Elektrodynamik

Vorlesungsskript

ETH Zürich, 2024 FS

PROF. N. BEISERT

© 2014–2024 Niklas Beisert.

Dieses Dokument sowie seine Teile sind urheberrechtlich geschützt. Dieses Werk ist lizensiert unter der Creative Commons Lizenz "Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International" (CC BY-SA 4.0).

Die Lizenz kann eingesehen werden unter: https://creativecommons.org/licenses/by-sa/4.0/.

Die aktuelle Version dieses Werks befindet sich unter: http://people.phys.ethz.ch/~nbeisert/lectures/.

Inhaltsverzeichnis

Inhaltsverzeichnis 3						
Ei	nfüh	rung	6			
	0.1	Historisches	6			
	0.2	Übersicht	7			
	0.3	Inhalt	8			
	0.4	Literatur	8			
	0.5	Dank	8			
Т	St	atik	т			
-			-			
1	Gru	ındlagen der Elektrostatik	1.1			
	1.1	Grundbegriffe	1.1			
	1.2	Das elektrostatische Potential	1.5			
	1.3	Energie des elektrostatischen Feldes	1.7			
	1.4	Beispiele	1.9			
2	Rar	ndwertprobleme der Elektrostatik	2.1			
	2.1	Formulierung und Eindeutigkeit	2.1			
	2.2	Greensche Funktionen	2.3			
	2.3	Beispiele	2.8			
	2.4	Konforme Symmetrie	2.13			
3	Ele	ktrostatik in Kugelkoordinaten	3.1			
	3.1	Separation der Variablen	3.1			
	3.2	Kugelkoordinaten	3.2			
	3.3	Kugelflächenfunktionen	3.3			
	3.4	Orthogonalität und Vollständigkeit	3.7			
	3.5	Multipolentwicklung	3.8			
	3.6	Darstellungen der Rotationsgruppe 3	5.11			
4	Ma	gnetostatik	4.1			
	4.1	Grundlagen	4.1			
	4.2	Feldgleichungen	4.3			
	4.3	Vektorpotential	4.6			
	4.4	Magnetisches Moment	4.8			
5	Ele	ktro- und Magnetostatik in Materie	5.1			
-	5.1	Makroskopische Felder	5.1^{-}			
	5.2	Dielektrika	5.2			

	$5.3 \\ 5.4$	Grenzflächen von Dielektrika	$5.5 \\ 5.7$
II	D	ynamik	II
6	Ma	xwell-Gleichungen	6.1
	6.1	Bewegte Punktladungen	6.1
	6.2	Faradaysches Induktionsgesetz	6.2
	6.3	Maxwellsche Ergänzung	6.3
	6.4	Elektromagnetische Potentiale	6.5
7	Stro	omkreise	7.1
	7.1	Induktivitäten	7.1
	7.2	Stromkreise	7.3
	7.3	Schwingkreis	7.6
	7.4	Wechselstrom	7.8
8	Erh	altungsgrössen und Symmetrien	8.1
	8.1	Ladungserhaltung	8.1
	8.2	Energie und Impuls	8.1
	8.3	Symmetrien	8.4
	8.4	Galilei-Transformation	8.4
	8.5	Elektromagnetische Dualität	8.7
II	II	Relativitätstheorie	III
II 9	I] Spe	Relativitätstheorie zielle Relativitätstheorie	III 9.1
II 9	I] Spe 9.1	Relativitätstheorie zielle Relativitätstheorie Poincaré-Transformationen	III 9.1 9.1
II 9	I Spe 9.1 9.2	Relativitätstheorie zielle Relativitätstheorie Poincaré-Transformationen	III 9.1 9.5
11 9	I Spe 9.1 9.2 9.3	Relativitätstheorie ezielle Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik	JII 9.1 9.5 9.7
11 9	I Spe 9.1 9.2 9.3 9.4	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen	III 9.1 9.5 9.7 9.12
11 9 1\	I] 9.1 9.2 9.3 9.4	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung	III 9.1 9.5 9.7 9.12 IV
II 9 IV 10	I] 9.1 9.2 9.3 9.4 7 V Lös	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung	 III 9.1 9.5 9.7 9.12 IV 10.1
II 9 IV 10	I] Spe 9.1 9.2 9.3 9.4 / V Lös 10.1	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung	 III 9.1 9.5 9.7 9.12 IV 10.1 10.1
II 9 IV 10	I] 9.1 9.2 9.3 9.4 / V Lös 10.1 10.2	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen	 III 9.1 9.5 9.7 9.12 IV 10.1 10.2
II 9 IV 10	I] Spe 9.1 9.2 9.3 9.4 / V Lös 10.1 10.2 10.3	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung Imgen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation	 III 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5
II 9 IV 10	I] Spe 9.1 9.2 9.3 9.4 / Lös 10.1 10.2 10.3 10.4	Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation Energietransport	 III 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8
II 9 IV 10	I] 9.1 9.2 9.3 9.4 / Lös 10.1 10.2 10.3 10.4 10.5	Relativitätstheorie vzielle Relativitätstheorie Poincaré-Transformationen Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung Preie Wellengleichung Freie Wellengleichung Polarisation Energietransport Weitere Wellenlösungen	III 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8 10.10
II 9 IV 10	I] Spe 9.1 9.2 9.3 9.4 / Lös 10.1 10.2 10.3 10.4 10.5 Erz	Relativitätstheorie vzielle Relativitätstheorie Poincaré-Transformationen Tensoren Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation Energietransport Weitere Wellenlösungen	 III 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8 10.10 11.1
<pre>II 9 IV 10 11</pre>	I] Spe 9.1 9.2 9.3 9.4 / V Lös 10.1 10.2 10.3 10.4 10.5 Erz 11.1	Relativitätstheorie zzielle Relativitätstheorie Poincaré-Transformationen Tensoren Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation Weitere Wellenlösungen	 III 9.1 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8 10.10 11.1 11.1
II 9 IV 10	I] Spe 9.1 9.2 9.3 9.4 / V Lös 10.1 10.2 10.3 10.4 10.5 Erz/ 11.1 11.2	Relativitätstheorie vzielle Relativitätstheorie Poincaré-Transformationen Tensoren Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation Energietransport Weitere Wellenlösungen Greensche Funktionen	 III 9.1 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8 10.10 11.1 11.4
<pre>II 9 IV 10 11</pre>	I] Spe 9.1 9.2 9.3 9.4 / Lös 10.1 10.2 10.3 10.4 10.5 Erz 11.1 11.2 11.3	Relativitätstheorie zzielle Relativitätstheorie Poincaré-Transformationen Tensoren Tensoren Kovariante Elektrodynamik Geladene Teilchen Wellen und Strahlung ungen der freien Wellengleichung Freie Wellengleichung Ebene Wellen Polarisation Energietransport Weitere Wellenlösungen Weitere Funktionen Greensche Funktionen Strahlung oszillierender Ströme	<pre>III 9.1 9.1 9.5 9.7 9.12 IV 10.1 10.2 10.5 10.8 10.10 11.1 11.4 11.7</pre>

11.4 Lineare Antenne	14
11.5 Beschleunigte Punktladungen	15
12 Elektrodynamik mit Materie 12.	.1
12.1 Wellen im Medium $\ldots \ldots 12$.1
12.2 Reflexion und Brechung 12.	.2
12.3 Streuung an Materie 12.	.8
13 Wellenleiter 13.	.1
13.1 Wellen in Leitern \ldots	.1
13.2 Wellenleiter \ldots	.2
13.3 Kavitäten $\ldots \ldots 13.1$	10
14 Wellenoptik 14.	.1
14.1 Kirchhoffsche Beugungstheorie	.1
14.2 Interferenz und Huygens-Prinzip	.3
14.3 Fraunhofer- und Fresnel-Beugung 14	.4
V Anhang	V
Index	9

Plan der Vorlesungen	14
i lan der vorlebungen	11

0 Einführung

Herzlich willkommen zur Theorie der Elektrodynamik! Beginnen wir mit einem kurzen historischen Überblick.

0.1 Historisches

Einzelne Phänomene der Elektrodynamik sind bereits in der Antike bekannt und wurden benutzt, zum Beispiel:

- Magnete Kompass,
- elektrostatische Aufladung Bernstein,
- Licht Optik.

Die wissenschaftliche Auseinandersetzung beginnt um 1600 mit dem allmählichen Verständnis von magnetischen und elektrischen Ladungen, Strömen, Kräften und vor allem Phänomenen der Optik.

Zwischen 1800 und 1900 setzt die industrielle Nutzung von elektrischem Strom ein mit Batterien (galvanischen Zelle), Generatoren, Motoren, Glühlampen und Signalübertragung. Gleichzeitig wird das wissenschaftliche Verständis zwischen 1800 und 1850 verfeinert und es bilden sich geeignete Modelle heraus.

Um 1860 bis 1870 stellt James Clerk Maxwell eine vollständige Theorie auf, die sowohl die elektrischen und magnetischen Phänomene beschreibt, als auch die Ausbreitung von elektromagnetischen Wellen – Licht. Ein erstaunliches Element dieser Theorie ist, dass sie einen neuen Term postuliert, der in der damaligen Praxis sehr kleine Beiträge liefert und noch nicht experimentell motiviert war. Er ist allerdings sehr wichtig für die Konsistenz der Gleichungen und für die Beschreibung elektromagnetischer Wellen.

Maxwell konnte so auf theoretischer Ebene einige vormals lediglich verwandte Phänomene vereinigen und letztlich auch viele neue Vorhersagen ermöglichen.

Die Elektrodynamik ist neben der Mechanik und der Thermodynamik einer der Pfeiler des klassischen Physik. Dieser Teil der Physik beschreibt Alltagsphänomene; insbesondere sei die Optik erwähnt, die auf der Elektrodynamik beruht. Die Elektrodynamik ist aber auch der Anknüpfungspunkt zur modernen Physik, welche weniger intuitive Beobachtungen beschreibt, nämlich die spezielle Relativitätstheorie und die Quantenmechanik.

Die (spezielle) Relativitätstheorie nimmt eine der besonderen Eigenschaften der Elektrodynamik – die Universalität der Lichtgeschwindigkeit – und weitet sie ohne Rücksicht auf Verluste auf alle Bereiche der Mechanik und der Physik aus.

Die Quantenmechanik kann man als eine Theorie von Wellen auffassen, welche die elektromagnetischen Wellen des Lichts verallgemeinern auf alle Formen der Materie. Insofern stellt die theoretische Beschreibung der Elektrodynamik viele Bausteine zur Verfügung, die später in der Relativitätstheorie und der Quantenmechanik benötigt werden. Sie ist somit eine wichtige Grundlage für die Teilchenphysik, Quantenoptik und praktisch alle anderen Teilbereiche der Physik.

0.2 Übersicht

Die Vorlesung besteht grob aus vier Teilen:

- I Statik: Elektrische und magnetische Kräfte, Raum mit drei Dimensionen, vor Maxwell (ca. 5 Wochen)
- II Dynamik: Elektromagnetische Kräfte, Raum mit drei Dimensionen plus Zeit, Maxwell (ca. 2 Wochen)
- III Relativitätstheorie: Raumzeit mit vier Dimensionen, nach Maxwell, Einstein (ca. 1 Woche)
- IV Wellen und Strahlung: Wellenlösungen, Erzeugung, Transport, Interaktion mit Materie (ca. 5 Wochen)

Was werden Sie lernen? Vor allem werden Sie natürlich die Theorie des Elektromagnetismus lernen. Sie werden sehen, dass dies eine Fortsetzung der Mechanik ist, in der Sie gelernt haben, die Dynamik von Körpern mit endlich vielen Freiheitsgraden theoretisch zu beschreiben. In der Elektrodynamik geht es hauptsächlich um Felder. Im Gegensatz zu Körpern haben Felder unendlich viele Freiheitsgrade. Sie werden dabei vielen neuen theoretischen und mathematischen Konzepten begegnen:

- Felder, Vektoranalysis
- Partielle Differentialgleichungen
- Randwertprobleme
- Greensche Funktionen
- Distributionen; delta-Funktion, etc.
- Fourier-Transformationen
- Symmetrien
- Redundante Beschreibungen in der Physik
- Raumzeit, Geometrie

Viele der Themen werden ihnen aus Vorlesungen zu mathematischen Methoden der Physik bekannt vorkommen. Hier werden sie vielleicht weniger detailliert, in physikalischer Notation und mit Anwendungsbeispielen behandelt werden.

Die Elektrodynamik ist zum theoretischen Verständnis vieler Prozesse nötig, beispielsweise:

- Signalübertragung, Schaltkreise, Energietransport
- Optik, Wellen, Vorbereitung zur Quantenmechanik
- Fernwirkung vs. Lokalität in der Physik, Kausalität
- Baustein im Verständnis der klassischen Welt.

0.3 Inhalt

	Teil I: Statik	
1.	Grundlagen der Elektrostatik	(160 Minuten)
2.	Randwertprobleme der Elektrostatik	(180 Minuten)
3.	Elektrostatik in Kugelkoordinaten	(195 Minuten)
4.	Magnetostatik	(130 Minuten)
5.	Elektro- und Magnetostatik in Materie	(85 Minuten)
	Teil II: Dynamik	
6.	Maxwell-Gleichungen	(85 Minuten)
7.	Stromkreise	(85 Minuten)
8.	Erhaltungsgrössen und Symmetrien	(90 Minuten)
	Teil III: Relativitätstheorie	
9.	Spezielle Relativitätstheorie	(180 Minuten)
	Teil IV: Wellen und Strahlung	
10.	Lösungen der freien Wellengleichung	(145 Minuten)
11.	Erzeugung elektromagnetischer Wellen	(310 Minuten)
12.	Elektrodynamik mit Materie	(145 Minuten)
13.	Wellenleiter	(140 Minuten)
14.	Wellenoptik	(75 Minuten)

Vermerkt ist die ungefähre Vorlesungsdauer der Kapitel in Minuten. Insgesamt besteht der Kurs aus 49 Vorlesungen von je 45 Minuten.

0.4 Literatur

Standardthema, viele gute Optionen, je nach Geschmack. Zwei Beispiele zur Orientierung:

- W. Nolting: Grundkurs Theoretische Physik 3 Elektrodynamik, Springer, 8. Auflage, E-Book
- J. D. Jackson: Classical Electrodynamics, 1st edition

0.5 Dank

Ich danke Herrn Jonas Eschle für eine Liste von Korrekturen und Verbesserungsvorschläge zu einer früheren Version dieses Skripts.

Teil I

Statik

1 Grundlagen der Elektrostatik

Im ersten Teil der Vorlesung beschäftigen wir uns mit statischen, d.h. zeitunabhängigen Phänomenen elektrischer Ladungen und magnetischer Materialien. Zunächst führen wir die Grundbegriffe der Elektrostatik ein und diskutieren einige elementare Beispiele.

1.1 Grundbegriffe

- elektrische Ladung
- Coulomb-Gesetz
- elektrische Feldkonstante
- elektrisches Feld
- kontinuierliche Ladungsverteilungen
- Satz von Gauß
- delta-Funktion

Coulomb-Gesetz. Elektrische Ladung ist eine Eigenschaft von Materie, die dazu führt, dass sich zwei von einander entfernte Gegenstände anziehen oder abstossen. Hier in der Statik beschränken wir uns auf ruhende Gegenstände; später in der Dynamik lernen wir zusätzliche Kräfte für bewegte Ladungen kennen. Für zwei (nahezu) punktförmige Ladungen an den Orten x_1 und x_2 gilt (experimentell ermittelt) das *Coulomb-Gesetz*. Es besagt, dass die Kraft, die auf die Ladungen wirkt, wie folgt beschrieben ist:

- proportional zum Produkt der elektrischen Ladungen $q_1, q_2,$
- entlang der Verbindungslinie der Punkte ausgerichtet,
- proportional zum Abstandsbetrag von $x_1 x_2$ zur Potenz -2,
- abstossend für Ladungen mit gleichem Vorzeichen, anziehend für gegensätzliche Ladungen.

Ausgedrückt als Formel:¹

$$\vec{F}_1 = -\vec{F}_2 = \frac{q_1 q_2(\vec{x}_1 - \vec{x}_2)}{4\pi\varepsilon_0 \|x_1 - x_2\|^3} \,. \qquad \vec{F}_1 \stackrel{q_1}{\longleftarrow} \dots \dots \stackrel{q_2}{\longrightarrow} \vec{F}_2 \tag{1.1}$$

Wir verwenden SI-Einheiten,² und q_1, q_2 sind die vorzeichenbehafteten Ladungen gemessen in der abstrakten Einheit Coulomb (C = A s). Die *elektrische*

¹Wir verwenden Vektorpfeile \vec{x} für Vektoren $x \in \mathbb{R}^3$ soweit wir konkrete vektorielle Operationen ausdrücken wollen, z.B. für ein Skalarprodukt, Vektorprodukt oder wie hier die Gleichheit aller Komponenten. Ansonsten verzichten wir der Übersichtlichkeit wegen auf Vektorpfeile.

²In der Elektrodynamik ist (war) vor allem das Gaußsche bzw. CGS Einheitensystem gebräuchlich, welches anstelle der Konstanten ε_0 andere Potenzen des Faktors 4π verwendet; siehe z.B. https://de.wikipedia.org/wiki/Gau%C3%9Fsches_Einheitensystem zur Konversion.

Feldkonstante ε_0 beträgt $\varepsilon_0 = 8.854 \cdot 10^{-12} \,\mathrm{A}^2 \,\mathrm{s}^4 \,/\,\mathrm{kg} \,\mathrm{m}^3$. Es sind auch andere Einheitensysteme gebräuchlich.

Für viele Ladungen q_i an den Orten x_i gilt (experimentell ermittelt) das Superpositionsprinzip, nach dem sich die Kraft als vektorielle Summe aller obigen paarweisen Kräfte berechnet:

$$\vec{F}_{i} = \sum_{\substack{j=1\\ j\neq i}}^{N} \frac{q_{i}q_{j}(\vec{x}_{i} - \vec{x}_{j})}{4\pi\varepsilon_{0} \|x_{i} - x_{j}\|^{3}}.$$
(1.2)

Die elektrischen Kräfte treten auch bei sehr grossen Entfernungen auf, so dass man von einer Fernwirkung spricht. In erster Näherung tritt die Kraft instantan auf (was nur ein Teil der Wahrheit ist). Dies widerspricht erheblich der (heutigen) physikalischen Intuition.

Elektrisches Feld. Man kann die obige Problematik der Fernwirkung teilweise umgehen, indem man das *elektrische Feld* E(x) einführt: Man beachte, dass Fproportional zu der Ladung $q = q_i$ ist, auf die die Kraft $F = F_i$ wirkt, und schreibe

$$\vec{F} = q\vec{E}(x), \qquad \vec{E}(x) = \sum_{j=1}^{N} \frac{q_j(\vec{x} - \vec{x}_j)}{4\pi\varepsilon_0 \|x - x_j\|^3}.$$
 (1.3)

$$\vec{E}(x) \qquad \qquad \vec{F} \qquad \qquad \vec{F} \qquad \qquad (1.4)$$

Die Kraft ist also lokal durch das elektrische Feld bestimmt, auch wenn letzteres nicht-lokal von den Ladungen abhängt. Eine Subtilität ist, dass hier E nicht von der Ladung q bei x abhängt. Würde man diese in E(x) mit einbeziehen, würde dies insbesondere zu einer divergenten Kraft $1/0 = \infty$ führen. Man betrachtet qalso als kleine Testladung, die das Feld nicht (wesentlich) beeinflusst. E(x) ist ein Feld welches unabhängig von q überall im Raum existiert³ und vektoriellen Charakter hat.

Man kann nun auch eine kontinuierliche Ladungsverteilung in der Form einer Ladungsdichte $\rho(y)$ (als Grenzfall vieler Punktladungen) betrachten. Das Feld ist dann gegeben durch⁴

$$\vec{E}(x) = \int dy^3 \frac{\rho(y) \left(\vec{x} - \vec{y}\right)}{4\pi\varepsilon_0 \|x - y\|^3}.$$
(1.5)

 $^{^3 \}rm Was$ die Existenz bedeutet, wird wohl erst zusammen mit der Quantenmechanik in der Quantenfeldtheorie klar.

⁴Wir verwenden die Notation $dx^3 := (dx)^3$ für das Mass eines Volumenintegrals über $x \in \mathbb{R}^3$ und analog dx^2 für ein Flächenmass. Gebräuchlich sind auch die Notationen d^3V sowie dV, d^3x (wobei dV nur ungenügend über die dreifache Integration Aufschluss gibt, und d^3x nicht über die Volumendimension des Masses).

Das elektrische Feld hat zwei besondere Eigenschaften, die sich als Differentialgleichungen ausdrücken lassen:

div
$$\vec{E} := \vec{\partial} \cdot \vec{E} = 0$$
, rot $\vec{E} := \vec{\partial} \times \vec{E} = 0$, (1.6)

wobe
i $\partial_i:=\partial/\partial x_i.$ Die erste Gleichung gilt ausserhalb von Ladungsverteilungen, die zweite gilt exakt.

Um diese zu beweisen betrachte man die Linearität von E bezüglich der Ladungen. Da die Differentialgleichungen auch linear sind, genügt es, eine Punktladung bei y = 0 zu betrachten, d.h.

$$\vec{E} = \frac{q\vec{x}}{4\pi\varepsilon_0 \|x\|^3} . \qquad (1.7)$$

Man erhält durch Ausrechnen

$$\partial_i E_j = \frac{q(\delta_{ij}\vec{x}^2 - 3x_i x_j)}{4\pi\varepsilon_0 \|x\|^5} \quad \text{für } x \neq 0.$$
(1.8)

Für die Divergenz $\vec{\partial} \cdot \vec{E}$ gilt $\sum_{i=1}^{3} \delta_{ii} = 3$ und bezüglich der Rotation $\vec{\partial} \times \vec{E}$ benutzt man, dass $(\partial/\partial x_i)E_j$ symmetrisch in i, j ist. Dies beweist die obigen zwei Differentialgleichungen.

Quellen. Am Ort der Ladungen genügen aber obige Betrachtungen nicht, denn E(x) ist singulär bei x = 0. Hier hilft der Satz von Gauß weiter: Für ein Vektorfeld E auf einem Bereich $V \subset \mathbb{R}^3$ gilt⁵

$$\int_{V} \mathrm{d}x^{3} \,\vec{\partial} \cdot \vec{E}(x) = \oint_{\partial V} \mathrm{d}x^{2} \,\vec{n}(x) \cdot \vec{E}(x). \tag{1.9}$$

Hiermit lässt sich der problematische Punkt x = 0 umgehen, indem man den Fluss von E durch eine Fläche ∂V betrachtet, die $x = 0 \in V$ umschliesst. Der Einfachheit

⁵In dieser Vorlesung seien die Integrationsmasse dx^3 und dx^2 als kanonische euklidische Volumen- und Flächenelemente definiert. Weiterhin ist $\vec{n}(x)$ ein Einheitsvektor, der bei $x \in \partial V$ senkrecht zu der Grenzfläche ∂V steht und aus dem Bereich V hinaus zeigt. Meist tritt dx^2 in Verbindung mit $\vec{n}(x)$ auf, welches dem Mass $dx^2 \vec{n}(x) = \frac{1}{2} d\vec{x} \times d\vec{x}$ entspricht. Ebenso (modulo Orientierung) $dx^3 = \frac{1}{6} d\vec{x} \cdot (d\vec{x} \times d\vec{x})$.

halber wähle man eine Kugel mit Radius R zentriert um x = 0. Es gilt⁶

$$\int_{\|x\| \le R} \mathrm{d}x^3 \, \vec{\partial} \cdot \vec{E} = \oint_{\|x\| = R} \mathrm{d}x^2 \, \vec{n} \cdot \frac{q\vec{x}}{4\pi\varepsilon_0 R^3}$$
$$= \oint_{\|x\| = R} \mathrm{d}^2 \Omega \, R^2 \, \frac{\vec{x}}{R} \cdot \frac{q\vec{x}}{4\pi\varepsilon_0 R^3} = \frac{q}{4\pi\varepsilon_0} \oint \mathrm{d}^2 \Omega = \frac{q}{\varepsilon_0} \,. \tag{1.11}$$

Allerdings ist der ursprüngliche Integrand $\vec{\partial} \cdot \vec{E}$ überall gleich 0 ausser bei x = 0. Somit muss $\vec{\partial} \cdot \vec{E}$ eine seltsame Funktion sein, die fast überall verschwindet, aber bei x = 0 so stark ist, dass der Gesamtfluss q/ε_0 beträgt. Diese Funktion wird (Diracsche) *delta-Funktion* genannt, und ist streng genommen eine *Distribution*. Wir haben also gezeigt, dass

$$\vec{\partial} \cdot \vec{E} = \frac{q}{\varepsilon_0} \,\delta^3(x) = \frac{1}{\varepsilon_0} \,\rho(x),\tag{1.12}$$

wobei $\rho(x)$ die (formelle) Ladungsdichte eines Punktteilchens ist. Sie gilt aufgrund der Linearität auch für allgemeine Ladungsverteilungen $\rho(x)$. In Integralform lautet die Formel (*Gaußsches Gesetz*)

$$\int_{V} \mathrm{d}x^{3} \,\vec{\partial} \cdot \vec{E} = \oint_{\partial V} \mathrm{d}x^{2} \,\vec{n} \cdot \vec{E} = \frac{1}{\varepsilon_{0}} Q_{V}, \qquad Q_{V} := \int_{V} \mathrm{d}x^{3} \,\rho. \tag{1.13}$$

Interessanterweise ist die Gesamtladung Q_V in dem Gebiet V also bestimmt durch das elektrische Feld auf dem Rand ∂V des Gebiets. Die Formulierung der Feldgleichung mittels Integrale ist also eine nicht-lokale Beziehung. Die Differentialgleichung hingegen ist lokal.

delta-Distribution. Wir haben eine wichtige Ableitungsformel hergeleitet:

$$\vec{\partial} \cdot \frac{\vec{x}}{\|x\|^3} = 4\pi \delta^3(x).$$
 (1.14)

Die delta-Funktion $\delta^3(x)$ ist definiert über ihre Eigenschaften⁷

$$\delta^3(x) = 0 \quad \text{für } x \neq 0 \tag{1.15}$$

 $aber^8$

$$\int_{V} \mathrm{d}x^{3} \,\delta^{3}(x) \,f(x) = \begin{cases} f(0) & \text{falls } 0 \in V, \\ 0 & \text{sonst.} \end{cases}$$
(1.16)

⁶Genaugenommen gilt dies nur unter Vernachlässigung mathematischer Tatsachen. Der Satz von Gauß verlangt, dass das Feld E auf dem Bereich V nicht-singulär ist, was aber am Ort x = 0der Ladung offensichtlich nicht zutrifft. Um die Gültigkeit des Satzes von Gauß zu bewahren, müssen wir etwas später Distributionen als Erweiterung des Konzepts der Funktionen einführen.

⁷Gewöhnlich zeichnet man den Ursprung x = 0 in der Definition der delta-Funktion aus. Man kann allerdings auch 0 durch einen beliebigen Punkt y ersetzen und entsprechend eine delta-Funktion $\delta^3(x, y)$ definieren. Nimmt man Translationssymmetrie im Mass der Integrale an, gilt allerdings $\delta^3(x, y) = \delta^3(x - y)$.

⁸Der Rand ∂V ist heikel und $0 \in \partial V$ sollte besser vermieden werden.

Mathematisch bedeutet dies, dass die delta-Funktion eine Distribution beschreibt, welche Funktionen linear auswertet. In diesem Fall, weist obiges Integral jeder Funktion f(x) ihren Wert f(0) bei x = 0 zu. In der Physik werden Distributionen in der Regel durch ihren Integralkern beschrieben, d.h. $\delta^3(x)$ anstelle von $f \mapsto \int_V dx^3 \, \delta^3(x) \, f(x) = f(0).$

Zur Beruhigung: Die delta-Funktion ist lediglich ein formales Werkzeug um effizienter rechnen zu können. In der Realität gibt es keinen Grund, die Existenz von exakt punktartigen Teilchen vorauszusetzen, denn eine solche Annahme liesse sich niemals durch Messungen ultimativ bestätigen. Es genügt im Prinzip, genügend stark konzentrierte Ladungsverteilungen zu betrachten, und somit delta-Funktionen zu umgehen. Der Nachteil an einem solchen Vorgehen ist, dass die innere Struktur Einfluss auf die Rechnungen nimmt und sie meist verkompliziert. Mehr dazu später.

Im Einklang mit dieser physikalischen Betrachtungsweise, kann man die delta-Funktion auch als Limes einer Folge δ_n bzw. Familie δ_{ϵ} von Funktionen betrachten. Ein gebräuchliches Beispiel in einer Dimension ist die Familie rationaler Funktionen

$$\delta_{\epsilon}(x) := \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2},$$

$$\int_{-\infty}^{\infty} dx \, \delta_{\epsilon}(x) = 1.$$
(1.17)

.

Für endliches ϵ ist sie glatt und ihr Integral beträgt immer genau 1; für $\epsilon \to 0$ verschwindet sie überall ausser bei x = 0. Im Grenzwert $\epsilon \to 0$ hat δ_{ϵ} also die gewünschten Eigenschaften, so dass (im gewissen Sinn)⁹

$$\delta(x) = \lim_{\epsilon \to 0} \delta_{\epsilon}(x). \tag{1.18}$$

Eine andere gebräuchliche Approximation der delta-Funktion ist die Gaußsche Normalverteilung mit Standardabweichung $\sigma \rightarrow 0$.

1.2 Das elektrostatische Potential

- Satz von Stokes
- Arbeit
- elektrostatisches Potential
- Poisson-Gleichung

Die zweite wichtige Eigenschaft $\vec{\partial}\times\vec{E}=0$ gilt exakt. Dies lässt sich mit dem Satz von Stokes begründen

$$\int_{A} \mathrm{d}x^{2} \, \vec{n} \cdot (\vec{\partial} \times \vec{E}) = \oint_{\partial A} \mathrm{d}\vec{x} \cdot \vec{E}. \tag{1.19}$$

⁹Eine konsistente Formulierung dieses Grenzwerts mittels Distributionen ist $\delta[f] = \lim_{\epsilon \to 0} \delta_{\epsilon}[f]$ mit $\delta_{\epsilon}[f] := \int dx \, \delta_{\epsilon}(x) f(x)$ und $\delta[f] := f(0)$ für alle geeigneten Testfunktionen f.

$$\begin{array}{c}
\vec{n} \cdot (\vec{\partial} \times \vec{E}) \\
\vec{A} \\
\vec{\nabla} dx^2
\end{array} \qquad \begin{array}{c}
d\vec{x} \\
\vec{\partial} A \\
d\vec{x} \cdot \vec{E}
\end{array} \tag{1.20}$$

Der Fluss von $\vec{\partial} \times \vec{E}$ durch eine berandete Fläche A ist gleich dem Integral von Eentlang des Randes ∂A . Nun ist $\vec{\partial} \times \vec{E} = 0$ ausser gegebenenfalls bei x = 0. Wir sollten also untersuchen, was bei x = 0 passiert. Zu einer vorgegebenen geschlossenen Kurve γ lassen sich Flächen A konstruieren, die von γ berandet sind, $\gamma = \partial A$, und die den Punkt x = 0 entweder nicht enthalten oder ihn in beliebiger Richtung passieren. Aus dem Fall $0 \notin A$ folgt direkt, dass das Konturintegral auf der rechten Seite gleich null ist. Aus $0 \in A$ folgt, dass dort auch $\vec{n} \cdot (\vec{\partial} \times \vec{E}) = 0$ gilt, und weiter $\vec{\partial} \times \vec{E} = 0$, da der Normalenvektor $\vec{n}(0)$ beliebig gewählt werden kann. Somit kann $\vec{\partial} \times \vec{E} = 0$ als exakt auch für x = 0 angenommen werden. Nach dem Satz von Stokes kann diese Differentialgleichung in Integralform geschrieben werden: Für beliebige, geschlossene Kurven γ gilt

$$\oint_{\gamma} \mathrm{d}\vec{x} \cdot \vec{E} = 0. \tag{1.21}$$

Diese Eigenschaft des elektrischen Feldes ist physikalisch besonders wichtig, denn sie macht eine Aussage zur Arbeit, die benötigt wird um eine Testladung q entlang einer (offenen oder geschlossenen) Kurve γ im elektrischen Feld E(x) zu bewegen. Nach der allgemeinen Beziehung zwischen Feld und Kraft erhält man für die zu verrichtende Arbeit

$$\Delta W = -q \int_{\gamma} \mathrm{d}\vec{x} \cdot \vec{E}. \qquad \frac{\mathrm{d}\vec{x} \cdot \vec{E}}{x_1 \cdot \cdots \cdot \gamma'} x_2 \qquad (1.22)$$

Aufgrund der obigen Eigenschaft des elektrischen Feldes ist die Arbeit *unabhängig* vom gewählten Pfad: Für einen alternativen Pfad γ' mit denselben Start- und Endpunkten betrachte man den zusammengesetzten Pfad $\gamma^{-1}\gamma'$, welcher geschlossen ist. Die Eigenschaft besagt dann, dass

$$0 = \Delta W[\gamma' \gamma^{-1}] = \Delta W[\gamma'] - \Delta W[\gamma].$$
(1.23)

Es zählt demnach nur der Start- und Endpunkt

$$\Delta W = q\Phi(x_2) - q\Phi(x_1). \tag{1.24}$$

Hier ist $\Phi(x)$ das *elektrostatische Potential*, welches wir wie folgt mit dem elektrischen Feld in Beziehung setzen können

$$\vec{E}(x) = -\vec{\partial}\Phi(x) =: -\operatorname{grad}\Phi(x). \tag{1.25}$$

Die Relation wurde so gewählt, dass obiger Ausdruck für die Arbeit ΔW trivialerweise folgt

$$\int \mathrm{d}\vec{x} \cdot \vec{E} = -\int \mathrm{d}\vec{x} \cdot \vec{\partial}\Phi = -\Phi(x_2) + \Phi(x_1).$$
(1.26)

Ein rotationsfreies Vektorfeld lässt sich allgemein als Gradient eines skalaren Potentials schreiben. 10

Man beachte, dass das Potential auf diese Weise nur bis auf eine global konstante Verschiebung definiert ist. Dieser Freiheitsgrad hat keine physikalische Relevanz, genauso wie nur Energie*differenzen* gemessen werden können. Oft wird das Potential so bestimmt, dass es bei $x \to \infty$ verschwindet. Eine Verallgemeinerung dieser unphysikalischen Freiheitsgrade werden wir in der Elektrodynamik antreffen. Sie hat wichtige Konsequenzen für die Quantenmechanik und die Quantenfeldtheorie.

Schliesslich können wir das Potential für allgemeine Ladungsverteilungen schreiben als

$$\Phi(x) = \sum_{i=1}^{N} \frac{q_i}{4\pi\varepsilon_0 ||x - x_i||}$$
(1.27)

bzw. mittels einer Ladungsdichte ρ

$$\Phi(x) = \int dy^3 \frac{\rho(y)}{4\pi\varepsilon_0 ||x-y||} \,. \tag{1.28}$$

Die Form lässt sich durch Einsetzen bestätigen mit der Zusatzannahme, dass $\Phi(x) \to 0$ für $x \to \infty$. Durch Einsetzen in die Divergenzgleichung von E erhält man die *Poisson-Gleichung*

$$\frac{1}{\varepsilon_0}\rho(x) = \vec{\partial} \cdot \vec{E}(x) = -\vec{\partial} \cdot \vec{\partial} \Phi(x) = -\Delta \Phi(x).$$
(1.29)

Dies ist die inhomogene Version der Laplace-Gleichung mit dem Laplace-Operator

$$\Delta := \vec{\partial} \cdot \vec{\partial} = \sum_{i=1}^{3} \left(\frac{\partial}{\partial x_i} \right)^2.$$
(1.30)

Der Vorteil dieser Formulierung der Elektrostatik ist, dass ein skalares Feld genügt. Man kann somit zu gewissem Grad auf Rechnungen mit mehrkomponentigen Vektoren verzichten.

1.3 Energie des elektrostatischen Feldes

- Energie einer Ladungsverteilung
- Energie einer Feldkonfiguration
- Selbstenergie von Punktladungen

Als Nächstes wollen wir die Energie berechnen, die benötigt wird, eine bestimmte Ladungsverteilung herzustellen. Dazu bringe man sukzessive Ladungen von $x = \infty$ zur gewünschten Position $x = x_i$. Man erhält die Energie

$$W = \sum_{i < j=1}^{N} \frac{q_i q_j}{4\pi\varepsilon_0 \|x_i - x_j\|} = \sum_{i \neq j=1}^{N} \frac{q_i q_j}{8\pi\varepsilon_0 \|x_i - x_j\|} .$$
(1.31)

 $^{^{10}}$ Diese Aussage gilt lokal, d.h. in jeder Umgebung eines Punktes oder allgemeiner für einfach zusammenhängende Gebiete V. Wie wir später im Fall des Magnetfeldes sehen werden, spielt die Topologie eine Rolle.

Für eine kontinuierliche Ladungsverteilung erhält man entsprechend

$$W = \int dx^3 dy^3 \frac{\rho(x)\rho(y)}{8\pi\varepsilon_0 ||x-y||} = \int dx^3 \frac{1}{2}\rho(x)\Phi(x)$$
$$= -\frac{1}{2}\varepsilon_0 \int dx^3 \Delta\Phi(x) \Phi(x).$$
(1.32)

Zur Umformung haben wir den Ausdruck für das Potential einer Ladungsverteilung und die Poisson-Gleichung verwendet. Nach partieller Integration und Vernachlässigung des Randterms (das Potential sollte ausreichend schnell für $x \to \infty$ verschwinden) ergibt dies

$$W = \frac{1}{2}\varepsilon_0 \int dx^3 \, (\vec{\partial}\Phi)^2 - \frac{1}{2}\varepsilon_0 \int dx^3 \, \vec{\partial} \cdot (\Phi \vec{\partial}\Phi)$$
$$= \frac{1}{2}\varepsilon_0 \int dx^3 \, \vec{E}^2. \tag{1.33}$$

Die benötigte Arbeit lässt sich also vollständig und lokal durch das elektrische Feld ausdrücken. Wenn man letzteres als real betrachtet, so wurde die Arbeit in potentielle Energie des Feldes umgewandelt.

Selbstenergie von Punktteilchen. Ein Vergleich mit der Energie der Konfiguration der Punktladungen bietet sich an. Die Feldenergie ist manifest positiv, da der Integrand es ist. Für Punktladungen gilt allerdings nicht $W \ge 0$, denn eine positive und eine negative Ladung ziehen sich an. Wie kann es sein, dass im Laufe der Herleitung etwas Negatives zu etwas Positivem geworden ist? Das Problem ist das Konzept der idealisierten Punktladungen: Das Feld in ihrer unmittelbaren Umgebung divergiert stark und führt zu unendlichen Beiträgen zur Feldenergie. Für die Punktladungsverteilung wurden diese Beträge mit i = jbewusst ignoriert (wie zuvor in den Ausdrücken für die Kraft und das Feld der Probeladung). Letztere Energie ist somit (um ∞) geringer und kann negativ werden. Es gibt zwei Interpretationen:

Pragmatisch: Die Selbstenergie eines Teilchens ist zwar formell ∞ , allerdings konstant. Sie ist bei der Erzeugung des Teilchens aufgewendet worden und braucht uns nicht weiter zu interessieren. Da nur Energiedifferenzen gemessen werden, kürzt sie sich sowieso aus allen physikalischen Grössen heraus.

Physikalisch: Punktteilchen sind eine Idealisierung, die es in der Realität nicht gibt. Zumindest gibt es keine Möglichkeit festzustellen, ob ein sehr sehr kleines Teilchen wirklich punktförmig ist, denn die Auflösung *aller* Messgeräte ist begrenzt. Wir benutzen in der Theorie dennoch gerne Punktteilchen, denn sie vereinfachen die Betrachtungen und Berechnungen sehr, auch wenn man so gelegentlich paradoxe Ergebnisse erhält.

Es ist von grossem Vorteil, dass beide Interpretationen kompatibel sind. Man kann so die Elektrostatik als eine Theorie betrachten, für die die innere Struktur der Punktteilchen keine Relevanz hat. Bei genügend hoher Auflösung mag man irgendwann einmal eine innere Struktur feststellen, aber bis dahin ist das Modell eine gute Beschreibung.

1.4 Beispiele

- kugelsymmetrische Ladungsverteilung
- homogen geladene Kugel
- homogen geladene Kugeloberfläche
- geladene Fläche
- Plattenkondensator
- Dipol

Wir wollen die gewonnenen Einsichten anhand einiger einfacher Beispiele diskutieren.

Kugelsymmetrische Ladungsverteilung. Für eine kugelsymmetrische Ladungsverteilung $\rho(x) = \rho(r)$ mit r := ||x|| können wir die plausible Annahme machen, dass das Feld radial ausgerichtet ist

$$\vec{E}(x) = \vec{n}E(r)$$
 mit $\vec{n}(x) := \frac{\vec{x}}{\|x\|}$. (1.34)

Entsprechend muss das Potential kugelsymmetrisch sein: $\Phi(x) = \Phi(r)$. Aus $\vec{E} = -\vec{\partial}\Phi$ folgt direkt $E(r) = -\Phi'(r)$. Man kann also mittels Integration bzw. Differentiation in einer Variablen zwischen den Feldern E und Φ übersetzen. Für die Divergenz von E rechnet man aus $\vec{\partial} \cdot \vec{E} = E' + (2/r)E$ und schreibt die entsprechende Differentialgleichung als

$$E' + \frac{2}{r}E = \frac{1}{\varepsilon_0}\rho. \tag{1.35}$$

Durch Integration dieser Differentialgleichung oder mittels des Satzes von Gauß erhält man unmittelbar

$$4\pi r^2 E(r) = \dots = \frac{1}{\varepsilon_0} \int_0^r \mathrm{d}s \, 4\pi s^2 \rho(s).$$
 (1.36)

Man kann also die Stärke des Feldes E(r) leicht aus der Ladungsdichte $\rho(r)$ ermitteln. Insbesondere bedeutet dies für den Aussenraum ($\rho(r) = 0$ für alle r > R) einer jeden Ladungsverteilung

$$E(r) = \frac{Q}{4\pi\varepsilon_0 r^2} \quad \text{für } r > R.$$
(1.37)

Dies hat genau dieselbe Form, wie das Feld einer Punktladung Q.

Homogen geladene Kugel. Eine homogen geladene Kugel mit Radius R und Gesamtladung Q ist definiert als die Ladungsdichte

$$\rho(r) = \begin{cases} Q/\frac{4}{3}\pi R^3 & \text{für } r < R, \\ 0 & \text{für } r > R. \end{cases} \qquad (1.38)$$

Das obige Integral liefert

$$\int_{0}^{\min(r,R)} \mathrm{d}s \, 4\pi s^{2} \rho = \begin{cases} \frac{4}{3}\pi r^{3}\rho & \text{für } r < R, \\ \frac{4}{3}\pi R^{3}\rho & \text{für } r > R, \end{cases}$$
(1.39)

und man erhält für das elektrische Feld

$$E(r) = \frac{Q}{4\pi\varepsilon_0} \begin{cases} r/R^3 & \text{für } r < R, \\ 1/r^2 & \text{für } r > R. \end{cases}$$
(1.40)

Das Potential ergibt sich durch Integration (mit der üblichen Randbedingung $\Phi(\infty) = 0$)

$$\Phi = \frac{Q}{4\pi\varepsilon_0} \begin{cases} -\frac{1}{2}r^2/R^3 + \frac{3}{2}/R & \text{für } r < R, \\ 1/r & \text{für } r > R. \end{cases}$$
(1.41)

Man beachte, dass das elektrische Feld und das Potential stetig sind. Schliesslich kann man noch die elektrostatische Energie ausrechnen

$$W = 4\pi\varepsilon_0 \frac{1}{2} \int_0^\infty \mathrm{d}r \, r^2 E^2$$

= $\frac{Q^2}{8\pi\varepsilon_0} \left(\int_0^R \mathrm{d}r \, \frac{r^2}{R^6} \, r^2 + \int_R^\infty \mathrm{d}r \, \frac{r^2}{r^4} \right)$
= $\frac{Q^2}{8\pi\varepsilon_0} \left(\frac{1}{5R} + \frac{1}{R} \right) = \frac{3Q^2}{20\pi\varepsilon_0 R} \,.$ (1.42)

Dieser Ausdruck divergiert für $R \to 0$ (bei fixierter Gesamtladung Q), d.h. die Selbstenergie einer Punktladung ist in der Tat ∞ .

Homogen geladene Kugeloberfläche. Für die homogen geladene Sphäre gilt

$$\rho(r) = \sigma \,\delta(r - R), \qquad \sigma$$

$$\sigma = \frac{Q}{4\pi R^2}. \qquad (1.43)$$

Da innerhalb und ausserhalb der Kugel keine Ladung vorliegt, gilt nach dem Satz von Gauß sofort

$$E = \frac{Q}{4\pi\varepsilon_0} \begin{cases} 0 & \text{für } r < R, \\ 1/r^2 & \text{für } r > R, \end{cases}$$
(1.44)

und mittels Integration

$$\Phi = \frac{Q}{4\pi\varepsilon_0} \begin{cases} 1/R & \text{für } r < R, \\ 1/r & \text{für } r > R. \end{cases}$$
(1.45)

Hier ist das Potential stetig, das Feld allerdings springt um $Q/4\pi\varepsilon_0 R^2$, welches proportional zur Flächenladungsdichte $\sigma = Q/4\pi R^2$ ist. Die Gesamtenergie beträgt hier $W = Q^2/8\pi\varepsilon_0 R$ was ebenfalls für $R \to 0$ divergiert.

Flächenartige Ladungsverteilung. Betrachten wir nun eine allgemeine flächenartige Ladungsverteilung mit $\rho(x) = \sigma(x_{\parallel})\delta(x_{\perp})$, wobei σ die Flächenladungsdichte entlang der Fläche $x_{\perp} = 0$ ist (mit geeigneten Koordinaten x_{\parallel}, x_{\perp}). Um das Verhalten des elektrischen Feldes zu untersuchen, schauen wir uns einen kleinen Abschnitt um die Fläche an, so dass σ und \vec{E} praktisch konstant sind. Nun legen wir einen sehr flachen Kasten um die Fläche, ein sogenanntes *Gaußsches Kästchen*:

$$\overbrace{\vec{E}_2}{\vec{n}}$$
(1.46)

Der Fluss aus diesem Kasten beträgt näherungsweise $A\vec{n} \cdot (\vec{E_1} - \vec{E_2})$. Nach dem Satz von Gauß muss dies gleich $1/\varepsilon_0$ mal der enthaltenen Ladung sein: $A\sigma/\varepsilon_0$. Das heisst, die Normalkomponente $E_{\perp} := \vec{n} \cdot \vec{E}$ von E springt an der geladenen Fläche um σ/ε_0 im Einklang mit der homogen geladenen Kugeloberfläche. Die Tangentialkomponenten E_{\parallel} (mit $\vec{n} \cdot \vec{E_{\parallel}} = 0$) sind stetig an der Fläche. Um dies zu sehen, legt man eine flache Schleife um ein Flächenelement, eine sogenannte Stokessche Schleife

$$\begin{array}{c}
\vec{L} \\
-\vec{L} \\
\vec{E_2}
\end{array}$$
(1.47)

Das elektrische Feld ist konservativ, also gilt $\vec{L} \cdot (\vec{E}_1 - \vec{E}_2) = 0$ für jede Wahl von L mit $\vec{n} \cdot \vec{L} = 0$. Somit springen die Tangentialkomponenten E_{\parallel} von E nicht.

Plattenkondensator. Ein *Plattenkondensator* besteht aus zwei parallelen Platten der Fläche A im Abstand d mit gegensätzlichen Ladungen $\pm Q$. Wir betrachten den Fall $d^2 \ll A$, so dass wir Randeffekte der Platten ignorieren können. Die Normalkomponente von E springt um $\pm Q/\varepsilon_0 A$ an den Kondensatorplatten. Man kann also annehmen, dass das Feld im Aussenraum verschwindet und im Innenraum $E = Q/\varepsilon_0 A$ beträgt:

Das elektrische Potential steigt linear von einer zur anderen Platte um $U = \Delta \Phi = dE = dQ/\varepsilon_0 A$. Ein Plattenkondensator hat die Kapazität $C := Q/U = \varepsilon_0 A/d$. Für die Energie des Feldes erhalten wir

$$W = \frac{1}{2}\varepsilon_0 dAE^2 = \frac{dQ^2}{2\varepsilon_0 A} = \frac{1}{2}UQ = \frac{1}{2}CU^2.$$
 (1.49)

Dies ist eine wohlbekannte Formel aus der Elektronik.

Dipol. Eine weitere wichtige Ladungskonfiguration ist der *Dipol* mit zwei entgegengesetzten Punktladungen $\pm q$ im Abstand *d*. Das Potential ist hier gegeben durch

$$\Phi(x) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\|\vec{x} - \frac{1}{2}d\vec{n}\|} - \frac{1}{\|\vec{x} + \frac{1}{2}d\vec{n}\|} \right),$$
(1.50)

wobei \vec{n} die Richtung der Verschiebung um x = 0 vorgibt. Interessant ist der Grenzfall $d \to 0$. Hier verschwindet das Potential, es sei denn man skaliert die Ladung entsprechend mit d, so dass das *Dipolmoment* $\vec{p} := qd\vec{n}$ endlich bleibt

$$\Phi(x) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\|x\|} + \frac{\frac{1}{2}d\vec{x}\cdot\vec{n}}{\|x\|^3} \pm \dots - \frac{1}{\|x\|} + \frac{\frac{1}{2}d\vec{x}\cdot\vec{n}}{\|x\|^3} \pm \dots \right) \\
= \frac{qd}{4\pi\varepsilon_0} \left(\frac{0/d}{\|x\|} + \frac{\vec{x}\cdot\vec{n}}{\|x\|^3} \pm \dots \right) \to \frac{\vec{p}\cdot\vec{x}}{4\pi\varepsilon_0\|x\|^3}.$$
(1.52)

Das Feld eines Dipols fällt also stärker für $x \to \infty$ ab, als für eine Ladung (Monopol): $1/r^3$ vs. $1/r^2$. Andersherum ist es um x = 0 stärker, ebenfalls $1/r^3$ vs. $1/r^2$. Es gibt ähnliche Ladungsverteilungen mit ausgeprägterer Asymptotik: Quadrupole, Multipole, die wir später genauer kennenlernen.

Das obige Potential lässt sich schreiben als Ableitung des Potentials einer Punktladung

$$\Phi(x) = -\vec{p} \cdot \vec{\partial} \frac{1}{4\pi\varepsilon_0 \|x\|} \,. \tag{1.53}$$

Die Ladungsdichte eines Dipols ist also gegeben als

$$\rho(x) = -\vec{p} \cdot \vec{\partial} \delta^3(x). \tag{1.54}$$

Die Ableitung der delta-Funktion ist mit etwas mehr Vorsicht als die delta-Funktion selbst zu geniessen. Wie die delta-Funktion verschwindet sie fast überall:

$$\delta'(x) = 0 \quad \text{für } x \neq 0. \tag{1.55}$$

Um den Punkt x = 0 zu verstehen, benutzt man formell die partielle Integration¹¹

$$\int_{V} \mathrm{d}x f(x) \,\delta'(x) = -\int_{V} \mathrm{d}x \,f'(x) \,\delta(x)$$
$$= \begin{cases} -f'(0) & \text{wenn } 0 \in V, \\ 0 & \text{sonst.} \end{cases}$$
(1.56)

Es gilt also zum Beispiel $\int dx \, \delta'(x) = 0$ und $\int dx \, x \delta'(x) = -1.^{12}$

 $^{^{11}}$ Hier ist wieder der Fall $0\in\partial V$ zu vermeiden, insbesondere wegen des Randterms der partiellen Integration.

¹²Man beachte, dass zwar $x\delta(x) \simeq 0$, aber hier $x\delta'(x) \simeq -\delta(x)$ und erst $x^2\delta'(x) \simeq 0$. Man könnte also formell $\delta(x)/x \simeq -\delta'(x)$ setzen, allerdings sind singuläre Manipulationen von delta-Funktionen mit äusserster Vorsicht zu geniessen (deshalb nur \simeq)!

2 Randwertprobleme der Elektrostatik

Wir befassen uns nun mit der Eindeutigkeit und Lösungsmethoden des Grundproblems der Elektrostatik. Letzteres ist die Aufgabe, für eine gegebene Ladungsverteilung und weitere Randbedingungen, die Konfiguration der Felder zu bestimmen.

2.1 Formulierung und Eindeutigkeit

- Formulierung
- Eindeutigkeit
- Randbedingungen
- elektrischer Leiter
- freier Raum

Formulierung. Wir haben bereits gezeigt, dass das elektrische Feld E über das elektrische Potential Φ mittels $\vec{E} = -\vec{\partial}\Phi$ festgelegt ist. Letzteres steht über die Poisson-Gleichung mit der Ladungsdichte ρ in Beziehung

$$\Delta \Phi(x) = -\frac{1}{\varepsilon_0} \rho(x). \tag{2.1}$$

Als Lösung haben wir (direkt aus dem Coulomb-Gesetz) gefunden:

$$\Phi(x) = \int dy^3 \frac{\rho(y)}{4\pi\varepsilon_0 ||x - y||} \,. \tag{2.2}$$

 \vec{n}

)

Allerdings ist diese Lösung weder eindeutig, noch genügt sie den jeweils gewünschten Randbedingungen (z.B. Anwesenheit eines leitenden Objekts, etc.). Wir müssen also verstehen, welche zusätzlichen Freiheiten wir haben und wie diese sich mit geeigneten Randbedingungen festlegen lassen.

Betrachten wir nun das Randwertproblem der Poisson-Gleichung auf einem (kompakten) Gebiet $V \subset \mathbb{R}^3$ mit Rand ∂V

$$\Delta \Phi(x) = -\frac{1}{\varepsilon_0} \rho(x) \quad \text{für } x \in V. \tag{2.3}$$

Die Ladungsverteilung $\rho(x)$ in V (nicht aber auf dem Rand ∂V) sei vorgegeben. Zusätzlich erfülle $\Phi(x)$ gewisse lineare Randbedingungen auf ∂V . **Eindeutigkeit.** Um die Eindeutigkeit einer Lösung zu untersuchen,¹ betrachten wir zwei hypothetische Lösungen Φ_1 und Φ_2 und deren Differenz Ψ . Letztere erfüllt die (homogene) Laplace-Gleichung $\Delta \Psi = 0$ sowie homogene Versionen der Randbedingungen. Jetzt hilft die *erste Greensche Identität* für zwei skalare Funktionen ϕ, ψ weiter

$$\int_{V} dx^{3} \left(\phi \Delta \psi + \vec{\partial} \phi \cdot \vec{\partial} \psi \right) = \int_{V} dx^{3} \vec{\partial} \cdot (\phi \vec{\partial} \psi)$$
$$= \oint_{\partial V} dx^{2} \vec{n} \cdot (\phi \vec{\partial} \psi).$$
(2.4)

Hier und im Folgenden sei \vec{n} ein Einheitsvektor, der senkrecht zu dem Rand ∂V steht und der aus dem Gebiet V hinaus zeigt. Setzen wir $\phi = \psi = \Psi$ mit $\Delta \Psi = 0$ so folgt

$$\oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot (\Psi \vec{\partial} \Psi) = \int_V \mathrm{d}x^3 \, (\vec{\partial} \Psi)^2 \ge 0. \tag{2.5}$$

Wenn man annimmt, dass die linke Seite gleich Null ist, so muss aufgrund der Positivität des Integranden auf der rechten Seite $\partial \Psi$ überall verschwinden. Also muss Ψ konstant sein, und diese Konstante hat im Potential keine physikalische Relevanz; die zwei Lösungen Φ_1 und Φ_2 sind also äquivalent. Die zwei gebräuchlichsten Möglichkeiten, die linke Seite gleich Null zu setzen sind:

Dirichlet-Randbedingung: Das Potential Φ auf dem Rand wird vorgegeben

$$\Phi(x) = \omega(x) \quad \text{für } x \in \partial V. \tag{2.6}$$

Damit lautet die homogene Randbedingung $\Psi = 0$.

Neumann-Randbedingung: Die Normalableitung von Φ , d.h. $E_{\perp} = \vec{n} \cdot \vec{E} = -\vec{n} \cdot \vec{\partial} \Phi$, wird vorgegeben.

$$E_{\perp} = -\vec{n} \cdot \vec{\partial} \Phi(x) = \nu(x) \quad \text{für } x \in \partial V.$$
(2.7)

Damit lautet die homogene Randbedingung $\vec{n} \cdot \vec{\partial} \Psi = 0$.

Jede dieser beiden Randbedingungen legt die Lösung also eindeutig fest.

Elektrische Leiter. Die Dirichlet-Randbedingung ist insbesondere für elektrische Leiter relevant. Dazu betrachten wir folgendes Gedankenexperiment: Im Leiter können sich positive oder negative Ladungsträger frei bewegen. Ein nicht-verschwindendes elektrisches Feld versetzt die Ladungsträger im Leiter in Bewegung und rearrangiert somit die Ladungsdichte. Die so induzierte Ladungsdichte wirkt dem induzierenden elektrischen Feld entgegen. In einer statischen Situation muss also E = 0 im Inneren des Leiters gelten. Die Ladungsdichte im Leiter ist aufgrund der Feldgleichungen auch Null. Nur am Rand des Leiters bildet sich eine dünne Schicht Ladung, welche das externe elektrische Feld aus dem Leiter abschirmt (*Faradayscher Käfig*). Es ergeben sich folgende *Stetigkeitsbedingungen* für einen (idealisierten) Leiter im elektrischen Feld:

¹Lösungen zu dem Problem existieren in einer geeigneten Klasse von Funktionen. Wir wollen hier auf den Beweis verzichten, er ergibt sich aus der mathematischen Behandlung elliptischer Differentialgleichung zweiter Ordnung.

- Im Leiter verschwindet das elektrische Feld, E = 0. Der Leiter liegt also in der Regel ausserhalb des Bereichs V.
- Die Normalkomponente E_{\perp} von E auf der Leiteroberfläche ist proportional zur induzierten Ladungsdichte σ .
- Die Tangentialkomponenten E_{\parallel} gehen stetig von innen nach aussen über. Das elektrische Feld steht also senkrecht zur Leiteroberfläche, $\vec{E} \sim \vec{n}$.
- Das elektrostatische Potential auf der Leiteroberfläche ist konstant.

Demnach gilt auf Leiteroberflächen die Dirichlet-Randbedingung mit $\Phi = \text{const}$

Freier Raum. Möchte man hingegen eine eindeutige Lösung auf dem gesamten (nichtkompakten) Raum $V = \mathbb{R}^3$ konstruieren, so benötigt man anstelle der Randbedingungen eine gewisse Asymptotik für $x \to \infty$. Eine konsistente Annahme ist

$$\Phi(x) \sim \frac{1}{\|x\|} \quad \text{bzw.} \quad \vec{E} = -\vec{\partial}\Phi \sim \frac{1}{\|x\|^2} \qquad \text{für } x \to \infty.$$
(2.9)

Zum Beweis der Eindeutigkeit wähle man eine hinreichend grosse Kugel V_r , welche die Ladungsverteilung einschliesst und lässt deren Radius r nach ∞ gehen, so dass sich der Flächeninhalt ∂V_r wie r^2 verhält. Die linke Seite der ersten Greenschen Identität für das Differenzpotential Ψ geht dann gegen Null:

$$\oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot (\Psi \vec{\partial} \Psi) \sim r^2 \, \frac{1}{r} \, \frac{1}{r^2} \to 0. \tag{2.10}$$

Damit ist wie zuvor $\Psi = 0$ und die Lösung eindeutig bestimmt.

2.2 Greensche Funktionen

- freier Raum
- Greensche Identitäten
- Lösung der Poisson-Gleichung
- Eigenschaften Greenscher Funktionen
- Dirichlet-Randbedingungen
- Neumann-Randbedingungen

Methode. Die Poisson-Gleichung und ähnliche inhomogene lineare partielle Differentialgleichungen löst man häufig mittels Greenscher Funktionen G(x, y).²

 $^{^{2}}$ Greensche Funktionen sind auch und besonders wichtig in der Quantenmechanik und Quantenfeldtheorie wo sie (aufgrund des Welle-Teilchen Dualismus) die freie Bewegung von Teilchen beschreiben.

Wir beginnen mit einem Überblick zur Methode: Eine Greensche Funktion beschreibt das Potential $\Phi(x)$ einer Einheitspunktladung am Ort y und es gilt somit³

$$\Delta_x G(x, y) = -\delta^3 (x - y). \tag{2.11}$$

Per Superpositionsprinzip erhält man das Potential einer allgemeinen Ladungsverteilung $\rho(y)$

$$\Phi(x) \simeq \frac{1}{\varepsilon_0} \int_V \mathrm{d}y^3 \, G(x, y) \, \rho(y). \tag{2.12}$$

Durch Vergleich mit der allgemeinen Formel für das Potential unter asymptotischen Randbedingungen lautet die Greensche Funktion für den freien Raum $V = \mathbb{R}^3$

$$G(x,y) = \frac{1}{4\pi \|x - y\|}.$$
(2.13)

Die Funktion G(x, y) ist allerdings durch obige Differentialgleichung noch nicht eindeutig festlegt. Wie zuvor diskutiert, lassen sich die verbleibenden Freiheitsgrade durch die zuvor diskutieren Randbedingungen festlegen. Sie werden meist so festgelegt, dass die Greenschen Funktionen homogene Randbedingungen erfüllen. Erstaunlicherweise lassen sich mit diesen aber auch Lösungen zu inhomogenen Randbedingungen konstruieren. Wir wollen diese Lösung im Folgenden im Detail herleiten und bestätigen.

Lösungsansatz. Zur Herleitung einer Formel für das Potential mit Randtermen betrachte man die *zweite Greensche Identität*⁴ für zwei skalare Funktionen ϕ, ψ

$$\int_{V} dy^{3} (\phi \Delta \psi - \psi \Delta \phi) = \int_{V} dy^{3} \vec{\partial} \cdot (\phi \vec{\partial} \psi - \psi \vec{\partial} \phi)$$
$$= \oint_{\partial V} dy^{2} \vec{n} \cdot (\phi \vec{\partial} \psi - \psi \vec{\partial} \phi).$$
(2.14)

Hier setzt man für $\phi(y) = \Phi(y)$ das Potential und für $\psi(y) = G(x, y)$ eine (zu bestimmende) Funktion, welche die Poisson-Gleichung mit einer Einheitspunktladung an einem beliebigen aber fest gewählten Punkt x erfüllt⁵

$$\Delta_y G(x,y) = -\delta^3 (x-y). \tag{2.15}$$

Weiterhin verwendet man die Poisson-Gleichung für Φ und deklariert die Randbedingungen $\Phi = \omega$ sowie $E_{\perp} = -\vec{n} \cdot \vec{\partial} \Phi = \nu$. Man erhält somit einen

³Die Definitionen Greenscher Funktionen unterscheiden sich oft in konstanten Faktoren in dieser Gleichung. Andere Konventionen weisen z.B. Faktoren von 4π und ε_0 auf.

⁴Diese ergibt sich aus der ersten Greenschen Identität durch Antisymmetrisierung in den beiden Feldern ϕ, ψ .

⁵Man beachte, dass im Vergleich zu oben die Rollen von x und y vertauscht worden sind. Im Folgenden vergessen wir die oben eingeführte Poisson-Gleichung $\Delta_x G(x, y) = -\delta^3(x - y)$. Wir werden später die Symmetrie $G(x, y) \simeq G(y, x)$ herleiten, aus der diese Poisson-Gleichung schliesslich folgt.

Ausdruck für das Potential

$$\Phi(x) = \frac{1}{\varepsilon_0} \int_V dy^3 G(x, y) \,\rho(y) - \oint_{\partial V} dy^2 \,\vec{n}_y \cdot \vec{\partial}_y G(x, y) \,\omega(y) - \oint_{\partial V} dy^2 \,G(x, y) \,\nu(y).$$
(2.16)

Dies ist eine Formel, die im Prinzip für beliebige Konfigurationen der Ladungen und Felder zutrifft. Auf der linken Seite steht hier unmittelbar das Potential $\Phi(x)$, während es auf der rechten Seite durch die Poisson-Gleichung sowie die zu erfüllenden Randbedingungen ersetzt wurde. Somit löst die Formel das Problem allgemein. Allerdings haben wir durch die gleichzeitigen Ersetzungen $\Phi = \omega$ und $E_{\perp} = \nu$ auf dem Rand gewisse Konsistenzbedingungen geschaffen: Wir wissen nämlich bereits, dass die gleichzeitige Festlegung von ω und ν das Problem überdefiniert. Nur falls ω , ν und ρ miteinander kompatibel sind, ergibt sich das korrekte Potential Φ .

Unglücklicherweise können wir die Beziehungen noch nicht konkret definieren oder lösen; sie lassen sich nur über die Kenntnis der Lösung des Potentials herleiten. Glücklicherweise ist die Greensche Funktion *G* noch nicht eindeutig durch die obige Poisson-Gleichung festgelegt. Wir nutzen also diese Freiheit aus, um die Konsistenzbedingung zu entschärfen und so zu der eindeutigen Lösung zu gelangen. Im Folgenden diskutieren wir die beiden Arten von Randbedingungen.

Dirichlet-Randbedingung. In der Dirichlet-Randbedingung $\Phi = \omega$ wollen wir keine Annahmen zu ν machen (müssen), allerdings hängt der obige Ausdruck für Φ im Allgemeinen von ν ab. Die Abhängigkeit kann nun durch eine Randbedingung an *G* eliminiert werden, und zwar

$$G(x, y) = 0 \quad \text{für } y \in \partial V. \tag{2.17}$$

Aufgrund der obigen Überlegungen ist ein solches G(x, y) eindeutig definiert. Mit dieser Greenschen Funktion reduziert sich die Lösungsformel zu:

$$\Phi(x) = \frac{1}{\varepsilon_0} \int_V \mathrm{d}y^3 \, G(x, y) \, \rho(y) - \oint_{\partial V} \mathrm{d}y^2 \, \vec{n}_y \cdot \vec{\partial}_y G(x, y) \, \omega(y). \tag{2.18}$$

Auch wenn das Potential $\Phi(x)$ damit bereits eindeutig festgelegt ist, wollen wir es im Folgenden explizit bestätigen: Um zu bestätigen, dass es die Poisson-Gleichung löst, betrachten wir zunächst die spezielle Lösung $\Phi(x) = G(z, x)$ mit festem $z \in V$. Für diese Lösung sind die Ladungsdichte und Randbedingungen gegeben mit

$$\rho(y) = -\varepsilon_0 \Delta_y G(z, y) = \varepsilon_0 \delta^3(y - z), \qquad \omega(y) = G(z, y) = 0.$$
(2.19)

Setzt man diese Lösung in die obige Lösungsformel ein, so lokalisiert die delta-Funktion der Ladungsdichte das Volumenintegral auf der rechten Seite und das Oberflächenintegral verschwindet aufgrund der Annahme G(z, y) = 0 für $y \in \partial V$. Aus der Formel ergibt sich die Symmetrie der Funktion G in den beiden Argumenten

$$G(z, x) = G(x, z).$$
 (2.20)

Hiermit können wir die Poisson-Gleichung für eine allgemeine Ladungsdichte ρ und Randbedingung ω explizit bestätigen

$$\Delta \Phi(x) = -\frac{1}{\varepsilon_0} \int_V dy^3 \,\delta^3(x-y) \,\rho(y) + \oint_{\partial V} dy^2 \,\vec{n}_y \cdot \vec{\partial}_y \delta^3(x-y) \,\omega(y) = -\frac{1}{\varepsilon_0} \,\rho(x), \qquad (2.21)$$

da der zweite Integrand für $x \notin \partial V, y \in \partial V$ verschwindet.⁶

Die Bestätigung der korrekten Randbedingung ist subtiler, denn für $x \in \partial V$ folgt aus der Symmetrie G(x, y) = G(y, x) zusammen mit der Randbedingung G(y, x) = 0 scheinbar $\Phi(x) = 0 + 0$ was nicht stimmen kann.⁷ Hier muss beachtet werden, dass G(x, y) = 0 für $x \in \partial V$ nicht auch für $y \in \partial V$ angenommen werden darf. Für $x, y \in \partial V$ gilt aus Konsistenzgründen hingegen⁸

$$\vec{n}_y \cdot \vec{\partial}_y G(x, y) = -\delta^2(x, y). \tag{2.22}$$

Dies folgt (ohne Beweis) mittels Satz von Gauß aus $\Delta_y G(x, y) = -\delta^3(x - y)$ und man erhält sofort $\Phi(x) = \omega(x)$ wie gewünscht. Wir werden dieses Verhalten später an einem Beispiel bestätigen.

Wir haben also die allgemeine Lösung der Poisson-Gleichung mit Dirichlet-Randbedingungen zurückgeführt auf die Konstruktion einer Greenschen Funktion G(x, y) mit $\Delta_y G(x, y) = -\delta^3(x - y)$ für $x, y \in V$ und G(x, y) = 0 für $x \in V/\partial V, y \in \partial V$. Letzteres ist allerdings keineswegs eine leichte Aufgabe. Wir haben auch gesehen, dass eine solche Greensche Funktion G(x, y) symmetrisch in den Argumenten ist. Dies ist physikalisch sinnvoll, denn sie beschreibt letztlich das Potential zwischen zwei Ladungen bei x und y.⁹

Neumann-Randbedingung. Die Neumann-Randbedingungen hat zwei Komplikationen, welche die Lösung etwas schwieriger gestalten. Zum einen ist das Potential durch die Randbedingung nur bis auf eine Konstante bestimmt. Physikalisch stellt dies kein Problem dar, aber in einer expliziten Formel für $\Phi(x)$

⁶Die Poisson-Gleichung muss nur für den Innenraum $x \in V/\partial V$ zutreffen. Für den Rand $x \in \partial V$ hingegen ist die Randbedingung relevant.

⁷Die Annahme der Randbedingung für den Wert G(x, y) = 0 gilt für $y \in \partial V$ und $x \in V/\partial V$, was die benötigte Normalableitung $\vec{n}_y \cdot \vec{\partial}_y G(x, y)$ nicht direkt einschränkt. Wenn jetzt aber $x \in \partial V$ und $y \in V/\partial V$, dann gilt G(x, y) = 0 aufgrund der Symmetrie. Darum gilt auch $\vec{\partial}_y G(x, y) = 0$ welches man mittels Stetigkeitsargument für $y \to \partial V$ auf den Rand als $\vec{n} \cdot \vec{\partial}_y G(x, y) = 0$ fortsetzen könnte. Die Stetigkeit trifft aber nicht für den Spezialfall $y \to x \in \partial V$ zu.

⁸Der Rand ∂V ist in der Regel eine gekrümmte Fläche, und die Subtraktion zweier Punkte lässt sich dort allgemein nicht sinnvoll definieren. Wir schreiben also die delta-Funktion $\delta^2(x, y)$ mit zwei unabhängigen Argumenten, so dass sie die Distributionseigenschaft $\int_{\partial V} dy^2 \, \delta^2(x, y) f(y) = f(x)$ für beliebige Testfunktionen f auf ∂V erfüllt.

⁹Die Unterscheidung zwischen erzeugender Ladung bei y und Testladung bei x ist lediglich semantisch. Physikalisch sind sie beide gleichzusetzen.

sollte diese Konstante irgendwie festgelegt sein, nur wie? Zum anderen muss die Randbedingung $\nu = \vec{n} \cdot \vec{E} = E_{\perp}$ aufgrund des Satzes von Gauß konsistent mit der gewünschten Ladungsverteilung ρ sein

$$\oint_{\partial V} \mathrm{d}y^2 \,\nu(y) = \oint_{\partial V} \mathrm{d}y^2 \,\vec{n} \cdot \vec{E}(y) = \frac{1}{\varepsilon_0} \int_V \mathrm{d}y^3 \,\rho(y). \tag{2.23}$$

Ansonsten kann es keine Lösung geben!¹⁰

Zur Bestimmung der Greenschen Funktion könnte man vermuten, dass die Randbedingung $\vec{n}_y \cdot \vec{\partial}_y G(x, y) = 0$ zum Ziel führt. Allerdings ist diese Forderung nach dem Satz von Gauß inkonsistent: Die naive Vermutung besagt nämlich, dass G(x, y) (für festes x) keinen Fluss durch ∂V besitzt, und damit keine Gesamtladung in dem Bereich V existiert. Im Widerspruch dazu impliziert die Poisson-Gleichung eine Einheitspunktladung bei $y = x \in V$.

Anstelle der naiven Vermutung fordern wir, dass die Neumann-Randbedingung an G(x, y) bei $y \in \partial V$ zumindest unabhängig von $x \in V$ ist¹¹

$$\vec{n}_y \cdot \vec{\partial}_y G(x, y) = -F(y) \quad \text{für } y \in \partial V.$$
 (2.24)

Hierbei ist F eine frei wählbare Funktion auf ∂V , welche lediglich folgende Normierungsbedingung erfüllen muss¹²

$$\oint_{\partial V} \mathrm{d}y^2 F(y) = 1. \tag{2.25}$$

Dies gewährleistet, dass der Fluss von $\vec{\partial}_y G(x, y)$ durch ∂V konsistent mit der in V enthaltenen Einheitsladung ist. Demnach finden wir folgenden Ausdruck für das Potential

$$\Phi(x) = \frac{1}{\varepsilon_0} \int_V dy^3 G(x, y)\rho(y) - \oint_{\partial V} dy^2 G(x, y) \nu(y)
+ \oint_{\partial V} dy^2 F(y)\omega(y)
= \frac{1}{\varepsilon_0} \int_V dy^3 G(x, y)\rho(y) - \oint_{\partial V} dy^2 G(x, y) \nu(y) + U_0.$$
(2.26)

Hier hängt $\Phi(x)$ zwar noch von $\omega(y)$ ab, allerdings nur über eine Konstante, die dafür sorgt, dass das (ansonsten unbestimmte, mit der Funktion F gewichtete) Mittel von $\Phi(x)$ über ∂V gleich dem Mittel von $\omega(y)$ ist. In jedem Fall ist eine Konstante im Potential ohne physikalische Relevanz.

Um zu zeigen, dass Φ die Poisson-Gleichung löst, benötigen wir die Symmetrie von G(x, y) in x und y. Allerdings ist hier G(x, y) im Allgemeinen nicht exakt

 $^{^{10}}$ Interessanterweise sind beide Komplikationen verwandt: Die Konsistenzbedingung reduziert die Anzahl der Bedingungen an Φ . Dies führt dazu, dass ein konstanter Beitrag in Φ unbestimmt ist.

¹¹Alternativ kann man fordern $\vec{\partial}_x(\vec{n}\cdot\vec{\partial}_yG(x,y))=0$ um die Funktion F formal nicht näher spezifizieren müssen.

¹²Eine typische Wahl ist $F = 1/\operatorname{Vol} \partial V$.

symmetrisch, es lässt sich aber eine entsprechende Relation herleiten. Hierzu setzen wir wieder die spezielle Lösung $\Phi(x) = G(z, x)$ ein und finden

$$G(z,x) = G(x,z) + \oint_{\partial V} dy^2 F(y) \big(G(z,y) - G(x,y) \big).$$
(2.27)

Dies genügt, um die Gültigkeit der Lösung zu zeigen, denn es folgt $\Delta_x G(x, y) = -\delta^3(x - y).$

Alternativ können wir benutzen, dass G(x, y) nicht eindeutig durch die Poisson-Gleichung $\Delta_y G(x, y) = -\delta^3(x - y)$ und die Neumann-Randbedingung $\vec{n} \cdot \vec{\partial}_y G(x, y) = -F(y)$ bestimmt ist. Weitere Greensche Funktionen sind offensichtlich gegeben durch

$$G(x,y) = G(x,y) + K(x)$$
 (2.28)

mit einer allgemeinen Funktion K die nicht von y abhängt.¹³ Wählt man konkret

$$K(x) = -\oint_{\partial V} \mathrm{d}z^2 F(z) G(x, z), \qquad (2.29)$$

so ergibt sich aus der obigen Beziehung, dass die neue Funktion \hat{G} symmetrisch ist. Wir hätten also anfangs als zusätzliche Einschränkung verlangen können, dass G(x, y) symmetrisch in den beiden Argumenten ist.

Es folgt wie zuvor, dass $\Phi(x)$ eine Lösung der Poisson-Gleichung ist. Die Neumann-Randbedingung folgt wiederum aus der Beziehung

$$\vec{n}_x \cdot \hat{\partial}_x \hat{G}(x, y) = \delta^2(x, y) - F(x) \quad \text{für } x, y \in \partial V.$$
(2.30)

Der Vollständigkeit halber lässt sich die Eichung des Potentials $\oint dy^2 F(y)\Phi(y) = \oint dy^2 F(y)\omega(y)$ mittels der Identität $\oint dy^2 F(y)\tilde{G}(x,y) = 0$ zeigen.

2.3 Beispiele

- Bildladungen an der Fläche
- Bildladung an der geerdeten Kugel
- Bildladung an der isolierten Kugel
- Kapazitätskonstanten

Im folgenden betrachten wir ein paar Beispiele von Greenschen Funktionen für ausgewählte Randbedingungen.

Der Halbraum. Das einfachste Beispiel ist der Halbraum $H \subset \mathbb{R}^3$ mit $x \in H$ genau wenn $x_3 > 0$. Er wird durch die 1,2-Ebene ∂H bei $x_3 = 0$ begrenzt.¹⁴

¹³Man beachte, dass letztere aus der Lösung für Φ genau dann herausfällt, wenn die Randbedingung $\vec{E}_{\perp} = \nu$ und die Ladungsverteilung ρ kompatibel sind.

¹⁴Der Halbraum ist kein kompaktes Gebiet, somit müssen asymptotische Randbedingungen bei $x \to \infty$ analog zum freien Raum \mathbb{R}^3 angenommen werden. Die obige Konstruktion führt zwar auch hier zu einer eindeutigen Lösungsformel, diese sollte aber gesondert verifiziert werden.

Nehmen wir an, dass sich dort eine leitende Platte befindet.¹⁵ Wir müssen also Dirichlet-Randbedingungen wählen. Die Randbedingungen für $x \to 0, x_3 > 0$ sollten wie gehabt asymptotisch abfallende Felder sein. Wir suchen also eine Greensche Funktion G(x, y) mit $\Delta G(x, y) = -\delta^3(x - y)$ welche für $x \in \partial H$ bzw. $y \in \partial H$ sowie für $x \to \infty$ oder $y \to \infty$ verschwindet.

Die Lösung ist einfach zu finden, wenn man in Betracht zieht, dass die Greensche Funktion für den freien Raum nur vom Betrag des Abstands der Punkte x und y abhängt. Denn es gibt genau einen weiteren Punkt y', der zu allen Punkten $x \in \partial H$ denselben Abstand hat wie y. Dies ist genau das Bild von y unter Spiegelung an der Randebene:

Wir subtrahieren also die freie Greensche Funktion G(x, y') und erhalten so die gewünschte Greensche Funktion für den Halbraum mit Dirichlet-Randbedingungen

$$G(x,y) = \frac{1}{4\pi \|x - y\|} - \frac{1}{4\pi \|x - y'\|}.$$
(2.32)

Der Rand wirkt als ob zu jeder Ladung im Halbraum eine entgegengesetzte Spiegelladung q' = -q im anderen Halbraum existiert.

Wir überprüfen kurz die gewünschten Eigenschaften.

- $\Delta G = -\delta^3(x-y) + \delta^3(x-y')$. Dies ist akzeptabel, denn für $x, y \in H$ trägt nur der erste Term bei.
- G = 0 für $y \in \partial H$ denn dort gilt y = y'.
- $G \sim 1/||x||$ für $x \to \infty$ da es für beide Terme individuell gilt.
- G ist symmetrisch in x und y denn ||x y'|| = ||x' y||.

Betrachten wir nun noch die Normalableitung auf dem Rand. Für $y \in \partial H$ gilt

$$\vec{n}_y \cdot \vec{\partial}_y G = \frac{x_3}{2\pi \|x - y\|^3} \,. \tag{2.33}$$

Diese Funktion beschreibt die Normalkomponente E_{\perp} des elektrischen Felds auf ∂H und damit die induzierte Ladungsdichte σ . Weiterhin ist sie wichtig für die Realisierung der Randbedingung in der allgemeinen Lösung, die auf einer Subtilität beruht. Dazu schauen wir uns den Grenzfall $x \to \partial H$ an: In der Regel verschwindet der Zähler während der Nenner endlich bleibt. Dennoch ist der Grenzwert der Funktion nicht trivial. Im Grenzfall $x \to y$ divergiert die Funktion nämlich quadratisch, d.h. man muss diesen Punkt gesondert untersuchen. Betrachtet man $\vec{n}_y \cdot \vec{\partial}_y G$ als Familie von Funktionen von x_1, x_2 mit Parameter x_3 , so findet man, dass das Integral $\int dx_1 dx_2 \vec{n}_y \cdot \vec{\partial}_y G = -1$ unabhängig von x_3 und y! Im Grenzfall $x_3 \to 0$ erhält man also die zweidimensionale delta-Funktion

$$\vec{n}_y \cdot \vec{\partial}_y G|_{x_3=0} = -\delta^2 (x-y).$$
(2.34)

 $^{^{15}\}mathrm{Alternativ}$ kann man den anderen Halbraum mit $x_3 < 0$ als leitend betrachten.

Alternativ können wir auch den Halbraum mit Neumann-Randbedingungen betrachten. Hier ist die Greensche Funktion ebenfalls durch Bildladungen gegeben, allerdings mit gleichen Vorzeichen

$$G(x,y) = \frac{1}{4\pi \|x-y\|} + \frac{1}{4\pi \|x-y'\|} . \qquad \overset{y'}{\bullet} \qquad (2.35)$$

Man zeigt leicht, dass $\vec{n}_y \cdot \vec{\partial}_y G = 0$. Dies ist nicht im Widerspruch mit dem Satz von Gauß, denn ∂H berandet kein kompaktes Gebiet.

Aussenraum einer Kugel. Wir haben uns von der Nützlichkeit der Methode der Spiegelladungen überzeugt. Betrachten wir als nächstes den Aussenraum Deiner leitenden Kugel mit Radius R um den Ursprung x = 0 und versuchen eine geeignete Spiegelladung zu finden. Als Ansatz kann man (glücklicherweise) wieder eine Spiegelladung wählen

wobei der Ort y' und die relative Stärke $-\alpha$ der Spiegelladung zu bestimmen sind, so dass G(x, y) = 0 für $y \in \partial D$. Die Lösung für dieses Problem lautet

$$\vec{y}' = \frac{R^2}{\|y\|^2} \vec{y}, \qquad \alpha = \frac{R}{\|y\|}. \qquad \left(\begin{array}{c} R \\ y' \\ \hline R \\ \hline R \\ \hline R \\ \hline \end{array} \right)^{-1} R/\alpha^{-1} \qquad (2.37)$$

Man bezeichnet die Abbildung $y \mapsto y'$ als Inversion an der Sphäre. Um die gewünschten Eigenschaften von G(x, y) zu zeigen bietet sich die folgende Identität an

$$\|y\|^{2}\|x-y'\|^{2} = \|y\|^{2}\|x\|^{2} - 2R^{2}\vec{x}\cdot\vec{y} + R^{4} = \|x\|^{2}\|x'-y\|^{2}.$$
 (2.38)

Sie impliziert, dass die Greensche Funktion symmetrisch in x und y ist. Im Fall $y \in \partial D$, d.h. ||y|| = R, gilt wegen y' = y und $\alpha = 1$ auch direkt die Randbedingung G(x, y) = 0. Für $y \in D$ ist weiterhin $y' \notin D$, so dass keine weitere Quelle in D erzeugt wird.

Im Vergleich zum Halbraum tritt hier eine Besonderheit auf, denn die indizierte Gesamtladung auf der Kugeloberfläche $-\alpha$ hängt vom Ort der Originalladung ab. Dies hängt damit zusammen, dass die Greensche Funktion für

Dirichlet-Randbedingungen immer von einem geerdeten Rand ausgeht. Uber die Erdung kann Ladung zu- oder abfliessen wenn die Originalladung verschoben wird.

Um das Problem für einen nicht-geerdeten Leiter mit vorgegebenem Potential U zu

lösen, setzen wir in der allgemeinen Lösung $\rho(x) = \delta^3(x-y)q$, so dass

$$\Phi(x) = \frac{q}{\varepsilon_0} G(x, y) - U \oint_{\partial D} dz^2 \vec{n}_z \cdot \vec{\partial}_z G(x, z) = \frac{q}{\varepsilon_0} \frac{1}{4\pi ||x - y||} - \frac{q}{\varepsilon_0} \frac{R}{||y||} \frac{1}{4\pi ||x - y'||} + U \frac{R}{||x||}.$$
 (2.39)

Das Integral im letzten Term folgt direkt aus dem Satz von Gauß für die Spiegelladung in G(x, y). Das Potential folgt also aus der Ortsabhängigkeit des Betrags der Spiegelladung. Man kann ihn als weitere Punktladung auffassen, die im Zentrum der Kugel lokalisiert ist, und somit lediglich ein uniformes Potential auf der Kugeloberfläche erzeugt:

$$\underbrace{\begin{array}{c} 0 & y' \\ \circ & \circ \end{array}}_{\mathbf{0}} \begin{array}{c} y \\ \bullet \end{array}$$
 (2.40)

Schliesslich können wir das neue Randwertproblem betrachten, in welchem die Kugeloberfläche leitend aber isoliert von Ladungsquellen ist. Die gesamte induzierte Ladung muss also Null sein. Dazu setzen wir $U = q/4\pi\varepsilon_0 ||y||$. Nun sind alle Terme proportional zu q und wir erhalten die Lösung

$$\Phi(x) = \frac{q}{\varepsilon_0} \left[\frac{1}{4\pi \|x - y\|} - \frac{R}{4\pi \|y\| \|x - y'\|} + \frac{R}{4\pi \|y\| \|x\|} \right].$$
 (2.41)

Man sollte sich allerdings nicht von dem Erfolg der Methode der Spiegelladungen für die zwei eben behandelten Geometrien verführen lassen. Für andere Geometrien funktioniert die Methode bestenfalls näherungsweise. Dass Spiegelladungen für die Kugel exakte Ergebnisse liefern, hängt mit konformer Symmetrie zusammen, die wir etwa später diskutieren wollen.

Ein gutes Beispiel mit einer exakten aber weniger intuitiven Lösung ist der Aussenraum der Kugel mit Neumann-Randbedingungen. Die Greensche Funktion lautet hier (ohne Herleitung)

$$G(x,y) = \frac{1}{4\pi \|x - y\|} + \frac{R}{4\pi \|y\| \|x - y'\|} + \frac{1}{4\pi R} \log \frac{\|y\| \|x - y'\| + \vec{y} \cdot (\vec{x} - \vec{y}')}{\|y\| \|x\| + \vec{y} \cdot \vec{x}}.$$
 (2.42)

Die beiden ersten Terme beschreiben wie zuvor die eigentliche Ladung und die gespiegelte Ladung (hier mit gleichem Vorzeichen). Der verbleibende Term wird benötigt um die Neumann-Randbedingung zu erfüllen. Er beschreibt eine eindimensionale Ladungsverteilung auf dem Intervall zwischen 0 und y' mit Ladungsdichte -1/R:

Interessanterweise gleichen sich die induzierten Ladungen im Inneren der Kugel genau aus. Somit kann auch die Neumann-Randbedingung auf der Kugeloberfläche homogen erfüllt werden, $\vec{n}_y \cdot \vec{\partial}_y G = 0.^{16}$

Kapazitätskonstanten. Schliesslich untersuchen wir, wie sich die Potentiale und Ladungen auf einer Menge von N Leitern L_i gegenseitig beeinflussen:

Im umgebenden Raum \overline{L} sollen keine weiteren Ladungen vorhanden sein. Das Potential auf den Leiteroberflächen ∂L_i soll durch U_i gegeben sein und für $x \to \infty$ wie gehabt verschwinden.

Die allgemeine Lösung des Randwertproblems sowie das Superpositionsprinzip implizieren folgende Struktur der Lösung:¹⁷

$$\Phi(x) = \sum_{i=1}^{N} U_i \Gamma_i(x) \quad \text{mit} \quad \Gamma_i(x) = \delta_{ij} \text{ für } x \in \partial L_j.$$
 (2.45)

Die Energie des Feldes ist dann gegeben durch

$$W = \frac{1}{2}\varepsilon_0 \int_{\bar{L}} \mathrm{d}x^3 \, (\vec{\partial}\Phi)^2 = \frac{1}{2} \sum_{ij=1}^N C_{ij} U_i U_j \tag{2.46}$$

 mit

$$C_{ij} := \varepsilon_0 \int_{\bar{L}} \mathrm{d}x^3 \,\vec{\partial} \Gamma_i \cdot \vec{\partial} \Gamma_j. \tag{2.47}$$

Die Konstanten C_{ij} werden Kapazitätskonstanten genannt, und die Matrix C_{ij} ist symmetrisch und positiv definit, denn offensichtlich gilt $W \ge 0$ und W = 0 genau für $U_i = 0$.

Um die Interpretation als Kapazitäten zu bestätigen, entwickle man W, indem man den Integranden mittels partieller Integration und Ladungsfreiheit auf \overline{L} als Divergenz schreibt, und die Randterme auf den Komponenten ∂L_i einzeln

 $^{^{16}}$ Dies steht nicht im Widerspruch zu den obigen Aussagen betreffend der Normierung dieser Funktion, denn hier ist das Gebiet D nicht kompakt. Allgemein muss die Normierung der Funktion entsprechend angepasst werden, falls das Gebiet nicht kompakt ist oder sein Rand mehrere Komponenten hat.

¹⁷Die Potentialkomponenten $\Gamma_i(x)$ lassen sich anhand der allgemeinen Lösungsformel als Integrale der Greenschen Funktion über die Randkomponente ∂L_i ausdrücken, $\Gamma_i(x) = -\oint_{\partial L_i} dy^2 \vec{n}_y \cdot \vec{\partial}_y G(x, y).$

auswertet

$$W = \frac{1}{2}\varepsilon_0 \int_{\bar{L}} dx^3 \,\vec{\partial} \cdot (\Phi \vec{\partial} \Phi) - \frac{1}{2}\varepsilon_0 \int_{\bar{L}} dx^3 \,\Phi \Delta \Phi$$
$$= -\frac{1}{2}\varepsilon_0 \sum_{i=1}^N \oint_{\partial L_i} dx^2 \,\Phi(x) \,\vec{n} \cdot \vec{\partial} \Phi(x)$$
$$= -\frac{1}{2}\varepsilon_0 \sum_{i=1}^N U_i \oint_{\partial L_i} dx^2 \,\vec{n} \cdot \vec{\partial} \Phi(x) = \frac{1}{2} \sum_{i=1}^N U_i Q_i.$$
(2.48)

Hier sind Q_i die auf ∂L_i indizierten Ladungen (nach dem Satz von Gauß) und es gilt durch Vergleich

$$Q_i = \sum_{j=1}^{N} C_{ij} U_j.$$
 (2.49)

Aus dieser Relation ergibt sich auch die Lösung des verwandten Problems mit isolierten Leitern L_i und vorgegebenen Ladungen Q_i : Die Potentiale U_j lassen sich dort mit der inversen Matrix C^{-1} aus den Ladungen Q_i berechnen. Der Rest der Lösung ist dann analog.

2.4 Konforme Symmetrie

- konforme Symmetrie in drei Dimensionen
- konforme Symmetrie in zwei Dimensionen

Die Gesetze der Elektrostatik weisen gewisse Symmetrien auf. Offensichtlich sind sie invariant unter Translationen (homogen, unabhängig vom Ort). Genauso sind sie invariant unter Rotationen (verdeutlicht durch Vektorschreibweise ohne externe Referenzvektoren). Es gibt aber weitere Symmetrien, die weniger offensichtlich sind, nämlich die *konformen Transformationen*, zu denen die Inversion an der Sphäre gehört.

Um dies zu sehen, betrachte die Poisson-Gleichung $\Delta \Phi = -(1/\varepsilon_0)\rho$ und die Inversion an der Sphäre $\vec{x}' = R^2 \vec{x}/||x||^2$. Die transformierten Felder seien gegeben durch

$$\Phi'(x) = \frac{R}{\|x\|} \Phi(x'), \qquad \rho'(x) = \frac{R^5}{\|x\|^5} \rho(x').$$
(2.50)

Die neuen Potentiale erfüllen die Poisson-Gleichung für die neue Ladungsdichte. Die obige Abbildung ist also eine Symmetrie der Elektrostatik.

Die Euklidischen Transformationen erzeugen zusammen mit der Inversion die konforme Gruppe. Diese Gruppe hat neben den Rotationen und Translationen noch weitere kontinuierliche Abbildungen: Skalentransformationen sowie spezielle konforme Transformationen, welche aus den Translationen mittels Konjugation durch Inversion entstehen. Allgemein sind konforme Transformationen solche Koordinatenabbildungen, die alle Winkel invariant lassen, allerdings Längen ändern können:

Insbesondere bilden sie Ebenen und Sphären aufeinander ab. Dies führt unmittelbar dazu, dass der Aussenraum der Sphäre aus dem Halbraum abgeleitet werden kann, und erklärt, warum das Problem mittels Spiegelladungen exakt gelöst wird.

Konforme Symmetrie in der dreidimensionalen Elektrostatik kann gelegentlich nützlich sein, um ein Problem auf ein anderes bekanntes Problem abzubilden. In zwei Dimensionen ist sie allerdings viel mächtiger. So können Probleme mit einer linearen Translationssymmetrie, welche effektiv zweidimensional sind, allgemein gut gelöst werden.

In zwei Dimensionen bildet man den Raum \mathbb{R}^2 auf die komplexe Ebene \mathbb{C} mittels z = x + iy, $\bar{z} = x - iy$ ab. Der Laplace-Operator spaltet nun in ein Produkt von Ableitungen auf

$$\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}.$$
(2.52)

Man gelangt so direkt zur komplexen Analysis und Funktionentheorie. Konforme Abbildungen in zwei Dimensionen sind durch die holomorphen Funktionen gegeben

$$z \to f(z), \qquad \bar{z} \to \bar{f}(\bar{z}).$$
 (2.53)

Dies sind weitaus mehr Freiheitsgrade als für konforme Abbildungen in höheren Dimensionen. Konforme Abbildungen lassen sich ideal für Randwertprobleme benutzen. So garantiert der Riemannsche Abbildungssatz, dass sich jedes einfach zusammenhängende Gebiet der Ebene konform auf die Einheitskreisscheibe abbilden lässt. Da die Lösung für die Kreisscheibe einfach ist, s.o., kann man so das Randwertproblem im Prinzip für jedes einfach zusammenhängende Gebiet lösen.

3 Elektrostatik in Kugelkoordinaten

Zwei weitere Lösungsansätze für unser Randwertproblem sind die Separation der Variablen und die Entwicklung nach geeigneten Eigenfunktionen, die wir anhand der Kugelkoordinaten und Kugelflächenfunktionen illustrieren möchten.

3.1 Separation der Variablen

- Separation der Variablen
- Separation in kartesischen Koordinaten

Betrachten wir das Problem der homogenen Laplace-Gleichung in kartesischen Koordinaten $\vec{x} = (x, y, z)$

$$\Delta \Phi = \left[\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 + \left(\frac{\partial}{\partial z} \right)^2 \right] \Phi = 0.$$
 (3.1)

Die Separation der Variablen besteht in dem Ansatz, Φ als Produkt von Funktionen zu schreiben, welche jeweils nur von einer Untermenge der Variablen abhängen. Zum Beispiel sei $\Phi(\vec{x}) = \Phi_{xy}(x, y)\Phi_z(z)$, welches nach Division durch Φ zu einer separierten Gleichung führt

$$\frac{1}{\Phi_{xy}} \left[\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right] \Phi_{xy} + \frac{1}{\Phi_z} \left(\frac{\partial}{\partial z} \right)^2 \Phi_z = 0.$$
(3.2)

Die entscheidende Einsicht ist hier, dass der rechte Term nur von z abhängt, während der linke eine Funktion von x und y ist. Die Differentialgleichung kann also nur gelöst werden, wenn beide Seiten konstante Funktionen sind, d.h. sowohl Φ_{xy} als auch Φ_z müssen Eigenfunktionen sein

$$\left[\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right] \Phi_{xy} = \lambda \Phi_{xy}, \qquad \left(\frac{\partial}{\partial z} \right)^2 \Phi_z = -\lambda \Phi_z. \tag{3.3}$$

Auf diese Weise erhalten wir Lösungen, für die die Abhängigkeit von x und y und jene von z nur durch den gemeinsamen Eigenwert λ gekoppelt sind. Dies ist insbesondere hilfreich, wenn die Geometrie des Problems eine solche Trennung vorgibt, z.B. ein Draht entlang der z-Richtung oder ein flächenartiges Objekt in der x,y-Ebene. Durch Superposition lassen sich mit dieser Methode letztlich aber auch allgemeine Lösungen konstruieren, und zwar in der Form von unendlichen Reihen.
3.2 Kugelkoordinaten

- Kugelkoordinaten
- Jacobi-Matrix
- Laplace-Operator
- Integration

Es zwingt uns niemand, die Separation nach kartesischen Koordinaten vorzunehmen. Die Faktoren im Separationsansatz können durchaus von anderen Arten von Koordinaten bzw. generellen Funktionen der kartesischen Koordinaten abhängen. Hiermit kann der Geometrie des Problems besser Rechnung getragen werden. Nützliche krummlinige Koordinaten sind zum Beispiel:

- Zylinderkoordinaten gerader Draht (Strom in einem Leiter, siehe später),
- Kugelkoordinaten rotationssymmetrische oder punktartige Ladungsverteilung.

Führen wir also die *Kugelkoordinaten* in Hinblick auf die Verwendung in partiellen Differentialgleichungen ein:

- Radiale Koordinate r mit $r \ge 0$,
- Polarwinkel ϑ mit $0 \le \vartheta \le \pi$,
- Azimutwinkel φ mit $-\pi < \varphi \leq \pi$ (periodisch identifiziert).

Die Beziehung zu den kartesischen Koordinaten x, y, z lautet¹

$$r = ||x|| = \sqrt{x^2 + y^2 + z^2},$$

$$\vartheta = \arccos(z/r),$$

$$\varphi = \arctan(y/x) + \pi \theta(-x) \operatorname{sign} y.$$
(3.5)

Die inverse Koordinatentransformation lautet

$$\begin{aligned} x &= r \sin \vartheta \cos \varphi, \\ y &= r \sin \vartheta \sin \varphi, \\ z &= r \cos \vartheta. \end{aligned} \tag{3.6}$$

Um Differentialoperatoren zu transformieren, benötigen wir die Jacobi-Matrix

$$\frac{\partial(r,\vartheta,\varphi)}{\partial(x,y,z)} = \frac{1}{r} \begin{pmatrix} r\sin\vartheta\cos\varphi & r\sin\vartheta\sin\varphi & r\cos\vartheta\\ \cos\vartheta\cos\varphi & \cos\vartheta\sin\varphi & -\sin\vartheta\\ -\sin\varphi/\sin\vartheta & \cos\varphi/\sin\vartheta & 0 \end{pmatrix}.$$
 (3.7)

¹Man beachte, dass die Transformation singulär an den Stellen r = 0 (Ursprung) und $\vartheta = 0, \pi$ (Nord- und Südpol) ist.

Das Volumenelement in Kugelkoordinaten erhält als Faktor das Inverse $r^2 \sin \vartheta$ der Determinante der Jacobi-Matrix

$$\int \mathrm{d}x^3 = \int_0^\infty \mathrm{d}r \, r^2 \int_0^\pi \mathrm{d}\vartheta \sin\vartheta \int_{-\pi}^{+\pi} \mathrm{d}\varphi =: \int_0^\infty \mathrm{d}r \, r^2 \oint \mathrm{d}^2 \Omega. \tag{3.8}$$

Die Gesamtfläche einer Kugelschale mit Einheitsradius beträgt $\oint d^2 \Omega = 2\pi \int_0^{\pi} d\vartheta \sin \vartheta = 4\pi$. Die meisten der Faktoren 4π in der Elektrodynamik lassen sich auf die Fläche einer Kugelschale zurückführen. So ist z.B. das Potential einer Punktladung auf einer Kugelschale bei festem Abstand offensichtlich konstant. Um die Übersicht nicht mit solchen Faktoren zu verstellen, bietet es sich an, das Integral über eine Kugelschale generell mit einem Normierungsfaktor von $1/4\pi$ zu versehen, so dass z.B. $(1/4\pi) \oint d^2 \Omega = 1$.

Für den Laplace-Operator erhält man nach einiger Rechnung schliesslich

$$\Delta = \left(\frac{\partial}{\partial r}\right)^2 + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\left(\frac{\partial}{\partial \vartheta}\right)^2 + \frac{1}{r^2}\cot\vartheta\frac{\partial}{\partial \vartheta} + \frac{1}{r^2}\frac{1}{\sin^2\vartheta}\left(\frac{\partial}{\partial \varphi}\right)^2.$$
(3.9)

Auch wenn die Variablen hier etwas mischen, eignet sich diese Form noch gut für einen Separationsansatz.

3.3 Kugelflächenfunktionen

- Eigenfunktionen von \vec{L}^2
- Eigenfunktionen von L_z
- Legendre-Gleichung und verallgemeinerte Legendre-Gleichung
- reguläre Lösungen
- orthogonale Polynome
- Legendre-Polynome, Rodrigues-Formel
- Kugelflächenfunktionen
- Beispiele

Als nächstes wollen wir eine Basis von Funktionen herleiten, für die der Laplace-Operator in Kugelkoordinaten geeignet separiert.

Separation. Der Laplace-Operator in Kugelkoordinaten spaltet auf in einen radialen Anteil und einen Anteil entlang der Kugelschale S^2 ,

$$\Delta = \left(\frac{\partial}{\partial r}\right)^2 + \frac{2}{r}\frac{\partial}{\partial r} - \frac{1}{r^2}\vec{L}^2 \tag{3.10}$$

Letzteren wollen wir mit $-\vec{L}^2/r^2$ bezeichnen, wobei

$$\vec{L}^2 := -\left(\frac{\partial}{\partial\vartheta}\right)^2 - \cot\vartheta \,\frac{\partial}{\partial\vartheta} - \frac{1}{\sin^2\vartheta} \left(\frac{\partial}{\partial\varphi}\right)^2. \tag{3.11}$$

Der zugrundeliegende Differential operator \vec{L} ist ein Vektor welcher Rotationen um alle drei Raumrichtung en generiert. Hier werden wir vor allem die z-Komponente benötigen,²

$$L_z = -i \frac{\partial}{\partial \varphi}, \qquad (3.12)$$

welche mit \vec{L}^2 kommutiert, $[\vec{L}^2, L_z] = 0$. Diese Eigenschaft ist hilfreich um Eigenfunktionen $F(\vartheta, \varphi)$ von \vec{L}^2 zu bestimmen. Letztere werden Kugelflächenfunktionen genannt und sind vor allem auch für die Quantenmechanik relevant.

Wir möchten nun das Eigenwertproblem

$$\vec{L}^2 f(\vartheta, \varphi) = \lambda f(\vartheta, \varphi) \tag{3.13}$$

lösen und verwenden Separation der Variablen $f(\vartheta, \varphi) = g(\vartheta)h(\varphi)$. Indem man die Eigenwertgleichung durch $f(\vartheta, \varphi)$ teilt, gelangt man zu

$$-\frac{g''(\vartheta)}{g(\vartheta)} - \cot\vartheta \,\frac{g'(\vartheta)}{g(\vartheta)} - \frac{1}{\sin^2\vartheta} \,\frac{h''(\varphi)}{h(\varphi)} = \lambda.$$
(3.14)

Hier kann man sich leicht überzeugen, dass der Term $h''/h \sin^2 \vartheta$ unabhängig von φ sein muss, denn alle anderen Terme sind es auch. Hätte er eine nichttriviale φ -Abhängigkeit, könnte die Differentialgleichung nicht für alle φ gleichzeitig gelöst werden. Die Lösung dieses Problems lautet

$$h_m(\varphi) = e^{im\varphi} \,. \tag{3.15}$$

Hier muss m eine ganze Zahl sein, damit die Funktion $h 2\pi$ -periodisch ist.

Diese Lösung ist insbesondere eine Eigenfunktion des Operators L_z mit Eigenwert m. Man beachte, dass dies keine Einschränkung unserer Lösung bedeutet, denn L_z kommutiert mit \vec{L}^2 und hat somit gemeinsame Eigenfunktionen. Gleichzeitige Eigenfunktionen der anderen Komponenten von \vec{L} sind nicht möglich, da i.A. $[L_i, L_j] \neq 0.$

Man beachte weiterhin, dass $h(\varphi)$ eine komplexe Funktion ist, während das elektrische Feld prinzipiell reell ist. Anstelle der komplexen Funktion $h_m(\varphi)$ kann man auch die reellen Linearkombinationen $\operatorname{Re} h_m(\varphi) = \cos(m\varphi)$ und $\operatorname{Im} h_m(\varphi) = \sin(m\varphi)$ wählen. Letztere sind allerdings keine Eigenfunktionen von L_z , lediglich von $L_z^{2,3}$

Wir haben die Eigenwertgleichung somit wie folgt reduziert

$$\left[-\left(\frac{\partial}{\partial\vartheta}\right)^2 - \cot\vartheta \,\frac{\partial}{\partial\vartheta} + \frac{m^2}{\sin^2\vartheta} - \lambda\right]g(\vartheta) = 0. \tag{3.16}$$

²Die Wahl von L_z hängt mit der konventionellen Auszeichnung der z-Achse in Kugelkoordinaten zusammen. Die Auszeichnung hat keine physikalische Relevanz, und man könnte stattdessen jede andere Achse wählen.

 $^{^3\}mathrm{Es}$ ist oft praktischer, zunächst die komplexen Eigenfunktionen zu verwenden und später auf die Real- und/oder Imaginärteile zu projizieren.

Die verbleibende Differentialgleichung in einer Variablen ϑ ist gut zu lösen. In Kugelkoordinaten ist oft die Substitution $u = \cos \vartheta$ mit $-1 \le u \le +1$ sinnvoll. Für die Ableitung gilt dann

$$\frac{\partial}{\partial\vartheta} = \frac{\partial u}{\partial\vartheta}\frac{\partial}{\partial u} = -\sin\vartheta\frac{\partial}{\partial u} = -\sqrt{1-u^2}\frac{\partial}{\partial u},\qquad(3.17)$$

und die neue Differentialgleichung lautet

$$\left[\left(u^2 - 1 \right) \left(\frac{\partial}{\partial u} \right)^2 + 2u \frac{\partial}{\partial u} - \frac{m^2}{u^2 - 1} - \lambda \right] P(u) = 0.$$
 (3.18)

Dies ist die verallgemeinerte Legendre-Gleichung. Die Lösungen heissen assoziierte Legendre-Funktionen. Betrachten wir zunächst den Spezialfall m = 0, welcher die gewöhnliche Legendre-Gleichung genannt wird.

Legendre-Polynome. Aufgrund des Vorfaktors $u^2 - 1$ kann man davon ausgehen, dass gewöhnliche Lösungen der Legendre-Gleichung bei $u = \pm 1$ divergieren. Dies würde zu unerwünschten Verhalten an den Nord- und Südpolen der Sphäre führen und ist somit zu vermeiden. Nur für bestimmte Werte von λ ist dies möglich und die Lösungen sind dort Polynome $P_{\ell}(u)$ vom Grad ℓ .

Diese Legendre-Polynome sind charakterisiert durch die Eigenschaft

$$\int_{-1}^{+1} \mathrm{d}u \, u^k P_\ell(u) = 0 \quad \text{für alle } 0 \le k < \ell.$$
(3.19)

Diese Eigenschaft bestimmt P_{ℓ} eindeutig bis auf einen Vorfaktor: Das Polynom $P_{\ell}(u)$ hat $\ell + 1$ Koeffizienten, von denen ℓ durch die (unabhängigen) Gleichungen festgelegt sind. Weiterhin ist $\alpha P_{\ell}(u)$ ebenfalls eine Lösung für einen beliebigen Vorfaktor α .

Wir wollen nun beweisen, dass diese P_{ℓ} die Legendre-Gleichung erfüllen, welche wir zunächst als Eigenwertgleichung schreiben

$$\mathcal{L}P_{\ell}(u) = \lambda P_{\ell}(u) \tag{3.20}$$

mit dem Differentialoperator⁴

$$\mathcal{L} := \left(u^2 - 1\right) \left(\frac{\partial}{\partial u}\right)^2 + 2u \frac{\partial}{\partial u} = \frac{\partial}{\partial u} \left(u^2 - 1\right) \frac{\partial}{\partial u}.$$
(3.21)

Dazu zeigen wir, dass $\mathcal{L}P_{\ell}$ ebenfalls ein Polynom vom Grad ℓ ist, welches obige Eigenschaft besitzt. Aufgrund der Eindeutigkeit der Lösung muss P_{ℓ} die Eigenwertgleichung erfüllen.

Zunächst untersuchen wir die Wirkung von \mathcal{L} auf das führende Glied eines Polynoms

$$\mathcal{L} u^{\ell} = \ell(\ell+1)u^{\ell} + \mathcal{O}(u^{\ell-2}).$$
(3.22)

 $^{^4 {\}rm Hier}$ wirkt der Differential
operator $\partial/\partial u$ auf alle Terme eines Produkts, die rechts von ihm
stehen.

Dies zeigt zum einen, dass \mathcal{L} den Grad eines Polynoms erhält. Zum anderen bestimmt es den Eigenwert der Legendre-Gleichung

$$\lambda = \ell(\ell+1). \tag{3.23}$$

Als zweiten Schritt setzen wir $\mathcal{L}P_{\ell}$ in das obige Integral ein und führen zweimal partielle Integration aus

$$\int_{-1}^{+1} \mathrm{d}u \, u^k \mathcal{L} P_\ell(u)$$

$$= \int_{-1}^{+1} \mathrm{d}u \, u^k \, \frac{\partial}{\partial u} \, \left(u^2 - 1\right) \frac{\partial}{\partial u} P_\ell(u)$$

$$= u^k \left(u^2 - 1\right) \frac{\partial}{\partial u} P_\ell(u) \Big|_{-1}^{+1} - k \int_{-1}^{+1} \mathrm{d}u \, u^{k-1} \left(u^2 - 1\right) \frac{\partial}{\partial u} P_\ell(u)$$

$$= u^k \left(u^2 - 1\right) \frac{\partial}{\partial u} P_\ell(u) \Big|_{-1}^{+1} - k u^{k-1} \left(u^2 - 1\right) P_\ell(u) \Big|_{-1}^{+1}$$

$$+ k \int_{-1}^{+1} \mathrm{d}u \, P_\ell(u) \, \frac{\partial}{\partial u} \left[u^{k-1} \left(u^2 - 1\right) \right].$$

$$= 0. \qquad (3.24)$$

Die ersten beiden Terme sind jeweils Null dank des Faktors $u^2 - 1$; der letzte Term ist Null aufgrund der Eigenschaft von P_{ℓ} , denn der hintere Faktor ist ein Polynom vom Grad $k < \ell$. Somit besitzt $\mathcal{L}P_{\ell}$ dieselben Eigenschaften und ist damit proportional zu P_{ℓ} .

Eine explizite Form für die Legendre-Polynome ist durch die *Rodrigues-Formel* gegeben

$$P_{\ell}(u) = \frac{1}{2^{\ell} \ell!} \left(\frac{\mathrm{d}}{\mathrm{d}u}\right)^{\ell} \left(u^2 - 1\right)^{\ell}.$$
 (3.25)

Man kann mittels partieller Integration problem
los zeigen, dass für diese Form $\int_{-1}^{+1} \mathrm{d} u \, u^k P_\ell(u) = 0$ gilt.

Aus den obigen Betrachtungen folgt, dass die P_{ℓ} einen Satz von Funktionen auf dem Intervall $-1 \leq u \leq +1$ bilden, der folgende Orthogonalitätsbedingung erfüllt

$$\int_{-1}^{+1} \mathrm{d}u \, P_k(u) P_\ell(u) = 0 \quad \text{für } k \neq \ell.$$
(3.26)

Ihre Normierung kann man ebenfalls mittels elementarer Integrale ableiten:

$$\int_{-1}^{+1} \mathrm{d}u \, P_{\ell}(u)^2 = \frac{2}{2\ell + 1} \,. \tag{3.27}$$

Für den allgemeinen Fall $m \neq 0$ mit $|m| \leq \ell$ erhält man die Lösungen als

$$P_{\ell}^{m}(u) = \frac{(-1)^{m}}{2^{\ell} \ell!} \left(1 - u^{2}\right)^{m/2} \left(\frac{\mathrm{d}}{\mathrm{d}u}\right)^{\ell+m} \left(u^{2} - 1\right)^{\ell}.$$
(3.28)

Diese Funktionen erfüllen die Orthogonalitätsbedingungen

$$\int_{-1}^{+1} \mathrm{d}u \, P_{\ell}^{m}(u) P_{\ell'}^{m}(u) = \delta_{\ell,\ell'} \, \frac{2}{2\ell+1} \, \frac{(\ell+m)!}{(\ell-m)!} \,. \tag{3.29}$$

Kugelflächenfunktionen. Die normierten Kugelflächenfunktionen $Y_{\ell,m}(\vartheta,\varphi)$ sind somit gegeben durch⁵

$$Y_{\ell,m}(\vartheta,\varphi) = \sqrt{(2\ell+1)\frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\vartheta) e^{im\varphi}.$$
(3.30)

Sie erfüllen die Eigenwertgleichungen

$$\vec{L}^2 Y_{\ell,m} = \ell(\ell+1)Y_{\ell,m}, \qquad L_z Y_{\ell,m} = m Y_{\ell,m}.$$
 (3.31)

Wir sehen, dass das Spektrum von \vec{L}^2 quantisiert ist als $\ell(\ell + 1)$ und für jedes ganzzahlige $\ell \ge 0$ gibt es $2\ell + 1$ Werte von m: $-\ell, -\ell + 1, \ldots, +\ell - 1, +\ell$.

Beispiele: Durch Einsetzen erhält man für die niedrigsten $Y_{\ell,m}$

$$Y_{0,0} = 1,$$

$$Y_{1,0} = \sqrt{3} \cos \vartheta = \sqrt{3} \frac{z}{r},$$

$$Y_{1,\pm 1} = \mp \sqrt{\frac{3}{2}} \sin \vartheta \ e^{\pm i\varphi} = \sqrt{\frac{3}{2}} \frac{x \pm iy}{r},$$

$$Y_{2,0} = \sqrt{\frac{5}{4}} \left(3\cos^2 \vartheta - 1\right) = \sqrt{\frac{5}{4}} \frac{2z^2 - x^2 - y^2}{r^2},$$

$$Y_{2,\pm 1} = \sqrt{\frac{15}{2}} \sin \vartheta \cos \vartheta \ e^{\pm i\varphi} = \sqrt{\frac{15}{2}} \frac{z(x \pm iy)}{r^2},$$

$$Y_{2,\pm 2} = \sqrt{\frac{15}{8}} \sin^2 \vartheta \ e^{\pm 2i\varphi} = \sqrt{\frac{15}{8}} \frac{(x \pm iy)^2}{r^2},$$

$$\dots$$
(3.32)

3.4 Orthogonalität und Vollständigkeit

• Orthogonalität

• Vollständigkeit

• Analogie Fourier-Transformation

Die Kugelflächenfunktionen bilden ein orthogonales System von Funktionen auf S^2

$$\frac{1}{4\pi} \int \mathrm{d}\vartheta \sin\vartheta \,\mathrm{d}\varphi \,Y_{\ell,m}(\vartheta,\varphi) \,Y_{\ell',m'}^*(\vartheta,\varphi) = \delta_{\ell,\ell'}\delta_{m,m'}.\tag{3.33}$$

Dies folgt aus der Orthogonalität der Fourier-Reihen und der assoziierten Legendre-Funktionen.

Weiterhin bilden die Kugelflächenfunktionen eine vollständige Basis des Raums $L^2(S^2)$ von quadratintegrablen Funktionen auf der Kugeloberfläche. Es gilt

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell,m}(\vartheta,\varphi) Y_{\ell,m}^{*}(\vartheta',\varphi') = \frac{4\pi}{\sin\vartheta} \,\delta(\vartheta-\vartheta')\,\delta(\varphi-\varphi'). \tag{3.34}$$

 5 Je nach Konvention enthalten die Kugelflächenfunktionen einen zusätzlichen Normierungsfaktor von $1/\sqrt{4\pi}$.

Demnach kann man für quadratintegrable Funktionen schreiben

$$F(\vartheta,\varphi) = \sum_{\ell,m} Y_{\ell,m}(\vartheta,\varphi) f_{\ell,m}$$
(3.35)

 mit

$$f_{\ell,m} = \frac{1}{4\pi} \oint d^2 \Omega \, Y^*_{\ell,m}(\vartheta,\varphi) \, F(\vartheta,\varphi). \tag{3.36}$$

Diese beiden Ausdrücke können als Transformationen zwischen den Funktionen $F(\vartheta, \varphi)$ und den Koeffizienten $f_{\ell,m}$ angesehen werden. Setzt man die eine in die andere ein, so erhält man entweder die Orthogonalitätsrelation oder die Vollständigkeitsrelation.

Die Kugelflächenfunktionen sind somit das Analogon der Basis $e^{im\varphi}$ für quadratintegrable 2π -periodische Funktionen, welche man als Funktionen auf dem Kreis S^1 verstehen kann. Die lineare Transformation $F(\vartheta, \varphi) \leftrightarrow f_{\ell,m}$ ist die Verallgemeinerung der Fourier-Transformation von S^1 nach S^2 . Analoge orthogonale Funktionensysteme gibt es natürlich auch für alle höherdimensionalen Sphären S^k .

3.5 Multipolentwicklung

- Kugelkoordinaten
- Additionstheorem der Kugelflächenfunktionen
- kartesische Koordinaten

Schliesslich wollen wir eine Ladungsverteilung betrachten, die auf einen Bereich um den Ursprung⁶ beschränkt ist

$$\rho(x) = 0 \quad \text{für } \|x\| = r \ge R. \tag{3.37}$$

In genügend grossem Abstand $r \gg R$ erscheint die Ladungsverteilung im Wesentlichen punktförmig und es sollte gelten

$$\Phi = \frac{Q}{4\pi\varepsilon_0 r} + \mathcal{O}(1/r^2). \tag{3.38}$$

Die Gesamtladung Q dominiert das Verhalten für $r \to \infty$. Korrekturen werden durch sog. Multipolmomente bestimmt. Wir wollen diese genauer untersuchen.

Kugelkoordinaten. Eine Betrachtung in Kugelkoordinaten erscheint sinnvoll, da wir nahezu Rotationssymmetrie haben. Für r > R gilt zudem $\rho(x) = 0$, so dass im Aussenraum die homogene Laplace-Gleichung in Kugelkoordinaten gilt

$$\Delta \Phi = \left(\frac{\partial}{\partial r}\right)^2 \Phi + \frac{2}{r} \frac{\partial}{\partial r} \Phi - \frac{1}{r^2} \vec{L}^2 \Phi = 0.$$
(3.39)

⁶Anstelle des Koordinatenursprungs kann man natürlich jeden anderen beliebigen Punkt wählen und die Kugelkoordinaten entsprechend an diesem Punkt zentrieren.

Wir entwickeln nun Φ in Kugelkoordinaten:

$$\Phi(r,\vartheta,\varphi) = \sum_{\ell,m} \Phi_{\ell,m}(r) Y_{\ell,m}(\vartheta,\varphi)$$
(3.40)

und setzen dies ein. Da $Y_{\ell,m}$ eine Eigenfunktion von \vec{L}^2 ist, erhält man direkt eine separierte Differentialgleichung

$$\sum_{\ell,m} Y_{\ell,m} \left[\left(\frac{\partial}{\partial r} \right)^2 + \frac{2}{r} \frac{\partial}{\partial r} - \frac{1}{r^2} \ell(\ell+1) \right] \Phi_{\ell,m}(r) = 0.$$
(3.41)

Da die Kugelflächenfunktionen eine Basis bilden, muss jeder Summand individuell verschwinden. Weiterhin ist der Differential
operator homogen in r, d.h. alle Terme $\sim 1/r^2$. Damit führt der Ansat
z $\Phi\simeq r^\alpha$ ohne Weiteres zur Lösung

$$0 = \left[\left(\frac{\partial}{\partial r} \right)^2 + \frac{2}{r} \frac{\partial}{\partial r} - \frac{1}{r^2} \ell(\ell+1) \right] r^{\alpha}$$

= $r^{\alpha-2} [\alpha(\alpha-1) + 2\alpha - \ell(\ell+1)].$ (3.42)

Dies hat offensichtlich die Lösungen mit $\alpha = \ell$ und $\alpha = -\ell - 1$ sowie Linearkombinationen dieser. Da Φ aber für $\alpha = \ell \ge 0$ und $r \to \infty$ nicht gegen Null geht, legen die asymptotischen Randbedingungen $\alpha = -\ell - 1$ als einzige physikalische Lösung fest.

Die allgemeine Lösung im Aussenraum lautet also

$$\Phi(r,\vartheta,\varphi) = \sum_{\ell,m} \frac{Q_{\ell,m}}{4\pi\varepsilon_0} \frac{1}{(2\ell+1)r^{\ell+1}} Y_{\ell,m}(\vartheta,\varphi).$$
(3.43)

Die unbestimmten Konstanten $Q_{\ell,m}$ werden sphärische *Multipolmomente* genannt. $Q_{0,0}$ ist die Gesamtladung Q, $Q_{1,m}$ beschreibt die 3 Dipolmomente \vec{P} , u.s.w.. Allgemein lassen sie sich über die folgende Formel berechnen

$$Q_{\ell,m} = \int \mathrm{d}^2 \Omega \,\mathrm{d}r \, r^{2+\ell} \, Y^*_{\ell,m}(\vartheta,\varphi) \,\rho(r,\vartheta,\varphi). \tag{3.44}$$

Diese Formel beruht auf der Entwicklung von $1/\|x-x'\|$ für $\|x\|>\|x'\|$ in Kugelkoordinaten

$$\frac{1}{\|x - x'\|} = \sum_{\ell,m} \frac{1}{2\ell + 1} \frac{r'^{\ell}}{r^{\ell+1}} Y_{\ell,m}(\vartheta, \varphi) Y_{\ell,m}^*(\vartheta', \varphi').$$
(3.45)

Setzt man diese Identität in die allgemeine Formel für das Potential ein, erhält man den obigen Ausdrück für $Q_{\ell,m}$.

Wir wollen die obige Identität belegen. Dazu benutzen wir zunächst ein Additionstheorem für Kugelflächenfunktionen

$$\frac{1}{2\ell+1} \sum_{m=-\ell}^{+\ell} Y_{\ell,m}(\vartheta,\varphi) Y_{\ell,m}^*(\vartheta',\varphi') = P_{\ell}(\cos\gamma), \qquad (3.46)$$

wobei $\cos \gamma = \cos \vartheta \cos \vartheta' + \sin \vartheta \sin \vartheta' \cos(\varphi - \varphi')$ der Kosinus des relativen Winkels γ ist, welchen die Punkte x, x' aus der Perspektive des Ursprungs bilden.

Der Beweis des Additionstheorems beruht auf verschiedenen Tatsachen, und wir wollen ihn hier nicht nachvollziehen. Damit reduziert sich die zu zeigende Identität auf

$$\frac{1}{\|x - x'\|} = \sum_{\ell=0}^{\infty} \frac{r'^{\ell}}{r^{\ell+1}} P_{\ell}(\cos\gamma).$$
(3.48)

Es ist klar, dass der Abstand ||x - x'|| durch eine Kombination von r, r' und γ ausgedrückt werden kann. Alle diese drei Grössen sind unabhängig vom Bezugssystem und damit rotationsinvariant. Wir können die Konfiguration also durch eine geeignete Rotation so transformieren, dass der Punkt x' auf der positiven z-Achse liegt. Dies legt den Winkel $\vartheta' = 0$ fest und es gilt damit $\gamma = \vartheta$.

Um die Abhängigkeit von den drei Koordinaten zu belegen, betrachten wir 1/||x - x'|| als Potential einer Punktladung bei x'. Die Multipolentwicklung des Potentials für ||x|| > ||x'|| liefert die Form

$$\frac{1}{\|x - x'\|} = \sum_{\ell=0}^{\infty} \frac{A_{\ell}}{r^{\ell+1}} P_{\ell}(\cos\vartheta).$$
(3.49)

Hierbei sind alle Koeffizienten mit $m \neq 0$ verboten, denn das Potential ist unabhängig vom Winkel φ , und wir haben den Ausdruck von $Y_{\ell,0}$ als Legendre-Polynom P_{ℓ} eingesetzt. Um die verbliebenen Koeffizienten A_{ℓ} zu bestimmen, wählen wir ebenfalls $\vartheta = 0$. Die Normierung von P_{ℓ} durch $P_{\ell}(1) = 1$ liefert dann

$$\frac{1}{r-r'} = \frac{1}{\|x-x'\|} = \sum_{\ell=0}^{\infty} \frac{A_{\ell}}{r^{\ell+1}}.$$
(3.50)

Durch Abgleich mit der geometrischen Reihe erhalten wir schliesslich $A_{\ell} = r^{\prime \ell}$, was die Identität bestätigt.

Kartesische Koordinaten. Die Multipolentwicklung lässt sich auch in kartesischen Koordinaten schreiben und der Vergleich der Beiträge für die niedrigsten ℓ mit den Kugelkoordinaten ist instruktiv. Wir beginnen wieder mit dem Ausdruck für das Potential einer allgemeinen Ladungsverteilung

$$\Phi(x) = \int dy^3 \frac{\rho(y)}{4\pi\varepsilon_0 ||x-y||} \,. \tag{3.51}$$

Für $||x|| \to \infty$ entwickeln wir 1/||x-y|| und erhalten als führende Terme

$$\frac{1}{\|x-y\|} = \frac{1}{\|x\|} + \frac{\vec{x}\cdot\vec{y}}{\|x\|^3} + \frac{3(\vec{x}\cdot\vec{y})^2 - \vec{x}^2\vec{y}^2}{2\|x\|^5} + \dots$$
(3.52)

Somit gilt

$$\Phi(x) = \frac{Q}{4\pi\varepsilon_0 \|x\|} + \frac{\vec{x}\cdot\vec{P}}{4\pi\varepsilon_0 \|x\|^3} + \frac{1}{2}\sum_{i,j=1}^3 \frac{x_i x_j R_{ij}}{4\pi\varepsilon_0 \|x\|^5} + \dots$$
(3.53)

Mit Multipolmomente sind gegeben durch

$$Q = \int dx^{3} \rho(x),$$

$$\vec{P} = \int dx^{3} \rho(x) \vec{x},$$

$$R_{ij} = \int dx^{3} \rho(x) (3x_{i}x_{j} - \delta_{ij}\vec{x}^{2}).$$
(3.54)

Der Quadrupoltensor⁷ R_{ij} ist spurlos, denn $\sum_i R_{ii} = \int dx^3 \rho(x)(3\vec{x}^2 - 3\vec{x}^2) = 0$. Höhere Multipolmomente lassen sich analog berechnen und verwenden. Sie werden ausgedrückt als total symmetrische Tensoren, für die jede Spur über zwei Indizes verschwindet. Man beachte, dass Q ein Skalar ist, \vec{P} ein Vektor mit 3 Komponenten und R ein Tensor mit 5 unabhängigen Komponenten. Ein entsprechender Tensor mit ℓ Indizes hat genau $2\ell + 1$ unabhängige Komponenten. Es besteht also ein direkter Zusammenhang zwischen den Kugelflächenfunktionen und symmetrisch-spurlosen Tensoren.

3.6 Darstellungen der Rotationsgruppe

- Gruppe und Darstellungen
- Vektordarstellung
- Tensorprodukte, Addition
- Zerlegung in Spur, symmetrisch-spurlos und antisymmetrisch
- höhere Darstellungen
- Vergleich mit Kugelflächenfunktionen

Die Rotationen in drei Dimensionen bilden eine (kontinuierliche) Gruppe, welche SO(3) genannt wird. Kugelflächenfunktionen kann man gut mittels Darstellungen

⁷Die Multipolmomente werden mit den Zweierpotenzen 2^{ℓ} bezeichnet: Monopol, Dipol, Quadrupol, Oktupol, Diese Bezeichnungen lassen sich wie folgt erklären: Aus einem gegebenen Multipol mit Ladungsverteilung ρ kann man einen nächsthöheren Multipol als die Kombination $\rho(x) - \rho(x + a)$ konstruieren, wobei a ein Verschiebungsvektor ist. Besteht der ursprüngliche Multipol aus Punktladungen, so besteht der nächsthöhere aus der doppelten Anzahl. Hierbei können Ladungen zusammenfallen, so dass ein 2^{ℓ} -Multipol auch bereits mit $\ell + 1$ Ladungen erzeugt werden kann.

dieser Gruppe erklären. Wir wollen deshalb etwas die Rotationsgruppe und ihre Darstellungen besprechen.

Rotationsgruppe. Die Elemente $R \in SO(3)$ der Gruppe sind reelle orthogonale 3×3 Matrizen, welche Vektoren rotieren, d.h.

$$\vec{x}' = R\vec{x}$$
 bzw. in Komponenten $x'_i = \sum_{j=1}^3 R_{ij}x_j.$ (3.55)

Orthogonalität bedeutet, dass R die Eigenschaft $R^{\mathsf{T}} = R^{-1}$ besitzt und weiterhin schliesst man Spiegelungen durch die Einschränkung auf det R = +1 aus.

Die Multiplikation zweier Gruppenelemente R_1 und R_2 ist durch die Komposition R_1R_2 der Abbildungen mittels Matrizenmultiplikation gegeben. Die speziellen Eigenschaften der Elemente werden dabei erhalten, denn

$$(R_1 R_2)^{\mathsf{T}} = R_2^{\mathsf{T}} R_1^{\mathsf{T}} = R_2^{-1} R_1^{-1} = (R_1 R_2)^{-1}$$
(3.56)

sowie $\det(R_1 R_2) = \det(R_1) \det(R_2) = 1.$

Weiterhin besitzt die Gruppe mit der Einheitsmatrix und der Matrizeninversion ein Identitätselement und die Inversion.

Darstellungen. Eine Darstellung ist eine Abbildung von Gruppenelementen auf Abbildungen eines Vektorraums V (d.h. quadratische Matrizen), welche folgende Eigenschaft erfüllt

$$D(R_1)D(R_2) = D(R_1R_2). (3.57)$$

Auf der linken Seite wird die Matrizenmultiplikation verwendet, auf der rechten die abstrakte Komposition von Gruppenelementen.

Sind die Gruppenelemente selbst Matrizen, ist die Identitätsabbildung $D_{def} = id$ eine Darstellung, die sogenannte definierende oder fundamentale Darstellung. Im Fall von SO(3) wollen wir diese Darstellung mit D_1 bezeichnen.⁸ Sie wirkt auf den Vektorraum $V = \mathbb{R}^3$.

In der Tat gibt es viele weitere Darstellungen zu jeder gegebenen Gruppe. Eine der wichtigen Aufgaben der Gruppentheorie ist es, die irreduziblen Darstellungen einer Gruppe modulo Äquivalenz zu klassifizieren. Wir werden sehen, dass diese Klassifizierung für die Gruppe SO(3) analog zu den Kugelflächenfunktionen ist. Wir wollen also die wichtigsten Elemente der Darstellungstheorie beschreiben und auf SO(3) anwenden:

Zwei Darstellungen D und D' sind äquivalent, wenn es eine Abbildung T gibt, so dass $D'(R) = TD(R)T^{-1}$ für alle R.

⁸Da in der Physik meist Matrixgruppen zum Einsatz kommen, wird oft nicht zwischen abstrakten Gruppenelementen R und ihrer fundamentalen Darstellung D(R) unterschieden. Man beachte aber, dass für Gruppenelemente in der Regel nur die Multiplikation definiert ist, während quadratische Matrizen eine Algebra bilden, in der auch Addition und andere Operationen definiert sind.

Eine Darstellung ist irreduzibel, wenn sie auf keinem Unterraum auch als Darstellung wirkt. So sind z.B. Blockdiagonalmatrizen der Form $D = \text{diag}(D_1, D_2)$ eindeutig reduzibel. Ebenso sind Darstellungen reduzibel, die zu einer Blockdiagonalform äquivalent sind (wobei es meist schwer zu erkennen ist, ob eine solche Ähnlichkeitstransformation existiert oder nicht).

Triviale Darstellungen, welche alle Gruppenelemente R auf die Einheitsmatrix abbilden, existieren in jeder Gruppe. Für höherdimensionale Räume V zerfallen sie offenbar in dim V 1-dimensionale triviale Darstellungen, welche wir mit D_0 bezeichnen wollen.

Die Dimension dim D einer Darstellung D ist die Dimension dim V des Vektorraums V, auf den sie wirken. Die fundamentale Darstellung D_1 von SO(3) hat die Dimension 3.

Aus zwei Darstellungen D_1 und D_2 auf die Vektorräume V_1 und V_2 lässt sich die direkte Summe $D = D_1 \oplus D_2$ auf die direkte Summe der Vektorräume $V = V_1 \oplus V_2$ konstruieren. Seien e_1^k und e_2^k Basisvektoren dieser Vektorräume, so ist die Vereinigung der Basen eine Basis von V und es gilt

$$D(R)e_1^k = D_1(R)e_1^k, \qquad D(R)e_2^k = D_2(R)e_2^k.$$
 (3.58)

Demnach ist die direkte Summe durch blockdiagonale Matrizen $D = \text{diag}(D_1, D_2)$ gegeben, und die Dimension dieser Darstellung beträgt dim $D = \text{dim} D_1 + \text{dim} D_2$.

Aus zwei Darstellungen D_1 und D_2 lässt sich ebenfalls das Tensorprodukt $D = D_1 \otimes D_2$ konstruieren. Die Darstellung D wirkt auf das Tensorprodukt $V = V_1 \otimes V_2$ welches durch die Basis $e_1^k \otimes e_2^l$ aufgespannt wird

$$D(R)(e_1^k \otimes e_2^l) = D_1(R)e_1^k \otimes D_2(R)e_2^l.$$
(3.59)

Die Dimension des Tensorprodukts beträgt somit dim $D = \dim D_1 \cdot \dim D_2$.

Mit diesen Operationen kann man aus bekannten Darstellungen neue konstruieren. Insbesondere zerlegt man das Tensorprodukt in seine irreduziblen Komponenten. Die Zerlegung ist dabei die umgekehrte Operation zur Direkten Summe.

Darstellungen von SO(3). Beginnen wir mit der fundamentalen Darstellung D_1 auf $V_1 = \mathbb{R}^3$. Das Tensorprodukt $D := D_1 \otimes D_1$ ist 9-dimensional, es ist reduzibel. Da beide Faktoren identisch sind, gibt es einen natürlichen Permutationsoperator P auf dem Tensorprodukt $V := V_1 \otimes V_1$. Er kommutiert mit der Darstellung⁹

$$PD(v \otimes w) = P(D_1 v \otimes D_1 w) = D_1 w \otimes D_1 v$$

= $D(w \otimes v) = DP(v \otimes w).$ (3.60)

⁹Hier wird die Beziehung lediglich für unverschränkte Elemente $v \otimes w$ des Tensorprodukts V gezeigt. Allgemeine verschränkte Elemente von V lassen sich zwar nur als Linearkombination solcher Elemente schreiben, die Beziehung gilt aber aufgrund von Linearität dennoch für sie. Relationen mit Tensorprodukten werden auf diese Weise oft stillschweigend vereinfacht dargestellt.

Wir können nun aus P und der Identität I zwei Projektoren $\Pi_{\pm} = \frac{1}{2}(I \pm P)$ bauen, denn es gilt mit $P^2 = I$

$$\Pi_{\pm}\Pi_{\pm} = \frac{1}{4}(I \pm 2P + P^2) = \frac{1}{2}(I \pm P) = \Pi_{\pm}, \qquad (3.61)$$

sowie auch $\Pi_{\pm}\Pi_{\mp} = 0$. Sie kommutieren offensichtlich auch mit D. Somit zerfällt die Darstellung D in einen symmetrischen und einen antisymmetrischen Anteil auf den Unterräumen $V_{\pm} := \Pi_{\pm} V$

$$D = D_+ \oplus D_- \qquad \text{mit} \qquad D_{\pm} = D\Pi_{\pm}. \tag{3.62}$$

Beide Komponenten sind Darstellungen, da

$$D(R_1)\Pi_{\pm} D(R_2)\Pi_{\pm} = D(R_1)D(R_2)\Pi_{\pm}\Pi_{\pm} = D(R_1R_2)\Pi_{\pm}.$$
 (3.63)

Der symmetrische Anteil des Tensorprodukts ist 6-dimensional, der antisymmetrische ist 3-dimensional. Letzterer hängt direkt mit dem Vektorprodukt $\vec{v} \times \vec{w}$ zusammen. Da letzteres wieder ein gewöhnlicher 3-dimensionaler Vektor ist, muss der antisymmetrische Anteil D_- von $D_1 \otimes D_1$ äquivalent zu D_1 sein. Der symmetrische Anteil D_+ ist nun weiterhin zerlegbar. Dies hängt mit dem Skalarprodukt $\vec{v} \cdot \vec{w}$ zweier Vektoren zusammen. Letzteres ist ein Skalar welches sich unter Rotationen nicht ändert. Somit muss D_+ eine triviale Darstellung D_0 enthalten. Die Darstellung auf dem verbleibenden 5-dimensionalen Raum ist nun irreduzibel, wir nennen sie D_2 . Insgesamt haben wir gefunden

$$D_1 \otimes D_1 = D_1 \oplus D_0 \oplus D_2. \tag{3.64}$$

Mit der neuen Darstellung D_2 können wir fortfahren und erhalten folgende Zerlegung des Tensorprodukts mit D_1

$$D_2 \otimes D_1 = D_2 \oplus D_1 \oplus D_3. \tag{3.65}$$

Die Dimension von D_3 beträgt $7 = 3 \cdot 5 - 5 - 3$. Die Iterationsvorschrift lautet allgemein

$$D_{\ell} \otimes D_1 = D_{\ell} \oplus D_{\ell-1} \oplus D_{\ell+1} \qquad \text{mit} \qquad \dim D_{\ell} = 2\ell + 1. \tag{3.66}$$

Man sieht, dass die Darstellung D_{ℓ} genausoviele Komponenten besitzt, wie es Kugelflächenfunktionen $Y_{\ell,m}$ für selbiges ℓ gibt. Die Darstellung D_{ℓ} kann somit auf den Raum der $Y_{\ell,m}$ für festes ℓ wirken: Sei R die Abbildung, welche die Winkel $(\vartheta, \varphi) \mapsto (\vartheta', \varphi')$ abbildet, so gilt

$$Y_{\ell,m}(\vartheta',\varphi') = \sum_{m'=-\ell}^{\ell} D_{\ell}(R)_{m,m'} Y_{\ell,m'}(\vartheta,\varphi).$$
(3.67)

Allgemein gilt: Die Darstellung D von SO(3) auf den Raum $L^2(S^2)$ der quadratintegrablen Funktionen auf S^2 zerfällt in die unendliche Summe

$$D = \bigoplus_{\ell=0}^{\infty} D_{\ell}.$$
(3.68)

4 Magnetostatik

Die Magnetostatik gleicht in vielerlei Hinsicht der Elektrostatik, insbesondere in quellfreien Bereichen. Das ist nicht verwunderlich, denn elektrische und magnetische Kräfte werden später in der Elektrodynamik vereinigt. Es gibt allerdings einige wichtige Unterschiede, welche die Magnetostatik komplizierter und weniger intuitiv erscheinen lassen:

- Abwesenheit von magnetischen Monopolen;
- Strom statt Ladung als elementare Grösse, Kontinuitätsgleichung;
- Vektorieller statt skalarer Charakter des Potentials, Vektor- statt Skalarprodukte;
- Vorzeichen und Richtungen wichtig; Rechte-Hand-Regel (bzw. je nach Konvention auch Linke-Hand-Regel).

4.1 Grundlagen

- elektrischer Strom
- Ampère-Gesetz
- Biot-Savart-Gesetz
- magnetische Flussdichte
- Drehmoment

Das Verhalten von magnetischen Materialien legt nahe, dass die Kräfte zwischen ihnen durch ähnliche Gesetze wie elektrische Ladungen in der Elektrostatik beschrieben werden. Anders als elektrische Ladungen lassen sich die magnetischen Nord/Süd-Pole eines Stabmagneten nicht räumlich voneinander trennen.¹ Magnete verhalten sich analog zu elektrischen Dipolen, die Kräfte sind bis auf Vorfaktoren dieselben. Es hat sich allerdings gezeigt, dass elektrische Ströme auf Magnete Einfluss nehmen und auch untereinander wechselwirken. Da man auch mit elektrischen Strömen magnetische Dipole erzeugen kann (Spule), wird der elektrische Strom als elementare Eigenschaft des Magnetismus betrachtet. Die magnetischen Eigenschaften von Magneten werden elektrischen Strömen im Material, bzw. in dessen Molekülen und Atomen, zugerechnet. Wir werden diesen Zusammenhang später untersuchen.

Ampère-Gesetz. Das Analogon einer Punktladung in der Elektrostatik ist eine *Stromschleife* in der Magnetostatik. Hierbei handelt es sich um eine eindimensional ausgedehnte (unendlich dünne) geschlossene Kurve C, durch die ein (gerichteter) elektrischer *Strom I* fliesst. Der Strom *I* bezeichnet die Menge elektrischer

 $^{^1\}mathrm{D.h.}$ man kann kein nicht-magnetisierbares Material zwischen sie bringen.

Ladung, welche je Zeiteinheit durch jeden einzelnen Punkt von C fliesst. Ströme haben immer eine räumliche Ausdehnung und sind immer geschlossen.

Das Ampère-Gesetz beschreibt die Kraft zwischen zwei Stromschleifen $(C_1, I_1), (C_2, I_2)$

$$(C_1, I_1) \longrightarrow \vec{F_1} \qquad \vec{F_2} \longrightarrow (C_2, I_2) \tag{4.1}$$

mittels Integrale über die Stromschleifen

$$\vec{F}_1 = -\vec{F}_2 = \mu_0 I_1 I_2 \oint_{C_1} \oint_{C_2} \frac{\mathrm{d}\vec{x}_1 \times (\mathrm{d}\vec{x}_2 \times (\vec{x}_1 - \vec{x}_2))}{4\pi \|x_1 - x_2\|^3} \,. \tag{4.2}$$

Die Form ist dem Coulomb-Gesetz sehr ähnlich. Allerdings ist hier die Kraft immer über Integrale definiert,² und es werden zwei Vektorprodukte verwendet. Die Richtung der Kraft ist so zu interpretieren, dass gleichgerichtete Stromelemente sich anziehen während gegensätzlich ausgerichtete Ströme sich abstossen. Die Konstante μ_0 heisst magnetische Feldkonstante. Ihr Wert beträgt genau³ $4\pi \cdot 10^{-10} \text{ kg m / A}^2 \text{ s}^2$, welches letztlich die SI-Einheit Ampère A festlegt. Ihr Wert ist wiederum für uns irrelevant bis auf die wichtige Beziehung

$$\varepsilon_0 \mu_0 = \frac{1}{c^2} \,, \tag{4.3}$$

wobei c die Lichtgeschwindigkeit im Vakuum ist. Diese Beziehung werden wir in der Elektrodynamik verstehen. Die Lichtgeschwindigkeit und ihre Universalität bilden die Grundlage der speziellen Relativitätstheorie.

Biot-Savart-Gesetz. Analog zur Elektrostatik können wir die Fernwirkung des Ampère-Gesetzes durch Einführung eines Feldes abmildern. Eine Stromschleife (C, I) erzeugt eine magnetische Flussdichte⁴ oder magnetische Induktion $\vec{B}(x)$ im Raum anhand des Biot-Savart-Gesetzes

$$\vec{B}(x) = \mu_0 I \oint_C \frac{\mathrm{d}\vec{y} \times (\vec{x} - \vec{y})}{4\pi \|x - y\|^3}.$$
(4.4)

Nach dem Ampère-Gesetz ist damit die Kraft, die auf eine (andere) Stromschleife (C, I) im Feld der magnetischen Flussdichte wirkt, gegeben durch

$$\vec{F} = I \oint_C d\vec{x} \times \vec{B}(x).$$
(4.5)

 $^{^2\}mathrm{Es}$ gibt keine punktförmigen Ströme; diese würden die Kontinuitätsgleichung verletzen.

³Seit 2019 ist diese Aussage nur noch historisch korrekt und relevant. Stattdessen ist die elektrische Ladung eines Elektrons als genau $-1.602176634 \cdot 10^{-19}$ C festgelegt, woraus sich im Gegenzug die magnetische Feldkonstante als Messgrösse ergibt, die den angegebenen Wert mit relativer Genauigkeit von etwa 10^{-9} annimmt.

⁴Das magnetische Feld oder die magnetische Feldstärke H bezeichnet ein anderes Feld H, welches wir im Zusammenhang mit Materie kennenlernen werden. In Abwesenheit von Materie ist es allerdings proportional zu B.

Als Beispiel betrachten wir einen unendlich ausgedehnten Strom I entlang der z-Achse⁵ und berechnen die magnetische Flussdichte. Die Geometrie des Stroms hat Zylindersymmetrie, es genügt also das Feld an einem Punkt $\vec{x} = (r, 0, 0)$ zu betrachten. Die Flussdichte ist durch ein Integral gegeben

$$\vec{B}(x) = \mu_0 I \int_{-\infty}^{+\infty} dz \, \frac{\vec{e}_z \times (r, 0, -z)}{4\pi (r^2 + z^2)^{3/2}} = \frac{\mu_0 I}{4\pi} \vec{e}_y \int_{-\infty}^{+\infty} \frac{r \, dz}{(r^2 + z^2)^{3/2}} = \frac{\mu_0 I}{2\pi r} \vec{e}_y.$$
(4.6)

Die magnetische Flussdichte steht also senkrecht zur Stromrichtung $\vec{e_z}$ und zum Abstandsvektor $\vec{e_x}$ und besitzt den Betrag $\mu_0 I/2\pi r$. Das Vorzeichen lässt sich mittels einer Rechte-Hand-Regel bestimmen, wobei der Daumen in Richtung des Stroms zeigt und die gekrümmten übrigen Finger die Richtung des Magnetfelds um den Strom beschreiben. Stellt man an diese Stelle einen weiteren parallelen Strom \tilde{I} , so ist die Kraft je Länge l in Richtung des (rechtwinkligen) Abstands gegeben durch

$$\frac{F}{l} = \tilde{I}B = \frac{\mu_0 I\tilde{I}}{2\pi r} \,. \tag{4.7}$$

Die Kraft wirkt anziehend, falls die Ströme gleichgerichtet sind, anderenfalls abstossend.

Drehmoment. Der obige Ausdruck für die gesamte Kraft auf eine Stromschleife suggeriert, dass die magnetische Flussdichte auf Linienelemente des Stroms als differentielle Kraft wirkt

$$\mathrm{d}\vec{F} = I\,\mathrm{d}\vec{x}\times\vec{B}(x).\tag{4.8}$$

Das ist insbesondere relevant, wenn die resultierende Kraftdichte inhomogen ist. So bedingt die ortsabhängige Kraftdichte ein Drehmoment auf die Stromschleife

$$\vec{M} = I \oint_C \vec{x} \times \left(\mathrm{d}\vec{x} \times \vec{B}(x) \right). \tag{4.9}$$

Dieses setzt sich wie die Kraft F aus infinitesimalen Beiträgen $d\vec{M} = \vec{x} \times d\vec{F}$ zusammen. Ein solches Drehmoment ist der führende Effekt für homogene Felder B, wie wir später sehen werden. Wenn die Form der Stromschleife nicht fest vorgegeben ist, treten zudem interne Verformungskräfte auf, die in der Praxis bei starken Feldern und Strömen zum Bersten des Materials führen können.

4.2 Feldgleichungen

- Stromdichten, Kontinuität
- Kraft, Drehmoment
- Differentielle Feldgleichungen
- Ampèresches Durchflutungsgesetz

 $^{^5}$ Man darf sich vorstellen, dass die Stromschleife in genügend grosser Entfernung schliesst, d.h. formal bei $\infty.$

Das Biot-Savart-Gesetz bestimmt die magnetische Flussdichte zu einer dünnen geschlossenen Stromschleife im freien Raum. Sie erfüllt gewisse Differentialgleichungen analog zum elektrischen Feld des Coulomb-Gesetzes. Bevor wir diese bestimmen, wollen wir das Biot-Savart-Gesetz auf eine kontinuierliche Stromverteilung verallgemeinern.

Stromdichte. Genau wie Punktladungen sind eindimensionale Stromschleifen Idealisierungen der Realität, die z.T. zu unerwünschten Divergenzen am Ort der Ladung bzw. des Stroms führen. Analog zur Ladungsdichte führen wir eine *Stromdichte* $\vec{j}(x)$ ein. Sie ist ein vektorielles Feld, welches beschreibt, wieviel Strom *I* durch eine Fläche *A* fliesst

Die Eigenschaft, dass alle Stromschleifen geschlossen sind, wird hier verkörpert durch die *statische Kontinuitätsgleichung*

$$\vec{\partial} \cdot \vec{j} = 0. \tag{4.11}$$

Die Stromdichte muss also divergenz- oder quellenfrei sein. Versteht man elektrischen Strom als Ladungstransport, so kann sich auch die Ladungsdichte mit der Zeit ändern. Hierfür wäre ein zusätzlicher Term $\partial_t \rho$ nötig, der aber Zeitabhängigkeit voraussetzt, auf die wir erst später zu sprechen kommen.

Die Kontinuitätsgleichung zusammen mit dem Satz von Gauß besagt, dass der Strom durch eine Fläche A in der Tat nur vom Rand ∂A der Fläche abhängt.⁶ Ein Strom wird also letztendlich mit einer Schlaufe ∂A gemessen, die ihn umschliesst.

Es ist nun problemlos möglich, das Biot-Savart-Gesetz auf eine kontinuierliche Stromdichte zu verallgemeinern

$$\vec{B}(x) = \mu_0 \int dy^3 \frac{\vec{j}(y) \times (\vec{x} - \vec{y})}{4\pi \|x - y\|^3}.$$
(4.12)

Hier wird das eindimensionale Integral über Stromschleifen kombiniert mit dem zweidimensionalen Integral, welches den Strom durch eine Fläche misst, zu einem dreidimensionalen über den gesamten Raum. Man geht weiterhin davon aus, dass sich magnetische Felder und Kräfte linear addieren, und sich nicht gegenseitig beeinflussen. Die Kraftdichte f, die Kraft F und das Drehmoment M für eine Stromdichte im magnetischen Feld sind gegeben durch

$$f(x) = \vec{j}(x) \times B(x),$$

$$\vec{F} = \int dx^3 \, \vec{j}(x) \times \vec{B}(x),$$

$$\vec{M} = \int dx^3 \, \vec{x} \times (\vec{j}(x) \times \vec{B}(x)).$$
(4.13)

Ebenso treten Deformationskräfte auf.

 $^{^6}$ Zwei durch ∂A berandete Flächen umschliessen zusammen einen kompakten Bereich, und mittels Satz von Gauß und Kontinuitätsgleichung ist damit der Fluss durch den Rand insgesamt Null.

Feldgleichungen. Die magnetische Flussdichte erfüllt wie das elektrische Feld zwei Differentialgleichungen. Durch direktes Nachrechnen erhält man die partiellen Ableitungen (für x ausserhalb des Trägers der Stromdichte j)

$$\partial_i B_j = \mu_0 \sum_{k,l=1}^3 \varepsilon_{jkl} \int dy^3 j_k(y) \, \frac{\delta_{il}(\vec{x} - \vec{y})^2 - 3(x - y)_i(x - y)_l}{4\pi \|x - y\|^5} \,. \tag{4.14}$$

Dies ergibt unmittelbar $\vec{\partial} \cdot \vec{B} = 0$. Um die Rotation $\vec{\partial} \times \vec{B}$ zu verstehen, muss man etwas mehr arbeiten. Man erhält

$$(\vec{\partial} \times \vec{B})_{m} = -\mu_{0} \sum_{k=1}^{3} \int dy^{3} j_{k}(y) \frac{\delta_{mk}(\vec{x} - \vec{y})^{2} - 3(x - y)_{m}(x - y)_{k}}{4\pi \|x - y\|^{5}} = \mu_{0} \int dy^{3} \vec{j}(y) \cdot \vec{\partial}_{y} \frac{(x - y)_{m}}{4\pi \|x - y\|^{3}}.$$
(4.15)

Nach partieller Integration erhalten wir die Divergenz $\vec{\partial} \cdot \vec{j} = 0$ und somit verschwindet die Rotation von *B*. Insgesamt gilt an Orten *x* ohne Stromdichte j(x) = 0:

$$\vec{\partial} \cdot B = 0, \qquad \vec{\partial} \times B = 0.$$
 (4.16)

Wir müssen nun feststellen, ob es am Ort der Stromdichte zusätzliche Beiträge gibt. Bezüglich $\vec{\partial} \times \vec{B}$ betrachten wir den unendlich ausgedehnten geraden Strom mit $||B|| = \mu_0 I/2\pi r$. Für eine kreisförmige Schlaufe ∂D um den Strom mit Radius r erhalten wir unmittelbar aus dem Satz von Stokes

$$\int_{D} \mathrm{d}x^{2} \, \vec{n} \cdot (\vec{\partial} \times \vec{B}) = \oint_{\partial D} \mathrm{d}\vec{x} \cdot \vec{B} = \mu_{0} I. \qquad \underbrace{I}_{D} \stackrel{\partial D}{\longrightarrow}$$
(4.17)

Somit muss $\vec{\partial} \times \vec{B}$ eine Distribution sein, die am Ort des Stroms lokalisiert ist, und den Betrag $\mu_0 I$ liefert. Diese Distribution beschreibt genau die Stromdichte

$$\vec{\partial} \times \vec{B} = \mu_0 \vec{j}. \tag{4.18}$$

Die obige Integralform des Gesetzes heisst (Ampèresches) *Durchflutungsgesetz*. Analog zur Elektrostatik ist die Divergenz exakt Null

$$\vec{\partial} \cdot \vec{B} = 0, \qquad \int_{V} \mathrm{d}x^{3} \, \vec{\partial} \cdot \vec{B} = \oint_{\partial V} \mathrm{d}x^{2} \, \vec{n} \cdot \vec{B} = 0.$$
 (4.19)

Diese Resultate können auch mittels einer distributionellen Identität hergeleitet werden

$$\partial_i \frac{x_j}{\|x\|^3} = \frac{\delta_{ij} \vec{x}^2 - 3x_i x_j}{\|x\|^5} + \frac{4\pi}{3} \,\delta_{ij} \delta^3(x). \tag{4.20}$$

So erhält man einen Zusatzterm zum obigen Ausdruck

$$\partial_i B_j = \dots + \frac{1}{3} \mu_0 \sum_{k=1}^3 \varepsilon_{ijk} j_k.$$
(4.21)

Demnach bleibt die Divergenzfreiheit erhalten $\vec{\partial} \cdot \vec{B} = 0$. Für die Rotation erhalten wir einen direkten Beitrag $\frac{2}{3}\mu_0 \vec{j}$ des Zusatzterms, sowie einen weiteren Zusatzterm $\frac{1}{3}\mu_0 \vec{j}$ aus der partiellen Integration unter Verwendung der distributionellen Identität. Insgesamt ergibt dies $\vec{\partial} \times \vec{B} = \mu_0 \vec{j}$.

4.3 Vektorpotential

- Vektorpotential
- Eichtransformationen, Eichfixierungen
- Poisson-Gleichung
- Feldenergie
- skalares Potential

Wir haben gesehen, dass die magnetische Flussdichte divergenzfrei ist. Allgemein lässt sich ein divergenzfreies Feld in drei Dimensionen als Rotation schreiben

$$\vec{B} = \vec{\partial} \times \vec{A}.\tag{4.22}$$

Die Divergenz verschwindet per Konstruktion. Diese Konstruktion ist analog zum elektrostatischen Potential Φ mit dem Unterschied, dass A ein Vektorfeld ist. Es liegt nahe, das Biot-Savart-Gesetz für das Vektorfeld umzuschreiben

$$\vec{B}(x) = \mu_0 \int dy^3 \, \vec{\partial}_x \times \frac{\vec{j}(y)}{4\pi ||x - y||} \,, \tag{4.23}$$

welchen man offensichtlich zu folgenden Ausdruck integrieren kann

$$\vec{A}(x) = \mu_0 \int dy^3 \frac{\vec{j}(y)}{4\pi ||x - y||} \,. \tag{4.24}$$

Eichtransformationen. Wie auch zuvor ist das Potential A nicht eindeutig bestimmt, nur ist die Freiheit hier viel grösser: Da $\vec{\partial} \times \vec{\partial} = 0$ kann man ein Gradientenfeld zu A hinzuaddieren

$$\vec{A'}(x) = \vec{A}(x) + \vec{\partial}A(x). \tag{4.25}$$

Hier kann das skalare Feld A(x) beliebig gewählt werden. Dies ändert an dem (direkt messbaren) Feld *B* nichts. Man muss somit *A* und *A'* als physikalisch äquivalent ansehen. Eine solche Freiheit in der Wahl des Potentials verkompliziert i.d.R. das Randwertproblem für *A*, denn auch die unphysikalischen Freiheitsgrade von *A* müssen (irgendwie) bestimmt werden (und können sich als beliebig kompliziert herausstellen). Man umgeht dieses Problem i.d.R. indem man zusätzliche Bedingungen an das Potential A stellt. Dieser Prozess wird *Eichung* bzw. *Eichfixierung* genannt.

Der Übergang von einer Eichung zu einer anderen mittels eines geeigneten Feldes Λ wird *Eichtransformation* genannt. Bei der Wahl der Eichung muss man gewährleisten, dass

- die Eichung die unphysikalischen Freiheitsgrade eliminiert;
- die Eichung nicht zu restriktiv ist, und sich alle Felder B realisieren lassen.

Zwei gebräuchliche Eichungen sind

- Coulomb-Eichung $\vec{\partial} \cdot \vec{A} = 0$,
- axiale Eichung $\vec{n} \cdot \vec{A} = 0$ mit einem festen Vektor \vec{n} .

Beide Eichungen legen einen Freiheitsgrad je Punkt x fest, was scheinbar mit der Mächtigkeit der Eichtransformationen übereinstimmt (das skalare Feld Λ hat auch einen Freiheitsgrad je Punkt x). Es bleibt aber im Detail zu zeigen, dass Eichungen konsistent sind, insbesondere in Bezug auf Randbedingungen. Zum Beispiel, entspricht das oben hergeleitete Vektorpotential für allgemeine Stromdichten im freien Raum der Coulomb-Eichung

$$\vec{\partial} \cdot \vec{A} = \mu_0 \int dy^3 \vec{j}(y) \cdot \vec{\partial}_x \frac{1}{4\pi \|x - y\|} = -\mu_0 \int dy^3 \vec{j}(y) \cdot \vec{\partial}_y \frac{1}{4\pi \|x - y\|} = \mu_0 \int dy^3 \frac{1}{4\pi \|x - y\|} \vec{\partial}_y \cdot \vec{j}(y) = 0.$$
(4.26)

Der letzte Schritt folgt aus der Kontinuitätsgleichung $\vec{\partial} \cdot \vec{j} = 0$.

Poisson-Gleichung. Die Darstellung $\vec{B} = \vec{\partial} \times \vec{A}$ der Flussdichte mittels Potential erfüllt automatisch die homogene Feldgleichung $\vec{\partial} \cdot \vec{B} = 0$. Die zweite Feldgleichung $\vec{\partial} \times \vec{B} = \mu_0 \vec{j}$ ergibt eine Differentialgleichung zweiter Ordnung für A

$$\mu_0 \vec{j} = \vec{\partial} \times (\vec{\partial} \times A) = -\Delta \vec{A} + \vec{\partial} (\vec{\partial} \cdot \vec{A}).$$
(4.27)

In der Coulomb-Eichung $\vec{\partial} \cdot \vec{A} = 0$ ist sie vollständig analog zur Poisson-Gleichung der Elektrostatik

$$\Delta \vec{A} = -\mu_0 \vec{j}. \tag{4.28}$$

und man kann alle drei Komponenten unabhängig voneinander betrachten. Das Randwertproblem und seine Lösungen sind dann analog zur Elektrostatik.

Feldenergie. Man kann sich überzeugen, dass zur Erzeugung einer gewissen Stromverteilung j folgende Arbeit nötig ist

$$\Delta W = \frac{1}{2} \int dx^3 dy^3 \mu_0 \frac{\vec{j}(x) \cdot \vec{j}(y)}{4\pi \|x - y\|} = \frac{1}{2} \int dx^3 \vec{A}(x) \cdot \vec{j}(x).$$
(4.29)

Durch Einsetzen der Poisson-Gleichung und mittels partieller Integration erhält man

$$\Delta W = \frac{1}{2\mu_0} \int dx^3 \left(-\vec{A} \cdot \Delta \vec{A} + \vec{A} \cdot \vec{\partial} \, \vec{\partial} \cdot \vec{A} \right)$$
$$= \frac{1}{2\mu_0} \int dx^3 \sum_{j,k=1}^3 (\partial_j A_k) \left(\partial_j A_k - \partial_k A_j \right)$$
(4.30)

Dieser Ausdruck lässt sich mittels Vektorprodukt und Definition des Potentials umschreiben als

$$\Delta W = \frac{1}{2\mu_0} \int \mathrm{d}x^3 \, (\vec{\partial} \times \vec{A}) \cdot (\vec{\partial} \times \vec{A}) = \frac{1}{2\mu_0} \int \mathrm{d}x^3 \, \vec{B}^2 \ge 0. \tag{4.31}$$

Wie zuvor in der Elektrostatik ist der Ausdruck für die Feldenergie positiv definit.

Skalares Potential. Wir wollen noch eine Kuriosität betrachten, die gelegentlich nützlich sein kann. Ausserhalb einer Stromverteilung gilt $\vec{\partial} \times \vec{B} = 0$. Somit lässt sich die magnetische Flussdichte dort (lokal) als Gradientenfeld schreiben

$$\vec{B} = \vec{\partial} \Phi_{\text{mag.}} \tag{4.32}$$

Dieser Zugang kann einfacher als mittels Vektorpotential sein. Wenn allerdings der Definitionsbereich von Φ_{mag} nicht einfach zusammenhängend ist, weil z.B. Stromschleifen existieren, so ist Φ_{mag} nicht mehr definierbar, denn $\oint_{\partial A} d\vec{x} \times \vec{B} = \mu_0 I = \Delta \Phi_{\text{mag}}$. Man muss also den Definitionsbereich für solche Probleme geeignet auftrennen.

Im Rahmen einer solchen strukturellen Ahnlichkeit zwischen den elektrostatischen und magnetischen Feldgleichungen kann man auch magnetische Monopole als Analogon zu den elektrischen Ladungen in Betracht ziehen. Auch wenn ein magnetischer Monopol bislang nicht beobachtet wurde, ergeben sich aus einer konsistenten (quantenmechanischen) Beschreibung interessante Quantisierungsbedingungen für die Ladungen. In der Elektrodynamik kann man

auch von einer elektrisch-magnetischen Dualität sprechen, speziell auch im ladungsfreien Fall.

4.4 Magnetisches Moment

- magnetische Flussdichte einer kleinen Stromschleife
- Kraft und Drehmoment, Energie

Schliesslich wollen wir noch untersuchen, wie sich kleine Stromverteilungen verhalten, und dass sie im Wesentlichen dieselben Eigenschaften haben, die von Stabmagneten bekannt sind. Den Magnetismus letzterer kann man demnach auf atomare oder molekulare Ströme zurückführen. **Magnetische Flussdichte.** Betrachten wir eine auf einen Bereich V begrenzte Stromdichte $\vec{j}(y)$. Nun berechnen wir das Vektorpotential bei grossem Abstand ||x||

$$\vec{A}(x) = \mu_0 \int dy^3 \frac{\vec{j}(y)}{4\pi \|x - y\|} = \mu_0 \int dy^3 \vec{j}(y) \left[\frac{1}{4\pi \|x\|} + \frac{\vec{x} \cdot \vec{y}}{4\pi \|x\|^3} + \dots \right].$$
(4.33)

Der Bereich V sei ausreichend gross gewählt, so dass die Stromdichte auf dem Rand ∂V verschwinde. Hieraus können wir folgern, dass der Gesamtstrom in V verschwindet

$$0 = \oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot \vec{j} \, x_k = \int_V \mathrm{d}x^3 \, \vec{\partial} \cdot (\vec{j} x_k)$$
$$= \int_V \mathrm{d}x^3 \left(x_k \vec{\partial} \cdot \vec{j} + j_k \right) = \int_V \mathrm{d}x^3 \, j_k. \tag{4.34}$$

Demnach gibt es keine Monopolladung im magnetischen Feld und der erste Term in obiger Entwicklung verschwindet. Weiterhin folgt aus $0 = \oint_{\partial V} dx^2 \vec{n} \cdot (\vec{j}x_k x_l)$, dass $\int_V dx^3 j_k x_l = -\int_V dx^3 j_l x_k$. Dies erlaubt es, obiges Vektorpotential zu schreiben als

$$\vec{A}(x) = \mu_0 \frac{\vec{m} \times \vec{x}}{4\pi \|x\|^3} + \dots$$
 (4.35)

Die Stromverteilung erzeugt also in grossem Abstand in führender Ordnung ein Dipolfeld mit *magnetischem Dipolmoment*

$$\vec{m} := \frac{1}{2} \int \mathrm{d}x^3 \, \vec{x} \times \vec{j}(x). \tag{4.36}$$

Kraft und Drehmoment. Hier wollen wir die Kraft und das Drehmoment berechnen, welches auf eine kleine Stromverteilung wirkt. Hierfür entwickeln wir die magnetische Flussdichte um den Ursprung (Zentrum von j)

$$\vec{B}(x) = \vec{B}(0) + ((\vec{x} \cdot \vec{\partial})\vec{B})(0) + \dots$$
 (4.37)

Für die Kraft ergibt dies die führenden Terme

$$\vec{F} = \int \mathrm{d}x^3 \, \vec{j} \times \vec{B} = \int \mathrm{d}x^3 \left[\vec{j} \times \vec{B}(0) + \vec{j} \times \left((\vec{x} \cdot \vec{\partial}) \vec{B} \right)(0) + \ldots \right]. \tag{4.38}$$

Wie zuvor verschwindet der erste Term, da $\int dx^3 \vec{j} = 0$. Der zweite Term lässt sich ähnlich wie oben umformen zu

$$\vec{F} = \vec{\partial}(\vec{m} \cdot \vec{B}) + \dots \tag{4.39}$$

Hier haben wir benutzt, dass $\vec{\partial} \cdot \vec{B} = 0$. Das bedeutet u.A., dass eine homogene magnetische Flussdichte keine Kraft erzeugt. Für die führenden Terme des Drehmoments erhalten wir analog

$$\vec{M} = \int \mathrm{d}x^3 \, \vec{x} \times (\vec{j} \times \vec{B}) = \dots = \vec{m} \times \vec{B}. \tag{4.40}$$

Hier trägt bereits der homogene Anteil der magnetischen Flussdichte bei, der die Tendenz hat, das magnetische Dipolmoment mit der magnetischen Flussdichte auszurichten.

Beide Ausdrücke sind komplett analog zum elektrischen Dipol. Ebenso beschreiben sie das Verhalten eines kleinen Stabmagneten mit Dipolmoment m. Beide Ausdrücke lassen sich auch in Form eines Potentials ausdrücken

$$W = -\vec{m} \cdot \vec{B}. \tag{4.41}$$

Durch Verschiebung bzw. Rotation erhält man daraus die obige Kraft bzw. Drehmoment.

5 Elektro- und Magnetostatik in Materie

Materie besteht auf atomarer Ebene aus Atomkernen und Elektronen. Letztere sind positiv bzw. negativ geladen und befinden sich in ständiger Bewegung. Damit werden sie von äusseren elektrischen und magnetischen Feldern beeinflusst und beeinflussen diese selber. Mittels der zuvor hergeleiteten Gleichungen (und später der Verallgemeinerung auf die Elektrodynamik) können wir diese Effekte prinzipiell herleiten. Allerdings enthält jede kleinste Menge Materie viel zu viele Zehnerpotenzen von Teilchen, als dass man damit in der Praxis rechnen könnte. Deshalb betrachtet man die Effekte im räumlichen und zeitlichen Mittel. Dies ist insofern gerechtfertigt und führt zu befriedigenden Ergebnissen, da Beobachtungen nicht auf atomaren Skalen stattfinden, sondern ebenfalls im Mittel über genügend grosse Bereiche von Materie.

5.1 Makroskopische Felder

- Mittelung, Rolle der Messung
- Ableitungen, Feldgleichungen

Wir beginnen mit den *mikroskopischen Feldern und Quellen* E(x), $\Phi(x)$, $\rho(x)$, etc., und führen die *makroskopischen Felder* \overline{E} , $\overline{\Phi}$, $\overline{\rho}$ durch Mittelung über gewisse Raumbereiche ein, z.B.

$$\bar{\varPhi}(x) := \int dy^3 \,\varPhi(y) \,\varepsilon(x-y). \tag{5.1}$$

Hier sei $\varepsilon(x)$ eine Funktion mit Träger in einem Bereich um den Ursprung und mit der Normierung $\int dx^3 \varepsilon(x) = 1$. Der Bereich ist mikroskopisch gross aber makroskopisch klein zu wählen, so dass er vielleicht 1'000 bis 1'000'000 Atome enthält und alle individuellen atomaren Schwankungen effektiv herausmittelt. Einige Anmerkungen zur Mittelung:

- Die Mittelung filtert räumlich hochfrequente Anteile aus dem Feld $\overline{\Phi}$. Man sollte also nur den niederfrequenten Anteilen von $\overline{\Phi}$ trauen.
- Die Mittelung ist kompatibel mit Ableitungen via partieller Integration

$$\vec{\partial}\bar{\Phi}(x) = \int dy^3 \,\vec{\partial}_x \varepsilon(x-y) \,\Phi(y)$$
$$= -\int dy^3 \,\vec{\partial}_y \varepsilon(x-y) \,\Phi(y)$$

$$= \int dy^3 \,\varepsilon(x-y)\,\vec{\partial}\Phi(y) = \overline{\vec{\partial}\Phi}(y). \tag{5.2}$$

• Man kann davon ausgehen, dass die räumliche Mittelung ebenso hochfrequente zeitliche Prozesse herausfiltert. Genauso könnte man die Zeit in die Mittelung explizit aufnehmen. In der Statik betrachten wir Felder, die im Mittel konstant sind:

$$\partial_t \bar{\Phi} = 0. \tag{5.3}$$

Wir werden uns ausschliesslich mit den makroskopischen Feldern $\overline{\Phi}$ beschäftigen und die mikroskopischen Felder Φ nicht weiter benötigen. Somit verzichten wir der Einfachheit halber auf die explizite Kennzeichnung der Mittelung.

Die Feldgleichungen für makroskopische Felder lauten also weiterhin

$$\vec{\partial} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho_{\text{ges}}, \qquad \vec{\partial} \times \vec{E} = 0$$
 (5.4)

bzw. in integraler Form

$$\oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot \vec{E} = \frac{1}{\varepsilon_0} Q_{\mathrm{ges},V}, \qquad \oint_{\partial A} \mathrm{d}\vec{x} \cdot \vec{E} = 0.$$
(5.5)

Hier ist ρ_{ges} bzw. Q_{ges} die gemittelte gesamte Ladungsdichte bzw. Ladung. Wir werden demnächst weitere Grössen einführen, welche die Ladungsverhältnisse in Materie auf eine andere Art beschreiben.

5.2 Dielektrika

- Arten von Dielektrika
- freie Ladungen und gebundene Dipole
- lineare Polarisierbarkeit
- $\bullet~$ D-feld
- Feldgleichungen
- Beispiel Plattenkondensator

Dielektrische Eigenschaften der Materie. Materie reagiert in der Regel auf ein äusseres elektrisches Feld. Diese Einsicht ist insofern universell, als dass Atome aus Atomkern und Atomhülle mit unterschiedlicher elektrischer Polarität bestehen. Die Schwerpunkte der letzteren verschieben sich somit (leicht) entlang bzw. entgegengesetzt dem elektrischen Feld und stellen ein Dipolmoment dar. Dieses *induzierte Dipolmoment* erzeugt in unmittelbarer Umgebung ein elektrisches Feld, welches dem äusseren entgegengesetzt ist. Materie mit diesem Verhalten (sei es auf Ebene der Atome, Moleküle oder anderer Bestandteile) wird *Dielektrikum* genannt.

Eine spezielle Art des Dielektrikums ist das *Paraelektrikum*, dessen Bestandteile permanente Dipole sind. Ohne äusseres elektrisches Feld heben sich die Dipole im

räumlichen bzw. zeitlichen Mittel gegenseitig auf. Ein externes elektrisches Feld richtet die permanenten Dipole im statistischen Mittel aus, so dass man ein analoges Verhalten zu den oben beschriebenen induzierten Dipolen erhält. Es gibt auch abweichende Verhaltensweisen, z.B. *Ferroelektrikum*, allerdings sind die zuerstgenannten Dielektrika viel gewöhnlicher und wir werden uns lediglich mit ihnen beschäftigen.

Freie Ladungen und Dipoldichte. Um Dielektrika zu beschreiben, bietet es sich an, zwei Arten von Ladungsverteilungen zu unterscheiden:

- solche, die auf die Dipol-Eigenschaften der Bestandteile der Materie zurückgehen;
- solche, die auf die Gesamtladung der Bestandteile der Materie, bzw. auf fremde Ladungsträger zurückzuführen sind.

Beide Arten von Ladungsverteilungen tragen zum elektrischen Feld bei: Mit der zweiten haben wir uns bereits in den vorangehenden Kapiteln vertraut gemacht, und wir diskutieren im Folgenden die erste.

Die effektive Ladungstrennung der Materiebestandteile wird durch eine Dipoldichte $\vec{P}(x)$ beschrieben. Sie gibt die Menge der Dipolmomente \vec{p} je Volumeneinheit an. Diese Dipoldichte ist eine Funktion des äusseren elektrischen Feldes \vec{E} . Für hinreichend kleine Felder stellt man eine lineare Beziehung zwischen E und P fest; höhere Potenzen in E sind i.d.R. vernachlässigbar. Man nimmt also an

$$\vec{P} = \varepsilon_0 \gamma \vec{E} + \mathcal{O}(E^2). \tag{5.7}$$

Hier ist γ eine einheitenlose positive Grösse:

- Für ein isotropes Dielektrikum (z.B. ein Gas) ist das induzierte Dipolmoment entlang des Feldes ausgerichtet. Damit ist γ eine Zahl, die üblicherweise als *elektrische Suszeptibilität* χ_e bezeichnet wird.
- Für ein anisotropes Dielektrikum (bestimmte Festkörper) ist γ eine Matrix.

Wir betrachten für gewöhnlich den ersten, isotropen Fall.

Elektrische Flussdichte. In der Elektrostatik in Materie nehmen wir einen vorgegebenen Zusammenhang zwischen dem elektrischen Feld E und der resultierenden Dipoldichte P an, und möchten das elektrische Feld anhand der freien Ladungen bestimmen. Wir können nun die resultierenden Felder berechnen, z.B. das Potential

$$\Phi(x) = \int \mathrm{d}y^3 \left[\rho_{\mathrm{frei}}(y) \, \frac{1}{4\pi\varepsilon_0 \|x - y\|} + \vec{P}(y) \cdot \vec{\partial}_y \, \frac{1}{4\pi\varepsilon_0 \|x - y\|} \right]. \tag{5.8}$$

Hier bezeichnet ρ_{frei} die Ladungsdichte der *freien Ladungen* ohne allfällige Beiträge der gebundenen Dipole in \vec{P} . Das elektrische Feld \vec{E} erhält man als Gradient des Potentials $\vec{E} = -\vec{\partial} \Phi$, und dessen Divergenz sollte die Ladungsdichte beschreiben. Wir können die Divergenz schreiben als

$$\vec{\partial} \cdot \vec{E}(x) = -\Delta_x \Phi(x)
= \frac{1}{\varepsilon_0} \int dy^3 \left[\rho_{\text{frei}}(y) \,\delta^3(x-y) + \vec{P}(y) \cdot \vec{\partial}_y \delta^3(x-y) \right]
= \frac{1}{\varepsilon_0} \left(\rho_{\text{frei}}(x) - \vec{\partial} \cdot \vec{P} \right).$$
(5.9)

Wir können also ein Hilfsfeld \vec{D} , die *elektrische Flussdichte*, einführen, deren Divergenz ausschliesslich durch die freien Ladungen ρ_{frei} bestimmt ist

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}, \qquad \vec{\partial} \cdot \vec{D} = \rho_{\text{frei}}.$$
 (5.10)

Der Vergleich mit der Divergenz des elektrischen Feldes, $\vec{\partial} \cdot \vec{E} = \rho_{\text{ges}} / \varepsilon_0$, ergibt eine Beziehung zwischen den verschiedenen Ladungsdichten¹

$$\rho_{\rm ges} = \rho_{\rm frei} - \vec{\partial} \cdot \vec{P} = \rho_{\rm frei} + \rho_{\rm Dipol}. \tag{5.11}$$

Im letzten Schritt haben wir ausgenutzt, dass die effektive Ladungsverteilung ρ_{Dipol} einer Dipoldichte \vec{P} durch deren negative Divergenz gegeben ist. Wir sehen also, dass das Dielektrikum zu Gleichungen führt, die man auf verschiedenen, miteinander konsistenten Arten ausdrücken kann:

- Das Feld E ist physikalisch und messbar. Es wird durch die Gesamtladungsdichte bestimmt.
- Das Feld D ist eine Hilfsgrösse, welche durch die freie Ladungsdichte ρ_{frei} bestimmt wird. Da die übrigen Dipole gebunden sind, ist es sinnvoll sich ausschliesslich mit ρ_{frei} zu beschäftigen. Meist benutzt man für $\rho := \rho_{\text{frei}}$ das undekorierte Symbol ρ .
- Das Feld *P* beschreibt die Dichte der gebundenen Dipole. Es beschreibt *nicht* das elektrische Feld, welches von den Dipolen erzeugt wird (auch wenn es lokal sehr ähnlich aussieht). Letzteres ist in dem Feld *D* enthalten.

Insgesamt haben wir die Feldgleichungen

$$\vec{\partial} \cdot \vec{D} = \rho, \qquad \vec{\partial} \times \vec{E} = 0, \qquad \vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \vec{E}$$
 (5.12)

mit den Beziehungen zwischen der elektrischen Feldkonstante ε_0 , der *elektrischen* Permittivität ε , der Permittivitätszahl ε_r und der elektrischen Suszeptibilität χ_e :

$$\varepsilon = \varepsilon_0 \varepsilon_r \quad \text{und} \quad \varepsilon_r = 1 + \chi_e.$$
 (5.13)

Beispiel. Als Beispiel betrachten wir einen Plattenkondensator mit zwei Platten der Fläche A und Abstand d, welcher mit Dielektrikum mit Konstante

¹Im Vergleich dazu, könnte man das elektrische Feld $\vec{E}_{ges} = \vec{E}$ aufteilen in die Beiträge $\vec{E}_{frei} = \varepsilon_0 \vec{D}$ und $\vec{E}_{Dipol} = -\varepsilon_0 \vec{P}$, wobei die Divergenz jeweils die entsprechende Ladungsdichte ergibt.

 $\varepsilon_{\rm r} = 1 + \chi_{\rm e} > 1$ gefüllt ist. Die *freie* Ladung auf den Platten beträgt $\pm Q$. Die Stärke des Feldes D (von einer Platte zur anderen) beträgt

welches genau der freien Flächenladungsdichte σ entspricht. Die Potentialdifferenz U wird hingegen über das elektrische Feld E bestimmt (man beachte, dass E die Kräfte auf Ladungen bestimmt)²

$$U = dE = \frac{dD}{\varepsilon_0 \varepsilon_r} = \frac{dQ}{\varepsilon_0 \varepsilon_r A}.$$
 (5.15)

Für die Kapazität erhalten wir somit

$$C = \frac{Q}{U} = \varepsilon_0 \varepsilon_r \frac{A}{d} = \varepsilon_r C_0.$$
(5.16)

Somit erhöht das Dielektrikum die Kapazität eines Kondensators. Die im Kondensator gespeicherte Energie beträgt³

$$W = \frac{1}{2}UQ = \frac{1}{2}CU^2 = \frac{Q^2}{2C}.$$
(5.17)

Bei vorgegebenem Potential wird die Energie durch das Dielektrikum also vergrössert, während bei vorgegebener Ladung die Energie reduziert wird. Letzteres liegt an einer Reduktion des elektrischen Feldes durch das Dielektrikum zwischen den Platten. Auf mikroskopischer Ebene verringert die Dipoldichte des Dielektrikums die Gesamtladung auf den Platten $Q_{ges} = Q_{frei} + Q_{Dipol}$.

$$\begin{array}{c} \begin{array}{c} + & - & + & - & + & - \\ + & - & + & - & + & - \\ + & - & + & - & + & - \\ + & - & + & - & + & - \\ + & - & + & - & + & - \end{array}$$
(5.18)

5.3 Grenzflächen von Dielektrika

- Stetigkeitsbedingungen
- Beispiel: Feld hinter Grenzfläche

Wir haben gesehen, dass Dielektrika (im isotropen Fall) im Wesentlichen die Stärke des elektrischen Feldes reduzieren, welches (freie) Ladungen umgibt. Alternativ kann man auch behaupten, dass es die Ladungen teilweise abschirmt und letztere somit effektiv reduziert werden. Im homogenen Medium bedarf es

²Weiterhin ist E rotationsfrei, a priori nicht aber D. Somit kann das Potential nur über E definiert sein.

³Die allgemeine Formel für die elektrische Feldenergie im Medium lautet $W = \int dx^3 \vec{E} \cdot \vec{D}$.

demnach nur einiger trivialer Skalierungen im Vergleich zum Vakuum. Interessant ist allerdings der Übergang zwischen zwei Medien:

$$\frac{\varepsilon_{\mathbf{r}}, \vec{E}, \vec{D}}{\varepsilon_{\mathbf{r}}', \vec{E}', \vec{D}'}$$
(5.19)

 \rightarrow

Um das Verhalten der verschiedenen elektrischen Felder zu verstehen, betrachten wir eine *Grenzfläche* zwischen zwei Medien mit Dichte $\varepsilon_{\rm r}$ und $\varepsilon'_{\rm r}$ o.B.d.A. mit $\varepsilon_{\rm r} > \varepsilon'_{\rm r}$. Die Herleitung der *Stetigkeiten* ist analog zur Grenzfläche zwischen Vakuum und Leiter. Wir betrachten die Feldgleichungen in integraler Form. Wir legen ein flaches *Gaußsches Kästchen* um die Grenzfläche, welches keine freien Ladungen tragen soll, demnach

$$0 = \oint \mathrm{d}x^2 \, \vec{n} \cdot \vec{D} \simeq A \, \vec{n} \cdot (\vec{D} - \vec{D}'). \tag{5.20}$$

Das bedeutet, dass die Normalkomponente D_{\perp} des Feldes D stetig ist über die Grenzfläche hinweg. Als zweites betrachten wir eine flache *Stokessche Schleife* um die Grenzfläche

$$0 = \oint d\vec{x} \cdot \vec{E} \simeq \vec{L} \cdot (\vec{E} - \vec{E}'). \tag{5.21}$$

Demnach springen die Tangentialkomponenten E_{\parallel} des Feldes E nicht. Da aber $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$ sehen wir, dass die jeweils anderen Komponenten der Felder \vec{E} und \vec{D} an der Grenzfläche springen. Diese Information genügt um jedes Randwertproblem in beliebiger linearer Materie zu lösen.⁴

Als Beispiele betrachten wir die Felder E und D für eine Punktladung neben einem ebenen Übergang zwischen dünnem und dichtem Medium:⁵

⁴Für Leiter kann man annehmen, dass $\varepsilon_{\rm r} \to \infty$. Ein nichtverschwindendes Feld $E \neq 0$ im Inneren des Leiters würde ein unendliches Feld $D = \infty$ implizieren, welches u.A. unendlich viel Energie tragen würde. Somit muss E = 0 im Leiter gelten und alle bekannten Eigenschaften der Grenzflächen zu Leitern folgen aus den obigen Stetigkeitsbedingungen.

⁵Die Felder lassen sich mittels Bildladungen konstruieren: Auf der Seite der tatsächlichen Ladung q trägt eine Bildladung $q(\varepsilon_{\rm r} - \varepsilon'_{\rm r})/(\varepsilon_{\rm r} + \varepsilon'_{\rm r})$ jenseits der Grenzfläche bei. Auf der gegenüberliegenden Seite trägt nur die tatsächliche Ladung bei, allerdings mit angepasster Stärke $q(2\varepsilon'_{\rm r})/(\varepsilon_{\rm r} + \varepsilon'_{\rm r})$.

Man beobachtet, dass bei einem Übergang zum dichten Medium

- die Feldlinien vor dem Übergang zur Oberfläche hin gebogen werden,
- die Feldlinien an dem Übergang von der Flächennormalen weg abknicken,
- nach dem Übergang das Feld E dünner ist und D dichter,
- nach dem Ubergang die Feldlinien gerade von der Ladung weg verlaufen.

Bei dem Übergang zu einem dünneren Medium kehren sich alle Beziehungen um.

5.4 Magnetostatik in Materie

- Analogie zur Elektrostatik
- Feldgleichungen
- magnetisierbare Materialien

Die Verallgemeinerung der Magnetostatik auf makroskopische Felder und magnetisierbare Materie verläuft vollständig analog zur Elektrostatik. Wir verzichten demnach auf eine ausführliche Herleitung und listen lediglich die relevanten Änderungen auf:

- Die Magnetisierung \vec{M} ist das Analogon der Dipoldichte \vec{P} .
- Das Magnetfeld \vec{H} ist analog zur elektrische Flussdichte \vec{D} .
- Das Magnetfeld H wird direkt von der *freien Stromdichte* $\vec{j} := \vec{j}_{\text{frei}}$ generiert.

Die Beziehung zwischen den Feldern lautet

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) = \mu \vec{H}$$
(5.23)

mit der magnetischen Permeabilität μ , der Permeabilitätszahl $\mu_{\rm r}$ und der magnetischen Suszeptibilität $\chi_{\rm m}$:

$$\mu = \mu_0 \mu_r \quad \text{und} \quad \mu_r = 1 + \chi_m.$$
 (5.24)

Die Feldgleichungen lauten in differentieller Form

$$\vec{\partial} \times \vec{H} = \vec{j}, \qquad \vec{\partial} \cdot \vec{B} = 0$$
 (5.25)

bzw. in integraler Form

$$\oint_{\partial A} \mathrm{d}\vec{x} \cdot \vec{H} = I_A, \qquad \oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot \vec{B} = 0.$$
(5.26)

Lediglich bei den Arten von magnetisierbarer Materie gibt es etwas mehr Vielfalt:

- Diamagnetismus, magnetische Dipole werden induziert, $\chi_{\rm m} < 0, \; |\chi_{\rm m}|$ klein.
- Paramagnetismus, permanente Dipole werden ausgerichtet, $\chi_m > 0$, χ_m temperaturabhängig.
- Ferromagnetismus, nicht-linear, spontane Ausrichtung.
- Ferrimagnetismus, parallele und antiparallele Ausrichtung.
- Antiferromagnetismus, exakte Auslöschung im Ferrimagnetismus, Hysterese.

Insbesondere die letzten drei Arten von Magnetismus sind oft nicht-linear und lassen sich somit nicht zufriedenstellend mittels der Materialkonstante χ_m beschreiben.

Teil II Dynamik

6 Maxwell-Gleichungen

Wir wenden uns nun zeitabhängigen Phänomenen von elektrischen und magnetischen Feldern zu. Die zuvor hergeleiteten Gesetze werden im Wesentlichen Bestand haben, aber sie müssen zum Teil an die Zeitabhängigkeit angepasst werden. Insbesondere werden wir recht schnell sehen, dass elektrische und magnetische Effekte und Felder miteinander mischen. Somit sind beide Phänomene nur verschiedene Aspekte einer einzigen Theorie, dem Elektromagnetismus.

6.1 Bewegte Punktladungen

- Ladungs- und Stromdichte
- elektromagnetische Kraft

Beginnen wir mit einer kombinierten Ladungs- und Stromverteilung $\rho(x)$ und j(x). Im elektrischen und magnetischen Feld, E und B wirkt die Kraftdichte

$$\vec{f}(x) = \rho(x)\vec{E}(x) + \vec{j}(x) \times \vec{B}(x), \qquad \vec{F} = \int dx^3 \, \vec{f}(x).$$
 (6.1)

Im Fall eines ruhenden Punktteilchens bei y mit Ladung q haben wir $\rho = q\delta^3(x-y)$ und somit die Gesamtkraft $\vec{F} = q\vec{E}$. Dies entspricht einer der Grundlagen der Elektrostatik. Was ändert sich nun für ein bewegtes Punktteilchen mit Geschwindigkeit \vec{v} , welches sich zur Zeit t = 0 bei \vec{y} befindet und die Ladung q trägt? Hier haben wir

$$\rho(x) = q\delta^3(x - y - vt), \qquad \vec{j}(x) = q\vec{v}\delta^3(x - y - vt).$$
(6.2)

Die Gesamtkraft (Lorentz) auf das Punktteilchen beträgt also

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}). \tag{6.3}$$

Dies gilt unter der Annahme, dass es keine weiteren zeitabhängigen Effekte gibt, die zur Kraft beitragen. Allerdings kann man davon ausgehen, dass die Kraft auf ein Punktteilchen nur von Ort und Geschwindigkeit abhängt. Höhere Zeitableitungen, d.h. die Beschleunigung und ihre Zeitableitungen, sollten keinen Einfluss haben, denn die Beschleunigung wird gerade durch die Kraft bestimmt. Weiterhin stimmt der Ausdruck für die Kraft mit Beobachtungen überein.

Die Neuerung ist, dass nun die Ladungs- und Stromdichte explizit von der Zeit abhängen. Weiterhin ist die Stromdichte nicht divergenzfrei,

 $\vec{\partial} \cdot \vec{j} = q \vec{v} \cdot \vec{\partial} \delta^3 (\vec{x} - \vec{y} - \vec{v}t)$, sondern es gilt stattdessen die dynamische Kontinuitätsgleichung

$$\vec{\partial} \cdot \vec{j} + \partial_t \rho = 0. \tag{6.4}$$

6.2 Faradaysches Induktionsgesetz

- Faradaysches Induktionsgesetz
- Galilei-Invarianz

Das Biot-Savart-Gesetz beschreibt, wie ein elektrischer Strom ein Magnetfeld erzeugt. Umgekehrt kann man erwarten, dass ein Magnetfeld auch einen elektrischen Strom erzeugen kann (analog zu Kraft und Gegenkraft).

Induziertes Potential. Faraday konnte dies in der Tat zeigen: Sei A eine Fläche auf deren Rand ∂A ein Stromkreis (mit gewissem Widerstand) liegt. Eine Änderung des magnetischen Flusses Ψ_A durch die Fläche A,

$$\Psi_A = \int_A \mathrm{d}x^2 \, \vec{n} \cdot \vec{B}, \qquad A = \Psi_A \tag{6.5}$$

induziert einen Strom auf dem Rand ∂A proportional zu der Änderungsrate $\partial_t \Psi_A$. Die Richtung des induzierten Stroms ergibt sich aus der *Lenzschen Regel*: Der induzierte Strom erzeugt seinerseits ein Magnetfeld, welches der der Änderung des induzierenden Magnetfelds entgegenwirkt. Der magnetische Fluss kann sich aufgrund verschiedener Faktoren ändern:

- Das Magnetfeld ändert sich, z.B. indem ein Magnet bewegt wird.
- Die Leiterschleife bewegt sich im (inhomogenen) Magnetfeld.
- Die Leiterschleife wird gedreht oder deformiert.

Der Strom in der Leiterschleife ist bedingt durch eine induzierte Potentialdifferenz $\Delta U_{\partial A}$ um die Leiterschleife herum, die sich wie üblich aus der Kraft auf Ladungsträger ergibt. Man erhält so das (Faradaysche) Induktionsgesetz

$$\Delta U_{\partial A} = \oint_{\partial A} \mathrm{d}\vec{x} \cdot \left(\vec{E} + \dot{\vec{x}} \times \vec{B}\right) = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{A} \mathrm{d}x^2 \, \vec{n} \cdot \vec{B} = -\partial_t \Psi_A. \tag{6.6}$$

Ähnlich wie im Gaußschen Gesetz besteht hier scheinbar ein nicht-lokaler Zusammenhang zwischen Magnetfeld und induziertem Potential: Eine Änderung im Magnetfeld auf der Fläche A (aber nicht auf deren Rand) kann den Fluss durch A ändern und somit eine Potentialdifferenz in dem Leiter auf dem Rand ∂A induzieren. Allerdings muss man beachten, dass die Felder an verschiedenen Orten (durch den Satz von Gauß bzw. Stokes) miteinander in Beziehung stehen. So wird es zwangsweise auch zu einer Änderung der Felder auf dem Rand kommen, die man direkt mit der Potentialdifferenz in Beziehung setzen kann. Insofern ist die nicht-lokale Beziehung nur scheinbar gegeben. **Feldgleichung.** Wir wollen dieses Gesetz in differentielle Form bringen. Die Zeitableitung auf der rechten Seite bezieht sich auf Änderungen der Flussdichte B als auch auf Änderungen der Fläche A. Konkret ergibt dies¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{A} \mathrm{d}x^{2} \, \vec{n} \cdot \vec{B} = \int \mathrm{d}x^{2} \, \vec{n} \cdot \left[\partial_{t} \vec{B} + \dot{\vec{x}} \, \vec{\partial} \cdot \vec{B}\right] - \oint \mathrm{d}\vec{x} \cdot (\dot{\vec{x}} \times \vec{B}). \tag{6.7}$$

Gehen wir davon aus, dass das Magnetfeld auch in der Elektrodynamik divergenzfrei bleibt, $\vec{\partial} \cdot \vec{B} = 0$, verschwindet der zweite Term im ersten Integral. Zudem ist der letzte Term genau der Beitrag des Magnetfelds zur induzierten Potentialdifferenz. Bei der korrekten Wahl der Proportionalitätskonstanten (-1) im Induktionsgesetz ergibt sich aus den verbleibenden Termen die Relation

$$\int_{A} \mathrm{d}x^{2} \, \vec{n} \cdot \partial_{t} \vec{B} = -\oint_{\partial A} \mathrm{d}\vec{x} \cdot \vec{E} = -\int_{A} \mathrm{d}x^{2} \, \vec{n} \cdot (\vec{\partial} \times \vec{E}). \tag{6.8}$$

Im Gegensatz zur Elektrostatik ist also $\oint_{\partial A} d\vec{x} \cdot \vec{E} \neq 0$; allerdings nur, wenn sich das Magnetfeld mit der Zeit ändert. Das Induktionsgesetz verallgemeinert somit die Rotationsfreiheit des elektrischen Feldes. Lokal erhält man die differentielle Form des *Induktionsgesetzes*

$$\vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0. \tag{6.9}$$

6.3 Maxwellsche Ergänzung

- Maxwellsche Ergänzung
- Maxwell-Gleichungen, differential und integral

Wir haben bis hier vier Feldgleichungen für die Felder E und B hergeleitet und auf den dynamischen Fall angepasst

$$\vec{\partial} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho, \qquad \vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0, \vec{\partial} \cdot \vec{B} = 0, \qquad \vec{\partial} \times \vec{B} = \mu_0 \vec{j}.$$
(6.10)

Diese Gesetze stimmen gut mit den statischen und dynamischen Experimenten der frühen 1800er überein.

Konsistenz. Allerdings gibt es eine Unstimmigkeit. Um diese zu sehen, nehme man die Divergenz der letzten Gleichung und setze die Kontinuitätsgleichung ein

$$0 = \vec{\partial} \cdot (\vec{\partial} \times \vec{B}) = \mu_0 \vec{\partial} \cdot \vec{j} = -\mu_0 \partial_t \rho.$$
(6.11)

¹Die Änderung der Fläche hat diverse Auswirkungen auf das Integral: eine implizite Abhängigkeit des Feldes B von t durch Verschiebung der Fläche A, die expliziten Änderungen der Flächennormalen \vec{n} und des Flächenelements dx^2 sowie ggf. eine Verschiebung des Integrationsgebiets. Die einzelnen Terme sind z.T. abhängig von einer Wahl der Koordinaten auf A und lassen sich nicht gut in unserer Notation darstellen. Sie lassen sich aber als ein Flächenintegral über $\vec{n} \cdot \vec{x} \, \vec{\partial} \cdot \vec{B}$ und ein Randintegral über $-\vec{x} \times \vec{B}$ zusammenfassen.

Die Feldgleichung impliziert also, dass die Ladungsverteilung konstant ist.² Allerdings stammt die Gleichung noch aus der Magnetostatik, in der die Annahme $\partial_t \rho = 0$ sinnvoll war. Für den allgemeinen dynamischen Fall sollten wir allerdings nicht $\partial_t \rho = 0$ annehmen müssen, aber auch nicht auf die Kontinuitätsgleichung verzichten. Maxwells Beitrag war nun, die Gleichung so zu modifizieren, dass sie mit der Kontinuitätsgleichung kompatibel wird. Hierzu betrachten wir die zeitliche Ableitung der ersten Feldgleichung

$$\partial_t \rho = \varepsilon_0 \vec{\partial} \cdot \partial_t \vec{E}. \tag{6.12}$$

Da man $\partial_t \rho$ auch als Divergenz der Felder schreiben kann, bietet es sich an, die letzte Feldgleichung um den Term $\partial_t E$ zu erweitern

$$\vec{\partial} \times \vec{B} - \mu_0 \varepsilon_0 \partial_t \vec{E} = \mu_0 \vec{j}. \tag{6.13}$$

Man überzeugt sich leicht, dass nun aus ihrer Divergenz die Kontinuitätsgleichung folgt und man so einen konsistenten Satz von Feldgleichungen erhält.

Zusammenfassung. Insgesamt haben wir die vier *Maxwell-Gleichungen* gefunden

$$\vec{\partial} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho, \qquad \vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0, \vec{\partial} \cdot \vec{B} = 0, \qquad \vec{\partial} \times \vec{B} - \mu_0 \varepsilon_0 \partial_t \vec{E} = \mu_0 \vec{j}.$$
(6.14)

Die zwei Gleichungen, in denen auf der rechten Seite die Ladungs- und Stromdichte auftritt heissen *inhomogen*, die anderen beiden mit trivialer rechter Seite heissen *homogen*. Die Maxwell-Gleichungen verlangen als Konsistenzbedingung die Kontinuitätsgleichung

$$\vec{\partial} \cdot \vec{j} + \partial_t \rho = 0. \tag{6.15}$$

In integraler Form lauten die beiden homogenen Maxwell-Gleichungen

$$\oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot \vec{B} = 0,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_A \mathrm{d}x^2 \, \vec{n} \cdot \vec{B} = -\oint_{\partial A} \mathrm{d}\vec{x} \cdot (\vec{E} + \dot{\vec{x}} \times \vec{B}). \tag{6.16}$$

²Alternativ kann man die Unstimmigkeit in der integralen Form der Feldgleichung erkennen: Sei C eine geschlossene Kurve. Das Durchflutungsgesetz impliziert, dass durch jede von C berandete Fläche derselbe Strom fliesst. Damit fliesst in den von zwei solcher Flächen eingeschlossenen Raum insgesamt kein Strom und die enthaltene Ladung muss konstant sein. Als Beispiel kann man sich einen Plattenkondensator im Stromkreis vorstellen: Dort legt man eine Fläche durch den Draht und eine andere zwischen die Kondensatorplatten. Das Durchflutungsgesetz macht dann offensichtlich falsche Aussagen.

Die inhomogenen Maxwell-Gleichungen lauten hingegen

$$\oint_{\partial V} dx^2 \, \vec{n} \cdot \vec{E} = \frac{1}{\varepsilon_0} \int_V dx^3 \, \rho,$$

$$\frac{d}{dt} \int_A dx^2 \, \vec{n} \cdot \vec{E} = \oint_{\partial A} d\vec{x} \cdot \left(\frac{1}{\mu_0 \varepsilon_0} \, \vec{B} - \dot{\vec{x}} \times \vec{E}\right)$$

$$- \frac{1}{\varepsilon_0} \int_A dx^2 \, \vec{n} \cdot (\vec{j} - \dot{\vec{x}} \rho).$$
(6.17)

Die Kraftdichte und somit die Kraft und das Drehmoment auf eine Ladungs- und Stromverteilung lauten

$$\vec{f} = \rho \vec{E} + \vec{j} \times \vec{B}, \qquad \vec{F}_V = \int_V \mathrm{d}x^3 \, \vec{f}, \qquad \vec{M}_V = \int_V \mathrm{d}x^3 \, \vec{x} \times \vec{f}. \tag{6.18}$$

In den kommenden Wochen diskutieren wir die Auswirkungen der Feldgleichungen, z.B. Wellenlösungen im freien Raum, Lösungsmethoden, Kugelwellen, Grenzflächen sowie Erhaltungsgrössen.

Ein interessanter Aspekt ist, dass mit $\mu_0 \varepsilon_0 = 1/c^2$ die Lichtgeschwindigkeit im Vakuum c in den Maxwell-Gleichungen auftritt. Dies ist nicht weiter verwunderlich, denn wie wir später sehen werden, beschreiben die Gleichungen (auch) die Ausbreitung von Licht. Weiterhin ergibt sich für elektrische und magnetische Felder alltäglicher Grösse, dass $\mu_0 \varepsilon_0 \partial_t E$ einen stark unterdrückten Beitrag zur Gleichung liefert. Dies erklärt, warum der Term experimentell zunächst nicht entdeckt worden war.

6.4 Elektromagnetische Potentiale

- elektromagnetische Potentiale
- inhomogene Maxwell-Gleichungen
- Eichtransformationen
- Coulomb-Eichung, Lorenz-Eichung

Wie zuvor möchten wir Potentiale einführen, um die Differentialgleichungen etwas zu vereinfachen. Hierzu schauen wir uns die homogenen Gleichungen an: $\vec{\partial} \cdot \vec{B} = 0$, $\vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0$.

Potentiale. Wie zuvor können wir das divergenzfreie Feld B als Rotation eines Vektorpotentials A schreiben

$$\vec{B} = \vec{\partial} \times \vec{A}.\tag{6.19}$$

Setzen wir dies in die andere Gleichung ein, erhalten wir $\vec{\partial} \times (\vec{E} + \partial_t \vec{A}) = 0$. Im dynamischen Fall ist E alleine nicht mehr rotationsfrei, aber die Kombination mit der zeitlichen Ableitung des Vektorpotentials ist es. Letztere ist also ein

Gradientenfeld und wir können Emithilfe eines skalaren Potentials \varPhi schreiben als

$$\vec{E} = -\vec{\partial}\Phi - \partial_t \vec{A}.$$
(6.20)
Diese Wahl der Felder löst die homogenen Maxwell-Gleichungen automatisch. Die verbleibenden inhomogenen Maxwell-Gleichungen fungieren als Feldgleichungen für die Potentiale

$$-\Delta \Phi - \vec{\partial} \cdot \partial_t \vec{A} = \frac{1}{\varepsilon_0} \rho,$$
$$-\Delta \vec{A} + \frac{1}{c^2} \partial_t^2 \vec{A} + \vec{\partial} (\vec{\partial} \cdot \vec{A}) + \frac{1}{c^2} \vec{\partial} \partial_t \Phi = \mu_0 \vec{j}.$$
(6.21)

Um die Struktur der Gleichungen etwas besser zu verstehen, bietet es sich an, eine kombinierte Ableitung nach Raum und Zeit einzuführen, den $D'Alembert-Operator^3$

$$\Box := \Delta - \frac{1}{c^2} \,\partial_t^2. \tag{6.22}$$

Dann lauten die inhomogenen Gleichungen

$$-\Box \Phi - \partial_t \left[\frac{1}{c^2} \partial_t \Phi + \vec{\partial} \cdot \vec{A} \right] = \frac{1}{\varepsilon_0} \rho,$$

$$-\Box \vec{A} + \vec{\partial} \left[\frac{1}{c^2} \partial_t \Phi + \vec{\partial} \cdot \vec{A} \right] = \mu_0 \vec{j}.$$
 (6.23)

Beide Gleichungen haben nun eine ähnliche Struktur, und man erkennt einen gemeinsamen Term, den wir etwas später durch eine geeignete Wahl der Potentiale entfernen können.

Eichtransformationen. Die magnetische Flussdichte B ändert sich nicht, wenn man ein Gradientenfeld zum Vektorpotential A addiert

$$\vec{A}' = \vec{A} + \vec{\partial}A. \tag{6.24}$$

Diese Änderung wirkt sich allerdings auf das elektrische Feld aus, es sei denn das skalare Potential Φ erhält einen kompensierenden Beitrag

$$\Phi' = \Phi - \partial_t \Lambda. \tag{6.25}$$

Somit sind die transformierten Potentiale physikalisch äquivalent zu den ursprünglichen Potentialen für eine beliebige Wahl des Feldes Λ , denn sie beschreiben dieselben Felder E und B. Per Konstruktion ändern sich die obigen Feldgleichungen der Potentiale nicht, auch wenn das an ihrer Form nicht unmittelbar zu erkennen ist. Wir können die Eichfreiheit ausnutzen, um die Form der Feldgleichungen weiter zu vereinfachen.

Coulomb-Eichung. Eine gewöhnliche Wahl ist die Coulomb-Eichung, in der man fordert

$$\vec{\partial} \cdot \vec{A} = 0. \tag{6.26}$$

³Für das Vorzeichen des D'Alembert-Operators sind beide Möglichkeiten gebräuchlich. Wir wählen es so, dass es eine direkte Verallgemeinerung des Laplace-Operators $+\Delta$ ist.

Dann gilt die Poisson-Gleichung der Elektrostatik exakt

$$\Delta \Phi = -\frac{1}{\varepsilon_0} \rho. \tag{6.27}$$

Diese können wir zu jedem Zeitpunkt t wie gewohnt (eindeutig) lösen. Es verbleibt eine explizit zeitabhängige Feldgleichung

$$-\Delta \vec{A} + \frac{1}{c^2} \partial_t^2 \vec{A} = \mu_0 \vec{j} - \frac{1}{c^2} \vec{\partial} \partial_t \Phi.$$
(6.28)

Lorenz-Eichung. Eine andere vorteilhafte Wahl ist die Lorenz-Eichung

$$\vec{\partial} \cdot \vec{A} + \frac{1}{c^2} \partial_t \Phi = 0. \tag{6.29}$$

Hiermit eliminiert man die gemeinsamen Terme in den Feldgleichungen

$$-\Box \Phi = \frac{1}{\varepsilon_0} \rho, \qquad -\Box \vec{A} = \mu_0 \vec{j}. \tag{6.30}$$

Insbesondere entkoppeln die Potentiale und Dichten vollständig; jeder Dichte entspricht genau ein Potentialfeld und alle Gleichungen haben dieselbe Struktur.

Die Lorenz-Eichung lässt sich immer erreichen: Wir bezeichnen mit $X := \vec{\partial} \cdot \vec{A} + \partial_t \Phi/c^2$ diejenige Kombination von Feldern, die in allen inhomogenen Maxwell-Gleichungen für die Potentiale gemeinsam auftritt. Dann ist die eichtransformierte Kombination X' gegeben durch

$$X' = X + \Box \Lambda = X + \Delta \Lambda - \frac{1}{c^2} \partial_t^2 \Lambda.$$
(6.31)

Wollen wir vorgegebene Potentiale in solche transformieren, welche die Lorenz-Eichung X' = 0 erfüllen, so müssen wir die Evolutionsgleichung $\Box A = -X$ für A lösen. Bei einer vorgegebenen Konfiguration $A(\vec{x})$ und $\partial_t A(\vec{x})$ in einer Zeitebene können wir die Differentialgleichung als Anfangswertproblem betrachten, und es gibt eine eindeutige Lösung. Damit sieht man auch, dass die Lorenz-Eichung nicht eindeutig ist, sie also nur eine *partielle Eichfixierung* ist, denn jede Eichtransformation mit $\Box A = 0$ lässt die Lorenz-Eichung unverändert, X = X' = 0. Man kann also zusätzliche Forderungen an A und Φ auf einer Zeitebene stellen um die Eichfixierung zu konkretisieren.

7 Stromkreise

Eine erste einfache Anwendung der Elektrodynamik sind Stromkreise, die anstelle von komplizierten Feldkonfigurationen mit endlich vielen Freiheitsgraden gut (näherungsweise) beschrieben werden können. Ein *Stromkreis* ist eine Kombination von elektrischen und elektronischen Bauelementen, die eine gewisse Funktion erfüllen soll. Die elementaren Bauelemente sind Widerstände, Kondensatoren, Spulen, Verzweigungen, Stromquellen und Schalter, welche mit leitenden Drähten untereinander verbunden sind. Wir wollen hier das Verhalten von Stromkreisen kurz theoretisch behandeln.

7.1 Induktivitäten

- Spule
- Induktion

Von den oben erwähnten Bauelementen haben wir die Spule noch nicht eingehend diskutiert, insbesondere in Bezug auf ihre Wechselwirkung mit einem variablen Magnetfeld.

Magnetfeld einer Spule. Wir wollen zunächst das Magnetfeld berechnen, welches von einer stromdurchflossenen Spule erzeugt wird. Dazu wickeln wir einen Draht im Abstand R um die z-Achse. Er soll N Windungen auf einer Länge ℓ aufweisen. Um das Problem besser mathematisch behandeln zu können, wollen wir einen Grenzfall annehmen, in dem der Draht dicht gewickelt ist und die Spule sehr lang ist.

Die Stromdichte einer stromdurchflossenen Spule ist dann auf die Zylinderfläche konzentriert, homogen, tangential zu dieser und hat nur eine vernachlässigbar kleine Komponente entlang der Spulenachse.¹ Sie wird durch folgende Stromdichte

¹Der Strom entlang der Spulenachse erzeugt im Aussenraum das bekannte Magnetfeld eines dünnen Drahts mit Strom I (ohne den verstärkenden Faktor N).

in Zylinderkoordinaten r, φ, z beschrieben

$$\vec{j} = \eta \,\delta(r-R) \,\vec{e}_{\varphi} \quad \text{mit} \quad \eta = \frac{IN}{\ell} \text{ und } \vec{e}_{\varphi} = \begin{pmatrix} -\sin\varphi\\\cos\varphi\\0 \end{pmatrix}.$$
(7.2)

Wir wollen die magnetische Flussdichte *B* mittels des Gesetzes von Biot-Savart berechnen. Wir betrachten einen Punkt $\vec{x} = (d, 0, 0)$ und schreiben das Integral über $\vec{y} = (r \cos \varphi, r \sin \varphi, z)$ in Zylinderkoordinaten

$$\vec{B}(x) = \mu_0 \int dy^3 \frac{\vec{j}(y) \times (\vec{x} - \vec{y})}{4\pi ||x - y||^3}$$

$$= \frac{\mu_0 \eta R}{4\pi} \int d\varphi \, dz \, \frac{(-z \cos \varphi, -z \sin \varphi, R - d \cos \varphi)}{(R^2 + d^2 - 2dR \cos \varphi + z^2)^{3/2}}$$

$$= \frac{\mu_0 \eta R}{2\pi} \int d\varphi \, \frac{(0, 0, R - d \cos \varphi)}{R^2 + d^2 - 2dR \cos \varphi}$$

$$= \mu_0 \eta \, \theta(R - d) \, \vec{e}_z. \tag{7.3}$$

Die Integrale über r und z lassen sich elementar ausführen. Das verbleibende Integral über φ lässt sich leicht mit dem Satz von Gauß in zwei Dimensionen ermitteln, wenn man den Integranden als Punktladung bei (d, 0) ansieht. So erhält man im Inneren der Spule eine homogene magnetische Flussdichte²

$$\vec{B} = \mu_0 \eta \vec{e}_z = \frac{\mu_0 N I}{\ell} \vec{e}_z. \tag{7.4}$$

Die Feldenergie im Inneren der Spule ist dann gegeben als

$$W = \frac{\pi\mu_0 R^2 N^2 I^2}{2\ell} \,. \tag{7.5}$$

Induzierte Spannung. Eine Spule erzeugt nicht nur ein Magnetfeld, sondern nach dem Induktionsgesetz reagiert sie auch auf Änderungen des magnetischen Flusses. Die induzierte Spannung je Windung ist die negative Änderungsrate des magnetischen Flusses Ψ durch die Spule. Bei N Windungen ergibt dies eine Spannung U zwischen den Enden der Spule

$$U = -N \,\partial_t \Psi. \tag{7.6}$$

Nun kann das Magnetfeld in der Spule von einer zweiten Spule hervorgerufen werden. Betrachten wir der Einfachheit halber eine zweite Spule, welche auf dieselbe Zylinderfläche gewickelt ist, aber möglicherweise eine unterschiedliche Wicklungszahl N_2 hat. Für die Spannung über die erste Spule ergibt sich

$$U_1 = -N_1 \partial_t \Psi_2 = -N_1 A \partial_t B_z = -\pi R^2 N_1 \frac{\mu_0 N_2 \dot{I}_2}{\ell} = -L_{12} \dot{I}_2.$$
(7.7)

²Im Aussenraum erhält man im Wesentlichen das Magnetfeld eines Stabmagneten mit den Abmessungen der Spule. Die ein- bzw. auslaufende magnetische Flussdichte \vec{B} an den Kappen schliesst sich über weite Bögen um die Spule herum. Für lange Spulen, $\ell \to \infty$, wird das äussere Magnetfeld nach Unendlich abgedrängt.

Hier bezeichnet die Konstante L_{12} die Induktivität zwischen den Spulen

$$L_{12} = \frac{\pi \mu_0 R^2 N_1 N_2}{\ell} \,. \tag{7.8}$$

Man sieht, dass der Induktionskoeffizient rein geometrischer Natur ist. Dies ist analog zur Kapazität C eines Kondensators.

Die oben hergeleitete Beziehung $U_1 = L_{12}I_2$ verallgemeinert sich auf alle Paare (j, k) von Bauelementen in Stromkreisen, so dass³

$$U_k = -\sum_j L_{kj} \dot{I}_j, \qquad W = \sum_{j,k} \frac{1}{2} L_{kj} I_j I_k.$$
(7.9)

Die Induktionskoeffizienten L_{jk} hängen dabei von der Form, der relativen Lage und der Orientierung der Bauteile ab, aber auch von dritten Elementen oder Medien, die das magnetische Feld beeinflussen. Konkret kann man sie meist nur durch Messung ermitteln. Insbesondere tritt auch Selbstinduktion auf: Für die oben behandelte Spule ergibt sich z.B. der Koeffizient für Selbstinduktion

$$L = \frac{\pi \mu_0 R^2 N^2}{\ell} \,. \tag{7.10}$$

Auch alle anderen Bauelemente besitzen eine gewisse Selbstinduktion, sogar der Stromkreis an sich. Die Selbstinduktion erzeugt immer eine Spannung, die der Änderung des Stroms entgegenwirkt. Insofern kann man sie als ein Analogon der mechanischen Trägheit für elektrische Ströme ansehen. Ihre Energie entspricht in diesem Bild der kinetischen Energie.

7.2 Stromkreise

- Kirchhoffsche Regeln
- elektrische Bauelemente

Einen Stromkreis kann man sich als mechanisches System mit einer Menge von Zustandsvariablen vorstellen, welche durch Bewegungsgleichungen miteinander in Beziehung stehen. Wir wollen hier die Regeln für die einzelnen Bauelemente zusammenfassen, nach denen man die Bewegungsgleichungen für den Stromkreis aufstellt.

Potentiale und Ströme. Ein Stromkreis ist eine Menge von Bauelementen, die mit leitenden Drähten verbunden sind. Er wird als Graph dargestellt.

$$U_{1} \qquad I_{1} \qquad U_{2} \qquad U_{2}$$

$$U_{1} \qquad I_{5} \qquad U_{5} \qquad U_{5} \qquad U_{7} \qquad U_{1} \qquad U_{1$$

³Wir befinden uns hier in der quasistationären Näherung, in der sich Felder viel schneller ausbreiten, als sich Ströme im Stromkreis ändern. Anders ausgedrückt gilt $L\omega \ll c$ wobei L die Ausdehnung des Stromkreises bezeichnet, ω die typische Frequenz oder Änderungsrate der Ströme und c die Lichtgeschwindigkeit.

Auf jedem Stück Draht k herrscht ein Potential U_k und es fliesst ein gerichteter Strom I_k .⁴ Dies sind die Zustandsvariablen für unser System.

Die Bewegungsgleichungen für die einzelnen Bauelemente sollen nur von den angrenzenden Potentialen und einfliessenden Strömen abhängen. Dies ist insofern eine Näherung, da die Bauelemente über das elektromagnetische Feld kommunizieren. Im Vergleich zu ihrer eigentlichen Funktion sind diese Effekte aber i.d.R. klein, und man vernachlässigt sie.⁵

Kirchhoffsche Regeln. Die Zustandsvariablen im Stromkreis erfüllen zwei Beziehungen, die Kirchhoffschen Regeln:

Die *erste Kirchhoffsche Regel* besagt, dass sich alle Ströme, die in ein Bauelement fliessen, zu Null aufsummieren

Insbesondere gilt sie für Verzweigungen von Drähten, für die sie meist angewendet wird. Für diese Regel betrachtet man auslaufende Ströme als einlaufende Ströme mit negativem Vorzeichen. Sie basiert auf der Ladungserhaltung und der Annahme, dass sich keine Ladungen in dem Bauelement kumulieren. Für Bauelemente mit zwei Anschlüssen folgt, dass der einlaufende Strom gleich dem auslaufenden Strom ist.

$$\overbrace{I}$$

$$(7.13)$$

Die zweite Kirchhoffsche Regel besagt, dass die Summe aller Potentialdifferenzen über einen geschlossenen Weg auf dem Graphen Null ist

In unserer Formulierung mit expliziten Potentialen auf den Drähten ist die Regel per Konstruktion erfüllt.

Für einen geschlossenen, zusammenhängenden Graphen ergibt sich für alle Zustandsvariablen je eine Gleichung. Allerdings stellt sich immer eine der

⁴Man geht davon aus, dass die Resistivität, Kapazität und Induktivität der Drähte vernachlässigbar klein sind, zumindest gegenüber den weiteren Bauelementen. In dieser Näherung sind Potential und Strom entlang eines Drahtes konstant. Trifft diese Näherung nicht zu, so kann man physikalische Drähte formal durch funktionale Bauelemente beschreiben, die formal durch idealisierte Drahtelemente verbunden sind.

⁵Effektiv kommunizierende Bauelemente kann man formal zu einem einzigen kombinieren, oder die Bewegungsgleichungen entsprechend anpassen.

Gleichungen als abhängig von den anderen heraus, und somit ist letztlich eine Variable unbestimmt. Ersteres folgt aus der Ladungserhaltung (erste Kirchhoffsche Regel), letzteres ist die Unbestimmtheit des Referenzpotentials. Um diese Unbestimmtheit zu entschärfen, legt man ein beliebiges Potential auf einen festen Wert oder man betrachtet nur Potentialdifferenzen über die Bauelemente (zusammen mit der zweiten Kirchhoffschen Regel).

Bauelemente. Wir zählen nun die wichtigsten elektrischen Bauelemente und ihre Beziehungen auf.

Für die *Verzweigung* ohne weitere Funktionalität gilt, dass alle äusseren Potentiale gleich sind.

$$U_{3} \underbrace{I_{3}}_{I_{4}} \underbrace{U_{1}}_{U_{4}} \underbrace{U_{1}}_{U_{5}} U_{1} \qquad U_{i} = U \text{ für alle } i, \qquad \sum_{i} I_{i} = 0.$$
(7.15)

Es genügt also ein Potential U an der Verzweigung als Zustandsvariable zu wählen. Des Weiteren ist die Summe der einlaufenden Ströme aufgrund der ersten Kirchhoffschen Regel Null.

Für einen Widerstand mit Resistivität R gilt die Beziehung

$$U_1 \xrightarrow{I} \overset{R}{\longrightarrow} U_2 \qquad U_1 - U_2 = RI. \tag{7.16}$$

Für einen Kondensator mit Kapazität C benötigt man als zusätzliche Zustandsvariable die Ladung Q. Die Bewegungsgleichungen lauten

$$U_1 - \frac{I}{+Q} - \frac{U_2}{-Q} = I, \qquad U_1 - U_2 = \frac{Q}{C}.$$
(7.17)

Für eine Spule mit Induktivität L gilt wie oben ermittelt

$$U_1 \xrightarrow{I} \underbrace{U_2}^L U_2 \qquad U_1 - U_2 = L\dot{I}. \tag{7.18}$$

Für zwei gekoppelte Spulen mit den Selbstinduktivitäten L_A , L_B sowie Gegeninduktivität $L_{AB} = L_{BA}$ gilt

$$U_{A1} \xrightarrow{I_{A}} U_{A2} \qquad U_{A1} - U_{A2} = L_{A}\dot{I}_{A} + L_{AB}\dot{I}_{B}, \qquad (7.19)$$

$$U_{B1} \xrightarrow{I_{B}} U_{B2} \qquad U_{B2} \qquad U_{B1} - U_{B2} = L_{B}\dot{I}_{B} + L_{AB}\dot{I}_{A}.$$

Weiterhin können wir noch einen *Schalter* einführen. Sein elektrisches Verhalten hängt von seinem Öffnungszustand ab

$$U_1 \xrightarrow{I} 0 \xrightarrow{I} U_2 \qquad \begin{cases} I = 0 & \text{offen,} \\ U_1 = U_2 & \text{geschlossen.} \end{cases}$$
(7.20)

Man kann den Schalter auch als variablen Widerstand betrachten, dessen Wert entweder R = 0 (geschlossen) oder $R = \infty$ (offen) beträgt.

Schliesslich gibt es noch die Spannungsquelle mit Spannung U_0 ⁶

$$U_1 - \bigcup_{U_0,\omega,\phi}^+ \overline{O}_{U_2} - U_2 = U_0 \cos(\omega t + \phi).$$
(7.21)

Hier ist ω die Winkelfrequenz einer Wechselspannungsquelle und ϕ ihre Phase. Für Gleichspannung gilt $U_1 - U_2 = U_0$.

7.3 Schwingkreis

• Schwingkreis

• Dämpfung

Als gebräuchliches Beispiel wollen wir den einfachen *Schwingkreis* behandeln. Er besteht aus Kondensator, Widerstand und Spule mit den Konstanten C, R und L, die in Serie geschaltet sind.

$$L \bigoplus_{\substack{Q(t)\\ I(t)}}^{C} \mathbb{R}$$

$$(7.22)$$

Der Kondensator sei zur Zeit t = 0 auf Ladung $Q(0) = Q_0$ geladen und es fliesse der Strom $I(0) = I_0$. Wie entwickeln sich diese Grössen mit der Zeit?

Bewegungsgleichung. Aus den Relationen für die drei Bauelemente ergeben sich folgende Differentialgleichungen

$$\dot{Q} = I, \qquad L\dot{I} + RI + \frac{Q}{C} = 0.$$
 (7.23)

Zusammen ergibt dies eine Differentialgleichung zweiter Ordnung für die Ladung Q(t)

$$L\ddot{Q} + R\dot{Q} + \frac{Q}{C} = 0. \tag{7.24}$$

⁶Eine konstante Spannung U_0 ist eine Idealisierung, denn in der Praxis nimmt die Spannung für allzu grosse Ströme I (Überlastung, Kurzschluss) von ihrem Maximalwert U_0 ab, so dass der gelieferte Strom effektiv begrenzt ist.

Man beachte, dass dies genau die Bewegungsgleichung eines gedämpften harmonischen Oszillators ist, die aus der Mechanik wohlbekannt ist. Die Anfangsbedingungen lauten

$$Q(0) = Q_0, \qquad \dot{Q}(0) = I_0.$$
 (7.25)

Diese gewöhnliche homogene Differentialgleichung zweiter Ordnung ist mit einem einfachen Ansatz zu lösen

$$Q(t) = a_1 e^{b_1 t} + a_2 e^{b_2 t}.$$
(7.26)

Aufgrund der Struktur der Differentialgleichung entkoppeln die beiden Summanden und man erhält eine quadratische Gleichung für $b_{1,2}$

$$Lb^{2} + Rb + \frac{1}{C} = 0, \qquad b_{1,2} = -\frac{R}{2L} \pm \frac{\sqrt{R^{2} - 4L/C}}{2L}.$$
 (7.27)

Die Anfangsbedingungen werden gelöst durch

$$a_1 = \frac{I_0 - Q_0 b_2}{b_1 - b_2}, \qquad a_2 = \frac{I_0 - Q_0 b_1}{b_2 - b_1}.$$
 (7.28)

Dämpfung. Das Verhalten des Schwingkreises wird vor allem durch die Exponenten $b_{1,2}$ beschrieben. Je nachdem, wie die Konstanten der Bauelemente eingestellt sind, kommt es zu drei unterschiedlichen Verhaltensarten, die durch die Diskriminante $CR^2 - 4L$ der quadratischen Gleichung unterschieden werden. Ist sie positiv, sind beide Exponenten $b_{1,2}$ reell. Weiterhin sind beide Exponenten immer negativ, und man erhält die sogenannte *starke Dämpfung*.

Ist die Diskriminante hingegen negativ, so sind die Exponente
n $b_{1,2}$ komplex

$$b_{1,2} = -\kappa \pm i\omega, \qquad \kappa = \frac{R}{2L}, \quad \omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}.$$
 (7.30)

Dies führt zu Oszillationen mit Kreisfrequenz ω . Immerhin ist der Realteil negativ, so dass die Lösung auf jeden Fall mit der Konstanten κ abklingt

$$Q(t) = \left[Q_0 \cos(\omega t) + \frac{I_0 + \kappa Q_0}{\omega} \sin(\omega t)\right] e^{-\kappa t}.$$
 (7.31)

Dieser Fall wird schwache Dämpfung genannt.

Falls die Diskriminante Null ist, fallen beide Exponenten $b_{1,2} = -\kappa$ zusammen. Die Lösung nimmt hier eine aussergewöhnliche Form an

$$Q(t) = \left[Q_0 + (I_0 + \kappa Q_0)t\right] e^{-\kappa t}, \qquad \kappa = \frac{R}{2L}.$$
 (7.33)

Man kann sie als Grenzwert der allgemeinen Lösung erhalten. Dieser Fall wird *kritische Dämpfung* genannt.

Der Schwingkreis ist ein Modell für allgemeine Schaltvorgänge. Effektiv besitzt jeder Teil eines Stromkreises eine gewisse Resistivität, eine gewisse Kapazität und eine gewisse Induktivität. Schaltet man eine Stromquelle an oder aus, bzw. ändert man den Zustand eines Schalters, so werden sich die Zustandsvariablen des Stromkreises nicht instantan auf ihre asymptotischen Werte ändern, sondern sich wie oben beschrieben erst nach einer gewissen Zeit dort einpendeln. Hierfür ist die Dämpfung des Schwingkreises im Stromkreis relevant: Lange Abklingphasen und Oszillationen um den Endzustand sind meist unerwünscht, daher ist es vorteilhaft, die entsprechende Dämpfung möglichst kritisch einzustellen.

7.4 Wechselstrom

• komplexe Resistivität

Wir wollen nun einen Stromkreis mit einer fest vorgegebenen Wechselspannung beschreiben. Für Bauelemente mit linearem Verhalten (wie die obigen) kann man davon ausgehen, dass alle Grössen nach einer gewissen Einschwingphase (siehe oben) mit derselben Kreisfrequenz ω oszillieren. Es bietet sich dann an, die Zustandsvariablen X(t) wie Spannung U(t) oder Strom I(t) durch eine komplexe Zahl X_0 zu beschreiben, die ihre Amplitude und Phase bestimmt,

$$X(t) = \operatorname{Re}[X_0 \ e^{i\omega t}], \qquad X_0 \in \mathbb{C}.$$
(7.35)

Auf diese Weise kann man die Zeitabhängigkeit aus dem Problem eliminieren, und so die Lösung vereinfachen.

Resistivitäten. Ein entscheidender Vorteil ist, dass Widerstände, Kondensatoren und Spulen sich in diesem Bild alle ähnlich verhalten und durch eine einheitliche komplexe Kenngrösse beschreiben lassen. Die *komplexe Resistivität Z* beschreibt analog zur Resistivität R eines Widerstands den Quotienten aus Spannung und Strom

$$Z = \frac{U_0}{I_0} \in \mathbb{C}.$$
(7.36)

Für einen Widerstand mit Resistivität R gilt offensichtlich

$$Z = R. (7.37)$$

Die Resistivitäten für Spulen und Kondensatoren folgen durch Einsetzen des oszillierenden Ansatzes. Für eine Spule mit Induktivität L gilt ausgehend von $U = L\dot{I}$

$$Z = i\omega L. \tag{7.38}$$

Für einen Kondensator mit Kapazität erhält man aus $\dot{U} = I/C$ hingegen

$$Z = \frac{1}{i\omega C}.$$
(7.39)

Der Vorteil dieses Formalismus ist, dass sich die elementaren Bauelemente alle wie Widerstände mit komplexer Resistivität Z verhalten. Ein Widerstand ist ausgezeichnet durch positiv reelle Resistivität und eine Spule bzw. ein Kondensator durch eine positiv bzw. negativ imaginäre Resistivität. Mit komplexen Resistivitäten lässt sich genauso rechnen, wie mit reellen Widerständen. So entspricht z.B. die Reihenschaltung von Bauelementen einem effektiven Bauelement mit der Summe der Resistivitäten

$$Z_1 \ Z_2 \ Z_3 \ Z_{\text{tot}} = \sum_k Z_k.$$
(7.40)

Die Parallelschaltung hingegen wird durch die Summe der inversen Resistivitäten beschrieben

$$\frac{Z_1}{Z_2}$$

$$\frac{1}{Z_{\text{tot}}} = \sum_k \frac{1}{Z_k}.$$
(7.41)

Allgemein werden (lineare) Stromkreise insgesamt durch ihre komplexe Resistivität Z beschrieben. Hier nennt man den Betrag |Z| die *Impedanz* und Re Z den *Wirkwiderstand*. Letzterer ist immer positiv. Zusammen bestimmen die beiden Grössen z.B. die gemittelte Leistung P des Stromkreises

$$P = \frac{1}{2} \operatorname{Re}[U_0 I_0^*] = \operatorname{Re} \frac{U_0 U_0^*}{2Z^*} = \frac{|U_0|^2 \operatorname{Re} Z}{2|Z|^2} = |U_{\text{eff}}|^2 \frac{\operatorname{Re} Z}{|Z|^2}.$$
 (7.42)

Hier bezeichnet $U_{\text{eff}} = U_0/\sqrt{2}$ die effektive Spannung einer Wechselstromquelle.

Resonanz. Als Beispiel wollen wir den Schwingkreis mit Resistivität R, Kapazität C und Induktivitiät L untersuchen, der von einer Wechelstromquelle getrieben wird.

Die Reihenschaltung ergibt die komplexe Resistivität des Schwingkreises

$$Z = R + \frac{1}{i\omega C} + i\omega L. \tag{7.44}$$

Die Impedanz lässt sich hier schreiben als

$$|Z| = R\sqrt{1 + \frac{L^2}{R^2} \frac{(\omega^2 - \omega_0^2)^2}{\omega^2}}$$
(7.45)

mit der sogenannten Resonanzfrequenz

$$\omega_0 = \frac{1}{\sqrt{LC}} \,. \tag{7.46}$$

Man sieht, dass die Impedanz bei $\omega = \omega_0$ minimal ist, und somit die Amplitude des Stroms I bei gegebener Spannung maximal ist. Entsprechend ist auch die Leistung bei dieser Frequenz maximal.

Man beachte, dass die Resonanzfrequenz in etwa die Frequenz $\sqrt{1/LC - R^2/4L^2}$ des ungetriebenen Schwingkreises ist, aber durch die Dissipation des Widerstands weichen die beiden Werte etwas voneinander ab.

8 Erhaltungsgrössen und Symmetrien

Wie in vielen physikalischen Systemen gibt es auch in der Elektrodynamik einige erhaltene Grössen wie Ladung, Energie, Impuls und Drehimpuls. Diese können gelegentlich zur Lösungsfindung hilfreich sein, bzw. um Informationen über Feldkonfigurationen zu erlangen, die auf dem Weg einer direkten Lösung der Maxwell-Gleichungen nicht zugänglich sind. In der Regel hängen Erhaltungsgrössen mit Symmetrien des physikalischen Systems zusammen.

8.1 Ladungserhaltung

• Erhaltung der elektrischen Ladung

Eines der Grundprinzipien in der Elektrodynamik ist die *Ladungserhaltung* mittels der Kontinuitätsgleichung

$$\partial_t \rho + \vec{\partial} \cdot \vec{j} = 0. \tag{8.1}$$

Die Maxwell-Gleichungen sind so formuliert, dass die Kontinuitätsgleichung für die Quellen ρ und \vec{j} aus Konsistenzgründen erfüllt sein muss. Alternativ kann man sagen, dass die Kontinuitätsgleichung aus den Maxwell-Gleichungen folgt.

Integration über ein Volumen V ergibt die Ladungserhaltung

$$Q_V := \int_V \mathrm{d}x^3 \,\rho,$$

$$\partial_t Q_V = \int_V \mathrm{d}x^3 \,\partial_t \rho = -\int_V \mathrm{d}x^3 \,\vec{\partial} \cdot \vec{j} = -\oint_{\partial V} \mathrm{d}x^2 \,\vec{n} \cdot \vec{j} =: -J_{\partial V}. \tag{8.2}$$

Die Änderung der Gesamtladung im Gebiet V ist gleich dem Fluss J durch dessen Oberfläche ∂V . Verhindert man den Fluss durch ∂V oder ist V der gesamte Raum \mathbb{R}^3 ohne Rand, so ist Q eine Erhaltungsgrösse.

8.2 Energie und Impuls

- Energiedichte und Energie
- Energieflussdichte, Poynting-Vektor
- Impulsdichte
- Maxwellscher Spannungstensor

Energie. Wir haben bereits die Energie der elektro- und magnetostatischen Felder bestimmt. Addiert man beide Beiträge, so erhält man die *Energiedichte*

$$w(x) = \frac{\varepsilon_0}{2} \vec{E}^2 + \frac{1}{2\mu_0} \vec{B}^2.$$
 (8.3)

Wie ändert sich die Energiedichte mit der Zeit?

$$\partial_t w = \varepsilon_0 \vec{E} \cdot \partial_t \vec{E} + \frac{1}{\mu_0} \vec{B} \cdot \partial_t \vec{B}.$$
(8.4)

Setzen wir nun die Maxwell-Gleichungen ein

$$\partial_t w = \frac{1}{\mu_0} \vec{E} \cdot \left(\vec{\partial} \times \vec{B} \right) - \vec{E} \cdot \vec{j} - \frac{1}{\mu_0} \vec{B} \cdot \left(\vec{\partial} \times \vec{E} \right)$$
$$= -\frac{1}{\mu_0} \vec{\partial} \cdot \left(\vec{E} \times \vec{B} \right) - \vec{E} \cdot \vec{j}.$$
(8.5)

Der erste Term stellt eine Divergenz dar, wir erhalten also eine weitere Kontinuitätsgleichung, den Satz von Poynting

$$\partial_t w + \vec{\partial} \cdot \vec{S} = -\vec{E} \cdot \vec{j} \quad \text{mit} \quad \vec{S} := \frac{1}{\mu_0} \vec{E} \times \vec{B}.$$
 (8.6)

Der Poynting-Vektor \vec{S} ist somit die Energieflussdichte analog zur elektrischen Stromdichte *j*. Der inhomogene Term $\vec{E} \cdot \vec{j}$ beschreibt die Leistung, die das Feld an der existierenden Flussdichte verrichtet. Dieser Ausdruck ist konsistent mit der Kraftdichte auf eine Ladungs- und Stromverteilung, bei der die Geschwindigkeit \vec{v} an jedem Ort mit $\vec{j} = \rho \vec{v}$ eindeutig festgelegt ist, und somit gilt:

$$\vec{f} = \rho \vec{E} + \vec{j} \times \vec{B}, \qquad \vec{f} \cdot \vec{v} = \rho \vec{v} \cdot \vec{E} = \vec{j} \cdot \vec{E}.$$
 (8.7)

Für einen Bereich V ergibt sich per Integration

$$\partial_t W_V + S_{\partial V} + P_{\mathrm{mech},V} = 0 \tag{8.8}$$

mit den Grössen

$$W_V := \int_V \mathrm{d}x^3 \, w(x),$$

$$S_{\partial V} := \oint_{\partial V} \mathrm{d}x^2 \, \vec{n} \cdot \vec{S},$$

$$P_{\mathrm{mech},V} := \int_V \mathrm{d}x^3 \, \vec{j} \cdot \vec{E}.$$
(8.9)

Das heisst, dass die Änderung der Feldenergie W im Bereich V gegeben ist durch den Energiefluss S durch die Oberfläche ∂V und durch die mechanische Leistung P_{mech} im Bereich V. Für ein freies Feld im gesamten Raum \mathbb{R}^3 ist W erhalten.

Impuls. Betrachten wir als Nächstes den Impuls P, der ebenso wie die Energie W erhalten sein sollte. Wir beginnen mit der (bekannten) elektromagnetischen Kraft, welche per Definition die Änderungsrate des Impulses beschreibt. Diese Beziehung lässt sich ebensogut mittels Kraftdichte f und Impulsdichte π ausdrücken, wenn man einen Divergenzterm hinzuaddiert

$$\partial_t \vec{\pi} + \vec{f} = \vec{\partial} \cdot T$$
 bzw. in Komponenten $\partial_t \pi_k + f_k = \sum_{j=1}^3 \partial_j T_{jk}.$ (8.10)

Hier ist T ein Tensor vom Rang zwei (Matrix), der die *Impulsflussdichte* des Feldes beschreibt. Die integrierte Impulserhaltung lautet

$$\partial_t \vec{P}_V + \vec{F}_V = \oint_{\partial V} \mathrm{d}x^2 \, T \vec{n}. \tag{8.11}$$

Hier stellen P_V den Gesamtimpuls im Gebiet V und F_V die Gesamtkraft auf V dar. Der letzte Term beschreibt den Impulsfluss durch den Rand ∂V .

Im Folgenden leiten wir geeignete Ausdrücke für diese Grössen her. Die Kraftdichte, die auf eine Ladungs- und Stromdichte wirkt, ist gegeben durch

$$\vec{f} = \rho \vec{E} + \vec{j} \times \vec{B}. \tag{8.12}$$

Wir setzen nun die Strom- und Ladungsdichte aus den inhomogenen Maxwell-Gleichungen ein

$$\vec{f} = \varepsilon_0 (\vec{\partial} \cdot \vec{E}) \vec{E} + \frac{1}{\mu_0} (\vec{\partial} \times \vec{B}) \times \vec{B} - \varepsilon_0 \partial_t \vec{E} \times \vec{B}.$$
(8.13)

Wir vervollständigen die zeitliche Ableitung im letzten Term, und benutzen die homogenen Maxwell-Gleichungen um $\partial_t B$ zu ersetzen. Schliesslich fügen wir einen Term $(\vec{\partial} \cdot \vec{B})\vec{B}$ ein, der Aufgrund der Divergenzfreiheit der magnetischen Flussdichte Null ist

$$\vec{f} = -\partial_t \left(\varepsilon_0 \vec{E} \times \vec{B} \right) - \varepsilon_0 \vec{E} \times (\vec{\partial} \times \vec{E}) + \varepsilon_0 (\vec{\partial} \cdot \vec{E}) \vec{E} - \frac{1}{\mu_0} \vec{B} \times (\vec{\partial} \times \vec{B}) + \frac{1}{\mu_0} (\vec{\partial} \cdot \vec{B}) \vec{B}.$$
(8.14)

Falls wir zeigen können, dass die hinteren Terme eine Divergenz darstellen, haben wir

$$\vec{\pi} := \varepsilon_0 \vec{E} \times \vec{B} = \varepsilon_0 \mu_0 \vec{S} \tag{8.15}$$

als Impulsdichte des elektromagnetischen Feldes identifiziert.¹

Um dies zu zeigen, betrachten wir die Kombination $(\vec{\partial} \cdot \vec{F})\vec{F} - \vec{F} \times (\vec{\partial} \times \vec{F})$ welche mit $\vec{F} = \vec{E}, \vec{B}$ für das elektrische und das magnetische Feld gleichermassen auftritt²

$$(\vec{\partial} \cdot \vec{F})\vec{F} - \vec{F} \times (\vec{\partial} \times \vec{F}) = (\vec{\partial} \cdot \vec{F})\vec{F} - \vec{\partial}\vec{F} \cdot \vec{F} + (\vec{F} \cdot \vec{\partial})\vec{F}.$$
(8.16)

In Komponenten lautet der resultierende Ausdruck

$$\sum_{j=1}^{3} \left(F_k \partial_j F_j + F_j \partial_j F_k - F_j \partial_k F_j \right) = \sum_{j=1}^{3} \partial_j \left(F_j F_k - \frac{1}{2} \delta_{jk} \vec{F}^2 \right).$$
(8.17)

Demnach können wir für die Impulsflussdichte setzen

$$T_{jk} = \varepsilon_0 \left(E_j E_k - \frac{1}{2} \delta_{jk} \vec{E}^2 \right) + \frac{1}{\mu_0} \left(B_j B_k - \frac{1}{2} \delta_{jk} \vec{B}^2 \right).$$
(8.18)

Dieses Objekt heisst Maxwellscher Spannungstensor.

 $^{^1\}mathrm{Bis}$ auf einen Faktor $1/c^2$ ist dies der Poynting-Vektor. Dies folgt letztlich aus der Unabhängigkeit vom Bezugssystem.

²Der mittlere Ausdruck lässt sich in Vektorschreibweise nicht geeignet klammern: Die Ableitung $\vec{\partial}$ wirkt nur auf das folgende \vec{F} während sich das Skalarprodukt auf die beiden Vektoren \vec{F} bezieht.

8.3 Symmetrien

- Symmetrien
- Drehimpuls, Schwerpunkt
- Bezugssysteme

Ladungserhaltung hat i.d.R. etwas mit Symmetrien des physikalischen Systems zu tun:

Ladung	Symmetrie
Energie	Zeittranslation
Impuls	Ortstranslation
Drehimpuls	Rotation
Schwerpunktbewegung	Bezugssystemtransformation
elektrische Ladung	Eichtransformation

Energie und Impuls haben wir bereits kennengelernt

$$W = \int \mathrm{d}x^3 \, w, \qquad \vec{P} = \int \mathrm{d}x^3 \, \vec{\pi}. \tag{8.19}$$

Der Drehimpuls und der Energieschwerpunkt sind definiert als

$$\vec{L} = \int dx^3 \, \vec{x} \times \vec{\pi}, \qquad \vec{G} = \int dx^3 \, w \vec{x}. \tag{8.20}$$

Der Drehimpuls L ist wie gewohnt erhalten, der Energieschwerpunkt G bewegt sich hingegen linear mit dem Impuls P, d.h. die Kombination $\vec{G} - c^2 t \vec{P}$ ist erhalten.

Schliesslich gibt es noch die konforme Symmetrie und entsprechende Ladungen, die wir im Rahmen der Elektrodynamik nicht diskutieren wollen.

8.4 Galilei-Transformation

- Bezugssysteme, Äquivalenzprinzip
- Transformation des elektrischen Feldes

Für die obigen erhaltenen Ladungen sind die entsprechenden Symmetrien wohlbekannt. Die Schwerpunktbewegung korrespondiert normalerweise mit der Unabhängigkeit vom (inertialen) *Bezugssystem*. In der klassischen Mechanik werden zwei Bezugssysteme durch die *Galilei-Transformation* wie folgt ineinander überführt

$$x' = x - vt. \tag{8.21}$$

Wir wollen im folgenden Galilei-Transformationen in der Elektrodynamik untersuchen. Wir werden sehen, dass die Maxwell-Gleichungen durch Galilei-Transformationen teilweise ineinander überführt werden. Allerdings gibt es zwei unterschiedliche Ausführungen der Transformationen, die nicht miteinander in Einklang sind. Insofern stellen sie keine Symmetrien des Elektrodynamik dar. Dennoch gilt die Erhaltung der Schwerpunktbewegung exakt, was auf eine weitere exakte Symmetrie hindeutet. Dies ist die Lorentz-Symmetrie, welche eine kleine aber wichtige Modifikation der Galilei-Transformationen darstellt. Sie ist zentral für die spezielle Relativitätstheorie und wie diskutieren sie dort.

Lorentz-Kraft. Die Kraft, $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$, die auf ein bewegtes Punktteilchen wirkt, hängt explizit von dessen Geschwindigkeit \vec{v} ab. Dies mag seltsam erscheinen, wenn man ein Grundprinzip der Physik betrachtet: Intuitiv erwartet man, dass die physikalischen Gesetze nicht vom inertialen Bezugssystem abhängen, in dem sich der Beobachter befindet. Dazu betrachte man ein gleichförmig bewegtes Punktteilchen in homogenen Feldern E und B. Im Laborsystem misst man die Kraft $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ auf das Teilchen. Im System, welches sich mit dem Teilchen bewegt, würde ein Beobachter hingegen die Kraft $q\vec{E}$ erwarten, da das Teilchen relativ in Ruhe ist. Unterschiedliche Kräfte würden zu unterschiedlichen Trajektorien führen, es darf aber nicht zwei verschiedene physikalische Realitäten je nach Betrachter geben. Um dieses Paradoxon aufzulösen, muss man die Annahme machen, dass das elektrische Feld E abhängig vom Beobachter ist:

Für die neuen Felder muss gelten, $\vec{E'} = \vec{E} + \vec{v} \times \vec{B}$ und $\vec{B'} = \vec{B}$. Für allgemeinere inhomogene Felder setzt man folgende Transformation an mit x' = x - vt

$$\vec{E}'(x',t) = \vec{E}(x,t) + \vec{v} \times \vec{B}(x,t), \vec{B}'(x',t) = \vec{B}(x,t).$$
(8.23)

Wie kann es sein, dass die Felder E und B von der Wahl des Bezugssystems abhängen?

Man kann die Felder als indirekte Konzepte betrachten, die beschreiben, welche Kraft auf ein geladenes Teilchen wirkt. Dies ist letztlich wie wir E und B eingeführt haben und wie man sie misst. Die Kraft *muss* unabhängig von Bezugssystem sein, so dass E abhängig von System definiert sein muss.

Selbst wenn man die Felder als physikalisch reelle Objekte betrachtet, erhält man ein konsistentes Bild: Zum Beispiel ändern sich die Komponenten der Vektoren \vec{E} und \vec{B} unter Rotation des Bezugssystems. Ebenso können E und B bei Änderung der Referenzgeschwindigkeit ineinander übergehen. Allerdings müssen wir darauf achten, dass alle Gesetze die Transformationen respektieren. Wir lernen also, dass elektrische und magnetische Felder bei Symmetrien miteinander in Beziehung stehen!

Homogene Maxwell-Gleichungen. Wir wollen untersuchen, ob die Transformation der Felder

$$\vec{E}'(x,t) = \vec{E}(x+vt,t) + \vec{v} \times \vec{B}(x+vt,t), \vec{B}'(x,t) = \vec{B}(x+vt,t),$$
(8.24)

auch eine Symmetrie der Maxwell-Gleichungen darstellt. Beginnen wir mit den homogenen Gleichungen. Offensichtlich ist die Divergenzfreiheit eine invariante Aussage unter der obigen Transformation

$$\vec{\partial} \cdot \vec{B}' = 0 \qquad \Longleftrightarrow \qquad \vec{\partial} \cdot \vec{B} = 0. \tag{8.25}$$

Als Nächstes betrachten wir die Terme des Induktionsgesetzes. Man erhält unter Ausnutzung der Divergenzfreiheit von B

$$\vec{\partial} \times \vec{E}' = \vec{\partial} \times \vec{E} + \vec{\partial} \times (\vec{v} \times \vec{B})$$

$$= \vec{\partial} \times \vec{E} + \vec{v} (\vec{\partial} \cdot \vec{B}) - (\vec{v} \cdot \vec{\partial}) \vec{B}$$

$$= \vec{\partial} \times \vec{E} - (\vec{v} \cdot \vec{\partial}) \vec{B},$$

$$\partial_t \vec{B}' = \partial_t \vec{B} + (\vec{v} \cdot \vec{\partial}) \vec{B}.$$
(8.26)

Die Terme $(\vec{v} \cdot \vec{\partial})\vec{B}$ heben sich genau gegenseitig auf. Das Induktionsgesetz ist somit invariant unter der obigen Galilei-Transformation, falls *B* divergenzfrei ist. Das bedeutet, dass die beiden homogenen Maxwell-Gleichungen (zusammen) invariant sind.

Inhomogene Maxwell-Gleichungen. Die obige Transformation ist allerdings keine Symmetrie der inhomogenen Gleichungen! Hier benötigt man stattdessen eine etwas andere Abbildung, welche auch die Quellterme ρ , j einbezieht

$$\vec{B}'(x,t) = \vec{B}(x+vt,t) - \mu_0 \varepsilon_0 \vec{v} \times \vec{E}(x+vt,t),
\vec{E}'(x,t) = \vec{E}(x+vt,t),
\vec{j}'(x,t) = \vec{j}(x+vt,t) - \vec{v}\rho(x+vt,t),
\rho'(x,t) = \rho(x+vt,t).$$
(8.27)

Dies bedeutet, dass die Maxwell-Gleichungen insgesamt *nicht invariant* unter Galilei-Transformationen sind. Sie hängen also scheinbar von der Wahl des Bezugssystems ab. Allerdings tritt hier der Faktor $\mu_0 \varepsilon_0 = 1/c^2$ auf, so dass die Abweichungen für alltägliche Grössen und Geschwindigkeiten $||v|| \ll c$ klein sind.

Es zeigt sich später, dass man die Galilei-Transformation geeignet verändern kann, so dass die Maxwell-Gleichungen invariant werden. Dies ergibt die Lorentz-Transformationen, welche allerdings auch die Zeit-Koordinate transformieren, und zwar in Abhängigkeit der Raum-Koordinaten! Man benötigt also eine Verallgemeinerung des Konzepts der gleichförmig bewegten Bezugssysteme. Dies und die Verallgemeinerung auf die Mechanik sind die Fundamente der spezielle Relativitätstheorie, welche wir im folgenden Kapitel besprechen werden.

8.5 Elektromagnetische Dualität

- elektromagnetische Dualität für freie Felder
- magnetische Ladungen

Die freien Maxwell-Gleichungen weisen eine Symmetrie auf, die zumindest von theoretischem Interesse ist

$$\vec{\partial} \cdot \vec{E} = 0, \qquad \vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0, \vec{\partial} \cdot \vec{B} = 0, \qquad \vec{\partial} \times \vec{B} - \frac{1}{c^2} \partial_t \vec{E} = 0.$$
(8.28)

Die elektrischen und magnetischen Felder treten bis auf den Faktor $-c^2$ analog auf. Eine einfache Rotation von E und cB erhält die Gleichungen

$$\begin{pmatrix} \vec{E}' \\ c\vec{B}' \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \vec{E} \\ c\vec{B} \end{pmatrix}.$$
 (8.29)

Diese Eigenschaft wird elektromagnetische Dualität genannt.

In Anwesenheit von elektrischen Ladungen und Strömen $\rho = \rho_{\rm el}, j = j_{\rm el}$ würde man zusätzliche magnetische Quellen einführen müssen: $\rho_{\rm mag}, j_{\rm mag}$.

- Solche magnetischen Ladungen wurden allerdings (bislang) nicht entdeckt.
- Das elektromagnetische Potential (Φ, A) erlaubt keine solchen Ladungen, da die homogenen Maxwell-Gleichungen impliziert sind.

Interessanterweise kann man *punktförmige magnetische Monopole* mittels der üblichen elektromagnetischen Ladungen (in der Mathematik mittels Differentialgeometrie) dennoch konsistent beschreiben. Man erhält so den hypothetischen *Dirac-Monopol*. In der entsprechenden Quantentheorie (QED) würde eine solche Feldkonfiguration die Ladungsquantisierung erklären.³ Der magnetische Monopol ist eine sehr spannende Feldkonfiguration mit wichtigen Aspekten der Differentialgeometrie und Topologie.

³Die Frage nach der betragsmässig gleichen Ladung des Elektrons und Protons ist insbesondere relevant für eine ausgeglichene Gesamtladung von atomarer Materie: Selbst eine kleine Abweichung könnte bei der grossen Menge an Atomen und relativen Stärke der Elektrostatik leicht zu enormen Kräften führen.

Teil III

Relativitätstheorie

9 Spezielle Relativitätstheorie

Die Maxwell-Gleichungen sowie die Kopplung an geladene Teilchen sind invariant unter Lorentz-Transformationen. Vertraut man den Maxwell-Gleichungen und verallgemeinert diese Symmetrie auf alle physikalischen Prozesse, so erhält man die spezielle Relativitätstheorie. Hier wollen wir die Elektrodynamik ausgehend von den Symmetrien in kovarianter Raumzeit-Schreibweise formulieren.

9.1 Poincaré-Transformationen

- Galilei-Transformationen
- Symmetrie der Wellengleichung
- Lorentz-Transformationen
- Maxwell-Gleichungen

Galilei-Transformationen. Wir haben bereits gesehen, dass die Maxwell-Gleichungen nicht invariant unter der Galilei-Symmetrie sind

$$\vec{x}' = \vec{x} - \vec{v}t, \qquad t' = t,$$
(9.1)

welche den Wechsel von gleichmässig bewegten Bezugssystemen beschreibt. Jeweils zwei der Gleichungen sind invariant unter den Transformationen

$$\vec{E}' = \vec{E} + \vec{v} \times \vec{B}, \qquad \vec{B}' = \vec{B} \tag{9.2}$$

bzw.

$$\vec{E}' = \vec{E}, \qquad \vec{B}' = \vec{B} - \frac{1}{c^2} \vec{v} \times \vec{E}, \qquad \rho' = \rho, \qquad \vec{j}' = \vec{j} - \vec{v}\rho.$$
 (9.3)

Allerdings sind die beiden Transformationsregeln untereinander nicht kompatibel, welches man am deutlichsten anhand der Wellengleichung

$$\Box \Psi = 0 \tag{9.4}$$

erkennen kann, welche für alle Komponentenfelder Ψ von E und B gilt. Hier leiten wir die Gleichung für B aus der Differentialgleichung für das Vektorpotential in Abwesenheit von Quellen her

$$-\Box \vec{A} + \vec{\partial} \left[\frac{1}{c^2} \partial_t \Phi + \vec{\partial} \cdot \vec{A} \right] = 0.$$
(9.5)

Die Rotation dieser Gleichung ergibt unmittelbar $\Box \vec{B} = 0$. Wir werden die Wellengleichungen und ihre Lösungen später diskutieren, hier betrachten wie sie

lediglich als eine bestimmte Differentialgleichung. Ihre Galilei-Transformierte hat einige zusätzliche Terme

$$\left(\Box + \frac{2}{c^2} \, \vec{v} \cdot \vec{\partial} \partial_t - \frac{1}{c^2} \, (\vec{v} \cdot \vec{\partial})^2 \right) \Psi' = 0, \tag{9.6}$$

welche die Symmetrie verletzen. Für die Ausbreitung von Schall gilt zwar eine analoge Wellengleichung (mit deutlich kleinerer Schallgeschwindigkeit c). Die Verletzung der Galilei-Invarianz stellt aber kein Problem dar, denn der Schall ist an ein Medium gebunden (Luft, Festkörper), welches in verschiedenen Bezugssystemen unterschiedliche Geschwindigkeiten hat. Damit darf die Wellengleichung im Medium durchaus von der Geschwindigkeit v des Mediums abhängen.

Um die Maxwell-Gleichungen in Einklang mit der Unabhängigkeit vom Bezugssystem zu bringen, hat man um 1900 den *Äther* als Medium postuliert, auf dem sich elektromagnetische Wellen fortpflanzen. Dessen Bewegungszustand würde zu zusätzlichen Termen in den Maxwell-Gleichungen führen, die die Galilei-Invarianz widerherstellen. Allerdings konnte experimentell keine Abhängigkeit vom Bezugssystem (d.h. Bewegungszustand des Äthers) festgestellt werden. Die Beobachtung, dass die Lichtgeschwindigkeit isotrop und unabhängig von Tages- und Jahreszeit ist, führte zu seltsamen Hypothesen, wie z.B. dass der Äther von der Erde mitgezogen wird und damit sich für uns immer in Ruhe befindet.

Es gibt aber eine viel einfachere (wenn auch seltsame und radikale) Erklärung, welche ohne Äther auskommt, mit allen Daten in Einklang ist und damit wissenschaftlich vorzuziehen ist: Die spezielle Relativitätstheorie mit Lorentz- bzw. Poincaré-Symmetrie.

Ein Indiz für eine exakte Symmetrie, welche die Galilei-Symmetrie verallgemeinert, ist die gleichmässige Bewegung des Energieschwerpunkts des elektromagnetischen Feldes, welche sich als Erhaltungsgrösse formulieren lässt. Sie deutet auf eine Symmetrie der Feldgleichung hin, die ähnlich der Bezugssysteminvarianz der Galilei-Symmetrie ist.

Symmetrie der Wellengleichung. Wir können die gewünschte Symmetrie aus der Wellengleichung $\Box \Psi = 0$ herleiten. Man vergleiche dafür die Wellengleichung

$$\left[\sum_{i=1}^{3} \left(\frac{\partial}{\partial x^{i}}\right)^{2} - \frac{1}{c^{2}} \left(\frac{\partial}{\partial t}\right)^{2}\right] \Psi(x,t) = 0$$
(9.7)

mit der Laplace-Gleichung

$$\left[\sum_{i=1}^{3} \left(\frac{\partial}{\partial x^{i}}\right)^{2}\right] \Psi(x) = 0.$$
(9.8)

Letztere ist bekanntermassen invariant unter Rotationen, d.h. $\Psi'(x') = \Psi(x)$ mit x' = Rx erfüllt die Gleichung $\Delta \Psi' = 0$ falls $\Delta \Psi = 0$. Rotationen sind so

ausgezeichnet, dass sie das Skalarprodukt $\vec{x}{\cdot}\vec{y}$ invariant lassen

$$\vec{x}' \cdot \vec{y}' = \vec{x}'^{\mathsf{T}} \vec{y}' = \vec{x}^{\mathsf{T}} R^{\mathsf{T}} R \vec{y} \stackrel{!}{=} \vec{x}^{\mathsf{T}} \vec{y} = \vec{x} \cdot \vec{y}, \tag{9.9}$$

d.h. es muss gelten $R^{\mathsf{T}}R = 1$. Die Matrix R muss demnach orthogonal sein, sie gehört zur kontinuierlichen Gruppe SO(3) (bzw. O(3) falls Spiegelungen erwünscht sind). Ebenso transformieren die Ableitungen $\vec{\partial}' = R\vec{\partial}$ und demnach

$$\Delta' = \vec{\partial}'^2 = \vec{\partial}^{\mathsf{T}} R^{\mathsf{T}} R \vec{\partial} = \vec{\partial}^{\mathsf{T}} \vec{\partial} = \Delta.$$
(9.10)

Wir sehen nun klar und deutlich, wie wir die Symmetrie auf die Wellengleichung verallgemeinern können. Wir haben lediglich eine weitere Koordinate t, die wir mit $x^0 := ct$ bezeichnen wollen, damit sie ebenfalls die Dimension Länge trägt. Die Wellengleichung lautet somit etwas einheitlicher

$$\left[\sum_{i=1}^{3} \left(\frac{\partial}{\partial x^{i}}\right)^{2} - \left(\frac{\partial}{\partial x^{0}}\right)^{2}\right] \Psi(x^{0}, \vec{x})$$
$$= \sum_{\mu=0}^{3} \eta^{\mu\mu} \left(\frac{\partial}{\partial x^{\mu}}\right)^{2} \Psi(x) = 0.$$
(9.11)

Hier ist $\eta = \text{diag}(-1, +1, +1, +1)$ eine bestimmte Diagonalmatrix.

Lorentz-Transformationen. Wir müssen also die Symmetrietransformation so definieren, dass der D'Alembert-Operator invariant ist

$$\Box' = \sum_{\mu,\nu=0}^{3} \eta^{\mu\nu} \left(\frac{\partial}{\partial x'^{\mu}}\right) \left(\frac{\partial}{\partial x'^{\nu}}\right)$$
$$= \sum_{\mu,\nu=0}^{3} \eta^{\mu\nu} \left(\frac{\partial}{\partial x^{\mu}}\right) \left(\frac{\partial}{\partial x^{\nu}}\right) = \Box.$$
(9.12)

Mit der Transformation der Ableitungen bei einer linearen Abbildung

$$x^{\prime\mu} = \sum_{\nu=0}^{3} (\Lambda^{-1})^{\mu}{}_{\nu}x^{\nu}, \qquad \left(\frac{\partial}{\partial x^{\prime\mu}}\right) = \sum_{\nu=0}^{3} \Lambda^{\nu}{}_{\mu}\left(\frac{\partial}{\partial x^{\nu}}\right), \tag{9.13}$$

sollte also für Invarianz von \Box gelten

$$\Lambda \eta \Lambda^{\mathsf{T}} = \eta \qquad \text{bzw.} \qquad \sum_{\rho,\sigma=0}^{3} \eta^{\rho\sigma} \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} = \eta^{\mu\nu}. \tag{9.14}$$

Zusätzlich zu den Rotationen für \vec{x} mit 3 Freiheitsgraden gibt es hier 3 weitere Freiheitsgrade, welche die Zeit und den Raum vermischen. In 1 + 3 Block-Notation kann man sie schreiben als die Matrix (*Lorentz-Boost*)

$$\Lambda = \begin{pmatrix} \gamma & \gamma \vec{v}^{\mathsf{T}}/c \\ \gamma \vec{v}/c & 1 + \gamma^2 \vec{v} \vec{v}^{\mathsf{T}}/c^2 (1+\gamma) \end{pmatrix} \qquad \text{mit } \gamma = \frac{1}{\sqrt{1 - \vec{v}^2/c^2}} \,. \tag{9.15}$$

Für die transformierten Koordinaten gilt somit:

$$\vec{x}' = \vec{x} - \gamma \vec{v}t + \frac{\gamma^2}{c^2(1+\gamma)} (\vec{v} \cdot \vec{x}) \vec{v}, \qquad t' = \gamma t - \frac{\gamma}{c^2} \vec{v} \cdot \vec{x}.$$
(9.16)

Für $||v|| \ll c$ und somit $\gamma \approx 1$ ergeben sich als Näherung die 3 Galilei-Transformationen x' = x - vt, t' = t. Eine Besonderheit der exakten Symmetrie ist allerdings, dass sich die Zeit nichttrivial transformiert und sogar von den räumlichen Koordinaten des ursprünglichen Koordinatensystems abhängt. Dies ist der unintuitive Preis, den man für die Symmetrie zahlen muss.¹

Diese Symmetrien sind letztlich für die lineare Bewegung des Energie-Schwerpunkts verantwortlich. Da die Maxwell-Gleichungen mit hoher Genauigkeit unter verschiedenen Voraussetzungen bestätigt wurden, kann man von der Relevanz dieser sogenannten Lorentz-Symmetrie ausgehen. Einige Bemerkungen hierzu:

Die Komposition zweier Lorentz-Boosts mit kollinearen Geschwindigkeiten ergibt wieder einen Lorentz-Boost

$$\Lambda(\vec{n}v_1)\Lambda(\vec{n}v_2) = \Lambda(\vec{n}v_3) \quad \text{mit} \quad v_3 = \frac{v_1 + v_2}{1 + v_1 v_2/c^2}.$$
(9.17)

Geschwindigkeiten addieren sich also nichtlinear! Dieses Additionstheorem impliziert, dass falls $||v_1||, ||v_2|| < c$ auch $||v_3|| < c$ sowie $||v_3|| = c$ falls $||v_1|| = c$ oder $||v_2|| = c$. Die Komposition zweier Lorentz-Boosts mit verschiedenen Richtungen ergibt einen Lorentz-Boost kombiniert mit einer Rotation. Das Ergebnis hängt von der Reihenfolge ab (wie bei Rotationen).

Die (kontinuierliche) Gruppe der Symmetrien der Wellengleichung $\Box \Psi = 0$ (mit der Einschränkung, dass x = 0 festgehalten wird) ist SO(3, 1) und heisst *Lorentz-Gruppe*. Translationen in Zeit und Raum sind ebenfalls Symmetrien. Zusammen mit den Lorentz-Transformationen bilden sie die *Poincaré-Gruppe*. Es gibt auch diskrete Transformationen, nämlich die Raum- und Zeit-Spiegelungen (bzw. auch die Raum-Zeit-Spiegelung), welche die Wellengleichung invariant lassen. Diese erweitern die minimale Poincaré-Gruppe.

Maxwell-Gleichungen. Schliesslich können wir noch die Lorentz-Boosts der elektromagnetischen Felder angeben

$$\vec{E}' = \gamma \vec{E} + \gamma \vec{v} \times \vec{B} - \frac{\gamma^2}{c^2(1+\gamma)} (\vec{E} \cdot \vec{v}) \vec{v},$$

$$\vec{B}' = \gamma \vec{B} - \frac{\gamma}{c^2} \vec{v} \times \vec{E} - \frac{\gamma^2}{c^2(1+\gamma)} (\vec{B} \cdot \vec{v}) \vec{v}.$$
 (9.18)

Diese Transformation erhält die Maxwell-Gleichungen wenn E', B' bei x'ausgewertet werden, während E, B bei x definiert sind. Dies zu überprüfen fordert lediglich etwas Ausdauer. Man erkennt allerdings die beiden Sätze von

¹Er darf unintuitiv sein, da im Alltag $||v|| \ll c$.

Galilei-Transformationen für $||v|| \ll c$ und $\gamma \approx 1$ je nachdem, ob $E \sim vB$ oder $E \sim (c^2/v)B$ angenommen wird. Für die Quellen ergibt sich weiterhin

$$\rho' = \gamma \rho - \frac{\gamma}{c^2} \vec{v} \cdot \vec{j}, \qquad \vec{j}' = \vec{j} - \gamma \rho \vec{v} + \frac{\gamma^2}{c^2(1+\gamma)} (\vec{j} \cdot \vec{v}) \vec{v}. \tag{9.19}$$

Dies hat ebenfalls die partiellen Galilei-Transformationen als Grenzfall. Weiterhin erfüllen die transformierten Quellen die Kontinuitätsgleichung exakt.

9.2 Tensoren

- kontra- und kovariante Vektoren
- Tensoren und Minkowski-Metrik
- Tensorfelder und Ableitungen

Die obigen Ausdrücke für die Lorentz-Transformationen sind lang und wenig aufschlussreich, und explizite Rechnungen werden unnötig kompliziert. In dem Formalismus der *Vierer-Vektoren* der *Raumzeit* vereinfachen sich viele Ausdrücke enorm und man kann die Struktur der Raumzeit unmittelbar erkennen. Wir wollen also kurz den Formalismus, der bereits in der Mechanik eingeführt wurde, wiederholen.

Kontravariante und kovariante Vektoren. Die Koordinaten $x^{\mu} = (ct, \vec{x})$ transformieren mit der Matrix Λ^{-1} und der Verschiebung b^{μ} (Poincaré-Transformation) als

$$x^{\prime \mu} = (\Lambda^{-1})^{\mu}{}_{\nu}x^{\nu} + b^{\mu} := \sum_{\nu=0}^{3} (\Lambda^{-1})^{\mu}{}_{\nu}x^{\nu} + b^{\mu}$$
(9.20)

bzw. in Matrixnotation $x' = \Lambda^{-1}x + b$. Man verwendet bei der Notation mit Indizes $\mu, \nu = 0, 1, 2, 3$ in aller Regel die Summenkonvention, dass über wiederholte Indizes innerhalb eines Tensors (ein oberer, ein unterer) implizit über alle erlaubten Werte summiert wird. Dies entspricht einer Matrix-Multiplikation, wenn der (erste) untere Index die Spalten aufzählt, während der (zweite) obere Index die Zeilen nummeriert.

Ein Vierer-Vektor A^{μ} mit oberem Index heisst *kontravariant*, wenn er ähnlich wie x^{μ} (allerdings ohne Translation) transformiert,² d.h.

$$A^{\prime\mu} = (\Lambda^{-1})^{\mu}{}_{\nu}A^{\nu}, \qquad \text{bzw.} \qquad A^{\prime} = \Lambda^{-1}A.$$
 (9.21)

Das Duale eines kontravarianten Vektors ist ein kovarianter Vektor B_μ mit unterem Index. Er transformiert mit der Matrix A

$$B'_{\mu} = B_{\nu} \Lambda^{\nu}{}_{\mu}, \qquad \text{bzw.} \qquad B' = B\Lambda. \tag{9.22}$$

 $^{^2 {\}rm Genaugenommen}$ muss sich A^μ wie die Differentialform dx^μ transformieren, die invariant unter Translationen ist.

Per Konstruktion ist die Kontraktion eines kovarianten Vektors mit einem kontravarianten Vektor ein Skalar, d.h. invariant³

$$B' \cdot A' = B'_{\mu} A'^{\mu} = B_{\mu} \Lambda^{\mu}{}_{\nu} (\Lambda^{-1})^{\nu}{}_{\rho} A^{\rho} = B_{\mu} \delta^{\mu}{}_{\rho} A^{\rho} = B_{\mu} A^{\mu} = B \cdot A.$$
(9.23)

Tensoren und Metrik. Das Tensorprodukt zweier Vektorräume ist ein Vektorraum dessen Dimension das Produkt der Dimensionen der Faktoren ist. Tensorräume erlauben es, das Produkt aller Kombinationen von Komponenten zweier Vektoren darzustellen:

$$A, B \in V, \qquad C := A \otimes B \in V \otimes V, \qquad C_{\mu\nu} = A_{\mu}B_{\nu}. \tag{9.24}$$

Lorentz-Transformationen lassen sich natürlich auf Tensorprodukten darstellen. Die Transformationsregel

$$C'_{\mu\nu} = C_{\rho\sigma} \Lambda^{\rho}{}_{\mu} \Lambda^{\sigma}{}_{\nu}. \tag{9.25}$$

ist kompatibel mit $C_{\mu\nu} = A_{\mu}B_{\nu}$ für zwei kovariante Vektoren. Tensorprodukte gibt es für beliebig viele ko- und kontravariante Vektorräume. Ein *Tensor* vom Rang (p,q) hat die Indexstruktur⁴

$$C_{\mu_1\dots\mu_p}^{\quad\nu_1\dots\nu_q}\tag{9.26}$$

und transformiert mit p Faktoren Λ und q Faktoren Λ^{-1} .

Die obigen Überlegungen gelten für allgemeine lineare Transformationen. Wir interessieren uns für Lorentz-Transformationen, welche die folgende Relation erfüllen

$$\Lambda^{\mu}{}_{\rho}\eta^{\rho\sigma}\Lambda^{\nu}{}_{\sigma} = \eta^{\mu\nu} \qquad \text{bzw.} \qquad \Lambda\eta\Lambda^{\mathsf{T}} = \eta. \tag{9.27}$$

Sie sind genau so geartet, dass sie die (inverse) Minkowski-Metrik η invariant lassen⁵

$$\eta^{\mu\nu} = \eta^{\mu\nu} = \text{diag}(-1, +1, +1, +1). \tag{9.28}$$

Die inverse Metrik ist ein Tensor vom Rang (0, 2), der symmetrisch in beiden Indizes ist, $\eta^{\mu\nu} = \eta^{\nu\mu}$.

Die eigentliche Metrik $\eta_{\mu\nu} = \text{diag}(-1, +1, +1, +1)$ ist das Inverse von $\eta^{\mu\nu}$ und damit ein Tensor vom Rang (2,0). Aufgrund der Invarianz der Metrik kann man nun ko- in kontravariante Vektoren umwandeln, ohne ihr Transformationsverhalten zu ändern

$$A_{\mu} := \eta_{\mu\nu} A^{\nu}, \qquad A'_{\mu} = \eta'_{\mu\nu} A'^{\nu} = \eta_{\mu\nu} A'^{\nu}, B^{\mu} := \eta^{\mu\nu} B_{\nu}, \qquad B'^{\mu} = \eta'^{\mu\nu} B'_{\nu} = \eta^{\mu\nu} B'_{\nu}.$$
(9.29)

³Vom Standpunkt der linearen Algebra ist diese Kontraktion eine natürliche Operation: Sei $V = \mathbb{R}^{3,1}$ der Raum der kovarianten Vektoren, so ist der duale Raum $V^* = \mathbb{R}^{3,1}$ der Raum der kontravarianten Vektoren. Die Kontraktion $B \cdot A$ ist die Anwendung der linearen Abbildung $A \in V^*$ auf einen Vektor $B \in V$.

⁴Sei $V = \mathbb{R}^{3,1}$ der Raum der kontravarianten Vektoren. Dann ist ein Tensor vom Rang (p,q) ein Element des Tensorprodukts $V^{*\otimes p} \otimes V^{\otimes q}$ oder alternativ eine lineare Abbildung $V^{\otimes p} \to V^{\otimes q}$.

⁵Es gibt zwei Konventionen für die Minkowski-Metrik, die sich durch ein allgemeines Vorzeichen unterscheiden. Dies führt zu unterschiedlichen Interpretationen der Vorzeichen von Skalarprodukten von Vierer-Vektoren. Die Physik ist allerdings in beiden Konventionen dieselbe.

Dank der Metrik η spielt die Art des Vektors in der speziellen Relativitätstheorie keine Rolle, ko- und kontravariante Indizes sind äquivalent, haben aber durchaus verschiedene Rechenregeln. Für Tensoren der Art (p,q) ist also nur der gesamte Rang p + q relevant, da man mit der Metrik alle Indizes nach oben bzw. nach unten verschieben kann.

Die Metrik definiert ein invariantes Skalarprodukt für zwei gleichartige Vektoren

$$A \cdot B = A_{\mu}B^{\mu} = A^{\mu}B_{\mu} = \eta^{\mu\nu}A_{\mu}B_{\nu} = \eta_{\mu\nu}A^{\mu}B^{\nu}.$$
 (9.30)

Ebenso kann man über zwei Indizes eines Tensors die Spur bilden

$$C_{\mu}{}^{\mu...} = \eta_{\mu\nu} C^{\mu\nu...} = \eta^{\mu\nu} C_{\mu\nu}{}^{...}, \qquad (9.31)$$

und erhält wieder einen Tensor mit um 2 Indizes reduziertem Rang, welcher sich unter Transformationen entsprechend verhält.

Tensorfelder und Ableitungen. Für die Elektrodynamik verwenden wir Felder, welche von \vec{x} und t abhängen. Ein skalares Feld $\Psi(x) = \Psi(\vec{x}, t)$ hat hier die Transformationsregel

$$\Psi'(x') = \Psi(x). \tag{9.32}$$

Nun haben wir in der Elektrodynamik viel mit Vektor- bzw. Tensorfeldern zu tun. Solche transformieren wie Felder, die auch Vektoren bzw. Tensoren sind, z.B. ein ko- bzw. kontravariantes Vektorfeld

$$A'_{\mu}(x') = A_{\nu}(x)\Lambda^{\nu}{}_{\mu}, \qquad B'^{\mu}(x') = (\Lambda^{-1})^{\mu}{}_{\nu}B^{\nu}(x).$$
(9.33)

Die Koordinaten von Feldern werden oft unterdrückt, demnach ist es wichtig zu verstehen, wie partielle Ableitungen transformieren. Hierfür ist wichtig, dass x von x' abhängt und mittels Kettenregel erhält man

$$\begin{pmatrix} \frac{\partial}{\partial x'^{\mu}} \end{pmatrix} \Psi'(x') = \begin{pmatrix} \frac{\partial}{\partial x'^{\mu}} \end{pmatrix} \Psi(x(x'))$$

$$= \begin{pmatrix} \frac{\partial x^{\nu}}{\partial x'^{\mu}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x^{\nu}} \end{pmatrix} \Psi(x) = \Lambda^{\nu}{}_{\mu} \frac{\partial}{\partial x^{\nu}} \Psi(x).$$

$$(9.34)$$

Somit schreibt man mit der Abkürzung $\partial_{\mu} := \partial/\partial x^{\mu}$ die Transformationsregel als

$$\partial'_{\mu} = \Lambda^{\nu}{}_{\mu}\partial_{\nu}.\tag{9.35}$$

Die partiellen Ableitungen transformieren also als kovarianter Vektor.⁶ Weiterhin transformieren partielle Ableitungen von Tensorfeldern wie Tensorfelder mit einem zusätzlichen kovarianten Rang, z.B.

$$A_{\mu}(x) = \partial_{\mu}\Psi(x), \qquad C^{\mu}{}_{\nu}(x) = \partial_{\nu}B^{\mu}(x). \tag{9.36}$$

9.3 Kovariante Elektrodynamik

⁶Dieses Verhalten fasst man meist als Definition allgemeiner kovarianter Vektoren auf.

- Felder und Gleichungen
- Erhaltungsgrössen
- Potentiale

Wir sind nun in der Lage, die Felder und Gleichungen der Elektrodynamik in den Formalismus der Vierer-Vektoren zu überführen.

Felder und Gleichungen. Eine Beobachtung ist, dass das magnetische Feld i.d.R. mit Kreuzprodukten auftritt, wo das elektrische Feld mit Skalarprodukten erscheint und umgekehrt. Ebenso sind die räumlichen und zeitlichen Ableitungen verteilt. Wir müssen also eine Möglichkeit haben, beide Arten von Produkten zu vereinheitlichen. Hierzu können wir den total antisymmetrischen Tensor ε_{ijk} mit $\varepsilon_{123} = +1$ gut gebrauchen, z.B.

$$(\vec{A} \times \vec{B})_k = \varepsilon_{ijk} A_i B_j. \tag{9.37}$$

Das bedeutet insbesondere, dass wir die Operation $\vec{A} \times \vec{B}$ als Matrixmultiplikation $A^{\times}\vec{B}$ mit einem dualen Tensor A^{\times} schreiben können

$$(A^{\times})_{ij} := -\varepsilon_{ijk}A_k = \begin{pmatrix} 0 & -A_z & +A_y \\ +A_z & 0 & -A_x \\ -A_y & +A_x & 0 \end{pmatrix}.$$
 (9.38)

Alternativ gilt $(\vec{A} \times \vec{B})^{\intercal} = \vec{A}^{\intercal} B^{\times}$ oder umgekehrt

$$A_k = -\frac{1}{2}\varepsilon_{ijk}(A^{\times})_{ij}.$$
(9.39)

Wir können Relationen mit \vec{E} und B^{\times} nun so schreiben, dass eine gleiche Anzahl von ε im Zusammenhang mit beiden Feldern auftreten. Die inhomogene Maxwell-Gleichung $\vec{\partial} \times \vec{B} - c^{-2} \partial_t \vec{E} = \mu_0 \vec{j}$ lässt sich also nun schreiben als

$$\partial_j B_{jk}^{\times} - \frac{1}{c^2} \partial_t E_k = \mu_0 j_k. \tag{9.40}$$

Weiterhin lautet die andere inhomogene Gleichung

$$\frac{1}{c}\partial_j E_j = \mu_0 c\rho. \tag{9.41}$$

Sie hat also eine ähnliche Form, wobei der zweite Term links fehlt. Man führt einen Tensor $F_{\mu\nu}$ für die elektromagnetischen Felder E und B ein, den sogenannten Feldstärketensor

$$F_{\mu\nu} := \begin{pmatrix} 0 & c^{-1}\vec{E}^{\mathsf{T}} \\ -c^{-1}\vec{E} & B^{\mathsf{X}} \end{pmatrix}, \qquad \begin{array}{l} F_{ij} = B_{ij}^{\mathsf{X}} = -\varepsilon_{ijk}B_k, \\ F_{0k} = c^{-1}E_k = -F_{k0}, \\ F_{00} = 0. \end{array}$$
(9.42)

Analog definiert man die Vierer-Stromdichte als Vektor J_{μ} für die Quellen ρ und j

$$J_{\mu} := \begin{pmatrix} -c\rho \\ \vec{j} \end{pmatrix}, \qquad J_{k} = j_{k}, \qquad (9.43)$$

Dann lassen sich beide Gleichungen wie folgt kombinieren

$$\eta^{\mu\nu}\partial_{\mu}F_{\nu\rho} = \mu_0 J_{\rho}. \tag{9.44}$$

Für den zweiten Term links, beachte man dass $\partial_0 = c^{-1} \partial_t$.

Diese kompakte Form hat einige Vorteile: Geht man davon aus, dass $F_{\mu\nu}$ ein Tensorfeld mit Rang (2,0) ist und J_{μ} ein Tensorfeld mit Rang (1,0), so sind diese Maxwell-Gleichungen manifest Poincaré-invariant.⁷ Demnach beschreiben $F'_{\mu\nu}$ und J'_{μ} die transformierten Felder, was konsistent mit obigen Aussagen ist. Zudem folgt die Erhaltung der Ströme ohne Nachdenken aus der Antisymmetrie von $F_{\mu\nu} = -F_{\nu\mu}$,

$$0 = \partial^{\mu}\partial^{\nu}F_{\mu\nu} = \mu_0\partial_{\mu}J^{\mu} = \mu_0\left(-c^{-1}\partial_t(-c\rho) + \vec{\partial}\cdot\vec{j}\right).$$
(9.45)

Die homogenen Maxwell-Gleichungen lassen sich weiterhin schreiben als

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0 \tag{9.46}$$

oder alternativ

$$\partial^{\mu}\tilde{F}_{\mu\nu} = 0 \tag{9.47}$$

mit dem dualen Feldstärketensor \tilde{F} , welcher definiert ist als

$$\tilde{F} := \begin{pmatrix} 0 & -\vec{B}^{\mathsf{T}} \\ \vec{B} & c^{-1}E^{\mathsf{X}} \end{pmatrix}, \qquad \tilde{F}_{ij} = c^{-1}E_{ij}^{\mathsf{X}} = -c^{-1}\varepsilon_{ijk}E_k, \\ \tilde{F}_{0k} = -B_k = -\tilde{F}_{k0}, \\ \tilde{F}_{00} = 0.$$
(9.48)

Das duale Feld \tilde{F} transformiert wieder wie ein Tensorfeld und somit sind beide Formulierungen der Gleichung invariant unter Poincaré-Transformationen. Der duale Tensor \tilde{F} steht mit dem Feldtensor F über den total antisymmetrischen Tensor $\varepsilon_{\mu\nu\rho\sigma}$, $\varepsilon_{0123} = +1$, in Beziehung

$$\tilde{F}_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}, \qquad \tilde{\tilde{F}}_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} \tilde{F}^{\rho\sigma} = -F_{\mu\nu}.$$
(9.49)

Das Symbol $\varepsilon_{\mu\nu\rho\sigma}$ ist ein Pseudotensor mit Rang (4,0), es transformiert zusätzlich zur üblichen Transformation eines Tensors mit Rang (4,0) mit einem zusätzlichen Faktor von det Λ wie folgt

$$\varepsilon'_{\mu\nu\rho\sigma} := \det(\Lambda) \,\varepsilon_{\mu'\nu'\rho'\sigma'} \Lambda^{\mu'}{}_{\mu} \Lambda^{\nu'}{}_{\nu} \Lambda^{\rho'}{}_{\rho} \Lambda^{\sigma'}{}_{\sigma} = \varepsilon_{\mu\nu\rho\sigma}. \tag{9.50}$$

Hier gilt det $\Lambda = +1$ für Rotationen und Lorentz-Boosts und det $\Lambda = -1$ für Spiegelungen im Raum oder in der Zeit. Als solcher Pseudotensor ist ε invariant.⁸

⁷Für Gleichungen können die Bezeichnungen *invariant* und *kovariant* äquivalent sein: Hier bilden einerseits die Maxwell-Gleichungen einen kovarianten Vierer-Vektor. Andererseits werden die Gleichungen insgesamt auf sich selbst abgebildet, und somit sind sie invariant.

⁸Alternativ kann man ε als Tensor mit Rang (4,0) auffassen, dann ist ε mit $\varepsilon' = \det \lambda \varepsilon$ fast invariant und hat negative Parität bei Spiegelungen.

Erhaltungsgrössen. Die erhaltenen Energie- und Impulsdichten und -ströme w, $\vec{S} \sim \vec{\pi}$ und T_{ij} lassen sich in einem Tensor $T_{\mu\nu}$ zusammenfassen, dem *Energie-Impuls-Tensor*, welcher den dreidimensionalen Spannungstensor auf 3 + 1 Dimensionen erweitert

$$T_{ij} = T_{ij} = \varepsilon_0 (E_i E_j - \frac{1}{2} \delta_{ij} \vec{E}^2) + \frac{1}{\mu_0} (B_i B_j - \frac{1}{2} \delta_{ij} \vec{B}^2),$$

$$T_{0i} = T_{i0} = \frac{1}{c} S_i = c\pi_i = \frac{1}{\mu_0 c} \varepsilon_{ijk} E_j B_k,$$

$$T_{00} = -w = -\frac{1}{2} \varepsilon_0 \vec{E}^2 - \frac{1}{2\mu_0} \vec{B}^2.$$
(9.51)

Wir können ihn auch kompakter mittels Feldtensoren ausdrücken

$$T_{\mu\nu} = -\frac{1}{\mu_0} F_{\mu\rho} F_{\nu}{}^{\rho} + \frac{1}{4\mu_0} \eta_{\mu\nu} F_{\rho\sigma} F^{\rho\sigma}.$$
 (9.52)

Er ist symmetrisch $T_{\mu\nu} = T_{\nu\mu}$, spurlos $T_{\mu}{}^{\mu} = 0$ und er erfüllt die Kontinuitätsgleichung⁹

$$\partial^{\mu}T_{\mu\nu} = -\frac{1}{\mu_{0}}\partial^{\mu}F_{\mu\rho}F_{\nu}^{\ \rho} + \frac{1}{\mu_{0}}F^{\mu\rho}\partial_{\mu}F_{\nu\rho} - \frac{1}{2\mu_{0}}F^{\rho\sigma}\partial_{\nu}F_{\rho\sigma} = -J_{\rho}F_{\nu}^{\ \rho}.$$
(9.53)

Hier wandeln wir den ersten Term mit der inhomogenen Maxwell-Gleichung in die Stromdichte J um und die weiteren beiden Terme heben sich mittels der homogenen Maxwell-Gleichung gegenseitig auf. Der verbleibende Term stellt die Leistung- und Kraftdichte des elektromagnetischen Feldes auf eine Ladungs- und Stromdichte dar.

Potentiale. Als Nächstes wollen wir die elektromagnetischen Potentiale in einen Vierer-Vektor überführen. Man gelangt durch Vergleich zu der Form¹⁰

$$A_{\mu} = (-c^{-1}\Phi, \vec{A}), \qquad F_{\mu\nu} = -\partial_{\mu}A_{\nu} + \partial_{\nu}A_{\mu}.$$
 (9.54)

Hieraus folgen aufgrund der Indexstruktur unmittelbar die homogenen Maxwell-Gleichungen:

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = \dots = 0.$$
(9.55)

Die Freiheit, die Potentiale A so zu wählen, dass ein vorgegebenes Feld F folgt, bedingt die Eichtransformation

$$A'_{\mu} = A_{\mu} + \partial_{\mu}\Lambda \tag{9.56}$$

⁹Die Kontinuitätsgleichung drückt zunächst die Translationsinvarianz aus. Die Symmetrie der Indizes hängt mit Lorentz-Symmetrie zusammen und die Spurlosigkeit mit konformer Symmetrie.

¹⁰Meist wird die Beziehung mit dem umgekehrten Vorzeichen angesetzt $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, was aber letztlich durch die konkrete Definition von $F_{\mu\nu}$ bzw. A_{ν} bedingt ist.

denn

$$F'_{\mu\nu} = F_{\mu\nu} + \partial_{\mu}\partial_{\nu}\Lambda - \partial_{\nu}\partial_{\mu}\Lambda = F_{\mu\nu}.$$
(9.57)

Die inhomogenen Maxwell-Gleichungen für das Potential lauten

$$\mu_0 J_\nu = \partial^\mu F_{\mu\nu} = -\partial^2 A_\nu + \partial_\nu \partial^\mu A_\mu = -\Box A_\nu + \partial_\nu (\partial \cdot A).$$
(9.58)

Eine beliebte Wahl zur Fixierung der unphysikalischen Freiheitsgrade in A ist die Lorenz-Eichung

$$\partial^{\mu}A_{\mu} = \partial \cdot A = 0. \tag{9.59}$$

Dann gilt für A die inhomogene Wellengleichung

$$\Box A_{\mu} = -\mu_0 J_{\mu}. \tag{9.60}$$

Dies ist eine direkte Verallgemeinerung der dreidimensionalen Gleichung $\Box \vec{A} = -\mu_0 \vec{j}$ auf 3 + 1 Dimensionen.

Zusammenfassung. Alle wesentlichen Grössen und Beziehungen der Elektrodynamik lassen sich also mittels Vierer-Vektoren viel kompakter schreiben und man kann unmittelbar erkennen, wie sie sich unter allgemeinen Poincaré-Transformationen verhalten.

Differentialformen. Eine weitere Vereinfachung der Formulierung ergibt sich mittels Differentialformen auf dem Minkowski-Raum. Als Zugabe folgt hier eine kurze Übersicht über diese Formulierung.

Der Feldstärketensor ist eine 2-Form

$$F = \frac{1}{2} F_{\mu\nu} \,\mathrm{d}x^{\nu} \wedge \mathrm{d}x^{\mu} \,. \tag{9.61}$$

Die homogenen Maxwell-Gleichungen schreiben sich kompakt als

$$\mathrm{d}F = 0. \tag{9.62}$$

Für die inhomogenen Maxwell-Gleichungen benötigen wir den dualen Feldstärketensor $\star F$ und die Quellen J als 3-Form

$$\star F = \frac{1}{2} \tilde{F}_{\mu\nu} \,\mathrm{d}x^{\nu} \wedge \mathrm{d}x^{\mu} = -\frac{1}{4} \varepsilon_{\mu\nu\rho\sigma} F^{\mu\nu} \,\mathrm{d}x^{\rho} \wedge \mathrm{d}x^{\sigma} ,$$
$$J = \star (J_{\mu} \,\mathrm{d}x^{\mu}) = \frac{1}{6} \varepsilon_{\mu\nu\rho\sigma} J^{\mu} \,\mathrm{d}x^{\nu} \wedge \mathrm{d}x^{\rho} \wedge \mathrm{d}x^{\sigma} .$$
(9.63)

Die inhomogenen Maxwell-Gleichungen lauten

$$d\star F = \mu_0 J,\tag{9.64}$$

und sie implizieren direkt die Erhaltung $dJ = \mu_0^{-1} dd \star F = 0$ der Quellen.

Das Potential $A = A_{\mu} dx^{\mu}$ ist eine 1-Form, so dass

$$F = \mathrm{d}A.\tag{9.65}$$

Die homogene Maxwell-Gleichung $\mathrm{d}F=\mathrm{d}\mathrm{d}A=0$ ist dann automatisch erfüllt. Die Eichtransformationen lauten

$$A' = A + d\Lambda$$
 und $F' = F + dd\Lambda = F.$ (9.66)

9.4 Geladene Teilchen

- Pfade in der Raumzeit
- Lorentz-Kraft

Pfade in der Raumzeit. Schliesslich betrachten wir ein geladenes relativistisches Teilchen im elektromagnetischen Feld. Das Teilchen sei gegeben durch einen Pfad $x^{\mu}(\sigma)$ in der Raumzeit. Die Beschreibung unterscheidet sich etwas von der nichtrelativistischen Beschreibung im Raum mittels $\vec{x}(t)$: Zum einen ist hier die Zeit $x^{0}(\sigma) = ct(\sigma)$ eine Funktion der Pfadvariablen σ . Zum anderen ist die Wahl der Pfadvariablen σ beliebig. Man darf sie z.B. durch eine beliebige monoton steigende Funktion einer anderen Variablen ersetzen. Somit hat die vierdimensionale Beschreibung effektiv dieselbe Anzahl physikalischer Freiheitsgrade.

Zur Übersetzung zur nichtrelativistischen Beschreibung wählt man i.d.R. $t(\sigma) = \sigma$, dann ergibt sich als Pfad $x^{\mu}(\sigma) = (ct, \vec{x}(t))$. Offensichtlich hängt diese Wahl vom Bezugssystem ab, in dem t definiert ist. In der Relativitätstheorie bietet es sich hingegen an, σ als die Eigenzeit τ auf dem Pfad zu wählen. Hierzu muss gelten $(x')^2 = -c^2$, wobei f' die Ableitung einer Funktion f nach σ bezeichne. Diese Wahl ist unabhängig vom Bezugssystem. Man kann die Wahl auch offen lassen, was allerdings zu einigen zusätzlichen Termen führt.

Der kinetische Vierer-Impuls eines Teilchens ist definiert als

$$p^{\mu} = mc \frac{x'^{\mu}}{\|x'\|}$$
 mit $\|x'\| = \sqrt{-x'^2}$. (9.67)

Diese Kombination ist unabhängig von der Wahl der Pfadvariablen σ und eignet sich gut somit als physikalische Grösse. Die Komponente p^0 ist die kinetische Energie, welche auch die Ruheenergie mc^2 enthält. Es gilt per Konstruktion dass die Norm des Vierer-Impulses konstant ist, $p^2 = -m^2c^2$.

Lorentz-Kraft. Die Lorentz-Kraft lässt sich schreiben als (vgl. Erhaltung von $T_{\mu\nu}$)

$$c \frac{p'_{\mu}}{\|x'\|} = K_{\mu} = -\frac{q}{m} F_{\mu\nu} p^{\nu}.$$
(9.68)

Die linke Seite ist eine Kraft, und sie ist ebenfalls unabhängig von der Wahl der Pfadvariablen. Die Komponente K^0 bezeichnet die Leistung, welche durch Kraft mal Geschwindigkeit gegeben ist, $\vec{K} \cdot \vec{v}$. Dies folgt aus der Beziehung $p^2 = -m^2 c^2$ und somit $p' \cdot p = 0$, d.h. $K \cdot p = 0$. Diese Einschränkung ist konsistent mit der Antisymmetrie von $F_{\mu\nu}$.

Setzt man

$$p^{\mu} = \frac{m}{\sqrt{1 - \vec{v}^2/c^2}} \begin{pmatrix} c \\ \vec{v} \end{pmatrix}, \qquad x^{\mu} = \begin{pmatrix} ct \\ \vec{x} \end{pmatrix}, \qquad \sigma = t$$
(9.69)

so ergibt sich die Lorentz-Kraft

$$\partial_t \vec{p} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{9.70}$$

sowie die Leistung

$$c\,\partial_t p^0 = q\vec{E}\cdot\vec{v} = \vec{v}\cdot\partial_t\vec{p}.\tag{9.71}$$

Teil IV Wellen und Strahlung

10 Lösungen der freien Wellengleichung

Eine besondere Eigenschaft der Maxwellschen Ergänzung ist, dass die Gleichungen der elektrischen und magnetischen Felder nun nicht-triviale Lösungen zulassen, die sich unabhängig von Ladungen und Strömen über den gesamten Raum ausbreiten. Dies ist ein wichtiges Indiz, dass die elektromagnetischen Felder nicht nur Hilfsgrössen für die Wechselwirkungen von Ladungen und Strömen sind, sondern eine unabhängige physikalische Realität besitzen.

10.1 Freie Wellengleichung

- Entkopplung
- freie Wellengleichung

In Abwesenheit von Quellen $\rho = j = 0$ lauten die Feldgleichungen

$$\vec{\partial} \cdot \vec{E} = 0 = \vec{\partial} \cdot \vec{B},$$

$$\vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0 = \vec{\partial} \times \vec{B} - \frac{1}{c^2} \partial_t \vec{E}.$$
 (10.1)

Entkopplung. Eine Komplikation ist, dass die Gleichungen für E und B über Rotationsoperatoren gekoppelt sind. Wir können sie aber leicht über eine zweite Rotation entkoppeln

$$0 = \vec{\partial} \times \left(\vec{\partial} \times \vec{E} + \partial_t \vec{B}\right)$$

= $\vec{\partial} \left(\vec{\partial} \cdot \vec{E}\right) - \Delta \vec{E} + c^{-2} \partial_t^2 \vec{E} = -\Box \vec{E},$
$$0 = \vec{\partial} \times \left(\vec{\partial} \times \vec{B} - c^{-2} \partial_t \vec{E}\right)$$

= $\vec{\partial} \left(\vec{\partial} \cdot \vec{B}\right) - \Delta \vec{B} + c^{-2} \partial_t^2 \vec{B} = -\Box \vec{B}.$ (10.2)

Wir erhalten also für beide Felder äquivalente Wellengleichungen

$$\Box \vec{E} = 0, \qquad \Box \vec{B} = 0, \tag{10.3}$$

mit $\Box = \Delta - c^{-2} \partial_t^{2,1}$ Diese Gleichungen gelten für alle Komponenten von E und B. Letztere sind aber über die ursprünglichen Maxwell-Gleichungen weiterhin gekoppelt. Wir werden die verbleibende Kopplung zunächst ignorieren und erst später im Detail behandeln.

¹Während die Maxwell-Gleichungen Differentialgleichungen erster Ordnung darstellen, ist die resultierende Differentialgleichung von zweiter Ordnung. Dass sich die Ordnung bei Entkopplung von Differentialgleichungen erhöht, ist ein typisches Phänomen: Die verschiedenen Lösungsmoden, die in der ursprünglichen Differentialgleichung von den Komponenten getragen werden, werden in der entkoppelten Differentialgleichung bei höherer Ordnung durch einen mächtigeren Lösungsraum realisiert.

10.2 Ebene Wellen

- Ansatz für ebene Wellen
- monochromatische Wellen
- komplexe und reelle Lösungen
- Superposition ebener Wellen
- Fourier-Transformation
- Vollständigkeit
- Wellengleichung im Fourier-Raum

Ebene Wellen. Betrachten wir zunächst ein einfaches skalares Feld $\Psi(\vec{x}, t)$ für welches wir die Wellengleichung $\Box \Psi = 0$ lösen wollen. Eine vereinfachende Annahme ist, dass das Feld nur von einer der drei Koordinaten x anhängt, sagen wir in Richtung \vec{n} , d.h. $\Psi(\vec{x}, t) = \psi(\vec{n} \cdot \vec{x}, t) = \psi(x, t)$ mit $x := \vec{n} \cdot \vec{x}$. Die Wellengleichung für die eindimensionale, zeitabhängige Funktion ψ lautet nun

$$\left(\frac{\partial}{\partial x}\right)^2 \psi = \frac{1}{c^2} \left(\frac{\partial}{\partial t}\right)^2 \psi. \tag{10.4}$$

Man kann sich leicht überzeugen,² dass die allgemeine Lösung dieser Form eine Linearkombination zweier allgemeiner Funktionen $\psi_{\pm}(x^{\pm})$ ist³

$$\Psi(\vec{x},t) = \psi(\vec{n}\cdot\vec{x},t) = \psi_{+}(\vec{n}\cdot\vec{x}+ct) + \psi_{-}(\vec{n}\cdot\vec{x}-ct), \qquad (10.5)$$

welche jeweils nur von einer Kombination $x^{\pm} = \vec{n} \cdot \vec{x} \pm ct$ der Raum- und Zeitkoordinaten abhängen. Die Form der Funktion ψ_{\pm} spielt keine Rolle, da sich die Ableitungen gegenseitig vollständig aufheben.

Die obigen Lösungen beschreiben Felder, die entlang zwei Raumrichtungen unendlich und homogen ausgedehnt sind, den sogenannten *ebenen Wellen*. Eine besondere Eigenschaft der obigen Wellengleichung ist, dass sie nicht-dispersiv ist. Sie erhält die Form der individuellen Wellen ψ_+ und ψ_- mit der Zeit, sie werden lediglich in gegensätzliche Richtungen mit der Geschwindigkeit $c = 1/\sqrt{\varepsilon_0\mu_0}$ bewegt. Da sich Licht und elektromagnetische Wellen im Vakuum mit ebendieser Geschwindigkeit bewegen, wird c die Lichtgeschwindigkeit genannt.

Monochromatische Wellen. Eine besonders einfache Form haben die *monochromatischen* ebenen Wellen

$$\Psi(x,t) = \exp(i\vec{k}\cdot\vec{x} - i\omega t).$$
(10.6)

²Zum Beispiel kann man eine Koordinatentransformation zu den Lichtkegel-Koordinaten $x^{\pm} = x \pm ct$ vornehmen, in denen die obige Differentialgleichung entkoppelt.

³Man beachte, dass diese Form der Lösung zwar allgemein ist, aber eine Lösung $\psi(x,t)$ nicht eindeutig die beiden Funktionen $\psi_{\pm}(x^{\pm})$ festlegt, denn ein konstanter Beitrag zu $\psi(x,t)$ ist in beiden erlaubt und kann beliebig auf ψ_{+} und ψ_{-} aufgeteilt werden. Diese Beobachtung hat hier keine Konsequenzen, ist aber an vielen Stellen gekoppelt mit Symmetrien, und kann zu deren Verständnis beitragen.
Hier ist $\vec{k} = ||k||\vec{n}$ der Wellenzahlvektor und $\omega = \pm ||k||c$ die Kreisfrequenz der Welle. Die Funktion Ψ erfüllt neben der Wellengleichung $\Box \Psi = 0$ zweiter Ordnung auch die Eigenwertgleichungen erster Ordnung

$$\vec{\partial}\Psi = i\vec{k}\Psi$$
 und $\partial_t\Psi = -i\omega\Psi.$ (10.7)

Die Wellengleichung beläuft sich also auf die algebraische Beziehung

$$\omega^2 = c^2 \vec{k}^2. \tag{10.8}$$

Die monochromatischen ebenen Wellen sind homogen in zwei Dimensionen. In der verbleibenden Richtung \vec{n} sind sie periodisch mit Wellenlänge $\lambda = 2\pi/||k||$. Ebenso sind sie zeitlich periodisch mit Takt $\tau = 2\pi/\omega$.

Man beachte, dass die monochromatische Wellenfunktion komplex ist, physikalische Felder hingegen müssen reell sein. Eine reelle Wellenfunktion erreicht man durch geeignete Linearkombination zweier gegenläufiger Wellen

$$\Psi = 2 \operatorname{Re} \left[A \, \mathrm{e}^{i \vec{k} \cdot \vec{x} - i \omega t} \right] = A \, \mathrm{e}^{i \vec{k} \cdot \vec{x} - i \omega t} + A^* \, \mathrm{e}^{-i \vec{k} \cdot \vec{x} + i \omega t}$$
$$= 2 \operatorname{Re}(A) \cos(\vec{k} \cdot \vec{x} - \omega t) - 2 \operatorname{Im}(A) \sin(\vec{k} \cdot \vec{x} - \omega t). \tag{10.10}$$

Man könnte demnach die Welle auch direkt mit diesen trigonometrischen Funktionen schreiben. Allerdings ist es oft bequemer mit komplexen Wellenfunktionen zu rechnen, da diese einen wohldefinierten Wellenzahlvektor kund eine wohldefinierte Kreisfrequenz ω haben. Solange man nur mit linearen Ausdrücken in den Feldern arbeitet, spielt es keine Rolle, ob das Feld reell oder komplex ist. Die Real- bzw. Imaginärteile von Ψ sind jeweils geeignete Lösungen.

Fourier-Transformation. Da die Wellengleichung eine lineare

Differentialgleichung ist, können wir Lösungen mit beliebigen Wellenzahlvektoren küberlagern

$$\Psi(\vec{x},t) = \sum_{j} \left[A_j \exp\left(i\vec{k}_j \cdot \vec{x} - i\omega_j t\right) + A_j^* \exp\left(-i\vec{k}_j \cdot \vec{x} + i\omega_j t\right) \right].$$
(10.11)

Vielmehr können wir Lösungen mit kontinuierlichen Wellenzahlen überlagern

$$\Psi(\vec{x},t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \left[A(\vec{k}) \exp\left(i\vec{k}\cdot\vec{x} - i\|k\|ct\right) + A(\vec{k})^* \exp\left(-i\vec{k}\cdot\vec{x} + i\|k\|ct\right) \right].$$
(10.12)

Für eine komplexe Lösung Ψ sollte man die Koeffizienten A(k) und $A(k)^*$ als unabhängig betrachten; für eine reelle Lösung müssen sie komplex konjugiert sein. Man beachte, dass die A(k) in jedem Fall komplexe Grössen sind. Die Form der obigen Lösung entspricht einer . Die Fourier-Transformation ist eine Verallgemeinerung der Fourier-Reihe von periodischen Funktionen auf allgemeine aperiodische Funktionen auf der gesamten Zahlengerade \mathbb{R} . Die Fourier-Transformation in einer Variablen t ist definiert als

$$F(t) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi} \,\mathrm{e}^{i\omega t}\,\tilde{F}(\omega). \tag{10.13}$$

Die inverse Transformation lautet

$$\tilde{F}(\omega) = \int_{-\infty}^{+\infty} \mathrm{d}t \,\mathrm{e}^{-i\omega t} F(t).$$
(10.14)

Für höhere Dimensionen ist die Fourier-Transformation für alle (kartesischen) Koordinaten nacheinander durchzuführen.

Fourier-Integrale lassen sich oft mittels komplexer Funktionentheorie und dem Residuensatz ausrechnen. Dabei entsteht i.d.R. ein Faktor 2π , welcher auf die Fourier-Transformation und ihre Inverse aufgeteilt werden muss. Dies kann als $1/\sqrt{2\pi}$ gleichmässig geschehen, oder wie in der Physik gebräuchlich als $d\omega/2\pi$ für Integrale über Kreisfrequenzen (und Wellenzahlen) gegenüber dt für Integrale über die Zeit (und den Raum).

Vollständigkeit. Die obige Lösung ist vollständig in dem Sinne, dass sich jede Lösung der Wellengleichung (formal) durch geeignete Wahl der Koeffizientenfunktion A(k) ausdrücken lässt. Dies lässt sich mit der *Vollständigkeit* der Fourier-Transformation begründen. In einer Dimension basiert letztere auf den formalen Relationen

$$\int_{-\infty}^{+\infty} \mathrm{d}t \,\mathrm{e}^{-i\omega t} = 2\pi\delta(\omega), \qquad \text{bzw.} \qquad \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi} \,\mathrm{e}^{+i\omega t} = \delta(t). \tag{10.15}$$

Diese Relationen sind distributioneller Natur und damit mit grosser Vorsicht zu geniessen und anzuwenden. Man kann sie mithilfe eines Konvergenzfaktors begründen, z.B. indem man das Integral mittels $\exp(-\frac{1}{2}\epsilon\omega^2)$ dämpft und so die delta-Funktion im Limes $\epsilon \to 0$ erhält.

Die Relationen implizieren, dass die Komposition beider Transformationen die Identität ergibt, zum Beispiel

$$F(t) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi} \,\mathrm{e}^{i\omega t} \int_{-\infty}^{+\infty} \mathrm{d}t' \,\mathrm{e}^{-i\omega t'} F(t')$$
$$= \int_{-\infty}^{+\infty} \mathrm{d}t' \,\delta(t-t')F(t') = F(t). \tag{10.16}$$

Somit ist die Fourier-Transformation bijektiv und damit vollständig (auf einem geeigneten Raum von Funktionen).

Führen wir nun eine Fourier-Transformation der obigen Lösung der Wellengleichung in der Zeit und allen drei Raumrichtungen aus

$$\tilde{\Psi}(k,\omega) = \int dx^3 dt \, e^{-i\vec{k}\cdot\vec{x}+i\omega t} \, \Psi(x,t) = \int dt \left[A(k) \, e^{-i\|k\|ct} + A(-k)^* \, e^{+i\|k\|ct} \right] e^{i\omega t} = 2\pi\delta(\omega - \|k\|c) \, A(k) + 2\pi\delta(\omega + \|k\|c) \, A(-k)^*.$$
(10.17)

Die Wellengleichung $\Box \Psi = 0$ ist eine lineare Differentialgleichung welche durch Fourier-Transformation (mittels partieller Integration) in eine algebraische Gleichung übergeht

$$\left[\vec{\partial}^2 - \frac{1}{c^2}\,\partial_t^2\right]\Psi = 0 \qquad \Longleftrightarrow \qquad \left[-\vec{k}^2 + \frac{\omega^2}{c^2}\right]\tilde{\Psi} = 0. \tag{10.18}$$

 $\mathbf{L}\omega$

Die allgemeine Lösung der letzteren lautet

$$\tilde{\Psi} = \begin{cases} \text{beliebig} & \text{falls } \omega = \pm ||k||c, \\ 0 & \text{ansonsten.} \end{cases}$$

$$\tilde{\Psi} = \begin{cases} \text{beliebig} & \text{falls } \omega = \pm ||k||c, \\ 0 & \text{ansonsten.} \end{cases}$$

$$(10.19)$$

Die Koeffizienten $A(\vec{k})$ und $A(-\vec{k})^*$ parametrisieren genau die Freiheitsgrade dieser Lösung, die man damit als vollständig betrachten kann. Das komplexe Feld A(k)im sogenannten *Fourier-Raum* ist somit die Fourier-Transformierte der Lösung Ψ im *Ortsraum*.

10.3 Polarisation

- Allgemeine ebene Wellen
- Lineare Polarisation
- Zirkulare Polarisation
- Elliptische Polarisation

Feldgleichungen. Nun müssen wir noch der Kopplung zwischen elektrischen und magnetischen Feldern Rechnung tragen. Beginnen wir wieder mit einer nicht-monochromatischen ebenen Welle

$$\vec{E} = \vec{E}(\vec{n}\cdot\vec{x} - ct), \qquad \vec{B} = \vec{B}(\vec{n}\cdot\vec{x} - ct).$$
 (10.20)

Aufgrund der Divergenzgleichungen $\vec{\partial} \cdot \vec{E} = \vec{\partial} \cdot \vec{B} = 0$ gilt

$$\vec{n} \cdot \vec{E}' = \vec{n} \cdot \vec{B}' = 0. \tag{10.21}$$

Weiterhin soll die dritte Maxwell-Gleichung gelten

$$\vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0$$
 also $\vec{B}' = \frac{1}{c} \vec{n} \times \vec{E}'.$ (10.22)

Schliesslich können wir die letzte Maxwell-Gleichung durch Einsetzen bestätigen

$$\vec{\partial} \times \vec{B} - \frac{1}{c^2} \partial_t \vec{E} = \vec{n} \times \vec{B}' + \frac{1}{c} \vec{E}' = \frac{1}{c} \left[\vec{n} \times (\vec{n} \times \vec{E}') + \vec{E}' \right] = \frac{1}{c} \left[\vec{n} (\vec{n} \cdot \vec{E}') - \vec{n}^2 \vec{E}' + \vec{E}' \right] = 0.$$
(10.23)

Man beachte, dass die Maxwell-Gleichungen lediglich die Ableitungen von E und *B* betreffen. Ein konstantes elektrisches und magnetisches Feld ist also ohne Einschränkungen erlaubt. Im folgenden wollen wir konstante Beiträge ignorieren; dann können wir alle obigen Gleichungen integrieren und gelangen zu einem Satz von algebraischen Beziehungen zwischen den Feldern

$$\vec{n} \cdot \vec{E} = \vec{n} \cdot \vec{B} = 0, \qquad \vec{B} = \frac{1}{c} \vec{n} \times \vec{E}.$$
(10.24)

Die ersten beiden Gleichungen erlauben nur je 2 von 3 möglichen Ausrichtungen für E und B. Die letzte Gleichung bestimmt B anhand von E, und stellt sicher, dass $\vec{n} \cdot \vec{B} = 0$ gilt. Eine ebene Welle, die alle Maxwell-Gleichungen erfüllt, wird demnach durch ein $E(\vec{n} \cdot \vec{x} - ct)$ mit der Einschränkung $\vec{n} \cdot \vec{E} = 0$ beschrieben. Es gibt also zwei unbestimmte Freiheitsgrade zu jeder Position.

Monochromatische Wellen. Für eine monochromatische Welle gibt es verschiedene Verhaltensmuster je nach Polarisation. Betrachten wir eine Welle der Art

$$E, B \sim \exp\left(i\vec{k}\cdot\vec{x} - i\|k\|ct\right). \tag{10.25}$$

Sei $\vec{k} = ||k||\vec{n}$ mit dem Einheitsvektor \vec{n} und zudem $\vec{e_1}$ und $\vec{e_2}$ zwei dazu und zueinander orthogonale Normalvektoren. Dann können wir den folgenden Ansatz machen

$$\vec{E} = \operatorname{Re}\left[\left(a_1\vec{e}_1 + a_2\vec{e}_2\right)\exp\left(i\vec{k}\cdot\vec{x} - i\|k\|ct\right)\right] \quad \operatorname{mit} \ a_k \in \mathbb{C}.$$
(10.26)

Es gilt folglich für das magnetische Feld $(\vec{n} \times \vec{e}_{1,2} = \pm \vec{e}_{2,1})$

$$\vec{B} = \frac{1}{c} \operatorname{Re} \left[(a_1 \vec{e_2} - a_2 \vec{e_1}) \exp \left(i \vec{k} \cdot \vec{x} - i \| k \| c t \right) \right].$$
(10.27)

Diese Form deckt alle monochromatischen Lösungen zu gegebener Wellenzahl kund Kreisfrequenz ω ab, der Lösungsraum ist also \mathbb{C}^2 . Für die Zeitabhängigkeit haben wir $e^{-i\omega t}$ gewählt mit $\omega > 0$, welches unter dem Realteil äquivalent zu $e^{+i\omega t}$ ist. Um die resultierenden Wellenformen zu klassifizieren, können wir a_1 und a_2 mittels elementarer Transformationen geeignet einschränken:

- Rotation um die Richtung $\vec{n} \rightarrow$ Rotation von a_1 und a_2 ,
- Translation im Raum oder Zeit \rightarrow Phasenverschiebung,

• Skalierung der Amplitude \rightarrow Normierung von a_1 .

So gelangen wir zu einer allgemeinen Lösung modulo obige Transformationen

$$(a_1, a_2) = (1, i\alpha)$$
 mit $-1 \le \alpha \le +1.$ (10.28)

Wichtige Spezialfälle der Klassifizierung sind $\alpha = 0$ und $\alpha = \pm 1$, welche wir im Folgenden etwas genauer diskutieren.

Lineare Polarisation. Für $\alpha = 0$ erhalten wir eine *linear polarisierte* Welle:

$$\vec{E} \sim \vec{e}_1, \quad \vec{B} \sim \vec{e}_2, \tag{10.29}$$

Hier stehen das elektrische und das magnetische Feld senkrecht zueinander und zur Ausbreitungsrichtung, und sie schwingen in Phase.

In der Tat gibt es zwei unabhängige lineare Polarisationsmoden; die zweite Mode ist um eine Vierteldrehung um die Ausbreitungsrichtung gekippt. Beide Moden können koexistieren und unterschiedliche Phasen haben, so dass sie eine Basis für den Lösungsraum \mathbb{C}^2 bilden.

Zirkulare Polarisation. Für $\alpha = \pm 1$ erhalten wir eine *zirkular polarisierte* Welle

Das elektrische Feld dreht sich mit konstanter Kreizfrequenz in der Ebene senkrecht zu \vec{n} . Das magnetische Feld dreht sich ebenso, ist aber eine Vierteldrehung versetzt. Das Vorzeichen von α bestimmt die Drehrichtung.⁴ Beide zirkulare Polarisationsmoden können koexistieren und sie spannen den Lösungsraum \mathbb{C}^2 auf.

⁴Interessanterweise ist die Drehrichtung eine Invariante unter Drehungen des Raumes. Die beiden zirkularen Polarisationsmoden lassen sich nur durch Raumspiegelung ineinander überführen. Zirkular polarisierte Wellen sind somit *chiral*.

Elliptische Polarisation. Schliesslich gibt es noch die *elliptische Polarisation* mit $\alpha \neq 0, \pm 1$. Sie beschreibt den allgemeinen Fall

Elliptische Polarisation entsteht durch Linearkombination zweier linear polarisierter Wellen mit unterschiedlichen Phasen. Alternativ kann man sie als Linearkombination zirkular polarisierter Wellen ansehen. Die elektrischen und magnetischen Felder sind in einer allgemeinen Phasenbeziehung.

10.4 Energietransport

- ebene Wellen
- zeitliche Mittelung

Wir wollen nun den Energie- und Impulstransport in monochromatischen ebenen Wellenfeldern ausrechnen.

Zirkulare Polarisation. Da die Energiedichte, etc. quadratische Kombinationen der Felder sind, können wir nicht direkt auf die komplexe Schreibweise vertrauen. Eine reelle Form für eine zirkular polarisierte Welle lautet

$$\vec{E} = E_0 \left[\vec{e}_1 \cos(k\vec{n} \cdot \vec{x} - \omega t) - \vec{e}_2 \sin(k\vec{n} \cdot \vec{x} - \omega t) \right], \vec{B} = \frac{E_0}{c} \left[\vec{e}_1 \sin(k\vec{n} \cdot \vec{x} - \omega t) + \vec{e}_2 \cos(k\vec{n} \cdot \vec{x} - \omega t) \right].$$
(10.33)

Die relevanten Kombinationen für die Energie- und Impulsdichte lauten:

$$\varepsilon_{0}\vec{E}^{2} = \varepsilon_{0}E_{0}^{2}\left(\vec{e}_{1}^{2}\cos^{2}-2\vec{e}_{1}\cdot\vec{e}_{2}\cos\sin+\vec{e}_{2}^{2}\sin^{2}\right) = \varepsilon_{0}E_{0}^{2},$$

$$\frac{1}{\mu_{0}}\vec{B}^{2} = \frac{E_{0}^{2}}{\mu_{0}c^{2}}\left(\vec{e}_{1}^{2}\sin^{2}+2\vec{e}_{1}\cdot\vec{e}_{2}\cos\sin+\vec{e}_{2}^{2}\cos^{2}\right) = \varepsilon_{0}E_{0}^{2},$$

$$\varepsilon_{0}\vec{E}\times\vec{B} = \frac{\varepsilon_{0}E_{0}^{2}}{c}\left(\vec{e}_{1}\times\vec{e}_{2}\cos^{2}-\vec{e}_{2}\times\vec{e}_{1}\sin^{2}\right) = \frac{\varepsilon_{0}E_{0}^{2}}{c}\vec{n}.$$
(10.34)

Wir finden also, dass diese Welle eine räumlich und zeitlich konstante Energie- und Impulsdichte hat

$$w = \varepsilon_0 E_0^2, \qquad \vec{\pi} = \frac{\varepsilon_0}{c} E_0^2 \, \vec{n} = \frac{w}{c} \, \vec{n}.$$
 (10.35)

Man beachte, dass sich die Energiedichte zu gleichen Anteilen aus elektrischen und magnetischen Beiträgen zusammensetzt. Die Impulsdichte ist entlang der Ausbreitungsrichtung \vec{n} ausgerichtet und ist proportional zur Energiedichte mit Faktor 1/c.

Untersuchen wir noch den Energie- und Impulsfluss. Die Energieflussdichte ${\cal S}$ beträgt

$$\vec{S} = \varepsilon_0 c E_0^2 \vec{n} = w c \vec{n}. \tag{10.36}$$

Das bedeutet, dass die gesamte Feldenergiedichte sich mit der Geschwindigkeit centlang der Ausbreitungsrichtung n_3 bewegt. Die Ausbreitungsgeschwindigkeit ist also die Lichtgeschwindigkeit c. Für den Spannungstensor erhält man mit etwas Geduld (günstig ist die Betrachtung in Komponenten im System $\vec{e}_1, \vec{e}_2, \vec{n}$)

$$T = -\varepsilon_0 E_0^2 \vec{n} \vec{n}^{\,\mathsf{T}} = -c \vec{n} \vec{\pi}^{\,\mathsf{T}}.\tag{10.37}$$

Der Impulsfluss ist also auf die Komponente entlang der Ausbreitung beschränkt und erfolgt nur in dieser Richtung. Die Ausbreitungsgeschwindigkeit beträgt ebenso c.

Lineare Polarisation. Die linear polarisierte Welle bringt eine Komplikation ins Spiel

$$\vec{E} = E_0 \vec{e}_1 \cos(k\vec{n} \cdot \vec{x} - \omega t),$$

$$\vec{B} = \frac{E_0}{c} \vec{e}_2 \cos(k\vec{n} \cdot \vec{x} - \omega t).$$
 (10.38)

Die relevanten Grössen sind nun

$$w = \varepsilon_0 \vec{E}^2 = \frac{1}{\mu_0} \vec{B}^2 = \varepsilon_0 E_0^2 \cos^2,$$

$$\vec{S} = \varepsilon_0 c E_0^2 \vec{n} \cos^2,$$

$$\vec{\pi} = \frac{\varepsilon_0}{c} E_0^2 \vec{n} \cos^2,$$

$$T = -\varepsilon_0 E_0^2 \vec{n} \vec{n}^{\mathsf{T}} \cos^2.$$
(10.39)

Wir finden also

$$\vec{\pi} = \frac{w}{c}\vec{n}, \qquad \vec{S} = cw\vec{n}, \qquad T = -w\vec{n}\vec{n}^{\mathsf{T}} = -c\vec{n}\vec{\pi}^{\mathsf{T}}.$$
 (10.40)

Diese Beziehungen zwischen Energiedichte, Impulsdichte und Spannungstensor sind genau dieselben wie bei zirkular polarisierten Wellen. Die Energiedichte selbst ist allerdings nicht konstant, sondern sie oszilliert

$$w = \varepsilon_0 E_0^2 \cos^2(k\vec{n} \cdot \vec{x} - \omega t). \tag{10.41}$$

Man betrachtet deshalb das räumliche bzw. zeitliche Mittel

$$\bar{w} = \frac{1}{2}\varepsilon_0 E_0^2. \tag{10.42}$$

Dieses ist halb so gross wie der grösste Ausschlag. Man kann dieses oszillierende Verhalten auf zwei Weisen interpretieren: Einerseits entsteht die linear polarisierte Welle als Interferenz zweier zirkular polarisierter Wellen, und die Schwankungen in der Energiedichte sind damit Interferenzeffekte. Andererseits entspricht die zirkular polarisierten Welle zwei um eine Vierteldrehung phasenverschobenen Wellen mit orthogonaler Polarisation, was zu einer konstanten Energiedichte führt.

10.5 Weitere Wellenlösungen

- Wellenpakete
- Gaußsches Wellenpaket
- Phasen- und Gruppengeschwindigkeit
- Kugelwellen

Neben den monochromatischen ebenen Wellen gibt es noch viele relevante Wellenformen, von denen wir zwei Arten diskutieren möchten.

Wellenpakete. Die monochromatischen ebenen Wellen sind in alle Richtungen und auf alle Zeiten ausgedehnt. Zudem haben sie eine exakt definierte Wellenzahl und Frequenz. Diese Eigenschaften sind allerdings nicht realistisch, denn in der Wirklichkeit haben Wellen eine endliche Ausdehnung und bestenfalls sehr scharf definierte Frequenzen. Man spricht hier von *Wellenpaketen*.

Ein instruktives Beispiel ist ein ebenes $Gau\betasches$ Wellenpaket (wir ignorieren die Polarisation)

$$\Psi(x,t) \sim \operatorname{Re}\left[\exp\left(-\frac{1}{2}\Delta k^2(\vec{n}\cdot\vec{x}-ct)^2\right) \mathrm{e}^{ik_0(\vec{n}\cdot\vec{x}-ct)}\right].$$
(10.43)

Diese Wellenfunktion hat eine ungefähre Wellenzahl k_0 und die charakteristische Breite $1/\Delta k$. In diesem Fall lässt sich die Fourier-Transformation exakt ausführen und man erhält

$$\Psi(x,t) = 2\operatorname{Re} \int \frac{\mathrm{d}k}{2\pi} A(k) \,\mathrm{e}^{i(\vec{n}\cdot\vec{x}-ct)k} \,. \tag{10.45}$$

 mit

$$A(k) \sim \exp\left(-\frac{1}{2}(k-k_0)^2 / \Delta k^2\right). \qquad \underbrace{A}_{k_0} \qquad \underbrace{\Delta k}_{k_0} \qquad (10.46)$$

Die Funktion A(k) beschreibt einen stark lokalisierten Puls bei k_0 der charakteristischen Breite Δk . Die inverse Beziehung zwischen den charakteristischen Breiten im Orts- und Impulsraum ist typisch für Wellenpakete und dient in der Quantenmechanik als Unschärferelation.

Das ebene Wellenpaket im Beispiel ist weiterhin in zwei Richtungen unendlich ausgedehnt. Natürlich gibt es auch komplett endliche Wellenpakete. Allerdings lassen sich diese meist nicht analytisch beschreiben, zumal die Wellenform aufgrund der unterschiedlichen Ausbreitungsrichtungen auseinanderläuft. Es gibt aber zwei wichtige allgemeingültige Konzepte um Wellenpakete zu beschreiben: Die *Phasengeschwindigkeit*

$$v_0 = \frac{\omega}{\|k\|} \tag{10.47}$$

beschreibt die Geschwindigkeit der einzelnen Berge und Täler der Welle. Die Gruppengeschwindigkeit hingegen

$$v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}\|k\|} \tag{10.48}$$

beschreibt die Geschwindigkeit der Einhüllenden des Pakets.

Für ebene Wellenpakete im Vakuum betragen beide Geschwindigkeiten c, da sich das ganze Paket mit der gleichen Geschwindigkeit bewegt. Im Medium mit Dispersion bewegen sich Wellen mit frequenzabhängiger Geschwindigkeit und somit ist $v_0 \neq v_g \neq c$. Weiterhin muss man v_0 und v_g als charakteristische (gemittelte) Grössen ansehen, da ω und k keine exakte Gültigkeit mehr haben. Für die Gruppengeschwindigkeit gilt, dass $v_g \leq c$. Dies ist wünschenswert, da v_g die Geschwindigkeit von Information und Energie beschreibt, die durch die Lichtgeschwindigkeit beschränkt sein sollte. Die Phasengeschwindigkeit ist lediglich eine virtuelle Grösse, denn die Phase an sich trägt keine Information. Damit kann sie die Lichtgeschwindigkeit durchaus überschreiten ohne Widersprüche in der Kausalität zu erzeugen.⁵

Kugelwellen. Eine andere wichtige Wellenform sind die *Kugelwellen*. Sie sind kugelsymmetrisch um einen Punkt (o.B.d.A. dem Ursprung) und man wählt den Ansatz

$$\Psi(x,t) = \frac{1}{r}\psi(r,t),$$
(10.50)

Die Wellengleichung $\Box \Psi = 0$ lautet dann einfach

$$\left(\frac{\partial}{\partial r}\right)^2 \psi - \frac{1}{c^2} \left(\frac{\partial}{\partial t}\right)^2 \psi = 0.$$
(10.51)

Analog zur ebenen Welle gibt es hier zwei Funktionen, welche die einlaufende und die auslaufende Kugelwelle beschreiben

$$\Psi = \frac{1}{r}\psi_{+}(r+ct) + \frac{1}{r}\psi_{-}(r-ct).$$
(10.52)

Erstaunlicherweise genügen wieder zwei allgemeine Funktionen ψ_{\pm} zur Beschreibung. Der Vorfaktor 1/r wird benötigt, um die räumliche Ausdehnung der Welle in der Differentialgleichung zu kompensieren.

⁵Eine Analogie ist die Geschwindigkeit des Bildes eines Lichtkegels auf einem entfernten Gegenstand. Hier wird zwar Information übertragen, aber jeweils nur von der Quelle zu dem Gegenstand. Es findet kein Informationsaustausch zwischen benachbarten Punkten auf dem Gegenstand statt, und somit kann die Geschwindigkeit beliebig gross sein.

Es gibt natürlich weiterhin Kugelwellen mit Winkelabhängigkeit, welche insbesondere auch mit der Polarisation der elektromagnetischen Felder in Beziehung steht; wir werden diese Lösungen in einem späteren Kapitel besprechen.

Schliesslich wollen wir noch den Energietransport in monochromatischen Kugelwellen diskutieren

$$\Psi \sim \frac{1}{r} e^{ik\vec{n}\cdot\vec{x}-i\omega t} \,. \tag{10.53}$$

Hier gilt aufgrund der quadratischen Beziehung

$$w \sim \frac{1}{r^2}, \qquad \vec{\pi} \sim \vec{S} \sim \frac{1}{r^2} \vec{n}, \qquad T \sim \frac{1}{r^2} \vec{n} \vec{n}^{\mathsf{T}}.$$
 (10.54)

Man sieht direkt, dass die Energie auf jeder Kugelschale $(4\pi r^2)$ die gleiche ist, während der gesamte Impuls Null ist. Weiterhin fliesst durch jede Kugelschale dieselbe Energie (Leistung); der gesamte Impulsfluss ist Null. Bei x = 0 befindet sich demnach eine Energiequelle mit einer konstanten Leistung: Hier muss sich also ein Sender befinden!

Ein relevanter Unterschied zwischen Kugelwellen und elektrostatischen Lösungen ist, dass letztere mindestens wie $E \sim 1/r^2$ für $r \to \infty$ abfallen während erstere immer das asymptotische Verhalten $E \sim 1/r$ zeigen. Wie wir im kommenden Kapitel sehen werden, hängt dies mit dem Energiefluss des elektromagnetischen Feldes zusammen und ist eine einfache Konsequenz der Geometrie: Die Energieflussdichte ist proportional zu $E^2 \sim 1/r^2$ und damit der Energiefluss durch jede Kugelschale mit Fläche $\sim r^2$ konstant.

11 Erzeugung elektromagnetischer Wellen

Wir haben allgemeine Wellenlösungen sowie deren Energietransport betrachtet. Nun wollen wir einige formale Elemente zu allgemeinen Lösungen ohne und mit Quellen untersuchen und auf die Abstrahlung von dynamischen Ladungsverteilungen anwenden.

11.1 Anfangswertproblem

• Definition und Existenz von Lösungen der freien Maxwell-Gleichungen

- Lösung im Fourier-Raum
- Lösung im Ortsraum

In der Elektrostatik haben wir uns viel mit Randwertproblemen beschäftigt, wobei die Ränder meist Leiteroberflächen entsprechen. Für dynamische Probleme verwendet man stattdessen oft *Anfangswertprobleme*, bei denen man die Werte der Felder zu einer festen Zeit vorgibt, und die zeitliche Entwicklung auf einem nicht-kompakten Gebiet des Raumes und der Zeit untersucht. Kompakte Gebiete der Zeit, wie man sie für Randwertprobleme benötigt, ergeben sich meist nicht aus physikalischen Fragestellungen.

Definition und Existenz von Lösungen. Wir nehmen zunächst einen quellfreien Raum an, $\rho = j = 0$, und geben die Felder E und B zur Zeit t = 0 vor. Dies muss im Einklang mit den beiden räumlichen Maxwell-Gleichungen geschehen, die als Zwangsbedingungen für unser Anfangswertproblem fungieren

$$\vec{\partial} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho = 0, \qquad \vec{\partial} \cdot \vec{B} = 0.$$
 (11.1)

Die anderen beiden Maxwell-Gleichungen bestimmen die Zeitentwicklung

$$\partial_t \vec{B} = -\vec{\partial} \times \vec{E}, \qquad \partial_t \vec{E} = c^2 \vec{\partial} \times \vec{B} - \frac{1}{\varepsilon_0} \vec{j} = c^2 \vec{\partial} \times \vec{B}.$$
 (11.2)

Sie genügen, um die Felder zu einem infinitesimal späteren Zeitpunkt zu bestimmen. Letztere kann man als neue Daten für unser Anfangswertproblem betrachten und wiederum die Zeit um einen infinitesimalen Betrag voranschreiten lassen. So ist die gesamte Zeitentwicklung eindeutig bestimmt, sowohl in der Zukunft als auch in der Vergangenheit.

Drei Anmerkungen dazu:

Die neuen Felder erfüllen wieder die Zwangsbedingungen $\vec{\partial} \cdot \vec{E} = \vec{\partial} \cdot \vec{B} = 0$, denn es gilt

$$\vec{\partial} \cdot \partial_t \vec{E} = c^2 \vec{\partial} \cdot (\vec{\partial} \times \vec{B}) = 0, \tag{11.3}$$

und äquivalent für B. Es genügt also, die Zwangsbedingungen auf die Anfangswerte anzuwenden.

Die Erhaltung der Feldenergie

$$W = \int dx^3 \left[\frac{1}{2} \varepsilon_0 \vec{E}^2 + \frac{1}{2} \mu_0^{-1} \vec{B}^2 \right]$$
(11.4)

hilft zu zeigen, dass die Zeitentwicklung der Differentialgleichungen gutartig ist. Für eine endliche, räumlich beschränkte Feldkonfiguration ist sie endlich und positiv. Diese Einschränkungen führen dazu, dass keine beliebig schnellen und starken Oszillationen auftreten können, da letztere unendliche Energie erfordern würden.

Die Eindeutigkeit der Lösung folgt ebenfalls aus Energieerhaltung zusammen mit Linearität: Die Differenz ΔE , ΔB zweier Lösungen erfüllt die freien Maxwell-Gleichungen. Aus Gleichheit der Anfangsbedingungen, $\Delta E = \Delta B = 0$ bei t = 0, folgt $\Delta E = \Delta B = 0$ bei beliebiger Zeit t mittels positiv definiter Energie.

Fourier-Raum. Wir können das Anfangswertproblem mit der allgemeinen Lösung der Wellengleichung $\Box E = \Box B = 0$ im Fourier-Raum vergleichen $(\omega = \omega(k) = c ||k||)$:

$$\vec{E}(x,t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \left[\vec{\alpha}(k) \,\mathrm{e}^{i\vec{k}\cdot\vec{x}-i\omega t} + \vec{\alpha}(k)^* \,\mathrm{e}^{-i\vec{k}\cdot\vec{x}+i\omega t} \right],\\ \vec{B}(x,t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \left[\vec{\beta}(k) \,\mathrm{e}^{i\vec{k}\cdot\vec{x}-i\omega t} + \vec{\beta}(k)^* \,\mathrm{e}^{-i\vec{k}\cdot\vec{x}+i\omega t} \right].$$
(11.5)

Diese setzt man in die Maxwell-Gleichungen ein und erhält die algebraischen Gleichungen

$$\vec{k} \cdot \vec{\alpha} = \vec{k} \cdot \vec{\beta} = 0, \qquad \vec{\beta} = \frac{1}{\omega} \vec{k} \times \vec{\alpha}, \qquad \vec{\alpha} = -\frac{c^2}{\omega} \vec{k} \times \vec{\beta}.$$
 (11.6)

Setzt man weiterhin die Anfangswerte in der Fourier-Darstellung ein

$$\vec{E}(x,0) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \vec{E}_0(k) \,\mathrm{e}^{i\vec{k}\cdot\vec{x}},$$

$$\vec{B}(x,0) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \vec{B}_0(k) \,\mathrm{e}^{i\vec{k}\cdot\vec{x}},$$
(11.7)

und vergleicht mit obigen Ausdrücken bei t = 0, so erhält man die Beziehungen

$$\vec{\alpha}(k) + \vec{\alpha}(-k)^* = \vec{E}_0(k), \qquad \vec{\beta}(k) + \vec{\beta}(-k)^* = \vec{B}_0(k).$$
 (11.8)

Weiterhin gilt mittels der algebraischen Gleichungen

$$\vec{\alpha}(k) - \vec{\alpha}(-k)^* = -\frac{c^2}{\omega} \vec{k} \times \vec{\beta}(k) - \frac{c^2}{\omega} \vec{k} \times \vec{\beta}(-k)^*$$
$$= -\frac{c^2}{\omega} \vec{k} \times \vec{B}_0(k).$$
(11.9)

Zusammen kann man diese Beziehungen nach α und schliesslich β auflösen

$$\vec{\alpha}(k) = \frac{1}{2}\vec{E}_0(k) - \frac{c^2}{2\omega}\vec{k} \times \vec{B}_0(k),$$

$$\vec{\beta}(k) = \frac{1}{2}\vec{B}_0(k) + \frac{1}{2\omega}\vec{k} \times \vec{E}_0(k).$$
 (11.10)

Ebenso kann man ein Anfangswertproblem für die elektromagnetischen Potentiale definieren. Allerdings leidet hier die Eindeutigkeit unter der Existenz von Eichtransformationen. Weiterhin benötigt man i.d.R. die Felder und ihre Zeitableitung als Anfangswerte (zuvor E und $B \sim \partial_t E$).

Ortsraum. Die Fourier-Transformation trivialisiert das Problem im freien Raum zu einfachen algebraischen Gleichungen. Man kann die Lösung aber auch gut im Ortsraum formulieren. Betrachten wir der Einfachheit halber ein skalares Feld Ψ mit $\Box \Psi = 0$ und den Anfangswerten $\Psi(x, 0) = \Psi_0(x)$ und $\partial_t \Psi(x, 0) = \dot{\Psi}_0(x)$. Dieses Problem lässt sich wie oben auf die elektromagnetischen Felder oder Potentiale verallgemeinern. Man beginnt mit dem Ansatz (analog zum Randwertproblem ohne Quellen)

$$\Psi(x,t) = \int dy^3 \left[\partial_t D(x-y,t) \Psi_0(y) + D(x-y,t) \dot{\Psi}_0(y) \right].$$
(11.11)

Der Vergleich mit der allgemeinen Lösung im Fourier-Raum (analog zu obiger Lösung) mit $\omega = \omega(k) = c ||k||$

$$\Psi(x,t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \left[\Psi_0(k) \cos(\omega t) + \dot{\Psi}_0(k) \frac{\sin(\omega t)}{\omega} \right] \mathrm{e}^{i\vec{k}\cdot\vec{x}}$$
(11.12)

liefert eine Darstellung für D im Fourier-Raum

$$D(x,t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \frac{\sin(\omega t)}{\omega} \,\mathrm{e}^{i\vec{k}\cdot\vec{x}}\,. \tag{11.13}$$

Per Konstruktion hat diese Funktion die Eigenschaften

$$\Box D = 0, \qquad D(x,0) = 0, \qquad \partial_t D(x,0) = \delta^3(x), \tag{11.14}$$

so dass $\Psi(x,t)$ tatsächlich die gewünschte Lösung ist.

Wir wollen nun noch die Darstellung der Funktion D im Ortsraum ermitteln. Dazu benutzen wir, dass D rotationssymmetrisch ist und verwenden Polarkoordinaten für k mit

$$\vec{k} \cdot \vec{x} = kr \cos \vartheta$$
 $\int dk^3 \dots = 2\pi \int_0^\infty dk \, k^2 \int_0^\pi d\vartheta \sin \vartheta \dots,$ (11.15)

so $dass^1$

$$D(x,t) = \int_{0}^{\infty} \frac{\mathrm{d}k}{(2\pi)^{2}} \int_{0}^{\pi} \mathrm{d}\vartheta \sin\vartheta \,\mathrm{e}^{ikr\cos\vartheta} \,\frac{k^{2}}{\omega} \sin(\omega t)$$

$$= \int_{0}^{\infty} \frac{\mathrm{d}k}{(2\pi)^{2}} \int_{-1}^{+1} \mathrm{d}z \,\mathrm{e}^{ikrz} \,\frac{k}{2ic} \left[\mathrm{e}^{ikct} - \mathrm{e}^{-ikct}\right]$$

$$= \int_{0}^{\infty} \frac{\mathrm{d}k}{(2\pi)^{2}} \frac{1}{ikr} \left[\mathrm{e}^{ikr} - \mathrm{e}^{-ikr}\right] \frac{k}{2ic} \left[\mathrm{e}^{ikct} - \mathrm{e}^{-ikct}\right]$$

$$= \frac{1}{2cr} \int_{-\infty}^{+\infty} \frac{\mathrm{d}k}{(2\pi)^{2}} \left[\mathrm{e}^{ik(r-ct)} - \mathrm{e}^{ik(r+ct)}\right]$$

$$= \frac{1}{4\pi rc} \left[\delta(r-ct) - \delta(r+ct)\right]$$

$$= \frac{1}{4\pi rc} \begin{cases} \delta(r-ct) & \text{für } t > 0 \\ -\delta(r+ct) & \text{für } t < 0. \end{cases}$$
(11.16)

Dieses Ergebnis erinnert an die kugelförmigen Wellen. Das ist nicht weiter verwunderlich, denn man erwartet, dass sich jede Störung gegeben durch die Anfangswerte kugelförmig um ihren Ursprung bei t = 0 ausbreitet. Eine besondere Eigenschaft ist, dass die Welle nicht zerläuft, d.h. bei fester Zeit t auf einer Kugelschale um ihren Ursprung beschränkt ist. Dies liegt daran, dass die Ausbreitungsgeschwindigkeit c unabhängig von allen äusseren Faktoren ist, insbesondere von der Wellenform und -amplitude.

Damit ist das Anfangswertproblem gelöst.

11.2 Greensche Funktionen

- Ansatz und Lösung der Gleichungen mit Quellen
- Greensche Funktion im Fourier-Raum
- Anwendung auf Elektrodynamik

Als nächstes wollen wir die allgemeine Lösung mit Quelltermen beschreiben. Wir beginnen wieder mit einem skalaren Feld Ψ welches die Feldgleichung $\Box \Psi = -\rho$ erfüllen soll.

Lösung mit Quellen. Analog zur Elektrostatik machen wir den Ansatz

$$\Psi(x,t) = \int dy^3 \, ds \, G(x-y,t-s) \, \rho(y,s) + \Psi_{\rm hom}(x,t) \tag{11.17}$$

mit einer Greenschen Funktion welche $\Box G = -\delta^3(x)\delta(t)$ erfüllt. Diese Funktion ist gegeben als einer der beiden Terme der obigen Funktion D:

$$G_{\rm ret}(x,t) = \frac{c}{4\pi r} \,\delta(r-ct). \tag{11.18}$$

¹Wir verwenden die Substitution $z = \cos \vartheta$ und drücken die Summe der Integranden f(k) + f(-k) durch eine Erweiterung des Integrals auf negative Werte von k aus.

Von der definierenden Eigenschaft kann man sich für $\vec{x} \neq 0$ mittels $\Delta = r^{-1} (\partial/\partial r)^2 r$ leicht überzeugen

$$\Delta G_{\rm ret} = \frac{c \, \delta''(r-ct)}{4\pi r} \qquad \text{und} \qquad \frac{1}{c^2} \, \partial_t^2 G_{\rm ret} = \frac{c \, \delta''(r-ct)}{4\pi r} \,. \tag{11.19}$$

Daher gilt $\Box G_{\text{ret}} = 0$ für $r \neq 0$. Ansonsten muss man beachten, dass der singuläre Nenner eine Distribution erzeugt

$$\Delta \frac{1}{4\pi r} = -\delta^3(x). \tag{11.20}$$

Es gilt also

$$\Box G_{\rm ret} = -c\,\delta^3(x)\delta(r-ct) = -c\,\delta^3(x)\delta(ct) = -\delta^3(x)\delta(t). \tag{11.21}$$

Die Funktion G_{ret} wird *retardierte* Greensche Funktion genannt, denn sie ist nur für t > 0 von 0 verschieden (da $r \ge 0$). Dies ist physikalisch sinnvoll, weil so die Quelle ρ bei der Zeit *s* nur das Feld bei Zeiten t > s beeinflussen kann. Sie respektiert also die Kausalität.²

Es existieren auch alternative Greensche Funktionen, die die Kausalität nicht respektieren. Man erhält sie durch Addition von homogenen Lösungen, z.B. liefert die Addition von $-c^{-2}D$ die avancierte Greensche Funktion

$$G_{\rm av} = \frac{c}{4\pi r} \,\delta(r+ct),\tag{11.22}$$

welche einlaufende Kugelwellen beschreibt. Die Maxwell-Gleichungen sind zeitumkehrinvariant, demnach muss eine solche Lösung formal existieren. Die Kausalität ist allerdings verkehrt herum.

Fourier-Raum. Interessant ist auch die Fourier-Darstellung dieser Funktion. Offensichtlich muss gelten

$$G(x,t) = \int \frac{\mathrm{d}k^3}{(2\pi)^3} \, \frac{\mathrm{d}\omega}{2\pi} \,\mathrm{e}^{i\vec{k}\cdot\vec{x}-i\omega t} \,\hat{G}(k,\omega) \tag{11.23}$$

 mit

$$\tilde{G} = \frac{1}{k^2 - \omega^2/c^2},$$
(11.24)

denn $\Box G \simeq -(k^2 - \omega^2/c^2)\tilde{G}$ und $\delta^3(x)\delta(t) \simeq 1$ im Fourier-Raum. Diese Darstellung ist zunächst dieselbe für die retardierte und avancierte Greensche Funktion $G_{\rm ret}$ und $G_{\rm av}$. Sie unterscheiden sich aber durch das Verhalten an den Polen $\omega = \pm ||k||c$. Bei der Fourier-Transformation muss man durch letztere

²Es ist interessant zu sehen, wie das physikalische Konzept der Kausalität von der abstrakten Differentialgleichung getragen werden kann.

hindurch integrieren, womit das Integral nicht mehr wohldefiniert ist. Man legt deshalb die Pole in der komplexen ω -Ebene etwas unterhalb der reellen Achse.

Dies führt erstaunlicherweise direkt zum gewünschten kausalen Verhalten. Zum Auswerten der Fourier-Integrale schliesst man die Kontur mittels eines Halbkreises bei $|\omega| \to \infty$, um den *Residuensatz* verwenden zu können. Bei t > 0 muss dies in der unteren Halbebene geschehen, und bei t < 0 in der oberen. Da in letzterem Fall keine Pole existieren, ist das Fourier-Integral Null und die Kausalität gewährleistet, d.h. $G_{\rm ret} = 0$ für t < 0. Analog hat die avancierte Greensche Funktion den Pol über der reellen Achse, welches direkt zu $G_{\rm av} = 0$ für t > 0 führt.

Elektrodynamik. Schliesslich sollen wir noch das eigentliche elektromagnetische Problem behandeln. Hier bietet sich die Lösung für die Potentiale Φ, \vec{A} an. Eine Komplikation sind die Eichtransformationen, welche impliziert, dass es keine eindeutige Lösung geben kann. Wir können aber eine gewisse Eichung wählen, um das Problem zu konkretisieren. Es bietet sich die Lorenz-Eichung an, in der die Gleichungen lauten

$$\Box \Phi = -\frac{1}{\varepsilon_0} \rho, \qquad \Box \vec{A} = -\mu_0 \vec{j}. \tag{11.26}$$

Somit lautet die Lösung

$$\Phi(x,t) = \frac{1}{\varepsilon_0} \int dy^3 \, ds \, G_{\rm ret}(x-y,t-s) \, \rho(y,s),$$

$$\vec{A}(x,t) = \mu_0 \int dy^3 \, ds \, G_{\rm ret}(x-y,t-s) \, \vec{j}(y,s).$$
(11.27)

Die Eichbedingung der Lorenz-Eichung folgt nach Übertragung der Ableitungen von x, t nach y, s und partieller Integration aus der Kontinuitätsgleichung

$$\partial_t \rho + \vec{\partial} \cdot \vec{j} = 0 \qquad \Longrightarrow \qquad \frac{1}{c^2} \partial_t \Phi + \vec{\partial} \cdot \vec{A} = 0.$$
 (11.28)

Durch Ausnutzung der delta-Funktion in $G_{\rm ret}$ können wir auch schreiben

$$\Phi(x,t) = \int dy^3 \frac{1}{4\pi\varepsilon_0 \|x-y\|} \rho(y,t-\|x-y\|/c),$$

$$\vec{A}(x,t) = \int dy^3 \frac{\mu_0}{4\pi \|x-y\|} \vec{j}(y,t-\|x-y\|/c).$$
 (11.29)

Diese Felder heissen retardierte Potentiale, da die Zeit von Φ , A gegenüber ρ , j verschoben ist. In anderen Eichungen erhält man andere Ausdrücke. So hat in der Coulomb-Eichung ρ wie in der Elektrostatik keine Retardierung. Dieser akausale Effekt wird durch andere komplizierte Terme in A aufgehoben, so dass sich die Felder E und B tatsächlich kausal verhalten.

Relativistische Formulierung. Die Greensche Funktion lässt sich ebenfalls elegant mittels Vierer-Vektoren ausdrücken. Betrachten wir das analoge skalare Problem $\Box \Psi = -\rho$ und den Ansatz

$$\Psi(x) = \int dy^4 G(x - y)\rho(y) + \Psi_{\text{hom}}(x)$$
(11.30)

mit G, so dass $\Box G = -\delta^4(x) = -c^{-1}\delta^3(x)\delta(t)$.³ Die retardierte Lösung lautet dann

$$G_{\rm ret}(x) = \frac{1}{2\pi} \,\delta(x^2) \,\theta(x^0) = \frac{1}{2\pi} \,\delta(\vec{x}^2 - c^2 t^2) \,\theta(t) = \frac{1}{2\pi} \left[\frac{1}{2r} \,\delta(r - ct) + \frac{1}{2r} \,\delta(r + ct) \right] \theta(t) = \frac{1}{4\pi r} \,\delta(r - ct).$$
(11.31)

Die Fourier-Transformierte lautet entsprechend

$$G(x) = \int \frac{dk^4}{(2\pi)^4} e^{ik \cdot x} \tilde{G}(k) \quad \text{mit} \quad \tilde{G}(k) = \frac{1}{k^2}.$$
 (11.32)

Die Verallgemeinerung auf das vektorielle Potential A bzw. das tensorielle Feld F ist analog zu früheren Ausdrücken.

11.3 Strahlung oszillierender Ströme

- monochromatische Wellen
- grosser Abstand, Strahlungszone
- $\bullet\,$ Multipolentwicklung, Dipol
strahlung
- Nahzone

Wir wollen nun eine dynamische Ladungs- und Stromverteilung betrachten, die auf einen kleinen Raum ||y|| < d konzentriert ist. Uns interessieren die Felder und der Energiefluss in einigem Abstand $||x|| = r \gg d$.

$$(11.33)$$

 $^{^3\}mathrm{Im}$ Vergleich zu der vorherigen Definition von Gtaucht hier ein zusätzlicher konventioneller Faktorcauf.

Eine Schwierigkeit in dieser Aufgabenstellung ist, dass es drei relevante Längen r, d und λ gibt. Die Form des Resultats hängt wesentlich von dem Verhältnis $r : d : \lambda$ ab, wobei die zusätzliche Variable λ viele neue Möglichkeiten und Grenzfälle bedingt.

Monochromatische Wellen. Da die Wellengleichung linear in den Feldern ist, und damit alle Frequenzen in der obigen allgemeinen Lösung separieren, genügt es, eine isolierte Kreisfrequenz ω zu betrachten. Für nicht-monochromatische Probleme benutze man lineare Kombinationen. Alle Felder und Quellen haben nun die Form

$$F(x,t) = \operatorname{Re}\left[F_0(x) e^{-i\omega t}\right]$$
(11.34)

 mit

$$F(x,t) \in \mathbb{R}$$
 und $F_0(x) \in \mathbb{C}$. (11.35)

Die Zeitableitung $\partial_t F$ einer Funktion F ist demnach gegeben durch $\partial_t F = \operatorname{Re}[\dot{F}_0 e^{-i\omega t}]$ mit der Funktion

$$\dot{F}_0(x) := -i\omega F_0(x).$$
 (11.36)

Für quadratische Kombinationen der Felder in Energiedichten, etc., verwende man das Mittel über eine Periode $T = 2\pi/\omega$

$$\langle FG \rangle = \int_{t_0}^{t_0+T} \frac{\mathrm{d}t}{T} FG = \frac{1}{2} \operatorname{Re} \left[F_0 G_0^* \right].$$
 (11.37)

Durch Einsetzen erhalten wir die allgemeine monochromatische Lösung für gegebene oszillierende Ladungen und Ströme in Lorenz-Eichung

$$\Phi_{0}(x) = \int dy^{3} \frac{\rho_{0}(y)}{4\pi\varepsilon_{0}\|x-y\|} e^{i\|x-y\|k},
\vec{A}_{0}(x) = \int dy^{3} \frac{\mu_{0}\vec{j}_{0}(y)}{4\pi\|x-y\|} e^{i\|x-y\|k}.$$
(11.38)

Hier bezeichnet $k = \omega/c$ die Wellenzahl, und der oszillierende Term $e^{i||x-y||k}$ ist bedingt durch die Retardierung der Potentiale. Man sieht weiterhin, dass Φ_0 mittels der Lorenz-Eichung algebraisch durch A_0 ausgedrückt werden kann und nicht weiter benötigt wird

$$\Phi_0 = -i \frac{c^2}{\omega} \vec{\partial} \cdot \vec{A}_0. \tag{11.39}$$

Für die elektrischen und magnetischen Felder ergibt sich

$$\vec{B}_0 = \vec{\partial} \times \vec{A}_0, \qquad \vec{E}_0 = i\omega \vec{A}_0 + i\frac{c^2}{\omega}\vec{\partial}(\vec{\partial} \cdot \vec{A}_0).$$
(11.40)

Im Folgenden betrachten wir nur die komplexen Felder F_0 zur Zeit t = 0 und lassen den Index 0 fallen.

Strahlungszone. Die obige Formel beschreibt das Potential *A* exakt, aus ihr lassen sich allerdings nur schwer Schlussfolgerungen ziehen. Wir benötigen einige Näherungen. Zunächst interessieren uns die Felder weit ausserhalb der Quellregion

$$\|x\| = r \gg d > \|y\|. \tag{11.41}$$

Weiterhin soll der Abstand gross gegenüber der Wellenlänge sein

$$r \gg \lambda \sim 1/k. \tag{11.42}$$

Wir wollen uns auf die dominanten Terme für $r \to \infty$ beschränken, wir haben allerdings noch nicht festgelegt, wie sich y im Verhältnis zu λ im Limes $r \to \infty$ entwickelt. Hier sollten wir annehmen, dass $y \sim \lambda$, d.h. die Grösse der Quellregion ist vergleichbar mit der Wellenlänge und insbesondere ist ihr Verhältnis unabhängig von r

$$y/\lambda \sim r^0. \tag{11.43}$$

Wir entwickeln also den Abstandsbetrag

$$\|x - y\| = r\sqrt{1 - 2\frac{\vec{x}\cdot\vec{y}}{r^2} + \frac{\vec{y}^2}{r^2}} = r - \vec{n}\cdot\vec{y} - \frac{(\vec{n}\cdot\vec{y})^2}{2r} + \frac{\vec{y}^2}{2r} + \mathcal{O}(1/r^2).$$
(11.44)

Eingesetzt in die exakte Formel für das Vektorpotential erhalten wir⁴ $A(x) = A_{\rm as}(x) + \mathcal{O}(e^{ikr}/r^2)$ mit dem asymptotischen Vektorpotential

$$\vec{A}_{\rm as}(x) = \int dy^3 \, \frac{\mu_0 \vec{j}(y)}{4\pi r} \, {\rm e}^{ikr} \, {\rm e}^{-ik\vec{n}\cdot\vec{y}} \,.$$
(11.45)

Um die Felder zu bestimmen, benötigen wir die Ableitung ∂ . Sie wirkt auf x und reduziert das asymptotische Verhalten in der Regel um den Faktor 1/r. Lediglich wenn ∂ auf den (stark) oszillierenden Term e^{ikr} wirkt, erhält man keinen Faktor 1/r und damit ein stärkeres asymptotisches Verhalten. Somit gilt allgemein in führender Ordnung

$$\vec{\partial} \sim ik\vec{n} + \mathcal{O}(1/r). \tag{11.46}$$

Die elektrischen und magnetischen Felder haben also die führende Form

$$\vec{B} = ik\vec{n} \times \vec{A} + \mathcal{O}(e^{ikr}/r^2),$$

$$\vec{E} = ikc(\vec{A} - \vec{n}(\vec{n} \cdot \vec{A})) + \mathcal{O}(e^{ikr}/r^2).$$
 (11.47)

Sie fallen wie $A_{\rm as}$ als ~ e^{ikr}/r ab. Weiterhin erkennt man, dass die radialen Komponenten $A_r \sim \vec{A} \cdot \vec{n}$ irrelevant sind, da sie aus den Ausdrücken für B und E herausfallen.

⁴Ein Problem dieser Entwicklung ist, dass die Exponentialfunktion für $r \to \infty$ stark oszilliert. Wir trennen daher das asymptotische Wellenverhalten e^{ikr} von den übrigen exponentiellen Beiträgen.

Wir erhalten nun auch direkt die Energiegrössen (gemittelt über eine Periode)

$$\langle w \rangle = \frac{k^2}{2\mu_0} \left(||A||^2 - |\vec{n} \cdot \vec{A}|^2 \right) + \mathcal{O}(1/r^3) = \left\langle \varepsilon_0 \vec{E}^2 \right\rangle = \left\langle \vec{B}^2 / \mu_0 \right\rangle,$$

$$\langle \vec{S} \rangle = \frac{1}{2\mu_0} \operatorname{Re} \left[\vec{E} \times \vec{B}^* \right]$$

$$= \frac{k^2 c}{2\mu_0} \operatorname{Re} \left[\vec{A} \times (\vec{n} \times \vec{A}^*) - (\vec{A} \cdot \vec{n}) \vec{n} \times (\vec{n} \times \vec{A}^*) \right]$$

$$= \dots = c \vec{n} \langle w \rangle + \mathcal{O}(1/r^3),$$

$$\langle T \rangle = \dots = -\vec{n} \vec{n}^{\mathsf{T}} \langle w \rangle + \mathcal{O}(1/r^3).$$

$$(11.48)$$

Das bedeutet, dass der Energie- und Impulsfluss wieder radial von der Quelle fort gerichtet und proportional zur Energiedichte w ist. In den höheren Ordnungen in 1/r gibt es Abweichungen von diesem Verhalten. Weiterhin sind alle Grössen $\sim 1/r^2$, d.h. die abgestrahlte Leistung je Raumwinkelelement beträgt

$$\frac{\mathrm{d}^2 P}{\mathrm{d}^2 \Omega} := r^2 \vec{n} \cdot \vec{S} = \frac{ck^2 r^2}{2\mu_0} \left(\|A\|^2 - |\vec{n} \cdot \vec{A}|^2 \right) + \mathcal{O}(1/r).$$
(11.49)

Die gesamte Strahlungsleistung ist demnach

$$P = \oint d^2 \Omega \, r^2 \vec{n} \cdot \vec{S} = \frac{ck^2 r^2}{2\mu_0} \oint d^2 \Omega \left(\|A_{\rm as}\|^2 - |\vec{n} \cdot \vec{A}_{\rm as}|^2 \right). \tag{11.50}$$

Dieser Ausdruck der Ordnung $1/r^0$ ist interessanterweise exakt, d.h. es existieren keine Beiträge der Ordnung 1/r, wie man aus dem Satz von Poynting folgern kann. Höhere Terme in 1/r existieren zwar für den Integranden $d^2P/d^2\Omega$, kürzen sich aber gegenseitig im Integral $\oint d^2\Omega$ heraus. Physikalisch muss die abgestrahlte Leistung je Kugelschale für alle Kugelschalen aufgrund der Energieerhaltung gleich sein. Sie ist gleich der Leistung, die vom der Ladungs- und Stromverteilung in der Quellregion aufgebracht wird.

Multipolentwicklung. Wenn wir nun den Term $e^{-ik\vec{n}\cdot\vec{y}}$ unter der Annahme $||x|| = r \gg \lambda \sim 1/k \gg d > ||y||$ entwickeln, d.h. die Wellenlänge ist gross im Vergleich zu den Ausmassen der Quelle, erhalten wir bekannte Terme aus der statischen Multipolentwicklung

$$\vec{A}_{\rm as}(x) = \frac{\mu_0}{4\pi r} \,\mathrm{e}^{ikr} \int \mathrm{d}y^3 \,\vec{j}(y) \big(1 - ik\vec{n}\cdot\vec{y} + \ldots\big). \tag{11.51}$$

Wir können die Terme im Integral als Entwicklung nach den elektromagnetischen Multipolmomenten umschreiben. Wie zuvor in der Statik betrachten wir dazu bestimmte Integrale über die Oberfläche ∂V , deren Integranden aufgrund verschwindender Quellen $\rho = j = 0$ manifest Null sind. Mittels des Satzes von Gauß lassen sich diese in Integrale über das Volumen V umschreiben und wir gelangen so zu nichttrivialen Relationen: Für den ersten Term betrachten wir den

Integranden $(\vec{n} \cdot \vec{j}) \vec{x}$ und folgern

$$0 = \sum_{k=1}^{3} \oint_{\partial V} dx^{2} n_{k}(x_{l}j_{k}) = \sum_{k=1}^{3} \int dx^{3} \partial_{k}(x_{l}j_{k})$$
$$= \int dx^{3} j_{l} + \int dx^{3} x_{l} \vec{\partial} \cdot \vec{j}.$$
(11.52)

In der Statik folgt aus der statischen Stromerhaltung $\vec{\partial} \cdot \vec{j} = 0$ direkt $\int dx^3 \vec{j} = 0$; allerdings gilt hier die Kontinuitätgleichung $\vec{\partial} \cdot \vec{j} = -\partial_t \rho = ikc\rho$ und somit

$$\int \mathrm{d}x^3 \,\vec{j} = -\int \mathrm{d}x^3 \,\vec{x} \,(\vec{\partial} \cdot \vec{j}) = -ikc \int \mathrm{d}x^3 \,\vec{x}\rho = -ikc\vec{P} \tag{11.53}$$

und wir finden das elektrische Dipolmoment $\vec{P} := \int dx^3 \rho(x) \vec{x}$ der Ladungsverteilung ρ . Für den zweiten Term findet man ausgehend vom Integranden $\vec{n} \cdot \vec{j} x_k x_l$

$$\int dy^3 j_l(y)(\vec{n} \cdot \vec{y}) = \dots = -\frac{1}{6} i k c R \vec{n} - \frac{1}{2} i k c S \vec{n} + \vec{M} \times \vec{n}$$
(11.54)

mit dem elektrischen Quadrupoltensor $R := \int dx^3 (3\vec{x}\vec{x}^{\intercal} - \vec{x}^2)\rho$, und dem magnetischen Dipolmoment $\vec{M} := \frac{1}{2} \int dx^3 \vec{x} \times \vec{j}$. Desweiteren tritt die skalare Kenngrösse $S := \int dx^3 \vec{x}^2 \rho$ einer Ladungsverteilung auf, die allerdings nicht weiter benötigt wird, denn der Beitrag zum Vektorpotential ist ausschliesslich radial $\sim \vec{n}$ ausgerichtet und trägt nicht zu den elektromagnetischen Feldern bei. Wir erhalten also die führenden relevanten Beiträge zum Vektorpotential

$$\vec{A}_{\rm as}(x) = \frac{\mu_0}{4\pi r} \,\mathrm{e}^{ikr} \left[-ikc\vec{P} - ik\vec{M} \times \vec{n} - \frac{1}{6}k^2 cR\vec{n} + \ldots \right]. \tag{11.55}$$

Es folgen weitere Terme, wie das magnetische Quadrupolmoment, aber auch Grössen, die nicht durch die elektrischen und magnetischen Multipolmomente geschrieben werden können. Man sieht hierbei, dass die Kopplung einer kleinen Quelle an lange Wellen unterdrückt ist mit Potenzen von k.

Wir können nun die Abstrahlungscharakteristik der obigen Multipolentwicklung untersuchen. Beginnen wir mir einem reinen oszillierenden elektrischen Dipol

$$\vec{A}_{\rm as}(x) = -ikc\mu_0 \frac{{\rm e}^{ikr}}{4\pi r} \vec{P}.$$
 (11.56)

Es folgt

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} = \frac{c^3 k^4 \mu_0}{32\pi^2} \left(\|P\|^2 - |\vec{P} \cdot \vec{n}|^2 \right) + \dots$$
(11.57)

Ist das Dipol
moment entlang der z-Achse ausgerichtet, erhält man mit
 $n_z=\cos\vartheta$ das typische Dipolstrahlungsprofil

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} = \frac{c^3 k^4 \mu_0 \|P\|^2}{32\pi^2} \left(1 - \cos^2 \vartheta\right) = \frac{c^3 k^4 \mu_0 \|P\|^2}{32\pi^2} \sin^2 \vartheta.$$
(11.58)

Die Strahlung ist am stärksten senkrecht zur Dipolachse und verschwindet entlang der Achse. Die Gesamtleistung der Quelle erhält man durch Integration

$$P_{\rm as} = \int d\vartheta \sin \vartheta \int d\varphi \frac{d^2 P_{\rm as}}{d^2 \Omega} = \frac{c^3 k^4 \mu_0 \|P\|^2}{32\pi^2} 2\pi \int d\vartheta \sin^3 \vartheta = \frac{c^3 k^4 \mu_0 \|P\|^2}{16\pi} \int_{-1}^{+1} dz \, (1-z^2) = \frac{c^3 k^4 \mu_0 \|P\|^2}{12\pi} = \frac{ck^4 \|P\|^2}{12\pi\varepsilon_0} \,.$$
(11.59)

Man sieht also, dass die Leistung mit dem Quadrat des Dipolmoments und der vierten Potenz der Frequenz zunimmt.⁵ Man beachte, dass die obige Strahlungscharakteristik nicht die einzigmögliche ist, denn \vec{P} ist i.A. ein komplexer Vektor, den man mittels Rotation *nicht* auf eine gewünschte Achse drehen kann! So entstehen andere Abstrahlungsformen, die man mit den Kugelflächenfunktionen $Y_{\ell,m}$ mit $\ell = 0$ und $\ell = 2$ beschreiben kann.

Für ein reines magnetisches Dipolmoment

$$\vec{A}_{\rm as} = -i\mu_0 k \,\frac{\mathrm{e}^{ikr}}{4\pi r} \,\vec{M} \times \vec{n} \tag{11.60}$$

hat die Abstrahlungscharakteristik die Form

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} = \frac{ck^4 \mu_0}{32\pi^2} \left(\|M\|^2 - |\vec{M} \cdot \vec{n}|^2 \right).$$
(11.61)

Sie entspricht exakt dem elektrischen Dipol mit $\vec{P} = c\vec{M}$. Mann kann also aus der Strahlung nicht rückschliessen, ob es sich um eine oszillierenden elektrischen oder magnetischen Dipol handelt. Vergleicht man die Felder im elektrischen und magnetischen Fall, so erkennt man, dass elektrische und magnetische Felder (bis auf geeignete Vorfaktoren) ausgetauscht sind (siehe auch elektromagnetische Dualität). Dies entspricht auch den beiden Polarisationen elektromagnetischer Wellen.

Etwas komplizierter ist der Fall von gemischten elektrischen und magnetischen Dipolen. Hier führt Interferenz zu dem Mischterm

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} = \frac{\mathrm{d}^2 P_{\mathrm{el}}}{\mathrm{d}^2 \Omega} + \frac{\mathrm{d}^2 P_{\mathrm{mag}}}{\mathrm{d}^2 \Omega} + \frac{c^2 k^4 \mu_0}{16\pi^2} \operatorname{Re} \left[(\vec{P} \times \vec{M}^*) \cdot \vec{n} \right].$$
(11.62)

Dies führt zu noch allgemeineren Abstrahlungsfunktionen der Art $Y_{\ell,m}$ mit $\ell = 1$.

Betrachten wir schliesslich noch elektrische Quadrupolstrahlung. Es bestehen viele Möglichkeiten, den Quadrupoltensor R auszurichten. Eine beliebte Form ist

⁵Die gilt unter der Annahme von fixiertem P bei Änderung von k bzw. ω , allerdings kann bei realistischen Quellen ||P|| durchaus von ω abhängen.

 $R \sim \text{diag}(+1, +1, -2)$. Die resultierende Strahlung hat die Charakteristik

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} \sim c^3 k^6 \mu_0 |R|^2 \sin^2 \vartheta \cos^2 \vartheta. \tag{11.63}$$

Hier tritt die 6. Potenz von k auf. Die relevanten Funktionen für Quadrupolstrahlung sind allgemein vom Typ $Y_{\ell,m}$ mit $\ell \leq 4$.

Nahzone. Eine andere brauchbare Näherung ist die *Nahzone*, bei der die Wellenlänge gross gegenüber dem Abstand zum Objekt ist $d < r \ll \lambda$

$$\vec{A} = \int dy^3 \frac{\mu_0 \vec{j}(y)}{4\pi \|x - y\|} e^{i\|x - y\|k} \approx \int dy^3 \frac{\mu_0 \vec{j}(y)}{4\pi \|x - y\|}.$$
 (11.64)

Nähert man die Exponentialfunktion mit 1, so bleiben für die Potentiale genau die Ausdrücke aus der Statik. Das heisst in der Nahzone entsprechen die Felder im Wesentlichen der Statik, ausser dass sie (implizit) mit einer gewissen Frequenz oszillieren. Retardierungseffekte entfallen!

Eine berechtigte Frage ist, wie das Verhalten der Energiestrahlung in der Strahlungszone mit der Nahzone zusammenpasst. In der Strahlungszone haben wir ein allgemeines Verhalten $S \sim 1/r^2$ beobachtet, welches einen abstandsunabhängigen Energiefluss von der Quelle weg ermöglicht. In der Nahzone respektive Statik wissen wir allerdings, dass die Felder wie $E, B \sim 1/r^2$ abfallen und somit (bestenfalls) $S \sim 1/r^4$. Wie wird also der abstandsunabhängige Energiefluss in der Nahzone getragen? Ein Multipolfeld wird in etwa durch die folgende Form beschrieben

$$\vec{\partial}^{1+\ell} \, \frac{\mathrm{e}^{ikr}}{r} \sim * \frac{\mathrm{e}^{ikr}}{r^{2+\ell}} + \dots + * \frac{k^{1+\ell} \, \mathrm{e}^{ikr}}{r} \,. \tag{11.65}$$

Demnach gibt es auch in der Nahzone Beiträge zu den Multipolfeldern, die wie 1/r abfallen, aber sie sind dort mit dem relativen Faktor $(kr)^{\ell+1} \ll 1$ gegenüber den führenden Beiträgen unterdrückt. Die Strahlung wird also durch kleine Beiträge zu den Feldern getragen, die dominanten Beiträge zu den Feldern transportieren effektiv keine Energie von der Quelle fort.

Den Ubergang von Nah- zu Strahlungszone kann man untersuchen, indem man zusätzliche Terme in die Näherungen aufnimmt. In dieser Zwischenzone, welche sich im Bereich der ersten Wellenoszillationen befindet, ändert sich die Struktur der Felder qualitativ, so trennen sich hier z.B. gewisse Feldlinien von der Quelle. Insbesondere werden die obigen Terme mit Faktoren $rk \sim 1$ dort relevant und ändern das asymptotische Verhalten der Multipolfelder von $1/r^{2+\ell}$ zu 1/r.

11.4 Lineare Antenne

• lineare Antenne

Als Beispiel betrachten wir einen linearen Draht der Länge 2*d* entlang der *z*-Achse von z = -d bis z = +d. In der Mitte des Drahtes treibt eine oszillierende Stromquelle den Strom im Draht. Er breitet sich mit Lichtgeschwindigkeit aus, d.h. er sollte aus Termen der Art $e^{\pm ikz}$ bestehen. Weiterhin wird er von den Enden reflektiert, so dass dort j = 0 gilt. Aus diesen Eigenschaften ergibt sich insgesamt die Stromdichte

$$\vec{j}(x) = I\vec{e}_z \sin(kd - k|z|)\delta(x)\delta(y), \qquad |z| \le d.$$
(11.66)

In der Strahlungszone für $r \gg |z|$ beträgt das Potential

$$\vec{A}_{as} = \frac{\mu_0 \vec{e}_z I}{4\pi r} e^{ikr} \int_{-d}^{+d} dz \, e^{-ikz \cos\vartheta} \sin(kd - k|z|).$$
(11.67)

Um das Integral auszuwerten, schreibt man die Sinus-Funktion mittels Exponentialfunktion und spaltet wegen des Betrags |z| in der Stromdichte das Integral in positive und negative z auf. Man erhält

$$\vec{A}_{\rm as} = \frac{\mu_0 I}{4\pi r} \, \vec{e}_z \, \mathrm{e}^{ikr} \, \frac{2}{k} \, \frac{\cos(kd\cos\vartheta) - \cos(kd)}{\sin^2\vartheta} \,. \tag{11.68}$$

Dies führt analog wie zuvor zu der Winkelverteilung der Strahlung

$$\frac{\mathrm{d}^2 P_{\mathrm{as}}}{\mathrm{d}^2 \Omega} = \frac{c\mu_0}{8\pi^2} \left(\frac{\cos(kd\cos\vartheta) - \cos(kd)}{\sin\vartheta}\right)^2. \tag{11.69}$$

Die Strahlungsmaxima und -knoten für lange Antennen sind Interferenzeffekte der erzeugenden Stromdichte. Sie werden bedingt dadurch, dass viele Wellenlängen auf die Antenne passen. Wir werden solche Effekte später in der Wellenoptik genauer untersuchen.

Zum Vergleich können wir die führenden Multipolmomente berechnen

$$\int dx^3 \vec{j}(x) = I \vec{e}_z \frac{4}{k} \sin^2(\frac{1}{2}kd) \sim Ikd^2,$$
$$\int dx^3 \vec{j}(x) \vec{x}^{\mathsf{T}} = 0,$$
$$\int dx^3 j_a(x) x_b x_c \sim Ikd^4.$$
(11.71)

Wir sehen, dass die Dipolstrahlung für eine kurze Antenne dominiert. Für längere Antennen werden allerdings die Multipolmomente relevanter.

11.5 Beschleunigte Punktladungen

- Potentiale, Felder
- ruhendes Teilchen
- Strahlung

Schliesslich wollen wir die Felder berechnen, die von einer allgemein *beschleunigten Punktladung* erzeugt werden. Insbesondere werden wir sehen, dass eine Beschleunigung zu Abstrahlung von Energie (und Impuls) führt.

Potentiale. Zunächst berechnen wir die elektromagnetischen Potentiale für die Quellen eines allgemeinen Pfades y(t)

$$\rho(x,t) = q\delta^3(x - y(t)), \qquad \vec{j}(x,t) = q\dot{\vec{y}}(t)\delta^3(x - y(t)).$$
(11.72)

Wir verwenden die Greensche Funktion $G_{\text{ret}} = (c/4\pi ||x||)\delta(||x|| - ct)$ und schreiben die Potentiale als

$$\Phi(x,t) = \int dx'^{3} dt' \frac{cq}{4\pi\varepsilon_{0}||x-x'||} \\
\cdot \delta^{3}(x'-y(t')) \delta(||x-x'||-c(t-t')) \\
= \int dt' \frac{cq}{4\pi\varepsilon_{0}||x-y(t')||} \delta(||x-y(t')||-c(t-t')), \\
\vec{A}(x,t) = \int dt' \frac{cq\mu_{0}\dot{\vec{y}}(t')}{4\pi||x-y(t')||} \delta(||x-y(t')||-c(t-t')).$$
(11.73)

Die verbleibende delta-Funktion hat zwei Effekte. Zum einen legt sie t' = s(x, t) fest, wobei die Funktion s impliziert definiert ist über die Gleichung

$$||x - y(s)|| = c(t - s). \qquad (x_2, t_2)^{\circ} (x', t') (x_1, t_1)^{\circ} (x_3, t_3) (x_1, t_1)^{\circ} (x_3, t_3) (x_1, t_2)^{\circ} (x_3, t_3)$$

Dies ist eine nicht-lineare Gleichung, die man allgemein nicht in geschlossener Form lösen kann. Ihre Lösung s(x,t) beschreibt die avancierte Zeit t' = s(x,t), zu der ein Signal auf dem Pfad y(t') abgesetzt werden muss, so dass es bei (x,t)empfangen wird unter der Annahme, dass es sich geradlinig mit Lichtgeschwindigkeit c ausbreitet.

Die Gleichung hat für alle (x, t) eine Lösung, denn man sollte aufgrund der Ladungserhaltung davon ausgehen, dass der Pfad für alle t' existiert. Vielmehr gibt es immer *genau* eine Lösung, falls sich das Teilchen zu jedem Zeitpunkt mit weniger als Lichtgeschwindigkeit bewegt, denn die Steigung der rechten Seite ist dann immer kleiner als die Steigung der linken Seite. Mit anderen Worten ist das Teilchen immer und überall an genau einer Stelle sichtbar.⁶

Zum anderen führt die Form $\delta(f(t'))$ der delta-Funktion zu einem Faktor 1/|f'(s)|nach Integration, wobei hier f(t') := ||x - y(t')|| - ct + ct' die bestimmende Gleichung f(s) = 0 für *s* beschreibt und es gilt

$$f'(s) = c - \frac{\vec{y}(s) \cdot \left(\vec{x} - \vec{y}(s)\right)}{\|x - y(s)\|} =: ck.$$
(11.75)

Zusammen erhalten wir die Potentiale (Liénard-Wiechert)

$$\Phi(x,t) = \frac{q}{4\pi\varepsilon_0 rk} \qquad \text{und} \qquad \vec{A}(x,t) = \frac{\mu_0 q\vec{v}}{4\pi rk} \tag{11.76}$$

mit den Hilfsfunktionen r für den avancierten Abstand zur Quelle, n für die avancierten Richtung der Quelle, v für die avancierte Geschwindigkeit der Quelle und dem oben definierten Faktor k

$$r(x,t) = \|x - y(s)\|, \qquad \vec{n}(x,t) = \frac{\vec{x} - \vec{y}(s)}{r}, \\ \vec{v}(x,t) = \dot{\vec{y}}(s), \qquad \qquad k(x,t) = 1 - \frac{\vec{n} \cdot \vec{v}}{r}.$$
(11.77)

Im statischen Fall ist k = 1 und wir erhalten das Coulomb-Potential mit $\vec{A} = 0$. Nur bei relativistischen Geschwindigkeiten $||v|| \approx c$ weicht k substanziell von 1 ab, ist aber beschränkt durch 0 < k < 2.

Elektromagnetische Felder. Wir haben die Potentiale bestimmt, und sie haben eine kompakte Form mittels der avancierten Zeit s(x,t), welche über eine Gleichung bestimmt ist. Für die Strahlung benötigen wir allerdings die Felder Eund B, deren Form weitaus komplizierter ist. Sie sind über Ableitungen der Potentiale bestimmt, welche mittels der Kettenregel viele verschiedene Terme erzeugen. Wir werden lediglich skizzieren, wie man die Felder berechnet, und einen Spezialfall konkret behandeln. Beschäftigen wir uns zunächst mit den Hilfsfunktionen.

Alle Felder hängen implizit von der avancierten Zeit s(x,t) ab, somit benötigen wir deren Ableitung. Um sie zu ermitteln, variieren wir die definierende Gleichung ||x - y(s)|| = c(t - s) nach x, t und s:

$$\frac{(\delta \vec{x} - \delta s \ \vec{y}) \cdot (\vec{x} - \vec{y})}{\|x - y\|} = c(\delta t - \delta s).$$
(11.78)

 $^{^{6}}$ Ein geladenes Teilchen, welches sich mit Überlichtgeschwindigkeit bewegt, erfüllt diese Eigenschaft i.A. nicht. Die Beschränkung von Geschwindigkeiten durch c in der speziellen Relativitätstheorie ist also eine willkommene Eigenschaft für dieses Problem. In Medien allerdings kann die Teilchengeschwindigkeit durchaus die effektive Lichtgeschwindigkeit überschreiten, dort tritt dann Tscherenkow-Strahlung auf. Ein Analogon in der Schallausbreitung ist der Machsche Kegel, der bei Quellen mit Überschallgeschwindigkeit entsteht.

Diese Gleichung können wir schreiben als

$$\delta \vec{x} \cdot \vec{n} - \delta s \, \vec{v} \cdot \vec{n} - c \, \delta t + c \, \delta s = 0, \tag{11.79}$$

welches wir nach δs auflösen

$$\delta s = \frac{\delta t - \delta \vec{x} \cdot \vec{n}/c}{1 - \vec{n} \cdot \vec{v}/c} = \frac{\delta t}{k} - \frac{\delta \vec{x} \cdot \vec{n}}{ck}.$$
(11.80)

Die Ableitungen der avancierten Zeit s betragen also

$$\partial_t s = \frac{1}{k}, \qquad \vec{\partial} s = -\frac{\vec{n}}{ck}.$$
 (11.81)

Für die weiteren Hilfsfunktionen können wir entweder die Kettenregel verwenden, oder wie oben die Variation von Beziehungen unter ihnen betrachten. Für die Geschwindigkeit \vec{v} ergibt die Variation direkt die Beschleunigung \vec{a}

$$\delta \vec{v} = \vec{a} \,\delta s, \qquad \vec{a}(x,t) := \vec{y}(s). \tag{11.82}$$

Für r verwenden wir die Beziehung ||x - y(s)|| = c(t - s) und somit r = ||x - y(t)|| = c(t - s). Als Variation ergibt sich dann

$$\delta r = c \,\delta t - c \,\delta s. \tag{11.83}$$

Anstelle von k können wir die Kombination $kr = r - (\vec{x} - \vec{y}(s)) \cdot \vec{v}/c$ verwenden, in der k in den Potentialen auftritt. Das ergibt

$$\delta(rk) = \delta r + \frac{\vec{v}^2 - r\vec{n} \cdot \vec{a}}{c} \delta s$$
$$= c \,\delta t - c \left(1 - \frac{\vec{v}^2}{c^2}\right) \delta s - \frac{r\vec{n} \cdot \vec{a}}{c} \,\delta s.$$
(11.84)

Momentan ruhendes Teilchen. Die allgemeinen resultierenden Ausdrücke für die Felder sind kompliziert. Wir betrachten hier den Spezialfall eines Teilchens, welches sich zu einem Zeitpunkt s in Ruhe befindet, aber durchaus beschleunigt ist.⁷ Weiterhin betrachten wir die Felder an einem Punkt (x, t), welcher sich auf dem positiven Lichtkegel des ruhenden Teilchens bei (y, s) befindet. Es gilt also v = 0 aber $a \neq 0$. Diese Annahme unterdrückt viele Beiträge unmittelbar und vereinfacht die Rechnung sehr.

Für die relevanten Hilfsfunktionen und ihre Variationen erhalten wir

$$k = 1, \qquad \delta s = \delta t - \frac{\delta \vec{x} \cdot \vec{n}}{c},$$

$$\delta \vec{v} = \vec{a} \,\delta s, \qquad \delta(rk) = \delta \vec{x} \cdot \vec{n} - \frac{r \vec{n} \cdot \vec{a}}{c} \,\delta s. \qquad (11.85)$$

⁷Dieser Spezialfall lässt sich immer mittels einer geeigneten Lorentz-Transformation erreichen. Die elektromagnetischen Felder sind dann allerdings in einem anderen Inertialsystem bestimmt, und müssen für den allgemeinen Fall noch in das ursprüngliche Inertialsystem transformiert werden.

Insbesondere verschwindet das Vektorpotential A aufgrund des Faktors v. Es kann demnach nur Beiträge zu den Feldern liefern, wenn die Ableitung genau diesen Faktor trifft:

$$\delta \vec{A} = \frac{\mu_0 q}{4\pi r} \,\delta \vec{v} = \frac{\mu_0 q}{4\pi r} \,\vec{a} \,\delta s. \tag{11.86}$$

Wir berechnen nun die Felder aus den Potentialen und erhalten

$$\vec{B} = \vec{\partial} \times \vec{A} = \frac{\mu_0 q}{4\pi r} \vec{\partial} s \times \vec{a} = -\frac{\mu_0 q}{4\pi c r} \vec{n} \times \vec{a},$$

$$\vec{E} = -\partial_t \vec{A} - \vec{\partial} \Phi = -\frac{\mu_0 q \vec{a}}{4\pi r} \partial_t s + \frac{q}{4\pi \varepsilon_0 r^2} \vec{\partial} (rk)$$

$$= -\frac{\mu_0 q \vec{a}}{4\pi r} + \frac{q}{4\pi \varepsilon_0 r^2} \left(\vec{n} + \frac{r}{c} \vec{n} \cdot \vec{a} \frac{\vec{n}}{c} \right)$$

$$= \frac{q \vec{n}}{4\pi \varepsilon_0 r^2} - \frac{\mu_0 q}{4\pi r} \left(\vec{a} - \vec{n} (\vec{n} \cdot \vec{a}) \right).$$
(11.87)

Dieses Ergebnis besteht aus zwei Teilen: Zum einen gibt es das Coulomb-Potential mit $E \sim 1/r^2$ und B = 0 sowie ein Beitrag $E \sim B \sim 1/r$ aufgrund der Beschleunigung *a*. Man sieht, dass $\vec{E} \cdot \vec{B} = \vec{B} \cdot \vec{n} = 0$ sowie dass $\vec{E} \cdot \vec{n}$ unabhängig von *a* ist.

Der Vollständigkeit halber lauten die kompletten Ausdrücke für allgemeine Geschwindigkeiten (ohne Herleitung)

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2 k^3} \left(1 - \frac{\vec{v}^2}{c^2}\right) \left(\vec{n} - \frac{\vec{v}}{c}\right) + \frac{q\mu_0}{4\pi r k^3} \vec{n} \times \left[\left(\vec{n} - \frac{\vec{v}}{c}\right) \times \vec{a}\right], \vec{B} = \frac{1}{c} \vec{n} \times \vec{E}.$$
(11.88)

Strahlung. Schliesslich berechnen wir die Energiestrahlung eines ursprünglich ruhenden Punktteilchens

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{1}{\mu_0 c} \vec{E} \times (\vec{n} \times \vec{E})$$

= $\frac{1}{\mu_0 c} \left(\vec{n} \vec{E}^2 - \vec{E} (\vec{n} \cdot \vec{E}) \right)$
= $\frac{q^2 \mu_0}{16 \pi^2 c r^2} \vec{n} \left(\vec{a}^2 - (\vec{n} \cdot \vec{a})^2 \right) + \frac{q^2}{16 \pi^2 \varepsilon_0 c r^3} \left(\vec{a} - \vec{n} (\vec{n} \cdot \vec{a}) \right).$ (11.89)

Hier gibt es zwei Effekte: Der erste Term $\sim n/r^2$ stellt die Energiestrahlung dar, die von der Beschleunigung des Teilchens herrührt. Der zweite Term $\sim 1/r^3$ ist senkrecht zum Abstandsvektor \vec{n} gerichtet. Er stellt also keine Leistung dar, sondern lediglich eine Umorganisation der Energiedichte aufgrund der Beschleunigung. Die radiale Strahlung lautet demnach

$$\vec{n} \cdot \vec{S} = \frac{q^2 \mu_0}{16\pi^2 c r^2} \left(\vec{a}^2 - (\vec{n} \cdot \vec{a})^2 \right) = \frac{q^2 \mu_0 a^2}{16\pi^2 c r^2} \sin^2 \vartheta = \frac{1}{r^2} \frac{\mathrm{d}^2 P}{\mathrm{d}^2 \Omega} \,. \tag{11.90}$$

Hier ist ϑ der Winkel zwischen \vec{a} und \vec{n} . Das beschleunigte Teilchen strahlt also wie eine Dipolverteilung mit Achse \vec{a} .

Für die Gesamtleistung erhalten wir

$$P = r^2 \oint d^2 \Omega \, \vec{n} \cdot \vec{S} = 2\pi \, \frac{\mu_0 q^2 \vec{a}^2}{16\pi^2 c} \int_0^\pi d\vartheta \sin^3 \vartheta = \frac{\mu_0 q^2 \vec{a}^2}{6\pi c} \,. \tag{11.92}$$

Für allgemeine Geschwindigkeiten erhält man die Larmor-Formel

$$\frac{\mathrm{d}^2 P}{\mathrm{d}^2 \Omega} = r^2 \vec{n} \cdot (\vec{S} - w\vec{v}) = \frac{q^2 \mu_0}{16\pi^2 c k^5} \left(\vec{n} \times \left[\left(\vec{n} - \frac{\vec{v}}{c} \right) \times \vec{a} \right] \right)^2. \tag{11.93}$$

Diese Formel berücksichtigt, dass sich die Kugeloberfläche, auf der die Strahlung registriert wird, mit der Punktladung mitbewegt. Der Term $\vec{n} \cdot \vec{v} w$ stellt dabei den Energiefluss aufgrund der Verschiebung der Kugeloberfläche dar, wobei für die Energiedichte w wie gewohnt die Beziehung $\vec{S} = \vec{n}cw$ gilt. Für die integrierte Strahungsleistung erhält man

$$P = \frac{\mu_0 q^2}{6\pi c} \left(1 - \frac{\vec{v}^2}{c^2} \right)^{-3} \left(\vec{a}^2 - \frac{(\vec{v} \times \vec{a})^2}{c^2} \right).$$
(11.94)

Die Geschwindigkeit bewirkt, dass die Schenkel der Dipolstrahlung in Bewegungsrichtung deformiert werden. Diese Strahlung ist z.B. in Teilchenbeschleunigern relevant, wo der Faktor $1/k^5$ einen sehr grossen Beitrag in Bewegungsrichtung erzeugt, die sogenannte *Synchrontronstrahlung*: Einerseits begrenzt die somit benötigte grosse Leistung die Teilchenenergie in Kreisbeschleunigern. Andererseits kann die so erzeugte hochenergetische Strahlung z.B. für medizinische Zwecke nutzbar gemacht werden.

Relativistische Formulierung. Schliesslich wollen wir die obigen Resultate für Felder und Strahlung manifest relativistisch kovariant schreiben.

Um die Herleitung abzukürzen können wir uns auf ein momentan ruhendes Teilchen beschränken, denn es lässt sich immer ein dafür geeignetes Bezugssystem finden. Das Ziel ist es dann, alle gewünschten Ausdrücke mittels Vierer-Vektoren manifest kovariant zu formulieren.

Das Teilchen befinde sich im Ruhesystem am Punkt $y^{\mu} = 0$ und die Strahlung wird an einem Punkt x^{μ} gemessen, wobei $x^2 = 0$ gelten muss, da sich die Strahlung lichtartig ausbreitet. Die Vierer-Geschwindigkeit sei per Konstruktion $u^{\mu} = (c, \vec{0})$ und die Vierer-Beschleunigung $b^{\mu} = (0, \vec{a})$. Insbesondere können wir eine Zerlegung von Vektoren und Tensoren in zeitliche und räumliche Komponenten nun über den Vektor u^{μ}/c erreichen. Die so gewonnenen Ausdrücke treffen nun auch für allgmeine Geschwindigkeiten und Beschleinigungen zu, die sich aus einem Raumzeit-Pfad $y^{\mu}(\tau)$ in Eigenzeit τ ergeben

$$u^{\mu} = \frac{\mathrm{d}y^{\mu}}{\mathrm{d}\tau} = (\gamma c, \gamma \vec{v}),$$

$$b^{\mu} = \frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} = \left(\gamma^{4}(\vec{v}\cdot\vec{a})/c, \gamma^{2}\vec{a} + \gamma^{4}(\vec{v}\cdot\vec{a})\vec{v}/c^{2}\right).$$
(11.96)

Für diese Vektoren gelten die Beziehungen $u^2 = -c^2$ und $b \cdot u = 0$.

Wir sollten zunächst die relevanten Grössen r und $\vec{n} = \vec{x}/r$ durch Vierer-Vektoren ausdrücken. Der Abstand hängt mit der Zeit über r = ct zusammen, und letztere lässt sich aus x^{μ} mittels u^{μ} extrahieren

$$r = -\frac{u \cdot x}{c} \,. \tag{11.97}$$

Damit können direkt das Vierer-Potential konstruieren. Für $\vec{v} = 0$ trägt nur das elektrische Potential Φ bei, und das Vierer-Potential A_{μ} ist damit proportional zu u_{μ} . Durch Abgleich von $A_0 = -\Phi/c$ erhalten wir den kovarianten Ausdruck

$$A_{\mu} = -\frac{\mu_0 c q u_{\mu}}{4\pi u \cdot x} \,. \tag{11.98}$$

Als nächstes betrachten wir den Feldstärketensor $F_{\mu\nu}$, dessen Komponenten durch die elektromagnetischen Felder wie folgt gegeben sind

$$F_{\mu\nu} = \frac{1}{c^2} \left(u_{\nu} E_{\mu} - u_{\mu} E_{\nu} \right) - \frac{1}{c} \varepsilon_{\mu\nu\rho\sigma} u^{\rho} B^{\sigma}.$$
 (11.99)

Die elektromagnetischen Felder \vec{E} und \vec{B} aus obiger Rechnung erweitern wir auf (nicht-kovariante) Vierer-Vektoren⁸

$$B_{\sigma} = -\frac{\mu_0 q}{4\pi c^2 r^2} \varepsilon_{\mu\nu\rho\sigma} u^{\mu} x^{\nu} b^{\rho},$$

$$E_{\sigma} = \frac{q x_{\sigma}}{4\pi \varepsilon_0 r^3} - \frac{\mu_0 q}{4\pi r^3} \left(b_{\sigma} r^2 - x_{\sigma} (x \cdot b) \right).$$
(11.100)

Zusammen ergibt dies den kovarianten Ausdruck

$$F_{\mu\nu} = \frac{cq}{4\pi\varepsilon_0(u\cdot x)^3} \left(u_\mu x_\nu - u_\nu x_\mu \right) + \frac{\mu_0 cq(x\cdot b)}{4\pi(u\cdot x)^3} \left(u_\mu x_\nu - u_\nu x_\mu \right) - \frac{\mu_0 cq}{4\pi(u\cdot x)^2} \left(b_\mu x_\nu - b_\nu x_\mu \right), \quad (11.101)$$

wobei die beiden Zeilen die Beiträge der statischen bzw. beschleunigten Ladung darstellen. Aus diesem Ausdruck kann man direkt den Energie-Impuls-Tensor

⁸Die zusätzlichen Komponenten E_0 und B_0 kürzen sich in $F_{\mu\nu}$ heraus.

berechnen. Wir wollen uns wie zuvor auf die Beiträge der beschleunigten Ladung beschränken, und erhalten

$$T_{\mu\nu} = \frac{\mu_0 c^2 q^2}{16\pi^2 (u \cdot x)^6} \left(c^2 (b \cdot x)^2 - b^2 (u \cdot x)^2 \right) x_\mu x_\nu + \dots$$
(11.102)

Die integrierte Kraft der Strahlung ergibt dann⁹

$$K^{\mu} = \frac{\mu_0 q^2 b^2}{6\pi c^2} \frac{u^{\mu}}{u^0} \,. \tag{11.103}$$

⁹Die Gesamtkraft ist nicht Lorentz-invariant, da sie zu einer bestimmten Zeitebene definiert ist. Die Gesamtleistung $P = cK^0$, die auch der abgestrahlten Leistung im momentanen Ruhesystem des Teilchens entspricht, ist hingegen Lorentz-invariant.

12 Elektrodynamik mit Materie

Wir wollen nun die Auswirkung von Materie auf die Elektrodynamik diskutieren. Wichtige Effekte sind die Dispersion, Reflexion und Brechung an Grenzflächen und Streuung an Objekten.

12.1 Wellen im Medium

- Maxwell-Gleichungen
- ebene Wellen
- Dispersion

Wir haben die Elektro- und Magnetostatik in Anwesenheit von Materie bereits diskutiert. Im Wesentlichen übertragen sich die Relationen auf die Elektrodynamik.

Maxwell-Gleichungen. Die Maxwell-Gleichungen in Materie lauten:

$$\vec{\partial} \cdot \vec{D} = \rho, \qquad \vec{\partial} \times \vec{H} - \partial_t \vec{D} = \vec{j}, \vec{\partial} \cdot \vec{B} = 0, \qquad \vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0.$$
(12.1)

Für die erhaltenen Grössen ergibt sich dann

$$w = \frac{1}{2}\vec{H}\cdot\vec{B} + \frac{1}{2}\vec{E}\cdot\vec{D}, \qquad \vec{S} = \vec{E}\times\vec{H}, \vec{\pi} = \vec{D}\times\vec{B}, \qquad T_{ij} = D_iE_j + B_iH_j - \frac{1}{2}\delta_{ij}(\vec{E}\cdot\vec{D} + \vec{H}\cdot\vec{B}).$$
(12.2)

Die Beziehungen zwischen D, H und E, B hängen von der Materie ab. Im linearen, isotropen Fall gilt mit den Materialkonstanten $\varepsilon_{\rm r}$ und $\mu_{\rm r}$ die Beziehung

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_{\rm r} \varepsilon_0 \vec{E}, \qquad \vec{B} = \mu \vec{H} = \mu_{\rm r} \mu_0 \vec{H}.$$
 (12.3)

Ebene monochromatische Wellen. Wie bereits zuvor gesehen, ergeben sich die Maxwell-Gleichungen in Materie formuliert mittels E und B durch Ersetzen von

$$\varepsilon_0 \to \varepsilon = \varepsilon_r \varepsilon_0 \quad \text{und} \quad \mu_0 \to \mu = \mu_r \mu_0.$$
 (12.4)

Insbesondere erhalten wir für die Ausbreitungsgeschwindigkeit
 uvon Wellen im Medium

$$u = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c}{\sqrt{\mu_{\rm r}\varepsilon_{\rm r}}} = \frac{c}{n}, \qquad n := \sqrt{\mu_{\rm r}\varepsilon_{\rm r}}.$$
(12.5)

Die numerische Grösse n wird *Brechungsindex* genannt.

Wählt man für eine freie ebene monochromatische Welle den Ansatz

$$\vec{E} = \operatorname{Re}\left[\vec{E}_0 \ e^{i\vec{k}\cdot\vec{x}-i\omega t}\right], \qquad \vec{B} = \operatorname{Re}\left[\vec{B}_0 \ e^{i\vec{k}\cdot\vec{x}-i\omega t}\right], \qquad (12.6)$$

so gelten folgende Relationen

$$\|k\| = \frac{\omega}{u} = \frac{\omega n}{c},$$

$$\vec{k} \cdot \vec{E}_0 = \vec{k} \cdot \vec{B}_0 = \vec{E}_0 \cdot \vec{B}_0 = 0,$$

$$\vec{B}_0 = \frac{1}{\omega} \vec{k} \times \vec{E}_0.$$
(12.7)

Für die gemittelte Energie(strom)dichte ergibt sich dann

$$w = \frac{\|E_0\|^2}{2\mu u^2} = \frac{n^2}{2\mu_0 c^2} \|E_0\|^2,$$

$$\vec{S} = \frac{1}{\mu u} \frac{\vec{k}}{\|k\|} \|E_0\|^2 = \frac{c}{n} \frac{\vec{k}}{\|k\|} w.$$
 (12.8)

Dispersion. Schauen wir uns noch einmal die Beziehung zwischen $D = \varepsilon_0 E + P$ und E an (bzw. analog H und B). Wir hatten die Polarisation P als Antwort der Materie auf ein angelegtes Feld E eingeführt. Aufgrund der Kausalität kann das Feld P nicht instantan auf das Feld E reagieren, sondern nur mit einer gewissen Retardierung. Für die Elektrostatik war dieser Effekt irrelevant, da wir an dem statischen Endzustand interessiert waren. Ändert sich das Feld E hingegen schnell, so kann man davon ausgehen, dass P erst nach einiger Zeit den statischen Grenzwert annimmt. Die Relation $D = \varepsilon_r \varepsilon_0 E$ kann also in der Elektrodynamik nicht exakt gelten. Für hinreichend schwache Felder sollte allerdings ein linearer Zusammenhang bestehen und aufgrund der Translationsinvarianz in der Zeit bietet sich die Fourier-Darstellung an. Man erhält so frequenzabhängige Permittivitäten¹

$$D(\omega) = \varepsilon_0 \varepsilon_r(\omega) E(\omega). \tag{12.9}$$

Die Frequenzabhängigkeit der Permittivität führt zu einer Frequenzabhängigkeit der Ausbreitungsgeschwindigkeit und damit der Relation zwischen Wellenzahl und Frequenz

$$\|k\| = \frac{\omega}{c} n(\omega) \qquad \Longleftrightarrow \qquad \omega = \omega(\|k\|). \tag{12.10}$$

Die Dispersionsrelation $\omega = \omega(||k||)$ ist somit nicht exakt linear. Man erhält eine Phasengeschwindigkeit $\omega(||k||)/||k||$ und eine Gruppengeschwindigkeit $d\omega/d||k||$. Letztere ist durch c nach oben beschränkt.

12.2 Reflexion und Brechung

 $^{^1 \}mathrm{In}$ der zeitlichen Darstellung entspricht dies einem Faltungsintegral

 $D(t) = \int dt' \varepsilon_0 \varepsilon_r(t - t') E(t')$, was in der Tat eine zeitlich um t - t' verzögerte Reaktion auf das Feld E(t') beschreibt.

- ein- und auslaufende Wellen
- transversal elektrische und transversal magnetische Moden
- Strahlungsbilanz
- Brewster-Winkel
- Totalreflexion

Insbesondere ist das Verhalten elektromagnetischer Wellen an Grenzflächen zwischen zwei verschiedenen Medien interessant.

Stetigkeitsbedingungen. Aus den Maxwell-Gleichungen lassen sich gewisse Bedingungen folgern mittels derer die Felder vor und hinter einer Grenzfläche in Beziehung stellen. Die Bedingungen sind bereits aus der Statik bekannt, die zusätzlichen Zeitableitungen in den Maxwell-Gleichungen haben keine Auswirkungen (da sie keinen Beitrag zu den Gaußschen Kästchen und Stokesschen Schleifen liefern). Es gilt:

$$\vec{E}_{\parallel}, \vec{H}_{\parallel}, D_{\perp}, B_{\perp}$$
 stetig. (12.11)

Alternativ lassen sie sich ausdrücken als

$$\vec{n} \times \Delta \vec{E} = \vec{n} \times \Delta \vec{H} = 0, \qquad \vec{n} \cdot \Delta \vec{D} = \vec{n} \cdot \Delta \vec{B} = 0.$$
 (12.12)

Dies entspricht je drei Gleichungen für E, D und für B, H, somit sind alle Komponenten je eines der Felder hierdurch bestimmt.

Einlaufende und auslaufende Wellen. Wir betrachten eine Welle, die auf eine ebene Grenzfläche zwischen zwei Medien trifft. Aus Erfahrung wissen wir, dass sie von der Grenzfläche reflektiert und gebrochen wird. Die resultierende Konfiguration des elektromagnetischen Feldes besteht also aus drei Wellen. Aufgrund von Linearität und Translationsinvarianz entlang der Grenzfläche und in der Zeit können wir das Problem nach monochromatischen ebenen Wellen zerlegen. Die Translationsinvarianz besagt, dass die auslaufenden Wellen dieselbe Kreizfrequenz ω und dieselben Parallelkomponenten \vec{k}_{\parallel} des Wellenvektors haben wie die vorgegebene einlaufende Welle

$$\omega' = \omega, \qquad \vec{k}_{\parallel}' = \vec{k}_{\parallel}. \tag{12.13}$$

Alle Felder schwingen also mit dem gemeinsamen Faktor

$$\sim \exp(i\vec{k}_{\parallel}\cdot\vec{x}_{\parallel} - i\omega t). \tag{12.14}$$

Für die Normalkomponenten k_{\perp} der Wellen ~ $\exp(ik_{\perp}x_{\perp})$ gilt dies nicht, denn es gibt keine Translationsinvarianz in dieser Richtung. Allerdings wird die Normalkomponente k_{\perp} von k durch die Dispersionsrelation bis auf das Vorzeichen eindeutig bestimmt.

Definieren wir das Problem etwas konkreter.

Die Grenzfläche sei die x,y-Ebene. Die Wellen breiten sich in der x,z-Ebene aus. Diese Ausgangslage lässt sich durch Rotation des Raumes erreichen. Wir haben also

$$\vec{k}_1 = k_1 \begin{pmatrix} \sin \alpha_1 \\ 0 \\ -\cos \alpha_1 \end{pmatrix}, \ \vec{k}_2 = k_2 \begin{pmatrix} \sin \alpha_2 \\ 0 \\ \cos \alpha_2 \end{pmatrix}, \ \vec{k}_3 = k_3 \begin{pmatrix} \sin \alpha_3 \\ 0 \\ -\cos \alpha_3 \end{pmatrix}.$$
(12.16)

Die Gleichheit der x-Komponenten der Wellenvektoren bedingt die Relation

$$k_1 \sin \alpha_1 = k_2 \sin \alpha_2 = k_3 \sin \alpha_3.$$
 (12.17)

Die Dispersionsrelationen implizieren

$$k_1 = \frac{\omega n_1}{c}, \qquad k_2 = \frac{\omega n_1}{c}, \qquad k_3 = \frac{\omega n_3}{c}.$$
 (12.18)

Zusammen erhält man

$$k_1 = k_2, \qquad \alpha_1 = \alpha_2, \qquad \frac{k_3}{k_1} = \frac{n_3}{n_1}, \qquad \frac{\sin \alpha_3}{\sin \alpha_1} = \frac{n_1}{n_3}.$$
 (12.19)

Die in dasselbe Medium zurück reflektierte Welle hat denselben Winkel zur Normalen der Grenzfläche. Die in das andere Medium transmittierte d.h. refraktierte (gebrochene) Welle hat einen Winkel, der durch das *Snelliussche Gesetz* bestimmt ist

$$\frac{\sin \alpha_1}{\sin \alpha_3} = \frac{n_3}{n_1} \,. \tag{12.20}$$

All dies ergibt sich aus der Universalität von ω , k_x und k_y (Translation) und den Dispersionsrelationen, welche die möglichen Werte von k_z (im jeweiligen Medium) bestimmen. Da es sich um eine quadratische Gleichung handelt, gibt es jeweils zwei Lösungen, die den ein- und auslaufenden Wellen entsprechen.

Elektromagnetische Felder. Die oben beschriebene Konfiguration von Feldern hat folgende Form (analog für B)

$$\vec{E}_{z>0} = \operatorname{Re}\left[\left(\vec{E}_{1} \ e^{i\vec{k}_{1}\cdot\vec{x}} + \vec{E}_{2} \ e^{i\vec{k}_{2}\cdot\vec{x}}\right) e^{-i\omega t}\right],\\ \vec{E}_{z<0} = \operatorname{Re}\left[\vec{E}_{3} \ e^{i\vec{k}_{3}\cdot\vec{x}} \ e^{-i\omega t}\right].$$
(12.21)

Hier sind die x, y, t-Abhängigkeiten aller Felder identisch (aufgrund der Translationsinvarianz mischen die Gleichungen nicht). Wir möchten den Vektor E_1 vorgeben. Die Maxwell-Gleichungen und die Stetigkeitsbedingungen bestimmen dann alle anderen Vektoren E_2, E_3, B_1, B_2, B_3 eindeutig. Zur Vereinfachung des Problems nehmen wir an, dass μ_r für beide Medien gleich ist ($\mu_r \approx 1$ für optische Medien bei optischen Frequenzen ω). Weiterhin sei $n = n_3/n_1 = \sqrt{7}$ der relative Brechungsindex, der die einzig relevante Kombination in unserem Problem darstellt.

Die Maxwell-Gleichungen setzen E und B in Beziehung

$$\vec{B}_{j} = \frac{1}{\omega} \vec{k}_{j} \times \vec{E}_{j}, \qquad ||B_{j}|| = \frac{k_{j}}{\omega} ||E_{j}|| = \frac{n_{j}}{c} ||E_{j}||.$$
 (12.22)

Die Stetigkeitsbedingungen besagen

$$\vec{e}_{z} \times \left(\vec{E}_{1} + \vec{E}_{2} - \vec{E}_{3}\right) = 0,$$

$$\vec{e}_{z} \cdot \left(\vec{E}_{1} + \vec{E}_{2} - n^{2}\vec{E}_{3}\right) = 0,$$

$$\vec{B}_{1} + \vec{B}_{2} = \vec{B}_{3}.$$
 (12.23)

Es bietet sich an, diese Gleichungen nicht allgemein zu lösen, sondern getrennt für die zwei Polarisationsmoden der elektromagnetischen Wellen. Hierfür nimmt man Wellen, für die entweder das elektrische oder das magnetische Feld entlang der *y*-Achse ausgerichtet ist.

Transversal elektrische Mode. Hier werden die elektrischen Felder durch ihre y-Komponenten beschrieben, $\vec{E_n} = \vec{e_y} E_n$, sie sind parallel zur Grenzfläche, es gilt

Für die magnetischen Felder betrachten wir x- und z-Komponenten sowie $||B_n|| = (n_n/c)|E_n|$

$$\frac{n_1}{c} E_1 \begin{pmatrix} \cos \alpha_1 \\ 0 \\ \sin \alpha_1 \end{pmatrix} + \frac{n_1}{c} E_2 \begin{pmatrix} -\cos \alpha_1 \\ 0 \\ \sin \alpha_1 \end{pmatrix} = \frac{n_3}{c} E_3 \begin{pmatrix} \cos \alpha_3 \\ 0 \\ \sin \alpha_3 \end{pmatrix}.$$
 (12.25)

Die z-Komponente dieser Gleichung ist äquivalent zum Snelliusschen Gesetz. Die x-Komponente zusammen mit der Gleichung für das elektrische Feld ergibt

$$E_{2} = \frac{\cos \alpha_{1} - n \cos \alpha_{3}}{\cos \alpha_{1} + n \cos \alpha_{3}} E_{1}, \qquad E_{3} = \frac{2 \cos \alpha_{1}}{\cos \alpha_{1} + n \cos \alpha_{3}} E_{1}.$$
(12.26)

Dies bestimmt also die reflektierten und transmittierten Wellen eindeutig.
In Bezug auf die Energiebilanz ist wichtig, dass alle Energie, die in die Grenzfläche fliesst, in dem anderen Medium wieder erscheint.² Betrachten wir die *Reflexions*und *Transmissionskoeffizienten*

$$R = -\frac{\vec{S}_{2} \cdot \vec{e}_{z}}{\vec{S}_{1} \cdot \vec{e}_{z}} = \frac{w_{2}}{w_{1}} = \frac{\|E_{2}\|^{2}}{\|E_{1}\|^{2}} = \left(\frac{\cos\alpha_{1} - n\cos\alpha_{3}}{\cos\alpha_{1} + n\cos\alpha_{3}}\right)^{2},$$

$$T = \frac{\vec{S}_{3} \cdot \vec{e}_{z}}{\vec{S}_{1} \cdot \vec{e}_{z}} = \frac{\cos\alpha_{3}}{n\cos\alpha_{1}}\frac{w_{3}}{w_{1}} = \frac{n\cos\alpha_{3}}{\cos\alpha_{1}}\frac{\|E_{3}\|^{2}}{\|E_{1}\|^{2}}$$

$$= \frac{4n\cos\alpha_{1}\cos\alpha_{3}}{(\cos\alpha_{1} + n\cos\alpha_{3})^{2}}.$$
(12.27)

Die Koeffizienten $0 \le R, T \le 1$ bestimmen den Anteil der reflektierten bzw. transmittierten Intensität. Es gilt dann offensichtlich die Erhaltung des Energieflusses durch die Grenzfläche: R + T = 1.

Transversal magnetische Mode. Hier impliziert die Stetigkeit der magnetischen Felder $\vec{B}_n = \vec{e}_y B_n$ direkt

$$B_1 + B_2 = B_3.$$

$$\vec{k_1} \qquad \vec{k_2} \qquad \vec{k_2} \qquad (12.28)$$

Für die elektrischen Felder betrachten wir x- und z-Komponenten sowie $\|E_n\|=(c/n_n)|B_n|$

$$\frac{c}{n_1} B_1 \begin{pmatrix} \cos \alpha_1 \\ 0 \\ \sin \alpha_1 \end{pmatrix} + \frac{c}{n_1} B_2 \begin{pmatrix} -\cos \alpha_1 \\ 0 \\ \sin \alpha_1 \end{pmatrix}$$
$$= \frac{c}{n_3} B_3 \begin{pmatrix} 1 \\ 1 \\ n^2 \end{pmatrix} \begin{pmatrix} \cos \alpha_3 \\ 0 \\ \sin \alpha_3 \end{pmatrix}.$$
(12.29)

Die z-Komponente ist wieder im Einklang mit dem Snelliusschen Gesetz. Die x-Komponente ergibt zusammen mit dem magnetischen Feld

$$B_{2} = \frac{n \cos \alpha_{1} - \cos \alpha_{3}}{n \cos \alpha_{1} + \cos \alpha_{3}} B_{1}, \qquad B_{3} = \frac{2n \cos \alpha_{1}}{n \cos \alpha_{1} + \cos \alpha_{3}} B_{1}.$$
(12.30)

Die Reflexions- und Transmissionskoeffizienten haben die Form

$$R = \frac{\|B_2\|^2}{\|B_1\|^2} = \left(\frac{n\cos\alpha_1 - \cos\alpha_3}{n\cos\alpha_1 + \cos\alpha_3}\right)^2, T = \frac{\cos\alpha_3}{n\cos\alpha_1} \frac{\|B_3\|^2}{\|B_1\|^2} = \frac{4n\cos\alpha_1\cos\alpha_3}{(n\cos\alpha_1 + \cos\alpha_3)^2}.$$
 (12.31)

²Von der Energieflussdichte \vec{S} ist nur die Normalkomponente $\vec{S} \cdot \vec{e_z}$ relevant. Der tangentiale Fluss auf beiden Seiten der Grenzfläche steht nicht unmittelbar miteinander in Beziehung.

Es gilt wieder R + T = 1, allerdings mit unterschiedlichen R und T. Die Intensität der Reflexion und Transmission ist somit polarisationsabhängig.

Brewster-Winkel. Eine Kuriosität ist der Einfallswinkel $\alpha_1 = \alpha_B$ mit $\tan \alpha_B = n$. Hier steht die reflektierte Welle senkrecht zur transmittierten Welle: $\alpha_1 + \alpha_3 = \frac{1}{2}\pi$. Dann ist für die TM-MOde R = 0 und es gibt keine reflektierte TM-Mode. Da die reflektierte TE-Mode i.d.R. existiert, ist das reflektierte Licht bei dem *Brewster-Winkel* vollständig linear polarisiert. Dies liegt daran, dass die reflektierte Welle von der Polarisation $\vec{P} \sim \vec{E}_3$ im Medium erzeugt wird. Die erzeugte Welle ist proportional zu der Projektion $\vec{P} \cdot \vec{E}_2$, aber aufgrund der Geometrie gilt hier $\vec{P} \perp \vec{E}_2$ für die TM-Mode.

Totalreflexion. Ein anderes interessantes Phänomen ist die *Totalreflexion*. Für den Übergang von einem optisch dichten zu einem optisch dünnen Medium, n < 1, und bei einem Winkel α_1 mit sin $\alpha_1 > n$ hat das Snelliussche Gesetzt sin $\alpha_3 = (\sin \alpha_1)/n$ keine (reelle) Lösung. Allerdings können wir formal mit der komplexen Lösung für α_3 weiterrechnen. Für sin $\alpha_3 > 1$ gilt, dass $\cos \alpha_3 \in i\mathbb{R}$ rein imaginär ist, da $\cos^2 \alpha = 1 - \sin^2 \alpha < 0$. Der Wellenvektor für die transmittierte Welle hat also die Form

$$\vec{k}_3 = k_3 \begin{pmatrix} \sin \alpha_3 \\ 0 \\ -\cos \alpha_3 \end{pmatrix} = nk_1 \begin{pmatrix} \sin \alpha_3 \\ 0 \\ -i\sqrt{\sin^2 \alpha_3 - 1} \end{pmatrix}.$$
 (12.33)

Das bedeutet, dass die z-Komponente (negativ) imaginär ist und die Intensität der transmittierten Welle exponentiell von der Grenzfläche abnimmt, wobei $1/|k_{3,z}|$ die *Eindringtiefe* beschreibt. Im Wesentlichen wird damit also keine Energie durch die Grenzfläche transportiert. Betrachten wir hingegen die reflektierte Welle:

$$E_2^{\rm TE} = \frac{\cos \alpha_1 - n \cos \alpha_3}{\cos \alpha_1 + n \cos \alpha_3} E_1,$$

$$E_2^{\rm TM} = \frac{n \cos \alpha_1 - \cos \alpha_3}{n \cos \alpha_1 + \cos \alpha_3} E_1.$$
(12.34)

Da Zähler und Nenner jeweils komplex konjugiert sind, hat die reflektierte Welle jeweils die gleiche Amplitude. Damit ist auch R = 1. Es gibt lediglich eine *Phasendifferenz* (abhängig von der Mode). Diese kann man veranschaulichen als das temporäre Eindringen der Welle in den verbotenen Bereich im optisch dünneren Medium.

12.3 Streuung an Materie

- Streuquerschnitt
- Polarisation
- Dipolstreuung
- dielektrische Kugel
- Inhomogenitäten

Ein verwandtes Problem ist die *Streuung* von elektromagnetischen Wellen an einem kleinem Objekt bzw. an Inhomogenitäten in einem Material. An den Übergängen werden die Wellen gebrochen bzw. reflektiert, so dass das Objekt effektiv in alle Richtungen Wellen aussendet. Uns interessiert das Verhältnis der einfallenden Strahlung zur emittierten Strahlung.

Streuquerschnitt. Wir gehen von einer ebenen Welle mit Wellenzahl k bzw. Frequenz ω aus. Die emittierten Wellen seien in genügend grosser Entfernung radiale Wellen mit Asymptotik $E, B \sim 1/r$. Der Poynting-Vektor beschreibt mit $\vec{S} \cdot \vec{n}$ die Energieflussdichte $d^2 P/d^2 A$ in Energie je Fläche und Zeit. Für die emittierte radiale Welle ersetzen wir die Fläche $d^2 A$ durch ein Raumwinkelelement $d^2 \Omega$. Die Kombination $d^2 P/d^2 \Omega = r^2 \vec{S} \cdot \vec{e_r}$ beschreibt dann die Energie je Winkel und Zeit. Das Verhältnis dieser Grössen wird (differentieller) Streuquerschnitt genannt

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}^2\Omega} := \frac{\mathrm{d}^2 P_{\mathrm{aus}}/\mathrm{d}^2\Omega}{\mathrm{d}^2 P_{\mathrm{ein}}/\mathrm{d}^2A} = \frac{r^2 \vec{S}_{\mathrm{aus}} \cdot \vec{e}_r}{\vec{S}_{\mathrm{ein}} \cdot \vec{e}_z}, \qquad \sigma := \oint \mathrm{d}^2\Omega \,\frac{\mathrm{d}^2\sigma}{\mathrm{d}^2\Omega}. \tag{12.37}$$

Er trägt die Einheit Fläche je Raumwinkel. Das Integral σ über den vollen Raumwinkel heisst *totaler Streuquerschnitt* und trägt die Einheit Fläche. Für ein vollständig reflektierendes Objekt ist diese Fläche genau der Querschnitt des Objekts im Strahlungsfluss (aufgrund der Energieerhaltung). Der differentielle Streuquerschnitt d² σ /d² Ω gibt die Winkelverteilung der emittierten Strahlung wieder. Man kann ihn auch nach Polarisation der emittierten Strahlung (bzw. nach weiteren relevanten Grössen) aufschlüsseln. Hierzu würde man experimentell an geeigneten Stellen Polarisationsfilter in den Strahlungsfluss stellen.

Dipolstreuung. Wir nehmen an, dass die Welle elektrische und magnetische Dipolmomente im Objekt induziert, welche in der Fernzone Strahlung mit dem bekannten Dipolmoment erzeugt

$$\vec{A}(x) = \frac{\mu_0 k}{4\pi r} \operatorname{Re}\left[\left(-ic\vec{P} - i\vec{M} \times \vec{n}\right) e^{ikr - i\omega t}\right].$$
(12.39)

Für die Strahlungsleistung ergibt sich wie zuvor

$$\frac{\mathrm{d}^2 P}{\mathrm{d}^2 \Omega} = \frac{ck^4 \mu_0}{32\pi^2} \left(c^2 \|P\|^2 - c^2 |\vec{P} \cdot \vec{n}|^2 + \|M\|^2 - |\vec{M} \cdot \vec{n}|^2 \right) = \frac{ck^4 \mu_0}{32\pi^2} \left(c^2 \|P\|^2 \sin^2 \vartheta(P, n) + \|M\|^2 \sin^2 \vartheta(M, n) \right).$$
(12.40)

Hier geht man von der Leistung ohne Berücksichtigung der Polarisation aus. Möchte man nach Polarisation ϵ , $\vec{\epsilon} \cdot \vec{n} = 0$, $\|\epsilon\| = 1$ der emittierten Strahlung diskriminieren, so erhält man

$$\frac{\mathrm{d}^2 P_{\epsilon}}{\mathrm{d}^2 \Omega} = \frac{ck^4 \mu_0}{32\pi^2} \left(c^2 \left| \vec{P} \cdot \vec{\epsilon} \right|^2 + \left| \left(\vec{M} \times \vec{n} \right) \cdot \vec{\epsilon} \right|^2 \right).$$
(12.41)

Dielektrische Kugel. Als Beispiel betrachten wir eine dielektrische Kugel $\varepsilon_r \neq 1$ mit $\mu_r = 1$. Hier gilt (ohne Rechnung)

$$\vec{P} = 4\pi\varepsilon_0 \frac{\varepsilon_r - 1}{\varepsilon_r + 2} R^3 \vec{E}, \qquad \vec{M} = 0.$$
(12.42)

Somit können wir die Energieflüsse in Beziehung setzen $d^2 P_{ein}/d^2 A = ||E_0||^2/2\varepsilon_0 c$. Wenn die einfallende Welle in Richtung ϵ_{ein} polarisiert ist, erhält man demnach

$$\frac{\mathrm{d}^2 \sigma_{\epsilon}}{\mathrm{d}^2 \Omega} = \left(\frac{\varepsilon_{\mathrm{r}} - 1}{\varepsilon_{\mathrm{r}} + 2}\right)^2 k^4 R^6 |\vec{\epsilon}_{\mathrm{ein}} \cdot \vec{\epsilon}_{\mathrm{aus}}|^2.$$
(12.43)

Zum einen sieht man, dass der Streuquerschnitt von der vierten Potenz der Wellenzahl k, bzw. Frequenz ω abhängt. Dies hängt damit zusammen, dass zur Erzeugung eines Dipolmoments die Welle im Bereich der Kugel genügend oszillieren muss. Die relevante Grösse ist somit kR. Für höhere Multipolmomente erhält man entsprechend höhere Potenzen. Das verbleibende R^2 beschreibt den Querschnitt der Kugel.³ Zum anderen hängt der Querschnitt von den Polarisationen der ein- und auslaufenden Wellen ab:

Eine auslaufende Welle in Richtung der Polarisation der einlaufenden Welle $(n \sim \epsilon_{ein})$ führt zu keiner Strahlung, da $\vec{\epsilon}_{aus} \cdot \vec{\epsilon}_{ein} = 0$. Eine auslaufende Welle senkrecht zur einlaufenden Welle ist vollständig linear polarisiert, denn für die andere Polarisation gilt $\vec{\epsilon}_{aus} \cdot \vec{\epsilon}_{ein} = 0$. Ist die einlaufende Welle unpolarisiert, so

³Die hohe Abhängigkeit von k erklärt die Färbung des Himmels und der Sonne. Blaues Licht hat eine höhere Wellenzahl/Frequenz und wird damit viel stärker an der Atmosphäre (Tröpfchen, Inhomogenitäten) gestreut als rotes Licht. Licht auf dem direkten Weg (Bild der Sonne) hat demnach einen kleineren Blauanteil und erscheint somit gelb/rot.

mitteltman über beide Polarisationen. Ist die Polarisation der auslaufenden Welle irrelevant, sosummiertman beide Polarisationen.⁴

Für den unpolarisierten Streuquerschnitt erhält man

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}^2\Omega} = \frac{1}{2} \left(\frac{\varepsilon_{\mathrm{r}} - 1}{\varepsilon_{\mathrm{r}} + 2}\right)^2 k^4 R^6 (1 + \cos^2\vartheta) \tag{12.44}$$

bzw. integriert über alle Richtungen

$$\sigma = \frac{8}{3}\pi \left(\frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r} + 2}\right)^2 k^4 R^6.$$
(12.45)

Inhomogenitäten. Eine andere Möglichkeit Streuung zu erzeugen, sind Inhomogenitäten in einem Medium (*Rayleigh-Streuung*). Wir nehmen an, dass die Dielektrizitätskonstante leicht vom Ort abhängt und betrachten eine feste Frequenz ω .

$$\varepsilon_{\mathbf{r}}(x) = \overline{\varepsilon}_{\mathbf{r}} + \delta \varepsilon_{\mathbf{r}}(x) + \dots \quad \text{mit } \delta \varepsilon_{\mathbf{r}} \ll \varepsilon_{\mathbf{r}} \text{ sowie } \mu_{\mathbf{r}} = 1.$$
 (12.46)

Ebenso wie $\varepsilon_{\rm r}$ entwickeln wir die Felder

$$E = \overline{E} + \delta E + \dots, \qquad D = \overline{D} + \delta D + \dots, \qquad \text{etc.}, \qquad (12.47)$$

wobei die führende Ordnung die einlaufende Welle bezeichnet. Der Vergleich von E und D liefert in erster Ordnung

$$\bar{D} = \varepsilon_0 \bar{\varepsilon}_r \bar{E}, \quad \text{sowie} \quad \delta D = \varepsilon_0 \bar{\varepsilon}_r \,\delta E + \varepsilon_0 \,\delta \varepsilon_r \,\bar{E}.$$
(12.48)

Setzen wir dies in die Maxwell-Gleichungen ein und benutzen, dass die einlaufende Welle alle Gleichungen bereits erfüllt, so ergibt sich (ohne weitere Quellen)

$$\vec{\partial} \cdot \delta \vec{B} = 0, \qquad \qquad \vec{\partial} \times \delta \vec{E} + \partial_t \delta \vec{B} = 0, \vec{\partial} \cdot \delta \vec{E} = -\vec{\partial} \cdot (\delta \varepsilon_{\rm r} \, \vec{E}), \qquad \vec{\partial} \times \delta \vec{B} - \varepsilon_0 \bar{\varepsilon}_{\rm r} \mu_0 \, \partial_t \delta \vec{E} = \mu_0 \varepsilon_0 \, \delta \varepsilon_{\rm r} \, \vec{E}.$$
(12.49)

Die resultierenden Gleichungen für δE und δB haben die gewohnte Form der Maxwell-Gleichungen, wobei das Feld $\delta \varepsilon_{\rm r} \overline{E}$ als vorgegebene Strom- und Ladungsverteilung wirkt

$$\delta \rho = -\varepsilon_0 \vec{\partial} \cdot (\delta \varepsilon_r \vec{E}), \qquad \delta \vec{j} = \varepsilon_0 \, \delta \varepsilon_r \, \partial_t \vec{E}. \tag{12.50}$$

Die Wellen erfüllen die Kontinuitätsgleichung per Konstruktion aus den Maxwell-Gleichungen.

Wir können die gestreuten Felder δE , δB nun mittels der Methode berechnen, die wir zuvor konstruiert haben. Das retardierte Vektorpotential in der Fernzone lautet

$$\delta \vec{A}(x) = \operatorname{Re}\left[\frac{-ikn}{c} \frac{\mathrm{e}^{ikr-i\omega t}}{4\pi r} \,\vec{E}\,\delta\hat{\varepsilon}_{\mathrm{r}}(k\vec{e}_{z}-k\vec{n})\right],\tag{12.51}$$

⁴Zur asymmetrischen Behandlung der ein- und auslaufenden Wellen siehe auch die

⁽asymmetrische) Positionierung der Polarisationsfilter in Bezug auf die Messung der Intensitäten in obiger Abbildung zum polarisierten Streuquerschnitt.

wobe
i $\delta \hat{\varepsilon}_{\mathbf{r}}$ die Fourier-Transformierte von $\delta \varepsilon_{\mathbf{r}}$ bezeichnet

$$\delta \hat{\varepsilon}_{\mathbf{r}}(\vec{k}) := \int \mathrm{d}y^3 \,\delta \varepsilon_{\mathbf{r}}(y) \,\,\mathrm{e}^{i\vec{y}\cdot\vec{k}} \,. \tag{12.52}$$

Für den Streuquerschnitt erhalten wir

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}^2\Omega} = \frac{k^4}{16\pi^2} \left|\vec{\epsilon}_{\mathrm{ein}} \cdot \vec{\epsilon}_{\mathrm{aus}}\right|^2 F(\vec{k}_{\mathrm{ein}} - \vec{k}_{\mathrm{aus}})$$
(12.53)

mit dem Strukturfaktor

$$F(\vec{k}_{\rm ein} - \vec{k}_{\rm aus}) = \left|\delta\hat{\varepsilon}_{\rm r}(\vec{k}_{\rm ein} - \vec{k}_{\rm aus})\right|^2.$$
(12.54)

In der Praxis kann man durch Auslesen des Streuquerschnitts zu einer hinreichend grossen Menge an einlaufenden und auslaufenden Wellenzahlvektoren den Strukturfaktor als Funktion von $\Delta \vec{k}$ bestimmen. Aus der Fouriertransformation von $\delta \hat{\varepsilon}_{\rm r}$ lässt sich dann die räumliche Struktur von $\delta \varepsilon_{\rm r}$ rekonstruieren. Die Phaseninformation $\delta \hat{\varepsilon}_{\rm r}$ bleibt hingegen bei dieser Betrachtung aussen vor. Hierfür wäre eine Korrelation der Phasen der ein- und auslaufenden Wellen nötig.

13 Wellenleiter

Wir haben gesehen, wie sich elektromagnetische Wellen im Vakuum ausbreiten und Energie transportieren können. Nun ist es günstig, diesen Energietransport so gut wie möglich kontrollieren zu können. Dies geschieht mittels elektrischer Leiter, die das Feld umschliessen (Hohlleiter) oder sonst wie führen. Wir wollen zunächst die Wellenausbreitung in elektrischen Leitern untersuchen, und dann Hohlleiter und Kavitäten behandeln.

13.1 Wellen in Leitern

• Telegraphengleichung

• Eindringtiefe

In einem elektrischen Leiter wird ein elektrischer Strom j durch ein angelegtes elektrisches Feld E erzeugt über

$$\vec{j} = \sigma \vec{E},\tag{13.1}$$

wobei σ den spezifischen Widerstand bezeichnet. Ansonsten gelten die Maxwell-Gleichungen. Zunächst sollten wir eine allfällige Ladungsdichte ρ im Leiter betrachten. Ihre zeitliche Ableitung ist durch folgende Gleichung bestimmt

$$\partial_t \rho = -\vec{\partial} \cdot \vec{j} = -\sigma \vec{\partial} \cdot \vec{E} = -\frac{\sigma}{\varepsilon} \rho.$$
(13.2)

Danach klingt jede bestehende Ladungsverteilung in der charakteristischen Zeit ε/σ ab, indem sie zu den Rändern des Leiters diffundiert. Wir können also davon ausgehen, dass (nach kurzer Zeit) jede Ladungsverteilung verschwindet, und setzen entsprechend $\rho = 0$.

Kombinieren wir nun die zeitliche Ableitung der Maxwell-Gleichung $\vec{\partial} \times \vec{B} - \varepsilon \mu \partial_t \vec{E} = \mu \vec{j}$ mit der Rotation der Maxwell-Gleichung $\vec{\partial} \times \vec{E} + \partial_t \vec{B} = 0$, so erhalten wir

$$\mu \sigma \partial_t \vec{E} = \mu \partial_t \vec{j} = \vec{\partial} \times \partial_t \vec{B} - \varepsilon \mu \partial_t^2 \vec{E}$$
$$= -\vec{\partial} \times (\vec{\partial} \times \vec{E}) - \varepsilon \mu \partial_t^2 \vec{E}$$
$$= \Delta \vec{E} - \vec{\partial} (\vec{\partial} \cdot \vec{E}) - \varepsilon \mu \partial_t^2 \vec{E}.$$
(13.3)

Nutzen wir nun die Maxwell-Gleichung $\vec{\partial}\cdot\vec{E}=\rho/\varepsilon=0$ so erhalten wir die Telegraphen-Gleichung

$$\Delta \vec{E} - \varepsilon \mu \partial_t^2 \vec{E} - \mu \sigma \partial_t \vec{E} = 0.$$
(13.4)

Dies ist eine entkoppelte homogene lineare Differentialgleichung, die wir mittels komplexer monochromatischer ebener Wellen lösen können:

$$\Delta \Psi - \varepsilon \mu \partial_t^2 \Psi - \mu \sigma \partial_t \Psi = 0, \qquad \Psi = e^{i k \cdot \vec{x} - i \omega t}.$$
(13.5)

Dies ergibt die algebraische Gleichung $-\vec{k}^2 + \varepsilon\mu\omega^2 + i\omega\mu\sigma = 0$. Da die Koeffizienten komplex sind, muss der Wellenvektor k oder die Kreisfrequenz ω ebenfalls komplex sein, ggf. beide. Untersuchen wir also beide Fälle.

Zeitlich abklingende Welle. Sei k reell und ω komplex. Dann erhalten wir unmittelbar

$$\omega = -\frac{i\sigma}{2\varepsilon} \pm i\sqrt{\frac{\vec{k}^2}{\varepsilon\mu} - \frac{\sigma^2}{4\varepsilon^2}} = \omega_{\rm r} + i\omega_{\rm i}.$$
(13.6)

Nur für hinreichend grosse k hat ω einen Realteil, aber der Imaginärteil in jedem Fall negativ, $\omega_{i} < 0$, somit klingt die Welle $e^{i\vec{k}\cdot\vec{x}-i\omega t} = e^{i\vec{k}\cdot\vec{x}-i\omega_{r}t}e^{\omega_{i}t}$ exponentiell ab. Die Energie der Welle wird durch elektrischen Widerstand in Wärme umgewandelt.

Räumlich abklingende Welle. Wir können aber auch verlangen, dass ω reell ist und damit die Welle immer die gleiche Amplitude beibehält. Dann muss allerdings k komplex sein. Entsprechend wird die Welle in einer räumlichen Richtung exponentiell abfallen. In der entgegengesetzten Richtung wird sie allerdings exponentiell anwachsen. Ein beliebig stark anwachsendes Feld is unrealistisch, dies lässt sich nur verhindern, indem man annimmt, dass dort der Leiter irgendwo endet. Dieser Fall beschreibt also ein exponentielles Abklingen der Welle vom Rand des Leiters her.

Konkret kann man annehmen, dass die Welle entlang der z-Achse ausgerichtet ist mit $\vec{k} = (k_r + ik_i)\vec{e}_z$. Die Gleichung ergibt dann

$$-k_{\rm r}^2 - 2ik_{\rm r}k_{\rm i} + k_{\rm i}^2 + \varepsilon\mu\omega^2 + \mu\sigma^2\omega = 0.$$
(13.7)

Man kann nun den Imaginärteil lösen als $k_{\rm i} = \mu \sigma \omega / 2k_{\rm r}$ und die Lösung einsetzen

$$-k_{\rm r}^2 + \frac{\mu^2 \sigma^2 \omega^2}{4k_{\rm r}^2} + \varepsilon \mu \omega^2 = 0, \qquad (13.8)$$

Dies ist eine bi-quadratische Gleichung für $k_{\rm r}$ mit der Lösung

$$k_{\rm r}^2 = \frac{1}{2} \varepsilon \mu \omega^2 \left[1 + \sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} \right].$$
(13.9)

Die Grösse $1/k_i = 2k_r/\mu\sigma\omega$ beschreibt die *Eindringtiefe* des Feldes in den elektrischen Leiter. Wellen können nur in die Umgebung des Randes eines Leiters vordringen. Desgleichen fliessen Wechselströme vor allem an der Oberfläche eines Leiters. Dies wird Skin-Effekt genannt.

13.2 Wellenleiter

- Reduktion auf zwei Dimensionen
- Randbedingung
- Eigenwertproblem
- transversal elektrische und transversal magnetische Moden
- transversal elektromagnetische Moden
- rechteckiger und kreisförmiger Querschnitt
- Energie und Fluss

Wir behandeln nun einen zylinderförmigen Hohlleiter.

$$\longrightarrow z \left(\begin{array}{c} A \\ A \end{array} \right)$$
 (13.10)

Er sei entlang der z-Achse ausgerichtet und durch ein Gebiet A in der x,y-Ebene beschrieben.¹ Der Rand des Gebiets sei ein idealer Leiter. Dieser Aufbau stellt ein idealisiertes Modell eines reellen Wellenleiters dar, die hergeleiteten Resultate beschreiben die Realität aber näherungsweise und qualitativ adäquat.²

Reduktion auf zwei Dimensionen. Das Problem ist translationsinvariant in der Zeit und der z-Achse. Hier wollen wir ebene monochromatische Wellen ansetzen mit Kreisfrequenz ω und Wellenzahl k. Demnach gilt für alle Felder F

$$F(x, y, z, t) = \operatorname{Re}\left[F(x, y) e^{ikz} e^{-i\omega t}\right], \qquad \partial_t F = -i\omega F.$$
(13.11)

Wir reduzieren das Problem also auf zweidimensionale komplexe Felder $F(x, y) \in \mathbb{C}$. Weiterhin zerfallen die dreidimensionalen Vektoren $\vec{F_3}$ in entsprechende Vektoren \vec{F} in zwei Dimensionen mit $\vec{F} \cdot \vec{e_z} = 0$ und Skalare f. Wir schreiben

$$\vec{F}_3 = \vec{F} + \vec{e}_z f,$$

 $\vec{x}_3 = \vec{x} + \vec{e}_z z.$ (13.12)

Die entsprechende Vektoralgebra lautet

$$\vec{F}_3 \cdot \vec{G}_3 = \vec{F} \cdot \vec{G} + fg, \qquad \vec{\partial}_3 \cdot \vec{F}_3 = \vec{\partial} \cdot \vec{F} + ikf.$$
(13.13)

Für das Kreuzprodukt benötigen wir eine *Dualitätsoperation* für Vektoren in zwei Dimensionen

$$\vec{F}^{\times} := \vec{F} \times \vec{e}_z = \begin{pmatrix} F_y \\ -F_x \\ 0 \end{pmatrix}.$$
 (13.14)

¹Man kann durchaus auch offene Gebiete betrachten, z.B. beschreibt das Gebiet \mathbb{R}^2 mit zwei Löchern zwei parallele Drähte im freien Raum.

²Um die Näherung an eine reelle Situation zu verbessern, könnte man zusätzlich Richtungsänderungen und Knicke des Wellenleiters theoretisch untersuchen.

Für die Dualitätsoperation gelten folgende Relationen

$$\vec{F}^{\times} \cdot \vec{e}_{z} = \vec{F}^{\times} \cdot \vec{F} = 0,$$

$$\vec{F}^{\times \times} = -\vec{F},$$

$$\vec{F} \cdot \vec{G}^{\times} = -\vec{F}^{\times} \cdot \vec{G} = F_{x}G_{y} - F_{y}G_{x},$$

$$\vec{\partial}_{3} \times \vec{F}_{3} = -ik\vec{F}^{\times} + \vec{\partial}^{\times}f + \vec{e}_{z}\vec{\partial} \cdot \vec{F}^{\times}.$$
(13.15)

Damit lautet das Kreuzprodukt

$$\vec{F}_3 \times \vec{G}_3 = f \vec{G}^{\times} + g \vec{F}^{\times} + \vec{e}_z \vec{F} \cdot \vec{G}^{\times}.$$
(13.16)

Wir können nun die Maxwell-Gleichungen auf zwei Dimensionen reduzieren. Zunächst betrachten die Wellengleichung $\Box_{3+1}\Psi = 0$, die für alle Felder $\Psi = \vec{E}, \vec{B}, e, b$ gilt,

$$0 = \Box_{3+1}\Psi = \Delta_3\Psi - \frac{1}{c^2}\partial_t^2\Psi = \Delta\Psi - k^2\Psi + \frac{\omega^2}{c^2}\Psi.$$
 (13.17)

Hier ist Δ der zweidimensionale Laplace-Operator, und die Gleichung lautet kurz

$$\Delta \Psi = -\lambda \Psi \quad \text{mit} \quad \lambda := \frac{\omega^2}{c^2} - k^2. \tag{13.18}$$

In Abwesenheit von Quellen lauten die skalaren Maxwell-Gleichungen

$$0 = \vec{\partial}_3 \cdot \vec{E}_3 = \vec{\partial} \cdot \vec{E} + ike,$$

$$0 = \vec{\partial}_3 \cdot \vec{B}_3 = \vec{\partial} \cdot \vec{B} + ikb.$$
(13.19)

Die vektoriellen Maxwell-Gleichungen spalten auf in vektorielle und skalare Differentialgleichungen

$$0 = -ik\vec{E}^{\times} + \vec{\partial}^{\times}e - i\omega\vec{B}, \qquad 0 = \vec{\partial}\cdot\vec{E}^{\times} - i\omega b,$$

$$0 = -ik\vec{B}^{\times} + \vec{\partial}^{\times}b + \frac{i\omega}{c^2}\vec{E}, \qquad 0 = \vec{\partial}\cdot\vec{B}^{\times} + \frac{i\omega}{c^2}e.$$
 (13.20)

Die longitudinalen Felder b, e sind also auf zwei Arten durch die transversalen Felder \vec{E}, \vec{B} bestimmt (für $k, \omega \neq 0$). Weiterhin legen die vektoriellen Gleichungen eines der Felder \vec{E}, \vec{B} durch das jeweils andere fest. Überzählige Gleichungen stellen die obigen Wellengleichungen $\Delta \Psi = -\lambda \Psi$. Wir können also das Problem (für $k, \omega \neq 0$) anhand des Feldes \vec{E} alleine formulieren

$$e = \frac{i}{k} \vec{\partial} \cdot \vec{E},$$

$$b = -\frac{i}{\omega} \vec{\partial} \cdot \vec{E}^{\times},$$

$$\vec{B} = -\frac{k}{\omega} \vec{E}^{\times} + \frac{1}{k\omega} \vec{\partial}^{\times} (\vec{\partial} \cdot \vec{E}).$$
(13.21)

Randbedingungen. Die Felder werden auf dem Rand ∂A durch Leiter begrenzt. Hier kann das Feld nicht eindringen (bis auf eine kleine Eindringtiefe aufgrund des Widerstands, welche wir vernachlässigen). Es gelten die üblichen Randbedingungen, dass \vec{E}_3 senkrecht zur Oberfläche steht, während \vec{B}_3 parallel ist. Es gilt also auf dem Rand mit Normalenvektor n (wobei $\vec{n} \cdot \vec{e}_z = 0$)

$$0 = \vec{n} \times \vec{E}_3 = \vec{n}^{\times} e + \vec{e}_z \vec{n} \cdot \vec{E}^{\times},$$

$$0 = \vec{n} \cdot \vec{B}_3 = \vec{n} \cdot \vec{B}.$$
(13.22)

Daher gilt auf dem Rand ∂A ,

$$e = 0, \qquad \vec{n} \cdot \vec{E}^{\times} = 0, \qquad \vec{n} \cdot \vec{B} = 0.$$
 (13.23)

Wir wollen diese anhand des Feldes \vec{E} ausdrücken: Da $e = (i/k)\vec{\partial}\cdot\vec{E}$ muss gelten $\vec{\partial}\cdot\vec{E} = 0$. Die Randbedingung $\vec{n}\cdot\vec{B} = 0$ folgt dann automatisch aus den beiden Randbedingungen für \vec{E} durch Einsetzen der Lösung, $\vec{n}\cdot\vec{B} = -(k/\omega)\vec{n}\cdot\vec{E}^{\times} - (i/\omega)\vec{n}\cdot\vec{\partial}^{\times}e$. Der erste Term verschwindet aufgrund der

Randbedingung $\vec{n} \cdot \vec{E}^{\times} = 0$, der zweite ist eine Ableitung *entlang* des Randes $(\vec{n} \cdot \vec{\partial}^{\times})$ und dort ist e = 0. Somit lauten die kompletten Bedingungen

$$\Delta \vec{E} = -\lambda \vec{E}, \qquad \vec{n} \cdot \vec{E}^{\times}(y) = \vec{\partial} \cdot \vec{E}(y) = 0 \quad \text{für } y \in \partial A.$$
(13.24)

Dies entspricht im Wesentlichen einer Dirichlet-Randbedingung an $\vec{n} \cdot \vec{E}^{\times}$ und einer Neumann-Randbedingung an $\vec{n} \cdot \vec{E}$. Zusammen genügen sie, um die zwei Komponenten von \vec{E} eindeutig festzulegen.

Eigenwertproblem. Die obigen Randbedingungen sind stark genug, um die Lösung der linearen Differentialgleichung im allgemeinen Fall eindeutig festzulegen. Eine offensichtliche Lösung für diese lineare Differentialgleichung ohne Inhomogenität ist $\vec{E} = 0$, d.h. das elektromagnetisches Feld kann sich nicht ausbreiten. Dies ist nicht verwunderlich, denn die Kreisfrequenz ω sollte wie bei anderen Wellenlösungen auch durch die Wellenzahlen bzw. die räumlichen Konfiguration bestimmt sein.

Allerdings wird der lineare Operator $\Delta + \lambda$ für gewisse Werte $\lambda = \lambda_n$ singular, und in diesem Fall gibt es weitere nicht-triviale Lösungen. Man kann dann eine Beziehung zwischen ω und k aufstellen:

Das Spektrum der Eigenwerte λ_n hängt von der Geometrie des Querschnitts A ab, und es kann sehr irregulär sein (vgl. Schwingungsmoden einer Glocke).

Wir möchten hier kurz beweisen, dass das Spektrum der Eigenwerte reell und positiv ist, $\lambda_n \geq 0$. Hierfür benötigen wir eine Greensche Identität für ein komplexes Vektorfeld \vec{E} :

$$\int_{A} \mathrm{d}x^{2} \left[\left| \vec{\partial} \cdot \vec{E} \right|^{2} + \left| \vec{\partial} \cdot \vec{E}^{\times} \right|^{2} + \operatorname{Re}(\vec{E} \cdot \Delta \vec{E}) \right]$$
$$= \operatorname{Re} \oint_{\partial A} \mathrm{d}x \, \vec{n} \cdot \left[\vec{E} (\vec{\partial} \cdot \vec{E}^{*}) + \vec{E}^{\times} (\vec{\partial} \cdot \vec{E}^{\times *}) \right]. \tag{13.26}$$

Die rechte Seite ist Null aufgrund der Randbedingungen $\vec{n} \cdot \vec{E}^{\times} = \vec{\partial} \cdot \vec{E} = 0$. Setzt man weiterhin die Differentialgleichung $\Delta \vec{E} = -\lambda \vec{E}$ ein, ergibt sich

$$\int_{A} \mathrm{d}x^{2} \left[\left| \vec{\partial} \cdot \vec{E} \right|^{2} + \left| \vec{\partial} \cdot \vec{E}^{\times} \right|^{2} - \lambda \left\| \vec{E} \right\|^{2} \right] = 0.$$
(13.27)

Aus der Positivität der einzelnen Integralbeiträge folgt unmittelbar, dass es nur für $\lambda \geq 0$ nicht-triviale Lösungen geben kann.

Speist man an einem Ende des Wellenleiters ein Feld mit gegebener reeller Frequenz ω ein, so werden im Prinzip alle Moden \vec{E}_n angeregt. Jede Mode besitzt dann eine charakteristische Wellenzahl $k_n = \sqrt{\omega^2/c^2 - \lambda_n}$. Ist $\omega/c > \sqrt{\lambda_n}$, so propagiert diese Mode eine beliebige Distanz als Welle, anderenfalls dringt sie nur die charakteristische Länge $1/|k_n| = 1/\sqrt{\lambda_n - \omega^2/c^2}$ entlang des Leiters vor. Das Spektrum der Eigenwerte λ_n ist durch den Querschnitt vorgegeben, und somit können für festes ω nur endlich viele Moden als Wellen in dem Wellenleiter propagieren.

TE- und TM-Moden. Da es sich bei $\lambda = 0$ um einen Grenzfall mit besonderen Eigenschaften handelt, betrachten wir zunächst den Fall $\lambda > 0$. Hier können wir das Problem alternativ mittels der skalaren Felder e und b formulieren, aus denen sich die Felder \vec{E} und \vec{B} aus den Maxwell-Gleichungen ergeben³

$$\vec{E} = \frac{ik}{\lambda} \vec{\partial}e + \frac{i\omega}{\lambda} \vec{\partial}^{\times}b,$$

$$\vec{B} = -\frac{i\omega}{c^2\lambda} \vec{\partial}^{\times}e + \frac{ik}{\lambda} \vec{\partial}b.$$
 (13.29)

Die übrigen Gleichungen folgen aus $\Delta e = -\lambda e$ und $\Delta b = -\lambda b$ sowie den Randbedingungen e = 0 (Dirichlet) und $\vec{n} \cdot \vec{\partial b} = 0$ (Neumann).

³In diesen Relationen tritt λ im Nenner auf, und somit können die Einschränkungen

Wir haben das Problem also in zwei Probleme für e und b vollständig separiert. Hier klassifiziert man die Moden üblicherweise als *transversal elektrisch (TE)* bzw. *transversal magnetisch (TM)*, welche keine longitudinalen (entlang der z-Achse) Felder dieses Typs besitzen:

TE:
$$e = 0$$
, TM: $b = 0$. (13.30)

Das jeweils verbleibende Feld muss eine Laplace-Eigenwertgleichung erfüllen

TE:
$$\Delta b = -\lambda b$$
, TM: $\Delta e = -\lambda e$. (13.31)

Die Randbedingungen sind gegeben als:

TE:
$$\vec{n} \cdot \vec{\partial b}(y) = 0$$
, TM: $e(y) = 0$ für $y \in \partial A$. (13.32)

TEM-Moden. Die vorherigen Betrachtungen gelten nicht für den Fall $\lambda = 0$. Dort muss man die Laplace-Gleichung $\Delta \vec{E} = 0$ direkt für E lösen, deren Lösungen harmonische Funktionen genannt werden. Aus der obigen Greenschen Identität folgt zudem bei $\lambda = 0$:

$$\int_{A} \mathrm{d}x^{2} \left[\left| \vec{\partial} \cdot \vec{E} \right|^{2} + \left| \vec{\partial} \cdot \vec{E}^{\times} \right|^{2} \right] = 0.$$
(13.33)

Die linke Seite ist positiv definit, und somit müssen die longitudinalen Felder e, b beide verschwinden:

TEM:
$$e \sim \vec{\partial} \cdot \vec{E} = 0, \quad b \sim \vec{\partial} \cdot \vec{E}^{\times} = 0.$$
 (13.34)

Diese sogenannten transversal elektromagnetischen (TEM) Moden sind somit ein Grenzfall, der nicht für alle Geometrien A existiert: Wenn das Gebiet A einfach zusammenhängend ist, so können wir ein Potential Φ für $\vec{E} = -\vec{\partial}\Phi$ einführen mit $\Delta \Phi = 0$, so dass automatisch e = b = 0 folgt. Die Randbedingung $\vec{n} \cdot \vec{E}^{\times} = 0$ lässt sich dann als Dirichlet-Bedingung $\Phi = \text{const}$ schreiben. Für dieses Problem wissen wir, dass die einzige Lösung $\Phi = \text{const}$ lautet, und somit $\vec{E} = 0$. Demnach können TEM-Moden nur existieren für offene Gebiete (z.B. einen Draht im freien Raum) oder nicht-einfach zusammenhängende Gebiete (d.h. Gebiete mit Löchern, z.B. Koaxialkabel).

(13.35)

In nicht-einfach zusammenhängenden kompakten Gebieten können wir die Anzahl der Moden mit der Topologie von A in Beziehung setzen. Hier lässt sich aufgrund der Randbedingung $\vec{n} \cdot \vec{E}^{\times} = 0$ die Lösung ebenfalls mittels eines Potentials Φ als $\vec{E} = -\vec{\partial} \Phi$ schreiben. Das Laplace-Problem mit konstanten

Dirichlet-Randbedingungen auf jeder Rand-Zusammenhangskomponente hat eine eindeutige Lösung, und es gibt damit eine TEM-Mode je Loch in dem Gebiet. Zum Beispiel besitzen Koaxialkabel genau eine TEM-Mode. TEM-Moden sind besonders relevant für Anwendungen, denn die Relation $\omega = kc$ zwischen Wellenzahl und Kreisfrequenz ist nicht-dispersiv. Somit können Signale mit beliebig breitem Frequenzspektrum über weite Strecken übertragen werden, ohne dass ihre Form auf dem Weg von Sender zu Empfänger zerläuft. Insbesondere benötigt die langreichweitige Übertragung keine minimale Frequenz $\sqrt{\lambda} c/2\pi$ wie im Fall $\lambda > 0$.

Rechteckiger Hohlleiter. Das einfachste Beispiel eines Wellenleiters ist der Hohlleiter mit rechteckigem Querschnitt $A = [0, d_x] \times [0, d_y]$. Dann sind die Moden offensichtlich gegeben durch

$$\text{TE}_{n_x,n_y}: \quad b_{n_x,n_y} \sim \cos \frac{\pi n_x x}{d_x} \cos \frac{\pi n_y y}{d_y} \quad (n_x > 0 \text{ oder } n_y > 0),$$
$$\text{TM}_{n_x,n_y}: \quad e_{n_x,n_y} \sim \sin \frac{\pi n_x x}{d_x} \sin \frac{\pi n_y y}{d_y} \quad (n_x > 0 \text{ und } n_y > 0),$$
(13.36)

Die Eigenwerte zu diesen Moden betragen

$$\lambda_{n_x,n_y} = \pi^2 \left(\frac{n_x^2}{d_x^2} + \frac{n_y^2}{d_y^2} \right).$$
(13.37)

Es gibt keine TEM-Mode da A einfach zusammenhängend ist.

$$\begin{array}{c|c}
\hline TE_{10} \\
\hline TE_{01} \\
\hline TE_{01} \\
\hline TE_{11} \\
\hline TE_{20} \\
\hline TE_{20$$

Alle diese Moden können auch verstanden werden als Überlagerung von ebenen monochromatischen Wellen mit Wellenvektoren $(\pm \pi n_x/d_x, \pm \pi n_y/d_y, k)$. Die Vorzeichen in den x,y-Komponenten entsprechen einer Welle und ihren Reflexionen an den vier seitlichen Wänden des Hohlraums. Die Interferenz am Ort der Wände muss dabei so sei, dass die Randbedingungen erfüllt sind (analog zu Spiegelladungen).

Kreisförmigen Hohlleiter. Ein weiteres beliebtes Beispiel ist der Hohlleiter mit kreisförmigem Querschnitt. Die Rotationsinvarianz impliziert einen faktorisierten Ansatz in Radialkoordinaten

$$e, b \sim f(r) e^{im\varphi}. \tag{13.40}$$

Die Differentialgleichung lautet dann

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}f\right) - \frac{m^2}{r^2}f + \lambda f = 0.$$
(13.41)

Die Lösungen heissen Bessel-Funktionen $f \sim J_m(\sqrt{\lambda} r)$. Die Randbedingungen bei r = R verlangen, dass entweder f dort eine Nullstelle (TM) oder einen Wendepunkt (TE) besitzt. Die Nullstellen $x_{m,n}$ und Wendepunkte $y_{m,n}$ der Besselfunktionen J_m haben keine geschlossene Form, sie sind irrationale Zahlen, die das Spektrum $\lambda_{m,n}^{\text{TE}} = y_{m,n}^2/R^2$ bzw. $\lambda_{m,n}^{\text{TM}} = x_{m,n}^2/R^2$ bestimmen.

Energiefluss. Zum Abschluss berechnen wir die Energie (je Länge) und ihren Fluss im allgemeinen Wellenleiter. Die Beiträge der einzelnen Moden λ sind im zeitlichen und räumlichen Mittel unabhängig voneinander, d.h. wir können uns auf einen festen Wert von λ festlegen.

Wir setzen die Lösung für e, b und \vec{B} in den allgemeinen Ausdruck für die Energie ein und erhalten

$$\frac{\mathrm{d}W}{\mathrm{d}z} = \frac{\varepsilon_0}{4} \int_A \mathrm{d}x^2 \left[\left\| \vec{E} \right\|^2 + |e|^2 + c^2 \left\| \vec{B} \right\|^2 + c^2 |b|^2 \right] \\
= \frac{\varepsilon_0}{4} \int_A \mathrm{d}x^2 \left[\left(1 + \frac{c^2 k^2}{\omega^2} \right) \left\| \vec{E} \right\|^2 + \frac{1}{k^2} \left| \vec{\partial} \cdot \vec{E} \right|^2 + \frac{c^2}{\omega^2} \left| \vec{\partial} \cdot \vec{E} \right|^2 \\
+ \frac{c^2}{k^2 \omega^2} \left\| \vec{\partial} (\vec{\partial} \cdot \vec{E}) \right\|^2 - \frac{2c^2}{\omega^2} \operatorname{Re} \left[\vec{E}^* \cdot \vec{\partial} (\vec{\partial} \cdot \vec{E}) \right] \right] \\
= \frac{\varepsilon_0}{2} \int_A \mathrm{d}x^2 \left[\left\| \vec{E} \right\|^2 + \frac{1}{k^2} \left| \vec{\partial} \cdot \vec{E} \right|^2 \right].$$
(13.43)

Für den letzten Schritt haben wir partielle Integration, die obige Greensche Identität sowie die Differentialgleichung $\Delta \vec{E} = -\lambda \vec{E}$ verwendet, wobei die Randterme jeweils durch die Randbedingungen entfielen. Wie üblich ist der Beitrag der elektrischen und magnetischen Felder gleich gross. Entsprechend erhält man für den Energiefluss

$$P = \frac{1}{2\mu_0} \int_A dx^2 \, \vec{e}_z \cdot \vec{S}_3 = \frac{1}{2\mu_0} \int_A dx^2 \operatorname{Re}\left[\vec{E} \cdot \vec{B}^{\times *}\right] = \frac{1}{2\mu_0} \frac{k}{\omega} \int_A dx^2 \left[\left\|\vec{E}\right\|^2 - \frac{1}{k^2} \operatorname{Re}\left[\vec{E} \cdot \vec{\partial}(\vec{\partial} \cdot \vec{E}^*)\right] \right] = \frac{k}{2\mu_0\omega} \int_A dx^2 \left[\left\|\vec{E}\right\|^2 + \frac{1}{k^2} \left|\vec{\partial} \cdot \vec{E}\right|^2 \right] = \frac{c^2 k}{\omega} \frac{dW}{dz}.$$
(13.44)

Hier beschreibt der Faktor $c^2 k/\omega$ zwischen Energie je Länge und Energiefluss die Geschwindigkeit des Energietransports der Welle. Er entspricht genau der Gruppengeschwindigkeit

$$v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k} = c \, \frac{\mathrm{d}}{\mathrm{d}k} \sqrt{\lambda + k^2} = \frac{ck}{\sqrt{\lambda + k^2}} = \frac{c^2k}{\omega} \,. \tag{13.45}$$

13.3 Kavitäten

• Eigenwertproblem

• terminierter Wellenleiter

Ein ganz ähnlich geartetes Problem stellen die *Kavitäten* dar. Anders als die Wellenleiter sind sie von allen Richtungen her begrenzt. Somit muss man ein dreidimensionales Problem der Art

$$\Delta \Psi = -\lambda \Psi \tag{13.46}$$

mit geeigneten Randbedingungen lösen. Für die Frequenz ω erhält man so ein diskretes Spektrum. Dieses hängt stark von der Geometrie V der Kavität ab, und lässt sich meist nicht in geschlossener Form schreiben.

Terminierter Wellenleiter. Für abgeschlossene Zylinder $V = A \times [0, d_z]$ können wir aber auf die obigen Ergebnisse zu Wellenleitern zurückgreifen.

An den Kappen werden die Wellen reflektiert, wir benötigen also Wellen, die sich in beiden Richtungen des Hohlleiters ausbreiten, d.h. $k_z = \pm |k|$. Insbesondere muss die Wellenzahl mit den Kappen zusammenpassen

$$k_z = \pm \frac{\pi n_z}{d} \,. \tag{13.48}$$

Um die Randbedingungen $\vec{E}=0$ und b=0 für die Kappen zu erfüllen, bieten sich folgende Funktionen an

TE:
$$b(z) \sim \sin \frac{\pi n_z z}{d_z}$$
, so dass $b(z) = 0$ bei $z = 0, d_z$,
TM: $e(z) \sim \cos \frac{\pi n_z z}{d_z}$, so dass $\vec{E}(z) = 0$ bei $z = 0, d_z$. (13.49)

Als Spektrum erhalten wir also

TE:
$$\omega_{n,n_z}^{\text{TE}} = c \sqrt{\lambda_n^{\text{TE}} + \frac{\pi^2 n_z^2}{d_z^2}} \qquad n_z > 0,$$

TM: $\omega_{n,n_z}^{\text{TM}} = c \sqrt{\lambda_n^{\text{TM}} + \frac{\pi^2 n_z^2}{d_z^2}} \qquad n_z \ge 0.$ (13.50)

14 Wellenoptik

Aus der klassischen Optik sind wir gewohnt, dass sich Lichtstrahlen gradlinig ausbreiten. Ein Hindernis im Strahlengang blockiert die Ausbreitung und wirft einen scharfen Schatten auf einen dahinterliegenden Schirm.

Nun ist Licht eine Erscheinung elektromagnetischer Wellen. Wellen werden zwar ebenfalls durch Hindernisse blockiert, aber auch an den Kanten des Hindernisses gebeugt. Die Wellen breiten sich also auch (mit entsprechend geringer Intensität) in den klassischen Schatten des Hindernisses aus, interferieren dort sowohl konstruktiv als auch destruktiv, und erzeugen auf dem Schirm ein unscharfes Bild des Hindernisses mit charakteristischen Interferenzmustern an den Rändern. Die Schärfe des Bildes hängt von der Wellenlänge ab, und die Interferenzmuster sind besonders ausgeprägt, wenn die Wellenlänge vergleichbar mit der Ausdehnung des Hindernisses ist. Zusammen mit der Brechung an Grenzflächen sind dies typische Effekte der *Wellenoptik*. Die klassische Optik ergibt sich als Grenzfall kleiner Wellenlängen im Vergleich zur Ausdehnung der Objekte.

14.1 Kirchhoffsche Beugungstheorie

- Beugung
- Kirchhoffsche Formel
- Kirchhoffsche Näherung

Wir betrachten ein skalares (unpolarisiertes) Feld Ψ ohne Quellen im homogenen Medium (Vakuum): $\Box \Psi = 0$. Die Ausbreitung von Wellen wird lediglich durch Hindernisse in Form von Randbedingungen beeinflusst, z.B. $\Psi = 0$ auf dem Rand.

Eine typische Anordnung besteht aus einer Quelle, die Licht auf ein Hindernis bzw. auf eine Öffnung in diesem strahlt. Dort wird das Licht gebeugt und trifft später

auf einen Detektor bzw. Schirm, wo die Intensität gemessen wird.

(14.2)

Im Prinzip lässt sich dieses Problem mittels Greenscher Funktionen lösen, die die Randbedingungen des Hindernisses exakt beschreiben. Allerdings sind diese Greenschen Funktionen i.d.R. nicht bekannt und können weder exakt noch einfach numerisch¹ bestimmt werden. Man teilt deshalb das Problem in zwei Gebiete auf:

- Gebiet der Quellen vor dem Hindernis,
- Gebiet der Beugung hinter dem Hindernis.

Die Gebiete sind durch die Öffnung miteinander verbunden. Man sollte beide Gebiete kompakt wählen, kann aber auch offene Gebiete mit den üblichen Randbedingungen bei Unendlich untersuchen. Dieses Problem lässt sich zwar auch exakt behandeln, man macht aber eine entscheidende Näherung (Kirchhoff) um zu einer Lösung zu gelangen:

Beide Gebiete werden jeweils als der freie Raum \mathbb{R}^3 betrachtet für den wir die Greenschen Funktionen exakt kennen und gut mit ihnen rechnen können. Die Grenze zwischen den Gebieten hat somit keinen Einfluss auf die Ausbreitung der Wellen. Die Felder in beiden Gebieten werden als unabhängig voneinander betrachtet, und sie kommunizieren nur über die Öffnung: Dort fungieren die Werte der Felder im Quellgebiet als Quellen für die Felder im Brechungsgebiet.

Dies ist sicherlich eine Approximation, denn am Hindernis wird das Licht auch zurück in das Quellgebiet gebeugt, was wiederum das Licht im Beugungsgebiet beeinflusst. Für die schwachen Interferenzeffekte an den Rändern der Öffnung genügt diese Näherung aber und ergibt sehr gute Resultate.

Betrachten wir also nur das Beugungsgebiet V und verwenden die Zeitinvarianz, um uns auf monochromatische Wellen einzuschränken $\Psi \sim e^{-i\omega t}$

$$0 = \Box \Psi = \Delta \Psi + \frac{\omega^2}{c^2} \Psi = (\Delta + k^2) \Psi.$$
(14.3)

Die Greensche Funktion für den freien Raum \mathbb{R}^3 lautet $G(x, y) = e^{ik||x-y||} / 4\pi ||x - y||$. Sie hat keine spezifischen Randbedingungen auf ∂V , lässt sich aber für die Greensche Identität verwenden, welche das Feld im Inneren von V beschreibt (soweit keine Quellen existieren). Dies ergibt die Kirchhoffsche Formel

$$\Psi(x) = \oint_{\partial V} \mathrm{d}y^2 \, \vec{n} \cdot \left[\frac{\mathrm{e}^{ik \|x-y\|}}{4\pi \|x-y\|} \, \vec{\partial}_y \Psi_0(y) - \Psi_0(y) \vec{\partial}_y \, \frac{\mathrm{e}^{ik \|x-y\|}}{4\pi \|x-y\|} \right]. \tag{14.4}$$

 $^{^1 \}rm Zum$ einen benötigen die Felder ein dreidimensionales Gitter, welches viel Speicher und Rechenleistung benötigt. Zum anderen kommen dunkle Gebiete durch Auslöschung aufgrund variierender komplexen Phase zustand, welches Numerisch schwer zu erfassen ist.

Um das Feld in V zu lösen, benötigen wir also die Randbedingungen. Allerdings sind beliebige Randbedingungen an Ψ und $\vec{n} \cdot \vec{\partial} \Psi$ zu stark, denn sie überbestimmen das Feld und sind i.d.R. nicht kompatibel mit dem resultierenden $\Psi(x)$. Dennoch ist das obige $\Psi(x)$ eine Lösung der Differentialgleichung $(\Delta + k^2)\Psi = 0$ für jede Wahl von Ψ_0 und $\vec{n} \cdot \vec{\partial} \Psi_0$ auf ∂V . Allerdings beschreiben letztere nicht die Randbedingungen von Ψ ! Die Kirchhoffsche Näherung besteht aus dem folgenden Ansatz:

- $\Psi_0 = \vec{n} \cdot \vec{\partial} \Psi_0 = 0$ auf ∂V ohne die Öffnung,
- Ψ_0 und $\vec{n} \cdot \vec{\partial} \Psi_0$ auf der Öffnung werden durch die Felder in dem Quellgebiet definiert.

Das resultierende Feld \varPsi hat dann zwar andere Randbedingungen, aber es beschreibt die Interferenzeffekte dennoch gut.

14.2 Interferenz und Huygens-Prinzip

- Wellenfronten
- optische Weglänge

Aus der Kirchhoffschen Formel und Näherung lässt sich gut das *Huygens-Prinzip* herleiten. Es besagt, dass man sich die Öffnung als Quelle von Kugelwellen vorstellen kann. Die Phasen der Kugelwellen sind bestimmt durch die einfallende Welle. Die Einhüllenden von Wellenfronten der individuellen Kugelwellen beschreiben dann die Wellenfronten der gebeugten Welle.

In der Kirchhoffschen Formel findet man ebenfalls die besagten Kugelwellen vor, die von der Öffnung ausgelöst werden. Dort, wo die Wellenfronten von Kugelwellen dicht beieinanderliegender Punkte auf der Öffnung zusammentreffen, haben beide Beiträge (nahezu) identische komplexe Phasen. Dies führt zu positiver Interferenz, welches den grösstmöglichen Beitrag zur entstehenden Welle liefert. Die Beiträge zu anderen Punkte oder von weiter entfernten Punkten der Öffnung sind weniger stark korreliert und führen im statistischen Mittel zu destruktiver Interferenz, also keinen Beitrag zur Gesamtwelle. Insbesondere bei kleinen Wellenlängen oszilliert die Phase stark und das Huygens-Prinzip beschreibt die Welle gut.

Optische Weglänge. Vernachlässigt man in der Kirchhoff-Formel die rationale Abhängigkeit, so findet man bei einer Punktquelle am Ort z folgende komplexe Phase

$$\Psi(x) \sim \int dy^2 e^{ik||x-y||} e^{ik||y-z||} . \qquad z \qquad y$$
(14.6)

Die Phase beschreibt also die Weglänge von z über den Punkt y in der Öffnung zum Detektor x. Der Phasenfaktor wird integriert über alle Punkte der Öffnung. In Anwesenheit von Medien betrachtet man stattdessen die *optische Weglänge*

$$L(x,z) = \int_{x}^{z} dy \, n(y).$$
 (14.7)

Die Phase des Wegs ist dann $e^{i\omega L(x,y)/c}$. Mittels dieser Phasen lassen sich Interferenzphänomene gut approximieren, insbesondere wenn die Amplitude der Welle wenig über den Bereich der Öffnung variiert (d.h. die Quelle ist in genügend grosser Entfernung platziert) und der Detektor entsprechend weit entfernt ist.

14.3 Fraunhofer- und Fresnel-Beugung

- Fraunhofer-Beugung
- Fresnel-Beugung

Wir wollen die obigen Abschätzungen etwas konkreter durchführen. Die Kirchhoffsche Formel und Näherung benötigt folgende Kombination

$$\vec{n} \cdot \left[\frac{\mathrm{e}^{ikd_1}}{4\pi d_1} \vec{\partial}_y \, \frac{\mathrm{e}^{ikd_2}}{4\pi d_2} - \frac{\mathrm{e}^{ikd_2}}{4\pi d_2} \, \vec{\partial}_y \, \frac{\mathrm{e}^{ikd_1}}{4\pi d_1} \right] \\ = \frac{\mathrm{e}^{ikd_1 + ikd_2}}{16\pi^2 d_1 d_2} \left[\left(-\frac{1}{d_2} + ik \right) \vec{e}_2 + \left(\frac{1}{d_1} - ik \right) \vec{e}_1 \right] \cdot \vec{n} \\ \approx \frac{\mathrm{e}^{ikd_1 + ikd_2} \, ik}{16\pi^2 d_1 d_2} \left[\vec{e}_2 - \vec{e}_1 \right] \cdot \vec{n}.$$
(14.9)

Die Näherung in der letzten Zeile bezieht sich auf den Grenzfall $d_1, d_2 \gg \lambda$, in dem der jeweils zweite Term dominiert. Ist weiterhin die Öffnung klein gegenüber d_1, d_2 so kann man letztere und die Winkel $\cos \alpha_1 = \vec{n} \cdot \vec{e_1}$ und $\cos \alpha = \vec{n} \cdot \vec{e_2}$ als konstant ansehen. Dies sind die oben besprochenen Näherungen und lediglich die Phase $k(d_1 + d_2)$ hängt vom Punkt y in der Öffnung ab.

Fraunhofer-Beugung. Sind die Quelle und der Detektor sehr weit vom Hindernis entfernt, so können wir $d_1 + d_2$ entwickeln

$$d_{1} + d_{2} = \sqrt{(\vec{x} - \vec{y})^{2}} + \sqrt{(\vec{y} - \vec{z})^{2}}$$

= $r_{1} - \frac{\vec{x} \cdot \vec{y}}{r_{1}} + r_{2} - \frac{\vec{z} \cdot \vec{y}}{r_{2}} + \dots$
= $||x|| + ||z|| + (\vec{e}_{1} + \vec{e}_{2}) \cdot \vec{y} + \dots$ (14.10)

Hier befindet sich das Objekt in der Nähe des Ursprungs, und $r_1 := ||x||$ bzw. $r_2 := ||z||$ bezeichnen den Abstand von Quelle bzw. Detektor dorthin. Wir finden also

$$\vec{e_2} / / / / / y$$
(14.11)

$$\Psi(x) \sim k(\cos\alpha_1 - \cos\alpha_2) \frac{e^{ik(r_1 + r_2)}}{r_1 r_2} \int dy^2 e^{ik(\vec{e_1} + \vec{e_2}) \cdot \vec{y}}.$$
 (14.12)

Das Interferenzmuster ist demnach durch die zweidimensionale Fourier-Transformation F(k) der charakteristischen Funktion der Öffnung bestimmt. Dieser Fall wird als *Fraunhofer-Beugung* bezeichnet. Wie bei der Streuung an kleinen Objekten können wir das Ergebnis als differentiellen Streuquerschnitt ausdrücken

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}^2\Omega} \sim k^2 \left(\cos\alpha_1 - \cos\alpha_2\right)^2 \left|F(e_1 + e_2)\right|^2.$$
(14.13)

Mit folgender Anordnung lässt sich eine Fourier-Transformierte visualisieren:

Die erste Linse erzeugt ebene Wellen aus einer Punktquelle (Brennweite). Das Objekt erzeugt die Fourier-Transformierte im Unendlichen. Die zweite Linse bildet die Fourier-Transformierte bei Unendlich auf den Schirm in der Brennebene ab.

Fresnel-Beugung. Ist die Quelle oder der Detektor nicht sehr weit entfernt, spricht man von *Fresnel-Beugung*. Man muss dann die exakte Phase benutzen, was in der Regel zu Ausdrücken führt, die man nicht mehr in geschlossener Form integrieren kann. Zwei Beispiele, wo man gewisse Rechnungen durchführen kann, sind die Kreisscheibe und die kreisförmige Öffnung. Hier stellt man die Quelle und den Detektor auf die Achse der Kreisscheibe. Man erhält dann jeweils ein Ergebnis, welches aus der Sicht der klassischen Optik paradox erscheint.

Für die Scheibe findet man einen charakteristischen hellen Fleck in der Mitte des Schattens (*Poisson-Fleck*). Dieser kommt aufgrund der positiven Interferenz aller Wellen vom Rand der Scheibe zustande.

Für die Öffnung hingegen findet man, dass die Intensität mit dem Abstand wie $\sin^2(ka^2/2\rho)$ oszilliert. Für grosse Abstände herrscht also Dunkelheit vor, und wenn man sich zur Öffnung hin bewegt, gibt es viele Intensitätsmaxima, die sich mit Dunkelheit abwechseln.

Teil V

Anhang

Index

Åther, 9.2 Ampère Gesetz, 4.2 Anfangswert Problem, 11.1 Antiferromagnetismus, 5.7 Beugung, 14.1 Fraunhofer, 14.5 Fresnel, 14.5 Bezugssystem, 8.4 Boost Galilei, 8.4 Lorentz, 9.3 Brechung Index, 12.1 chiral, 10.7 Coulomb Eichung, 4.7, 6.6 Gesetz, 1.1 Kraft, 1.1 Potential, 11.18 delta-Funktion, 1.4 Ableitung, 1.12 Diamagnetismus, 5.7 Dielektrikum, 5.2 Dipol dynamischer, 11.11 elektrischer, 1.12 Dipoldichte, 5.3 Dipolmoment dynamisches, 11.11 elektrisches, 1.12, 3.9 induziertes, 5.2 magnetisches, 4.9 Distribution, 1.4 Drehimpuls, 8.4 Drehmoment, 4.3 Dualisierung von Vektoren in drei Dimensionen, 9.8

in zwei Dimensionen, 13.3 Dualität elektromagnetische, 8.7 Dämpfung kritische, 7.8 schwache, 7.8 starke, 7.7 Eichfixierung, 4.7 Eichtransformation dynamisch, 6.6 statisch, 4.7 Eichung, 4.7 axiale, 4.7 Coulomb, 4.7, 6.6 Lorenz, 6.7, 9.11 partielle, 6.7 Eigenwertproblem, 3.1, 13.5 Eindringtiefe elektrischer Leiter, 13.2 Totalreflexion, 12.7 Energie -dichte, 8.1 in Materie, 12.1 Welle, 10.8 elektrisches Feld, 1.8 elektromagnetische, 8.4 Flussdichte, 8.2 in Materie, 12.1 Welle, 10.9 magnetisches Feld, 4.8 Schwerpunkt, 8.4 Selbst-, 1.8 Energie-Impuls-Tensor, 9.10 Faraday Käfig, 2.2 Feld elektrisches, 1.2 magnetisches, 5.7 makroskopisches, 5.1

mikroskopisches, 5.1 Skalar, 9.7 Tensor, 9.7 Vektor, 9.7 Feldgleichung Maxwell, 6.4 Potential, 6.6 Feldkonstante elektrische, 1.1 magnetische, 4.2 Feldstärke Differentialform, 9.11 dualer Tensor, 9.9 elektrische, 1.2 magnetische, 4.2 Tensor, 9.8 Ferrimagnetismus, 5.7 Ferroelektrikum, 5.3 Ferromagnetismus, 5.7 Flussdichte elektrische, 5.4 magnetische, 4.2 Formel Kirchhoff, 14.2 Larmor, 11.19 Rodrigues, 3.6 Fourier Raum, 10.5, 11.2 Transformation, 10.4 Fourier-Transformation, 10.4 Residuensatz, 11.6 Vollständigkeit, 10.4 Fraunhofer Beugung, 14.5 Fresnel Beugung, 14.5 Funktion Bessel, 13.9 Kugelflächen-, 3.7 Legendre, 3.5 Galilei Transformation, 8.4 Gauß Gesetz, 1.4 Kästchen, 1.11, 5.6 Satz, 1.3

Wellenpaket, 10.10 Geschwindigkeit Ausbreitung, 10.9, 12.1 Gruppen-, 10.11 in Materie, 12.2 Licht, 10.2, 10.9 Phasen-, 10.10 in Materie, 12.2 Gesetz Ampère, 4.2 Biot-Savart, 4.2 Coulomb, 1.1 Durchflutung, 4.5 Gauß, 1.4 Induktion, 6.2 Snellius, 12.4 Gleichung Kontinuitäts-, 8.1 Laplace, 1.7 Legendre, 3.5 Poisson, 1.7 Telegraphen, 13.1 Wellen-, 10.1 Greensche Funktion, 2.3 avancierte, 11.5 dynamisch, 11.4 Fourier-Raum, 11.5 relativistisch, 11.7 retardierte, 11.5 Greensche Identität erste, 2.2 für Vektorfelder, 13.6 zweite, 2.4 Grenzfläche, 12.3 Dielektrika, 5.6 Gruppe Lorentz, 9.4 Poincaré, 9.4 Hohlleiter, 13.3 kreisförmiger, 13.8 rechteckiger, 13.8 Huygens Prinzip, 14.3 Impedanz, 7.9 Impuls, 8.4

-dichte, 8.3 in Materie, 12.1 Welle, 10.8 Flussdichte, 8.3 Induktionsgesetz, 6.2 differentiell, 6.3 Interferenz, 14.1 Inversion an der Sphäre, 2.10, 2.13 Kapazitätskonstanten, 2.12 Kavität, 13.10 Kirchhoff Formel, 14.2 Näherung, 14.3 Regel erste, 7.4 zweite, 7.4 Kondensator, 7.5 Platten-, 5.4 Kontinuitätsgleichung, 8.1 dynamische, 6.2, 6.4 Energie und Impuls, 9.10 statische, 4.4 Kraft Coulomb, 1.1 Lorentz, 6.1 relativistisch, 9.12 Kraftdichte elektromagnetische, 6.1 Kugelflächenfunktion, 3.7 Orthogonalität, 3.7 Vollständigkeit, 3.7 Kugelkoordinaten, 3.2 Kugelwelle, 10.11 Ladung Dichte, 1.2 elektrische, 1.1, 3.9 Erhaltung, 8.1 freie, 5.3 Spiegel-, 2.9, 2.10 Ladungsdichte, 1.2 Laplace Gleichung, 1.7 Operator, 1.7 in Kugelkoordinaten, 3.2 Legendre Funktion, 3.5 Gleichung, 3.5 Orthogonalität, 3.6 Polynom, 3.5 Leistung, 8.2 Leiter elektrischer, 2.2, 13.1 Eindringtiefe, 13.2 Lenz Regel, 6.2 Lorentz Boost, 9.3Kraft, 6.1 relativistisch, 9.12 Symmetrie, 9.4 Magnetisierung, 5.7 Maxwell Spannungstensor, 8.3 Maxwell-Gleichungen, 6.4 Differentialform, 9.11 homogen, 6.4 in Materie, 12.1 inhomogen, 6.4 integral, 6.4 relativistisch, 9.8 Metrik Minkowski, 9.6 Monopol Dirac, 8.7 magnetischer, 8.7 Multipolemomente Strahlung, 11.10 Multipolmomente, 3.9 Operator D'Alembert, 6.6 Laplace, 1.7 in Kugelkoordinaten, 3.2 Orthogonalität Kugelflächenfunktionen, 3.7 Legendre-Funktionen, 3.6 Ortsraum, 10.5, 11.3 Paraelektrikum, 5.2 Paramagnetismus, 5.7

Permeabilität, 5.7 szahl, 5.7 Permittivität, 5.4 -szahl, 5.4 frequenzabhängige, 12.2 Phasendifferenz Totalreflexion, 12.7 Plattenkondensator, 1.11 Poincaré Symmetrie, 9.4 Poisson Fleck, 14.5 Polarisation elliptische, 10.8 lineare, 10.7 transversal elektrische, 12.5, 13.7 transversal elektromagnetische, 13.7 transversal magnetische, 12.6, 13.7 zirkulare, 10.7 Polynom Legendre, 3.5 Potential Differentialform, 9.11 elektromagnetisches, 6.5 elektrostatisches, 1.6 Feldgleichungen, 6.6 Liénard-Wiechert, 11.16 retardiertes, 11.7 skalares magnetisches, 4.8 Vektor, 4.6 Vierer-Vektor, 9.10 Poynting Satz, 8.2 Vektor, 8.2 in Materie, 12.1 Prinzip Huygens, 14.3 Problem Anfangswert, 11.1 Randwert, 2.1 Quadrupoltensor, 3.11 Randbedingung Dirichlet, 2.2, 2.5 Neumann, 2.2, 2.6

Randwertproblem, 2.1 Raum -zeit, 9.5 Fourier, 10.5, 11.2 freier, 2.3 Ort, 10.5 Raumzeit, 9.5 Reflexionskoeffizient, 12.6 Regel Kirchhoff, 7.4 Lenz, 6.2 Resistivität, 7.9 Resonanzfrequenz, 7.10 Rotationsgruppe, 3.12 Darstellung, 3.13 Satz Gauß, 1.3 Poynting, 8.2 Stokes, 1.5 Schalter, 7.6 Schwingkreis, 7.6 Dämpfung, 7.7 Resonanz, 7.10 Selbstenergie, 1.8 Separation der Variablen, 3.1 Skalar, 9.6 Feld, 9.7 Produkt, 9.7 Skalarprodukt, 9.7 Spannungsquelle, 7.6 Spannungstensor, 10.9 in Materie, 12.1 relativistisch, 9.10 Spiegelladung, 2.9, 2.10 Spule, 7.5 gekoppelte, 7.5 Stetigkeitsbedingung, 2.2, 5.6, 12.3 Stokes Satz, 1.5 Schleife, 1.11, 5.6 Strahlung beschleunigte Punktladung, 11.15 Dipol, 11.11, 11.19 lineare Antenne, 11.14 Multipolmomente, 11.10 Nahzone, 11.13

Quadrupol, 11.12 Strahlungszone, 11.9 Synchrotron, 11.19 Streuquerschnitt differentiell, 12.8 polarisiert, 12.8 total, 12.8 Streuung, 12.8 dielektrische Kugel, 12.9 Dipol, 12.9 Inhomogenität, 12.10 Rayleigh, 12.10 Strukturfaktor, 12.11 Strom, 4.1 -dichte, 4.4induzierter, 6.2 Schleife, 4.1 Stromdichte, 4.4 freie, 5.7Vierer-Vektor, 9.8 Stromkreis, 7.1 Strukturfaktor Streuung, 12.11 Suszeptibilität elektrische, 5.3, 5.4 magnetische, 5.7 Symmetrie Euklidische, 2.13 konforme, 2.13 Lorentz, 9.4 Poincaré, 9.4 Tensor, 9.6 Energie-Impuls, 9.10 Feld, 9.7 Feldstärke, 9.8 Quadrupol, 3.11 Spannung, 9.10, 10.9 Spannungs-, 8.3 Totalreflexion, 12.7 Transformation Fourier, 10.4 Galilei, 8.4 konforme, 2.13 Lorentz, 9.3 Transmissionskoeffizient, 12.6

Vektor Feld, 9.7 kontravariant, 9.5 kovariant, 9.5 Potential, 4.6 Vierer, 9.5 Verzweigung, 7.5 Vollständigkeit Fourier-Transformation, 10.4 Kugelflächenfunktionen, 3.7 Wechselstrom, 7.8 Weglänge optische, 14.4 Welle ebene in Materie, 12.2 Wellen -gleichung, 10.1 -leiter, 13.3 -länge, 10.3 -optik, 14.1 -paket, 10.10 Gauß, 10.10 -zahl, 10.3 ebene, 10.2 Erzeugung, 11.7 Kugel-, 10.11 monochromatische, 10.2 Widerstand, 7.5 Wirk-, 7.9 Winkel Brewster, 12.7 Zeitentwicklung Anfangswertproblem, 11.1 Zwangsbedingung Anfangswertproblem, 11.1

Plan der Vorlesungen

Die folgende Tabelle listet die Stellen im Skript zu Beginn aller Vorlesungsstunden:

Mi. 21. 02. A:	0.	Einführung
Mi. 21. 02. B:	1.	Grundlagen der Elektrostatik
Fr. 23. 02. A:	1.1.	§ Quellen.
Fr. 23. 02. B:	1.2.	Das elektrostatische Potential
Mi. 28. 02. A:	1.4.	§ Homogen geladene Kugel.
Mi. 28. 02. B:	2.	Randwertprobleme der Elektrostatik
Fr. 01. 03. A:	2.2.	Greensche Funktionen
Fr. 01. 03. B:	2.2.	§ Neumann-Randbedingung.
Mi. 06. 03. A:	2.3.	§ Aussenraum einer Kugel.
Mi. 06. 03. B:	2.4.	Konforme Symmetrie
Fr. 08. 03. A:	3.2.	Kugelkoordinaten
Fr. 08. 03. B:	3.3.	§ Legendre-Polynome.
Fr. 15. 03. A:	3.5.	Multipolentwicklung
Fr. 15. 03. B:	3.6.	Darstellungen der Rotationsgruppe
Mi. 20. 03. A:	4.	Magnetostatik
Mi. 20. 03. B:	4.2.	Feldgleichungen
Mi. 22. 03. C:	4.3.	§ Poisson-Gleichung.
Fr. 22. 03. A:	5.	Elektro- und Magnetostatik in Materie
Fr. 22. 03. B:	5.2.	§ Beispiel.
Mi. 27. 03. A:	6.	Maxwell-Gleichungen
Mi. 27. 03. B:	6.3.	§ Zusammenfassung.
Mi. 10. 04. A:	7.	Stromkreise
Mi. 10. 04. B:	7.2.	§ Bauelemente.
Fr. 12. 04. A:	8.	Erhaltungsgrössen und Symmetrien
Fr. 12. 04. B:	8.4.	Galilei-Transformation
Mi. 17. 04. A:	9.	Spezielle Relativitätstheorie
Mi. 17. 04. B:	9.1.	§ Maxwell-Gleichungen.
Fr. 19. 04. A:	9.3.	Kovariante Elektrodynamik
Fr. 19. 04. B:	9.3.	§ Potentiale.
Mi. 24. 04. A:	10.	Lösungen der freien Wellengleichung
Mi. 24. 04. B:	10.3.	Polarisation
Fr. 26. 04. A:	10.4.	Energietransport
Fr. 26. 04. B:	10.5.	§ Kugelwellen.
Fr. 03. 05. A:	11.	Erzeugung elektromagnetischer Wellen
Fr. 03. 05. B:	11.1.	§ Ortsraum.
Mi. 08. 05. A:	11.2.	§ Elektrodynamik.
Mi. 08. 05. B:	11.3.	§ Monochromatische Wellen.
Fr. 10. 05. A:	11.3.	§ Multipolentwicklung.

- Fr. 10. 05. B: 11.4. Lineare Antenne
- Mi. 15. 05. A: 11.5. ... § Momentan ruhendes Teilchen.
- Mi. 15. 05. B: 12. Elektrodynamik mit Materie
- Fr. 17. 05. A: 12.2. ... § Einlaufende und auslaufende Wellen.
- Fr. 17. 05. B: 12.2. ... § Brewster-Winkel.
- Mi. 22. 05. A: 12.3. ... § Inhomogenitäten.
- Mi. 22. 05. B: 13.2. Wellenleiter
- Fr. 24. 05. A: 13.2. ... § Eigenwertproblem.
- Fr. 24. 05. B: 13.2. ... § Rechteckiger Hohlleiter.
- Mi. 29. 05. A: 14. Wellenoptik
- Mi. 29. 05. B: 14.3. Fraunhofer- und Fresnel-Beugung