

The use of random numbers allows to bring in the probabilistic component.

Electro-magnetic showers
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Electromagnetic showers

33. Passage of particles through matter 27

33.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates
an electromagnetic cascade as pair production and bremsstrahlung generate more
electrons and photons with lower energy. The longitudinal development is governed by
the high-energy part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy, and then dissipate
their energy by ionization and excitation rather than by the generation of more shower
particles. In describing shower behavior, it is therefore convenient to introduce the scale
variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy in units of critical
energy.

0.000

0.025

0.050

0.075

0.100

0.125

0

20

40

60

80

100

(1
/

E
0
)d

E
/

d
t

t = depth in radiation lengths

N
u

m
b

er
 c

ro
ss

in
g
 p

la
n

e

30 GeV electron�
incident on iron

Energy

Photons�
× 1/6.8

Electrons

0 5 10 15 20

Figure 33.20: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the
curve is a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X0/2 intervals
(scale on right) and the squares the number of photons with E ≥ 1.5 MeV crossing
the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles from an EGS4 [57] simulation of a 30 GeV electron-induced
cascade in iron are shown in Fig. 33.20. The number of particles crossing a plane (very
close to Rossi’s Π function [2]) is sensitive to the cutoff energy, here chosen as a total
energy of 1.5 MeV for both electrons and photons. The electron number falls off more
quickly than energy deposition. This is because, with increasing depth, a larger fraction
of the cascade energy is carried by photons. Exactly what a calorimeter measures depends
on the device, but it is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov detectors and other
devices with “thick” sensitive regions it is closer to the energy deposition (total track
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material. Electron energies eventually fall below the critical energy, and then dissipate
their energy by ionization and excitation rather than by the generation of more shower
particles. In describing shower behavior, it is therefore convenient to introduce the scale
variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy in units of critical
energy.
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Figure 33.20: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the
curve is a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X0/2 intervals
(scale on right) and the squares the number of photons with E ≥ 1.5 MeV crossing
the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles from an EGS4 [57] simulation of a 30 GeV electron-induced
cascade in iron are shown in Fig. 33.20. The number of particles crossing a plane (very
close to Rossi’s Π function [2]) is sensitive to the cutoff energy, here chosen as a total
energy of 1.5 MeV for both electrons and photons. The electron number falls off more
quickly than energy deposition. This is because, with increasing depth, a larger fraction
of the cascade energy is carried by photons. Exactly what a calorimeter measures depends
on the device, but it is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov detectors and other
devices with “thick” sensitive regions it is closer to the energy deposition (total track
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length). In such detectors the signal is proportional to the “detectable” track length Td,
which is in general less than the total track length T . Practical devices are sensitive to
electrons with energy above some detection threshold Ed, and Td = T F (Ed/Ec). An
analytic form for F (Ed/Ec) obtained by Rossi [2] is given by Fabjan in Ref. 58; see also
Amaldi [59].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade
is reasonably well described by a gamma distribution [60]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(33.36)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower profiles in elements
ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy
deposition profiles are well described by Eq. (33.36) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (33.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced
cascades. To use Eq. (33.36), one finds (a − 1)/b from Eq. (33.37) and Eq. (33.35), then
finds a either by assuming b ≈ 0.5 or by finding a more accurate value from Fig. 33.21.
The results are very similar for the electron number profiles, but there is some dependence
on the atomic number of the medium. A similar form for the electron number maximum
was obtained by Rossi in the context of his “Approximation B,” [2] (see Fabjan’s review
in Ref. 58), but with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.
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Figure 33.21: Fitted values of the scale factor b for energy deposition profiles
obtained with EGS4 for a variety of elements for incident electrons with
1 ≤ E0 ≤ 100 GeV. Values obtained for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized, since b depends
upon both Z and incident energy, as shown in Fig. 33.21. As a corollary of this
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When describing the evolution of an electro-magnetic shower we usually use two scale 
variables: depth in radiation length and energy in terms of critical energy

The shower (after the first couple of 
radiation lengths) can be parametrised by:

The depth at which the maximum energy 
is deposited (shower max) is:

Simulation

where Cj = -0.5 (+0.5) for electron(photon) 
initiated showers

[to use (1), one finds (a − 1)/b from (2), then finds a either 
by assuming b ≈ 0.5 or by finding a more accurate value 
from tabulated data] 

(1)

(2)
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Electromagnetic showers
The transversal development of an em-shower can be described by the Moliere radius:

33. Passage of particles through matter 29

Z dependence, the number of electrons crossing a plane near shower maximum is
underestimated using Rossi’s approximation for carbon and seriously overestimated for
uranium. Essentially the same b values are obtained for incident electrons and photons.
For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and electrons is somewhat
greater than at lower energies since the first or first few interaction lengths are increased
via the mechanisms discussed above.

The gamma function distribution is very flat near the origin, while the EGS4 cascade
(or a real cascade) increases more rapidly. As a result Eq. (33.36) fails badly for about
the first two radiation lengths; it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (33.36) should be used only in applications
where average behavior is adequate. Grindhammer et al. have developed fast simulation
algorithms in which the variance and correlation of a and b are obtained by fitting
Eq. (33.36) to individually simulated cascades, then generating profiles for cascades using
a and b chosen from the correlated distributions [61].

The transverse development of electromagnetic showers in different materials scales
fairly accurately with the Molière radius RM , given by [62,63]

RM = X0 Es/Ec , (33.38)

where Es ≈ 21 MeV (Table 33.1), and the Rossi definition of Ec is used.
In a material containing a weight fraction wj of the element with critical energy Ecj

and radiation length Xj , the Molière radius is given by

1

RM
=

1

Es

∑ wj Ecj

Xj
. (33.39)

Measurements of the lateral distribution in electromagnetic cascades are shown in
Refs. 62 and 63. On the average, only 10% of the energy lies outside the cylinder with
radius RM . About 99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails. The distributions
are characterized by a narrow core, and broaden as the shower develops. They are often
represented as the sum of two Gaussians, and Grindhammer [61] describes them with the
function

f(r) =
2r R2

(r2 + R2)2
, (33.40)

where R is a phenomenological function of x/X0 and lnE.
At high enough energies, the LPM effect (Sec. 33.4.6) reduces the cross sections

for bremsstrahlung and pair production, and hence can cause significant elongation of
electromagnetic cascades [46].

October 1, 2016 19:59

where Es = 21 MeV and Ec is the critical energy. 
For mixtures and compound materials you can use again the Bragg additivity.
About 90% of the em-shower energy is contained within 1 RM and 99% within 3.5 RM.
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Fig. 2.28. Transverse energy loss pro-
files for a 1 Ge V shower at various 
depths in Pb (from [2.40]) 
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energy particles by absorbing the electromagnetic cascades which are induced in the 
bulk of the detector. The materials used in the calorimeter, their size and mass are thus 
determined by the energy loss characteristics of the shower. To absorb a 30 GeV shower 
in iron, for example, would require greater than 20 radiation lengths (or better than 
35 cm of solid iron) as can be seen from Fig. 2.26. Not surprisingly calorimeters are 
among the most complicated and the largest used in particle physics experiments. More 
information on these specialized devices may be found in [2.40, 41]. 

2.7.5 The Total Absorption Coefficient and Photon Attenuation 

The total probability for a photon interaction in matter is the sum of the individual 
cross sections outlined above. If we calculate the cross-section per atom, this yields 

(2.132) 

where we have multiplied the Compton cross-section by Z to take into account the Z 
electrons per atom. This is shown in Fig. 2.29 for the case of lead. If we now multiply a 
by the density of atoms, N, we then obtain the probability per unit length for an inter-
action, 

(2.133) 

with Na: Avogadro's Number; p: density of the material; A: molecular weight. 
This is more commonly known as the total absorption coefficient and is just the in-

verse of the mean free path of the photon. From (2.12), then, it follows that the frac-
tion of photons surviving a distance x is then 

IlIa = exp( - /1x) , (2.134) 

where 10 is the incident intensity. 
For compounds and mixtures, the total absorption coefficient may be calculated us-

ing Bragg's rule (2.38), 

Transverse energy profiles 
for 1 GeV shower in lead, 
taken at different depths



Mauro Donegà 183

Hadronic showers



Mauro Donegà 184

Hadronic showers
Another cascade phenomenon is the production of hadronic showers. 
The incident particle interacts through the strong force or electromagnetically with a 
nucleus creating hadrons and photons in the final state.

http://inspirehep.net/record/1416209/files/Hadron-Shower.png

The hadronic shower has a more complicated  
behaviour than an em shower. Typically we describe 
the total cross section as: 

σtot = σelastic + σinelastic 

The inelastic cross section is modelled by the 
nuclear interaction length: λI = A/(NA ρ σinelastic) 
which play the same role as the electromagnetic 
interaction length 

Hadronic showers tend to have a more complex 
shape than em showers

Because of the production of neutral pions (which decay to 2 photons) showers will always 
have an electromagnetic component.
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Hadronic showers

(more about hadronic showers later in the course)
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Cherenkov radiation
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Cherenkov radiation
Cherenkov radiation is emitted by charged particles travelling faster than the speed of 
light in a material. If the refraction index of the material is n:

2.3 Cherenkov Radiation 35 

2.3 Cherenkov Radiation 

Cherenkov radiation arises when a charged particle in a material medium moves faster 
than the speed of light in that same medium. This speed is given by 

[Jc = v = c/n (2.55) 

where n is the index of refraction and c is the speed of light in a vacuum. A particle 
emitting Cherenkov radiation must therefore have a velocity 

Vparticle> c/ n . (2.56) 

In such cases, an electromagnetic shock wave is created, just as a faster-than-sound air-
craft creates a sonic shock wave. This is illustrated in Fig. 2.9. The coherent wavefront 
formed is conical in shape and is emitted at a well-defined angle 

1 
cosec =--�

[In(w) 
(2.57) 

with respect to the trajectory of the particle. Note that this angle is dependent on the 
speed of the particle and the frequency of the emitted radiation. 

The simple description above, however, is valid for a particle traveling in an infinite 
radiating medium. A more realistic situation, of course, is when the particle traverses 
a finite thickness of material. To calculate the frequency and angular distribution of 
Cherenkov radiation in this case is somewhat more difficult, but only requires classical 
electrodynamics (see, for example, [2.1], Chap. 14). For a particle of charge ze moving 
uniformly in a straight line through a slab of material with thickness L, the energy 
radiated per unit frequency interval per solid angle is found to be 

d 2E 2 an [J2 . 2el wL sin¢(e)1 2 
--- = z - n sm ----"-:"""":'" 
dwdQ c 2n[Jc ¢(e) 

(2.58) 

where a, is the fine structure constant, n, the refractive index of the medium and 

wL 
¢(e)=-(1-[Jncose) . 

2[Jc 
(2.59) 

The term (sin ¢/02 may be recognized here as that describing Fraunhofer diffrac-
tion. 3 Cherenkov radiation is thus emitted in a pattern similar to diffraction, that is 
with a large peak centered at cos e = (fJ n) - 1 followed by smaller maxima. 4 

For L large compared to the wavelength of the emitted radiation, the sin ¢/ ¢ term, 
in fact, approaches the delta function J (1 - [J n cos e) which requires that the radiation 

3 For simplicity, we have limited ourselves to a calculation in two dimensions. In three dimensions, a Bessel 
function appears in the place of the sine term. 
4 If the radiation is being observed outside of the medium, one should not forget the effect of refraction. 
Radiation emitted at angle e in the medium will be observed at an angle ¢ outside the medium where 
sin ¢ = n sin e. We have assumed that the "outside" here is a vacuum and that the boundary between the 
two media is a plane perpendicular to the line of motion. Obviously, for n '" 1, there is not much difference. 

Fig. 2.9. Cherenkov radiation: an 
electromagnetic shock wave is 
formed when the particle travels 
faster than the speed of light in 
the same medium 

i.e. there is a velocity threshold for the light to be emitted that depends on n. 

Above that threshold the an electromagnetic shock wave (like the sonic boom) is 
created and a conical wavefront is emitted at a given angle
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Figure 1: Z resonance at ALEPH.

Exercise 2 [Cherenkov radiation] (PDG section 30.7)

a) Figure 2 shows a sketch of a typical Čerenkov wavefront. Suppose the particle travels from

O to A in t seconds. The radiation sent out while it is at O froms a spherical suface with

center at O and radius ct/n. The Čerenkov radiation wavefront which is tangent to all such

spherical surfaces is a conic surface . In the triangle AOB, OB=ct/n, OA=vt = �ct, and so

cos ✓ = OB/OA = 1/(n�).

A

B

O

θ

Figure 2: Graphical representation of the Čerenkov radiation.

b) As cos ✓ = 1/(n�), we require

� � 1

n
.

Q: where does the cosine comes from ?
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Cherenkov cone
Figure 1: Z resonance at ALEPH.

Exercise 2 [Cherenkov radiation] (PDG section 30.7)
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Figure 2: Graphical representation of the Čerenkov radiation.

b) As cos ✓ = 1/(n�), we require
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n
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Q: where does the cosine comes from ?
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Cherenkov radiation
Consider a particle of charge ze, incident on a piece of material of length L  
(simplified to a 2D problem) 

ze

L
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Fig. 2.9. Cherenkov radiation: an 
electromagnetic shock wave is 
formed when the particle travels 
faster than the speed of light in 
the same medium 

[derivation e.g. Ch.14 Jackson]

where
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with respect to the trajectory of the particle. Note that this angle is dependent on the 
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Cherenkov radiation
Integrating                       over the solid angle and frequencies and dividing by L
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we get to -dE/dx = 

36 2. Passage of Radiation Through Matter 

be emitted at the Cherenkov angle as given in (2.57). The threshold condition (2.56) 
then follows since fJ must be greater than 1 In in order for Be to be physically mean-
ingful. We thus recover the simple Cherenkov case outlined above. As L decreases, 
however, the sharp central band begins to widen, so that the radiation is spread out 
over a range of angles symmetrically centered around Be. Note also that, in general, 
n is a function of w so that the angle of emission is different for different frequencies. 
This also contributes to broadening if frequency is not considered. 

To find the energy emitted per unit path length, we integrate over the solid angle 
to obtain 

dE 2 an . 2 - - = z - wL sm Be 
dw c 

(2.60) 

Dividing by L and integrating over frequencies for which the condition fJ> 1In (w) is 
satisfied then yields 

(2.61) 

where we have assumed L large compared to the wavelength of the radiation emitted. 
The energy loss thus increases with fJ. However, even at relativistic energies, this loss 
is small compared to collision loss. Indeed, for condensed materials, the energy 
radiated is only on the order of ::::; 10- 3 MeV cm2 g - 1, which is negligible with respect 
to the collisional loss. For gases such as H2 or He, this is somewhat higher ranging 
from = 0.01- 0.2 MeV cm2 g-l, but is still quite small. We remark also that the 
Cherenkov energy loss comes out naturally when a correct calculation of the dEl dx 
formula is made, so that, in fact, it is already included in the Bethe-Bloch formula 
(2.27). 

The threshold requirement for the emission of Cherenkov radiation and the depen-
dence of the emission angle on particle velocity are properties which are particularly 
exploited by particle physicists in the form of Cherenkov counters. Such devices pro-
vide the most accurate measurement of particle velocities and are widely used in high-
energy physics experiments. General reviews of such counters, their design and con-
struction are given in [2.11]. 

Of interest for the design of these detectors is the number of photons emitted as 
a particle passes through the radiating medium. This can be found by dividing (2.60) 
by n wand L. The number of photons emitted per unit frequency per unit length of 
radiator is then, 

d 2N z 2a. 2 Z2 a ( 1) 
dwdx 1- fJ 2n 2(w) , (2.62) 

or, in terms of the wavelength 

(2.63) 

In most Cherenkov detectors, the Cherenkov radiation is generally detected by 
photomultipliers which convert the photons into an electrical current pulse (see 

The energy loss increases with β —> so we can use it to measure the speed of particles. 
Knowing the momentum and the velocity we can get to the mass: PID (as Bethe Bloch) 

The typical energy loss is of the order of 10-3 MeV cm2/g, i.e. order of permill compared 
to ionization in a solid, but that still corresponds to a huge number of photons emitted

We can compute the number of photons emitted per unit length by integrating  
dE/dΩdω and dividing by L and ħω
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In most Cherenkov detectors, the Cherenkov radiation is generally detected by 
photomultipliers which convert the photons into an electrical current pulse (see 

The typical devices used to detect Cherenkov radiations are photo-multipliers-tube (PMT) 
(—> see later in the course) which are sensitive to a range of wave length λ∈[350, 550]nm 

2.4 Energy Loss of Electrons and Positrons 37 

Chap. 8). A typical range of sensitivity for these devices (see Fig. 8.2, for example) is 
between 350 nm and 550 nm. Integrating (2.63) over A and evaluating at these limits 
then yields 

(2.64) 

which is not an enormous amount as one can see. 

2.4 Energy Loss of Electrons and Positrons 

Like heavy charged particles, electrons and positrons also suffer a collisional energy 
loss when passing through matter. However, because of their small mass an additional 
energy loss mechanism comes into play: the emission of electromagnetic radiation aris-
ing from scattering in the electric field of a nucleus (bremsstrahlung). Classically, this 
may be understood as radiation arising from the acceleration of the electron (or 
positron) as it is deviated from its straight-line course by the electrical attraction of the 
nucleus. At energies of a few MeV or less, this process is still a relatively small factor. 
However, as the energy is increased, the probability of bremsstrahlung quickly shoots 
up so that at a few lO's of MeV, loss of energy by radiation is comparable to or greater 
than the collision-ionization loss. At energies above this critical energy, bremsstrahlung 
dominates completely. 

The total energy loss of electrons and positrons, therefore, is composed of two 
parts: 

(2.65) 

2.4.1 Collision Loss 

While the basic mechanism of collision loss outlined for heavy charged particles is also 
valid for electrons and positrons, the Bethe-Bloch formula must be modified somewhat 
for two reasons. One, as we have already mentioned, is their small mass. The assump-
tion that the incident particle remains undeflected during the collision process is there-
fore invalid. The second is that for electrons the collisions are between identical 
particles, so that the calculation must take into account their indistinguishability. These 
considerations change a number of terms in the formula, in particular, the maximum 
allowable energy transfer becomes W max = 'Fe /2 where 'Fe is the kinetic energy of the 
incident electron or positron. If one redoes the calculation, the Bethe-Bloch formula 
then becomes 

dE 2 2 Z 1 [ r2(r+2) c] ---=2nNaremec p- -2 In 22 +F(r)-J-2- , 
dx A f3 2(I1mec) Z 

(2.66) 

where r is the kinetic energy of particle in units of me c2, 
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Most of the energy is emitted 
in the UV !
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Muon event: Cherenkov light in SuperKamiokande
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Cherenkov radiation

https://en.wikipedia.org/wiki/File:Advanced_Test_Reactor.jpg

Cherenkov light is mostly emitted in the 
UV (promptly adsorbed by water). 
What we see as blue is partly the “long” 
wavelength tail in the visible (UV—>blue)



Mauro Donegà 193

Transition radiation
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Transition Radiation
When an incident particle of charge ze crosses the boundary between two media with 
different refractive index it emits radiation. The energy of the photons emitted by a particle 
of charge ze crossing the boundary between vacuum and a medium with plasma 
frequency ωp is:

33. Passage of particles through matter 35

33.7.3. Transition radiation :

The energy radiated when a particle with charge ze crosses the boundary between
vacuum and a medium with plasma frequency ωp is

I = αz2γ!ωp/3 , (33.47)

where

!ωp =
√

4πNer3
e mec

2/α =
√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV . (33.48)

For styrene and similar materials, !ωp ≈ 20 eV; for air it is 0.7 eV.
The number spectrum dNγ/d(!ω diverges logarithmically at low energies and

decreases rapidly for !ω/γ!ωp > 1. About half the energy is emitted in the range
0.1 ≤ !ω/γ!ωp ≤ 1. Inevitable absorption in a practical detector removes the divergence.
For a particle with γ = 103, the radiated photons are in the soft x-ray range 2 to 40 keV.
The γ dependence of the emitted energy thus comes from the hardening of the spectrum
rather than from an increased quantum yield.

The number of photons with energy !ω > !ω0 is given by the answer to problem 13.15
in Ref. 33,

Nγ(!ω > !ω0) =
αz2

π

[

(

ln
γ!ωp

!ω0
− 1

)2

+
π2

12

]

, (33.49)

within corrections of order (!ω0/γ!ωp)2. The number of photons above a fixed
energy !ω0 ' γ!ωp thus grows as (ln γ)2, but the number above a fixed fraction
of γ!ωp (as in the example above) is constant. For example, for !ω > γ!ωp/10,
Nγ = 2.519 αz2/π = 0.59% × z2.

The particle stays “in phase” with the x ray over a distance called the formation
length, d(ω) = (2c/ω)(1/γ2 + θ2 + ω2

p/ω2)−1. Most of the radiation is produced in this
distance. Here θ is the x-ray emission angle, characteristically 1/γ. For θ = 1/γ the
formation length has a maximum at d(γωp/

√
2) = γc/

√
2 ωp. In practical situations it is

tens of µm.
Since the useful x-ray yield from a single interface is low, in practical detectors it

is enhanced by using a stack of N foil radiators—foils L thick, where L is typically
several formation lengths—separated by gas-filled gaps. The amplitudes at successive
interfaces interfere to cause oscillations about the single-interface spectrum. At increasing
frequencies above the position of the last interference maximum (L/d(w) = π/2), the
formation zones, which have opposite phase, overlap more and more and the spectrum
saturates, dI/dω approaching zero as L/d(ω) → 0. This is illustrated in Fig. 33.27 for a
realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for the intensity
have been obtained [88,89]. Although one might expect the intensity of coherent
radiation from the stack of foils to be proportional to N2, the angular dependence of the
formation length conspires to make the intensity ∝ N .
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saturates, dI/dω approaching zero as L/d(ω) → 0. This is illustrated in Fig. 33.27 for a
realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for the intensity
have been obtained [88,89]. Although one might expect the intensity of coherent
radiation from the stack of foils to be proportional to N2, the angular dependence of the
formation length conspires to make the intensity ∝ N .
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where

Properties: 
- energy of the photons is proportional to γ of the incident 

particle and typically in the X-ray range  
- angle of emission is proportional to 1/γ
- number of radiated photons is αz2. Because number of 

photons is so small (i.e. the probability to emit a TR 
photon is small), typically several interfaces are build 
using foils or fibres 

- TR is extremely faint: effectively only relevant for γ >1000 
particles 

polyethylene fibres



Mauro Donegà 195

From interactions to detectors
Now that you know how particles interact with matter you can understand how existing 
detectors work and invent your own. 

The general goal of a detector is to record the passage of (energy deposited by) a 
particle by one or more of the previous mechanisms. The data will subsequently be 
analysed to gain information about the incident  particle. 

There is a huge number of different detectors. They can be roughly divided into: 
- simple counters (no energy (just energy above a threshold), no position) 
- position sensitive (position no energy) 

- in a magnetic field we can extract the momentum 
- calorimeters (energy no position) 

- segmented calorimeter can arrive up to an “image” of the energy deposited 
Combining momentum of a particle and its speed we can get to Particle identification 

Detectors can be single units or composed by several sub-detectors. In latter case they 
are ordered: 
- first tracking device which do not affect much the energy momentum of the particle 
- then calorimeters which will stop the particle starting from the less penetrating 
- then catch what penetrates the calorimeters 

We will study various detector types when we will encounter them in the papers.
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’11 cloud chambers Wilson 
’28 Geiger tubes 
’29 Coincidence Bothe 
’34 PhotoMultipliers 
’37 Nuclear emulsions 
’52 Bubble chambers 
’68 Multiwire Proportional chambers 
’71 Drift Chambers 
’74 Time Projection Chambers 
’83 Silicon Strips / Pixels

Detectors timeline
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