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The equation A := B means we are now defining A to be equal to B. The equation A = B means that at some point

earlier A has been defined to be equal to B. The equation A = B means A turns out to be equal to B.

A vector (an element of R3) will be denoted by boldface: B, and when the same symbol appears without boldface,
B, the meaning is, as usual, the magnitude of the corresponding vector which appeared previously: B = ||B|. If

B # 0 then we also denote by B the unit vector B = B.

&; is the ith unit vector of the standard basis of R™.

c is the speed of light, h is Planck’s constant.

o (H) is the spectrum of the operator H (to be defined below).

€ is a placeholder for a generic category.

Obj (€) are all the objects in the category C.

More (A, B) are all the morphisms in category € from the object A to the object B.

Grp is the category whose objects are groups and whose morphisms are group homomorphisms.
Top is the category whose objects are topological spaces and whose morphisms are continuous maps.

TVS is the category whose objects are topological vector spaces and whose morphisms are continuous linear maps.
Vectp is the category whose objects are vector spaces over the field F and whose morphisms are [F-linear maps.

Vectp is the restriction to vector fields of dimension n for a given n € IN.

Vectp (X) is the category whose objects are vector bundles over X and whose morphisms are vector bundle homo-

morphisms, with typical fiber in obj (Vectp).

e If X € Obj (Top) and x € X, then Nbhdx (x) is the set of all open sets in X which contain x.
e /\ stands for “and”, V stands for “or” and V stands for “xor”.

o If [T,ca X« is a product of spaces indexed by A, then for all g € A, g : [],ca Xa — Xp is the natural projection
map, which is by definition continuous. We will also use 7r; with j € IN~ o when referring to products X x Y x Z x ...

which are implicitly labelled by { 1, 2, ... }.
T™ = (R/27nZ)™ is the n-torus and S' = T is the unit circle.
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Part 1. The Integer Quantum Hall Effect
1. THE CLASSICAL HALL EFFECT

The material in this section may be found in the first article of [36].

1.0.1. Definition. The classical Hall effect refers to the phenomenon whereby a current carrying conductor (with current I)
exposed to a transverse magnetic field B develops a transverse potential difference Vi (and conversely).

{
— ? —

1.0.2. Claim. The ratio %, called the Hall resistance, is equal to % where q is the charge of the current carriers and n is the number
of carriers per unit area.

Proof. We analyze the situation using Newton’s second law. Assume the carriers have velocity v and mass m. Then the

Lorentz force is v
F]_ = qz x B
so that carriers of opposite charge will accumulate on both ends of the boundaries of the conductor along the ¥ direction,
causing an electric field E which is perpendicular to both v and B. At equilibrium, the forces are equal
qE =Fr

so that E = ZB. Then the potential difference across the width of the sample d is given by Viy = d - E. If the external
current applied on the conductor is given by I, then we may write I = d - j where j is the two-dimensional current density,

given by j = gnv. Then the Hall resistance is defined and is equal to: Ry := V—IH = ‘(%.E = q%fv = qf’w SO
B
Ry = —
qne

1.0.3. Remark. Note that:

e Ry is large when n is small, so that thin conductors generate large Hall resistance.

e By measuring Ry we can determine the sign of q and thus determine whether current is carried by electrons or
holes.

e Hall’s original motivation [21] stemmed from reading in [32] that a magnetic force acts on conducting media and
not on the carriers inside it.

We now repeat the same exercise, taking friction into account:
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The equations of motion of a carrier in the conductor are given by
mv = (q (E—i—% ><B> —qu v

where p~! is a newly introduced coefficient of friction'. The stationary regime means v = 0 (at least after averaging over
some time) so that

E = uflv—XxB
1

BN

In matrix form this equation is

The resistivity matrix p = [21 ! 21 2} is defined via the equation E = pj so that
21 P22
T [w! — B}
p= — -
qn [ ¢!
or written using the conductivity matrix (where o, the conductivity, is defined via the equation j = oE, so o = p~'): we get
gl 03 2
w248 (-2 wl] T l-on op

where we have defined the Hall conductivity o and the direct or dissipative conductivity op (called dissipative because
the dissipated power per unit area, is j - E = E - oE so that o is like a quadratic form, and only the diagonal terms contribute
to this quantity).

Note that according to our convention, oy is positive, so that a particle with positive charge under the influence of a
magnetic field in the &; direction and an electric field in the &, direction will have drift velocity in the &; direction:

o lLe)

[

1

e

Let us consider the ideal case, where u — oo (so that p=' — 0 and there is no friction):

e If B=0, then
1

. . nu-
lim op = lim q ELZ
n— 00 p—oo W
= Jim ane
= o

and the particle accelerates indefinitely in the direction of E.
e If B # 0 (however small), then:
o The direct conductivity is

—1

. . n
lim op = lim L}gz
HL—00 HL—00 ufz 4 o
=0

so that we have dissipationless medium, but we also have pp = 0.
o For the Hall conductivity we have

lim oy = qne
pu—o0 B
= Ry !

L1 is called the mobility and is a measure of the conductivity of the material. Indeed, if the magnetic field were zero, we’d have in a stationary state
v = 1E so that the conductivity is 0 = £ = -4~ = qnp. This is also related to the mean free time 7 in the Drude model (see the corresponding chapter

={=2
in [4]).
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o If B # 0 and E = 0 then the particle moves in circles of constant speed with radius R = .
— '
 —

N 2= =0

1) =coee ﬂ—{

e If B £ 0 and E # 0 then we observe drift motion.

B — A\ y=
EFo |5
(_Q_ch@"@/@‘ff S /aYa ./f

v A
A
y

(Prolate trochoidal path)

%0
NG
P

1.1. Measurement of Resistances.

In the laboratory one measures resistances. We have Ry = % and Ry = VTH Since we know j is in the &; direction, we

may write {;1] =1 m and so since E = pj we obtain
2

[E] _ [Pn P12}1H
E P21 P22/ d |0
_ I {pn}

d [p21

so that

= p1r3l
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and thus| Ry = p171- |and

Vi = Ez-d
I

= —d
p21d

P21l

and thus| Ry = p21 =1 pH |-

1.1.1. Remark. It should be noted that it is an artifact of the fact we are working in two dimensions that the resistance R is
equal to the resistivity p. In arbitrary dimension n # 0 we have

Vh = E-d
= puj1-d
= pn=d
PHg
where S is the cross-section and thus Ry = piy 4. It is merely in n = 2 that S = d and we get the seemingly odd expression
RH = pH-
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2. THE INTEGER QUANTUM HALL EFFECT
2.1. Experimental Setup.
ra

15

.  Cedr | I | Lo pals
T S A N T
XX OF —

We put a junction of AlGaAs (with ratio 4 : 1 for the Aluminium) and GaAs together The electrons are bound to the
interface so we obtain a two-dimensional electron gas (2DEG). The gas is bound on the interface but free along it.
To understand the interface better, we first picture the two materials separately.

A/ - Iy
. - , 6 &AL
[ /) s o — .
- < Y

IV, - VR
o o

CR = Gonidic e ool
VB v saleces

r_'f'\ ' / s /
— - — - [ EV et [ e4EeEA
The materials are set up in such a way that the Fermi energy of AlGaAs is higher than that of GaAs. Note that it is
possible to depict the band structure in real space due to the fact the scale of the picture is about 100, so that the Heisenberg
uncertainty principle doesn’t disturb. Also note that the notion of Fermi energy in non-zero temperature makes sense in
different heights of the gap (or alternatively explained via donor levels).

When we bring the two media into contact, electrons (assumed with positive hcarge) spill over from donor sites of
AlGaAs, which creates a dipole layer and potential difference.
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The potential difference and thus the density of particles can be tuned via a gate voltage. As a result we get bound states

in the transverse direction. The electrons in the well have that energy just as the transverse energy, we’d still need to add
energy in the longitudinal direction. We obtain a longitudinal 2DEG.

2.2. The Filling Factor.
2.2.1. Definition. Define the filling factor v := Tl —g- where h is Planck’s constant (not divided by 2m).

Note that v is dimensionless. Indeed, [qB] = N (Newtons), [h] = N-m s, [c] = T so that [g%} = # and of course as a

number density in two dimensions, [n] = #

Then classically, we can express o using the filling factor to get

oHy = %ﬂ.
2
= sgn(q) %V

2.3. Experimental Results. The integer quantum Hall effect (IQHE) is the experimental observation (published in [26]) that
oy takes on integer values. Indeed, in a typical experiment one obtains the following:

I
a Y

The experiment exhibits the following features:

o We see plateaus of oy, which is a quantization. Thus o takes its classifcally predicted value only for integer values
of v.
e For integer v or near integer values of it, op = 0.
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e The width of the plateaus increases with disorder. In fact the disorder will turn out to be crucial for the quantization
effect, though too much disorder will destroy it.
e The accuracy of the quantization is ~ 1078. Indeed, the value of q—hz has been measured and found to be

% = 25812.807572Q)
q

which defines a new unit of resistance, the von Klitzing.
o There is also a fractional quantum Hall effect, which we shall not describe here, as this requires a many-body
analysis, whereas the IQHE already appears in the one-particle approximation.
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3. THE LANDAU HAMILTONIAN AND ITS LEVELS

To give a theoretical explanation to the quantization of oy described in 2.3 we shall consider a system with only a
magnetic field and no external electric field, and add the electric field via perturbation theory later, which is justified because
in typical experiments the magnetic field is the dominant one.

Thus our system is of electrons in two dimensions (the plane spanned by &; and &;), subject to a magnetic field (out of
the two dimensional plane, so along &;), otherwise free, and spinless. So we work in the one-electron approximation, so the
one-particle Hilbert space 3 is L? (R?; C). The Hamiltonian (due to Landau) is given by

_ ] 9p)°
Ho= g (p=ca) @
where p = —ihV, and we choose a gauge (symmetric gauge) such that
A= %B X X )
Then
curl (A)1 = £ijka)‘Ak

1
= ¢&ijk0j (25klmBle>
1
= EsijksklmBlé]’,m

1
= 5 EijkELk By
—

25,
= B;
as necessary. Using the canonical angular momentum,
L = xxp
to re-express (1) we have:
I 9.)°
Ho= oL (p-cA)
I B P
=~ mP +chzA mcp'A
2
N TS G E e S G q 1
= P e d T amera (B2 T meP 2P
_ o, (@B o Tagy 3)
= P T m \ 2 2mec

_ ] 2 aB\? , qB
- 2m<P (5) 2T

where we have used the fact that x and p only have components along &; and &, so that L | B, and B-L = BL3.
3.0.1. Claim. [H, L3] =0.
Proof. Using the fact that [ab, ¢] = a[b, ¢] + [a, c] b we have
{Pizf L3} = [Pi 2, 53jkxjpk}

= £3jkPi [Pi, ijk} + €35k [Pi, ijk} Pi
€3jkPi [Pi, Xﬂ Pk + €35k [Pi/ Xj] PkPi
€35k Piidi, jPk + €35k 104, jPKPi
= 2e3ikPiipk
= 0

because partial derivatives commute, and

2 2
[Xi , Ls} [Xi , 53jkxjpk}
€3jkXi [Xi/ ijk} + €35k [Xi, Xij] Xi
€35kXiXj [xq, Pl + €355 [xi, Prl x4
2£3ijka

=0
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3.0.2. Remark. Using (3.0.1) one could replace the operator L3 in the last row of (3) with its eigenvalues hm3 to obtain

_ ] 2 qB 2 2 9B

which is a two-dimensional Harmonic oscillator shifted by a constant term. Then one would have to employ the constaint
that the angular momentum values of the states obtained match a given m3. We will use an alternative approach below.

3.0.3. Claim. (1) The spectrum of H consists of discrete eigenvalues, called the Landau levels, given by

a(H)z{hﬁ <k+1)’ke]N>o} @)
me 2 ~
(2) Each Landau level is infiniely degenerate with
oK ©
hc

eigenstates per unit area.
Proof. For convenience we work in units in whichm =h = 92% = 1. Then the last row of (3) is equal to
_ Va2
Ho= (p?+x ) 1,

where L3 = —i(x710; —x201). Define z := x7 +1ix, 0, = % (07 —103), 0z := % (01 +10;). Note that z is not self-adjoint:

z¥ = x)]—1ix}
= X1 71)(2
and that
(az)* = —0z
because using partial integration we have
(f,09,9) = f(x) 0.9 (x) dx
JR2
= sz(X)i(m*laz)g(X)dx
1 _
= {* (=01 +iaz)f(XJ} g (x) dx
RrR2 |2
1 .
= {E (=97 —102) f} (x) g (x) dx
JR2
= (iaff/ 9>
Then we have
L3 = —i (X] az —Xz@] )

— (5 le+n){ 0z 00~ 5 (22 0z+22) )

1 _ 1 _
= —3 (z+Zz) (az—az)JrE (z—2z) (0z+0;)

= 20, —2z0%
x2 = x12 +x%
= zz
pz = —61 2 - az 2
—40,0%
So that
1
H o= 5 (—40,05 +2Z) — (20, —Z0%)

1 1
= 2 (27‘_61) (zz—i- az) +1

Using the fact that 3,z = 1+ 29, as operators on (. So we define ladder operator a := ¥z + 9z so that a* = 12—, and so
H=2a"a+1
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We remark that

N

= enp (1) { o (1) oc2e] o (1:2) o)
= op () {pconp (12 roup (1) )
= op (1) oo (1)

and similarly a* = —exp (32z) 9, exp (—%zz). Next, note that
[a*, d] = [f

1
= [z 2+5 [z 0z] —5 [0z, 2] — [0, 07]
——  ——
0 —1 1 0
= -1

As a result, we know immediately the spectrum of H, because we know the eigenvalues of a*a, which are the same as for
the harmonic oscillator: o (a*a) = N3¢ so that o (H) = 2N + 1. So we have shown the first part of the claim, namely
(4). This happens after restoring the units:

hﬁ = h x B X — X2
mc ~~ 2 m
>~ 7

g9b
=1 \/_I'/

= 2

Let i be an eigenstate of H corresponding to eigenvalue 2k + 1, k € IN>o. That means for k = 0, H{y = 1, so that
ap = 0. From this we get a differential equation:

Gz+az>wo(z) - 0

0o (z) =~z ()

so that Py (z) = Vg (2) e~ 27% for some Py such that

9z (z) =0 ©)
Note that this constraint exactly means that 1\, is an analytic function because (6) is equivalent to the Cauchy-Riemann
equations. However, polynomials are dense in the set of analytic functions so that it suffices to assume that VP, is any
polynomial. As a result we obtain the fact that the first Landau level with k = 0 is infinitely degenerate because there
are infinitely many polynomials. We may span this dense subspace of eigenstates with k = 0 by the orthogonal set
{Wo, m }mENgo where

1 _1,7
Yo, m(z) = (mml) 2zMe 2%*

to see the orthogonality, write z = ret® so that

J Yo, m ()b, m’ (z) dz
C

<Il)o, mrs 1b0, m/>

7 - _1 _
= J (rm!) "2 zme— 272 (mm'1) "2 ™ e"272q,
C

Nl=

s / _ 1.2
M et™ Pe” 2T rdrde

27 %) 1 . 12
J J (rm!)”" 2 rMe M PeT 2™ (mm/l)
=0 Jr=0

1 1 27 . , 00 , )
= (mm!)" 2 (nm’!) 2 J e*l(mfm)@d(p J pmtm/+T =12 g

=0 r=0
215 lr(l(m+m/)+1)
m, m 2 2
260 m 1
= ~m
m! 2
= dm,m’

The following Landau levels are given by applying the creation operator, as is well known from the harmonic oscillator:

e = (k)72 (@) ¥
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because
Hp = (2a%a+1) (k)77 (a*) o
= (7E (@) o207 Ta" ala)® o
= (kD7Z () o + 2(K) T ak (a*) o
= (2k+1)(kD7E (@) o
= (Zk+1) Pk
As aresult, for each energy k € IN >, we have an infinite number of eigenstates again labelled by m € N>o: { ¥y, m }

mGN;o
spans the eigenspace of 2k + 1.

Next, the density of states is given by an expression of the form

dn (E o
P Y Y em@fs (e

So that we would like to compute Y 5 _, |1bk, m (2) ]2 which will give the number of states at energy Ey per unit area (at
the point z € C). Using translational invariance we may assume z = 0 so that this quantity is independent of z. For the
case when k = 0 we have:

o] o0 ] 2
> [om©@F = Y |mmy-zom
m=0 m=0
= 7'[7]
The case k # 0 proceeds as follows: We first note that
Livom (2) = (20, —207) (nm!) "2 zme 22
= (m— %iz—i— %iz) (nm!)f% L
= mlbO,m (z)
so that using the fact [L3, a*] = —a* we have
1,
Lai,m (2) = L3 (k)72 (a") o, m (2)

1

= (077 (@)L =k (@) " a*) o, m (2)
= (Mm—=k)y, m(2)

so that Py, m (0) is non-zero only when m = k, because L3y, m (0) Lo by rotational invariance. Then we can calculate
that

Yk (z) = (k)72 (@*)WPo, x (2)
K
e () (1) 12

- (k!)i] Lok exp (%ZE) (—az)kexp (—%ZE) ZKe 172

Ni—

(kD™

— oz exp <%zi) (—0,)* z* exp (—22)

so that
1
Pk (0) = 7z (1)K
and
D bkm (Z)\z = |k x (0)’2
m=0
= 7'[71
Now after restoring the units we would find that
B _ 9B
ch ~ c2mh
qB 1 1
2c h =
ol
so that (5) follows. O

3.0.4. Remark. The following should be noted:
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(1) Going back to the many-body system, we use the Pauli exclusion principle to fill up the levels of the system up to
the Fermi energy. The density of states dictates how many electrons per unit area may be placed in each level: as
many as there are degenerate states per unit area.

(2) Recall from 2.2.1 that the filling factor is v = @T) so that (5) shows that v actually tells how many of the Landau
hc
levels are filled.
(3) If v € N> then no Landau level is partially filled.
h

(4) We have already seen that oy is in linear relation to v so that integer values of v lead to integer values of o}y x e

5) However, this does not explain the plateaus, namely, why near integer values of v, oy x 1% is still integer valued.
P P Y y g q g

Next, we provide a heuristic semi-classical explanation for 3.0.3. In the presence of a magnetic field (and no electric field),
an electron undergoes circular motion.

~f .
X \
| — ( /N
| s
\ _
\ (
N
Equating the radial centrifugal force with the Lorentz force we get:
v2 v
R

so that mv = qBr%.
Next we employ Bohr’s quantization which stipulates that angular momentum is quantized in units of h:

!

L = hk

for some k € IN5o. Because the electron is under the influence of a magnetic field, the momentum p that enters in the
computation of the angular momentum should be the canonical momentum (that quantity which is conserved, %, rather

than mv). Thus’:

L = xx (mv+%A>

( qux)
XX | mv+ —

c 2
A, 9B,
= —mvrez + c €3
1 . q 2
qbr _Te3 + 75 —€3
Br? n
- q2c €3
So that 9%2 L hk and so the radius is quantized
2c
2
= kh—
Tk qB
and so is the energy:
1
Ek = Emvk 2
1
= m (mvy)

which differs from 4 by k — k + %

2Recall the Lagrangian is %mvz +dv-A
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Next, note that for a fixed center, the state labeled by k occupies an area of 7 (ty41 2 — i 2). This turns out to be equal to:
T (rk+1 2_ Tk 2) = mh—

Thus the density of states per unit area should be %% so as to not double count states (since the choice of the origin is
arbitrary). This leads to (5).
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4. STABILITY OF op: EXISTENCE OF PLATEAUS, AND THE ROLE OF DISORDER

4.1. Heuristic Semi-Classical Explanation. Particles in a fixed Landau level correspond classically to trajectories which are
circles with fixed radius, with centers which are uniformly distributed in the plane. Each Landau level contributes to this

density %% electrons per unit area.

In the presence of an electric field, as already mentioned above, the paths are prolate trochoidal:

& e B

—

O~ (8 e sggc \,

We write E = —VV where V (x) is the applied external potential. As in the first section, for an equilibrium state we have

E+>xB = 0
c
If we cross this with % we get:
B \4 B
EX@"‘(EXB)X? = 0
!
B v
!
B
E —VVxﬁ

so that on average, the trajectories follow equipotential lines of V. A top view of the system for a pure sample:

: | 0/
fd/‘@ iéld// -
: £ V A)z(/

A &
" ’ ’

- 4 / g
—) > —e /V_, B?W/J“/é"{/qc—/ /(z{é’-(‘

+ Vg,

{

= /, i Ve BV I M -

Trying to understand the plateaus of oy in this scenario, we imagine lowering v. The result of that is to empty some of
the trajectories, so that the current lowers proportionally, and there are no plateaus. Thus an entirely pure sample cannot
give rise to plateaus. Going back to the Landau energy levels, before turning on the electric field each level was degenerate.
However, with the electric field there is a difference between the lower end of the sample and the upper end of the sample
(on the &, axis), which gives rise to the drift motion. A cross-section view of the energy levels versus the &, axis along the
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line A-B in the above picture is as follows:

// '
Y
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and the equipotential lines look as follows from top view:

s 1’

V loce

Since the trajectories follow equipotential lines, there are closed loops around some of the hills and sinks, which means
bound (localized) states which do not contribute to the conduction. However, these states do contribute to v. Thus, we can
lower v a bit to empty those bound states near the hills and the sinks and have the current unaffected. This does give rise to
plateaus of o.

Note that this is consistent with uniform distribution of p of centers in space and time:

v B
B
= 0 (B—Z X VV)i
1
= gaieﬁj ajV
=0
and by the continuity equation
p+Vipy) = 0
we have
p = —Vipv)
= —pVv
0

assuming that p is spatially uniform.

4.2. Quantum Viewpoint. The effect of disorder is on the Landau levels is to broaden them. This can be understood by
considering each impurity as generating a small electric (positive or negative) potential which shifts the Landau levels up
or down respectively. The effect of all the impurities together is a smearing:

SM?A/MW @ & - -0 2 ¥
RS P SRRy S A
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In order to understand this better we must describe the spectral decomposition of self adjoint operators on Hilbert spaces.
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Spectral Decomposition. We recall a few notions of functional analysis. The definitions and claims are presented mainly to
align notation and conventions. Unfamiliar readers should consult [40] and [38].

4.2.1. Definition. A Hilbert space (3, (-, -)) is a tuple where 3 is a C-vector space and (-, -) : 32 — C is an inner-product on
H (it is C-linear in its right slot, conjugate-symmetric ((vq, v2) = (v2, v1)), and positive-definite) such that the norm which
(-, -y induces (||v|]| = +/(v, v)) makes H into a complete metric space.

4.2.2. Remark. It is necessary to employ the completeness constraint only when considering infinite dimensional vector
spaces, since up to linear homeomorphism C™ is the only finite dimensional space we could consider.

4.2.3. Claim. Given two normed spaces 3y and H,, there is a norm on the space of linear maps 5y — 3, (which is a C-vector space)

given by

IThop = sup ({IT®llsc, | I¥llse, <1})

’ Proof. See [40] theorem 4.1. O

4.2.4. Definition. For normed linear spaces H; and 3, define the set of bounded linear operators as
B(H, Hy) = {T 1y — 3, | Tis C-linear and ||T]|,, < oo}
and we also define B (H) := B (H, H).

4.2.5. Remark. In what follows we assume D is a dense linear subspace of a Hilbert space 3 and that H: D — X is a linear
map (not necessarily bounded).

4.2.6. Definition. Define a new subset of C, called the eigenvalues of H:
E(H) = {Ae C | dvy € f}{\{O}:H(V}\) :7\\))\}

4.2.7. Remark. The eigenvalues of a linear map on finite dimensional vector spaces (a matrix) is a familiar concept. We
generalize € (H) to infinite dimensional Hilbert spaces below:

4.2.8. Definition. Define a new subset of C, called the spectrum of H, via its complement, the resolvent set p (H):

o(H) = C\ {AGC‘H(HAM)*‘GB(H)}

p(H)
4.2.9. Remark. If the inverse exists at all then it is linear, so one never has to verify the linearity of (H— Aq¢)~"; For fixed
A € C, there are three ways H — Al could have no bounded inverse map H — D:

(1) If (H—ALy4) is not injective, then ker (H—Alg¢) # 0, so that 3v € H\{0} such that H(v) = A(v). Thatis, A is
an eigenvalue of H: A € & (H). This is the only possibility if dim (H) < oo, because an injective linear map is
necessarily surjective on a finite dimensional vector space by the rank nullity relation. Also, any linear map on
finite dimensional spaces is bounded. Thus we have:

dim (H) <o = o(H)=¢&(H)
The converse is false.
(2) (H—Alg) could fail to be surjective. For example, if 3 := 1% (N; C) and R : 5 — I is defined via
(X1/X2/X3/-"] = (O/X1/X2/"')

then clearly R is not surjective because (1, 0, 0, ...) € H is not in its range. It is however injective because if Rv = Av
then it follows that v = 0. It is also clearly bounded because

[ee]
Ryl> = > hwl?
i=2
= [v[IZ—l?
< vl

Then we say that 0 € o (R) even though 0 is not an eigenvalue of R:
ER) < o(R)
@

(3) It could be that 3 (H M) " H - D (that is, H — Al 4 is bijective), but that (H —Alg) " is none the less not
bounded. This case is not possible if (H—Al4() is a closed operator (and a self-adjoint operator is always closed).
4.2.10. Claim. There exists a unique linear map H* : D — 3, called the adjoint of H, where
D = {veH| (V= {(vH()W eD)eB(D,C)}
is a linear subspace of H and such that
(v, Hv1)) = (H"(v2), v1)
forall (vi, v2) € D x D. IfH € B (H) then [H| o, = [H*[lop-
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’ Proof. See the text after definition 13.1 in [40]. O

4.2.11. Definition. H is called self-adjoint iff H = H*.

4.2.12. Claim. If H is self-adjoint then o (H) C R.
’ Proof. Theorem 11.28 (a) in [40] for the case that H € B (). See also [45] theorem 2.18. [

4.2.13. Claim. If H is self-adjoint, then
o(H) = {AeC|Ve>0Tve € H\{0}:|H(ve) —Ave| < g|[vell }
that is, the spectrum of a self-adjoint H consists of eigenvalues as well as “approximate” eigenvalues. The sequence (v ).~ is called a
Weyl sequence.
Proof. We divide the proof into the two directions:

Case 1. Let A € C be given and assume the converse. Then 3¢ > 0 such that Vv € H\ {0} we have |[H (v) — Av| >
g|[v||. Then (H — A1) is injective (otherwise ker (H —Al) # {0 } so we have some u € H\{0}such that H (u) —Au =
0 which contradicts the assumption). As a result, we may define (H — )\]l)f1 : (H=A1) (H) — D. Now we
show that (H—A1)"" : (H—AL) (¥) — D is bounded. Letv € (H—Al) (%) be given. Then Ju € D such that
(H=A1)u=v. Then

x|

(H=A1)"" (H —?\]l)uH
= |
< HIH-AD

_ %H(Hf)\]l) (H—A1)"" vH
= I

so that (H— 7\]1)71 is bounded on its domain. Now we show that (H—AL) (H) is dense in H: Suppose that
y L (H—A1) (3). Then x — (y, (H—A1)x) is continuous in D. Hence y € D (note that D = D for self-adjoint
_

0
operators) so that

(y, H=A1)x) = ((H=AL)"y, x)
0
= 0

forall x € D. Hence (H—A1)y =0soy € ker (H—A1) so that by the fact H— A1 is injective we have thaty = 0.
Thus (H — A1) (K) is dense in H. Then we can define a continuous extension from (H — A1) (H) to the whole of
H of which agrees with (H— A1)~ '. Then we have found that (H— A1) has a bijective bounded inverse in B (7)
so that A is not in the spectrum of H.

Case 2. Let A € C be given such that Ve > 03v, € H\{0} : ||[H (ve) —Av¢| < e|[ve|. Then we can find a sequence

(Vnlnen € H\{0} such that ¥n € N we have |[(H—AL) v, | < %anH. Assume that 3 (H—?\]l)_1 € B (H). Then
H(H—?x]l)’1 (H—?x]l)vnH

> n
[(H=AT) v |
But (H—A1) vy are included in the set of the vectors that enter in the computation of H (H—A1)"" so that
op
(H—A1)"" is not bounded. Hence we have a contradiction.
O

4.2.14. Exercise. Let 3 := L% ((0, c0), C) and H : H — K be given by

(x—=f(x) B (x— xf(x))
Then show that:

(1) His not bounded.

(2) His self-adjoint.

(3) o (H) = (0, o0).

4) E(H)=o.

(5) Find a sequence of approximate eigenstates for a given approximate eigenvalue x € (0, co).

4.2.15. Claim. o (H) € Closed (C).
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’ Proof. Theorem VIIL.2 in [38]. O

4.2.16. Definition. Define the point spectrum of H as
op (H) = clc(€(H))
where cl¢ is the closure in C.
4.2.17. Remark. Using 4.2.15 we have that o, (H) € o (H). It should also be noted that some authors (including [40]) use

the phrase “point spectrum” to refer to what we defined as & (H) and the term “pure point spectrum” to refer to what we
defined as oy, (H).

4.2.18. Definition. A projection-valued-measure (also called resolution of the identity) is a map from measurable subsets
of R to orthogonal projections on
RD> M — P(M)eB(H)
~—~—
measurable

such that

(1) As already stated, each P (M) is an orthogonal projection: P (I\/l)2 =P(M)=P(M)*.

(2) P(@)=0and P (R) = 14.

(3) For pairwise disjoint measurable sets (M;);y wWe have

P ( U Mi> = lim Z P (Ml)
ielN nﬁooi:1

where the limit is in the topology induced by |||,
(4) For intersections we have

P(MinNM;z) = P(M7)P(My)

4.2.19. Claim. (The Spectral Theorem) For self-adjoint operators H there is a one-to-one correspondence with projection-valued-
measures (as defined above) such that

H = JAdPA
R

where Py, := P ((—oo, Al) and furthermore

’ Proof. See [38] theorem VIIL6. O

4.2.20. Remark. The physical interpretation is that Py projects onto all states (vectors in H) which have energy in the set

M C R. Also note that
upp ()~ R\( U M)
Me{M’eOpen(R) | P(M’)=0}

4.2.21. Definition. Define the point of P (the one which is associated with a self-adjoint H via the spectral theorem) as

Pp(M) == ) P({A}

AeM
Note that P ({A}) is non-zero only if A € € (H). If ¥ is separable, € (H) is countable and thus the sum is a countable sum,
which is well-defined.

4.2.22. Corollary. Then we have
op (H) = cle(€(H))
— supp (Pp)

4.2.23. Remark. oy, (H) may not consist solely of isolated points. In particular, the eigenvalues may be dense on an interval
of R and then the point spectrum will be that interval.

4.2.24. Definition. We define
Pc (M) = P(M)—P,(M)
thus Pc ({A}) = 0 for any A € R. Then the continuous spectrum is defined as
oc(H) := supp(P.)

4.2.25. Remark. We obtain a spectral decomposition of a self-adjoint operator H as:

o(H)=o0p (H)Uoc (H)

which is possibly not disjoint.

4.2.26. Claim. (RAGE theorem) P, (M) projects onto localized states.
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Proof. 1f we pick an eigenvalue in the spectrum, then there is an eigenvector corresponding to it:
Hv = Av
and so with the unitary evolution we have
e—iHt, it

so that as time goes by, v obtains a phase, but otherwise does not change. In particular, |[v||? remains unchanged. For the
same statement on P, (R) see theorem 5.7 in [45], which roughly says that a vector 1 is in the point eigenspace iff
; —iHt —
dim - sup ({ epgore o] [reR}) = o

where  is the characteristic function. O

4.3. Anderson Localization. In 1958 Anderson published in [3] an article (for which he won the Nobel prize in 1977) which
describes the following
4.3.1. Fact. If H is the Hamiltonian of a particle in a disordered potential then H has a dense point spectrum (at least) at band edges.

y %// &ycz/{ ;}tf-dfjf(f ; f)ﬂ(«‘(*/ﬁl(aq
{rﬂﬂé{ pococc— < SRV 1/

/{ /7.{')(‘2(/- -f)("‘”f{/c(t.&(

. 0@“%

Note that Anderson also showed that 3 tunneling between the localized states so that they really do not contribute to the
conduction. For a more mathematically rigorous approach to this problem see [16].

4.4. Application to IQHE. In quantum Hall effect, using 4.3.1, the spectrum of the Landau levels, which is smeared from
isolated dots into bands by disorder, is now divided into point and continuous parts:

cod
N

// /’c’ Jr;z/‘
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and a new concept is defined: the mobility gap, which is the interval of R including the spectral gap and the point spectrum.
The crucial fact about the point spectrum is given in 4.2.26, and using this we can finally explain the existence of plateaus
of o:

Suppose we start with the Fermi energy u somewhere in the middle of the gap and start raising it. Then the electron
density n does not change: there are no states to occupy inside the spectral gap. However, when p enters into the point
spectrum, there are states to occupy. However, these states cannot contribute to conduction because the pure spectrum
corresponds to localized states (this is the content of 4.2.26). As a result, we see that n can be changed while keeping o
constant: this is exactly the existence of plateaus. Once p is changed sufficiently that it goes out of the mobility gap, states
that can contribute to conduction get occupied and o} changes.
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Observe how the spectral gap only contributes to one point on the plateua:

So far we have explained the existence of plateaus, but not why the occur at integer values.
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5. MORE HEURISTIC EXPLANATIONS OF THE QUANTIZATION OF oy
5.1. The IQHE as a Charge Pump.

5.1.1. Remark. (Streda’s Formula 1982) Before we present Laughlin’s argument, we should mention that there is a similar
idea due to Streda ([44]). Consider a two-dimensional planar system. Then a change in the magnetic field AB (x) which is
out of plane, induces a change Ap (x) in charge density:

AB (x)

Ap(x) = —on
Indeed, using the fact that j = —o B x E, the continuity equation and Faraday’s law we have

otp = —div(j)
= —div(-ouB x E)

= fZa (—ouB x E),
= UHZaiZSijk
i ik
= oyB-curl(E)
= —oHﬁ-latB
c

Alternatively, one could imagine rolling the two dimensional plane of conducting material on itself into a cylinder. This
was the idea Laughlin presented in [29]:

& : . - S — 3

In addition, imagine applying magnetic flux ¢ in the middle of the cylinder (along its axis) which may have a certain time

dependence. Note that this is in addition, and independently of the already present background homogeneous magentic
field B.

5.1.2. Claim. As ¢ increases from ¢ to ¢ + Ad, a charge AQ = —GH% will be transported (or “pumped”) from the left edge to the
right edge.

Proof. We give macroscopic considerations:
We use cylindrical coordinates so that &, is the axis of the cylinder, &, is the radial direction and &, is the azimuthal
direction.
Make ¢ time dependent. Then by Faraday’s law we know there will be an electric field E induced along &, such that
1dd
§Eal = — T2
where C is a ring around the cylinder as denoted in the picture above. As a result there will be a Hall current

j = —onépxE
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(assuming there is no dissipative conductivity, that is, op = 0). Then the current across the fiducial line C is

aQ

= 1
dt

3@ j-e.dl
C

= 3E (—oné, x E)-é,dl
C

= _O-H§ (ép X éz) 'Edl
CN—rn—

7é(p
= OH % E-dl
C
B 1d¢
- w(12)
I
B Meat
O
5.1.3. Corollary. If we choose to change ¢ by Ad = %, which is called “the flux quantum”, then we will have
AQ h
T = —OH (TZ @)

5.1.4. Claim. There is a quantization of oy iff there is a quantization of charge transport.

Proof. We employ microscopic considerations:

A =

Oodoo 1%

P AL AR )
| R

y —_—
= &'y

We introduce gauge potentials in the Landau gauge (different the the symmetric gauge of (2)). We have two indepen-
dent magnetic fields, B (called the background field, denoted by B) and the one corresponding to ¢ (called the flux field,

denoted by F).
0

A = ]

so that
curl (Ag) = 0x, (Ap), —0x, (Ap);
= B
and
0
A = {i}
27R

so that

curl(Ag) = 0
(as it should since there is no magnetic flux coming from ¢ on the cylinder) yet

q) = J BF -ds
surface enclosed by c
Stokes f{; Ap-dl

C

b

7R 27R
and

A=Ag+Af
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The Hamiltonian is given by
1 g
Ho= gmlPg
_ ! d(n o ¢ )
= om (p— - (BX] € + ﬁ(&))

1 2
= m{mz-l-{Pz—j(BM-i-;;z)] }

with the first line as in (1), and the difference due to the difference in gauge and the addition of a flux gauge potential.
Note that [H, p,] = 0 because the only thing that could prevent that is the existence of a term containing x, in H, but
there is no such term. As a resultm, p; is conserved and also quantized due to the periodic boundary conditions:

exp (ip22mR) = exp (ip2-0)
I

p22nR = 2mhn

for some n € Z. So we may replace p, with &n in the Hamiltonian:

1 h 2
1

2m

so that we get a simple harmonic oscillator with its origin position shifted by x{ (n) for each choice of n € Z.

Now we employ the fact that x; is not unconstrained but rather must obey x; € [0, L] (as in the picture above) so that
we don’t have infinitely many choices for x? (n). At any rate each such choice gives rise to the familiar discrete spectrum
of the harmonic oscillator and near the edges the levels must bend to reflect the fact that the material ends. So we get the
following schematic landscape of energy versus the x; coordinate:
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We use the adiabatic principle to assert that as we change ¢ slowly and continuously, a time evolved eigenstate of the
instantaneous Hamiltonian remains an eigenstate of the later instantaneous Hamiltonian. Occupation is inherited. Thus,
as ¢ increases,

1
Y = IRE (n% — cb)

decreases, that is, the centers move leftwards. Note that a change of Ap = % for a particular n results in

0 B 1 he he
e = s (v (047))

1 he
- 3w (05 )

= (-1,
so that to change the flux by A¢ = % is equivalent to merely shifting or relabeling the whole picture n — n —1: Thus
only what happens at the edges x; = 0 and x; = L will matter, using the fact that occupation is inherited. Thus we see
that at the right edge some of the empty states that used to be above the Fermi line will now move below it: charge is
“lost” on the right edge. On the left edge, some of the occupied states that used to be below the Fermi line will now move
above it: charge is “gained” on the left edge. To compute the total transfer of charge from left to right, we merely have to

count the number of occupied Landau levels (as the unoccupied ones don’t participate in this analysis):
AQ = —q x (# of occupied Landau levels)

which is a quantized number. Thus using (7) we have:

oy = (# of occupied Landau levels) x q% 9)
Note that the number of occupied levels is a deterministic integer, not a random one. O

5.1.5. Remark. This result is robust even in the presence of disorder. To see this, note that curl (Ag) = 0 (indeed, there is no
field on the cylinder), but that does not mean that we may write Ag = grad (x) for some global scalar function x. This is not
possible due to the fact that the domain is not simply connected. However, locally (there is some open subset such that) we
may write Ag = grad (x). Disorder adds bound states to the system, states whose wave-functions have compact support (in
fact support that does not extend as a loop around the cylinder). Thus, for such states, we may write A = grad (x) within
the support of their wave functions. By doing so, we may perform a gauge transformation in order to entirely eliminate
Ag. As aresult, bound states are not affected by changes in ¢ and are entirely exempt from the analysis of 5.1.4. Note that
the harmonic oscillator states are bound in x; but extend over the whole of x;, so that in the support of the wave function
of such states as in 5.1.4 we may not write A = grad (x).
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5.1.6. Remark. One could also see the quantization as a transport of spectral flow:

& 7

/

In this picture we consider only one Landau level (for simplicity) and ignore disorder. Then within one width A$ = %,

one state falls into the Fermi sea of R and one emerges out of the Fermi sea of L. Note that this argument does not work
when disorder is included unless the system is infinite.

5.2. IQHE as an Edge Effect. First consider the classical picture of 1. There we considered a system which extends infinitely
in both axes, and concluded that in the presence of perpendicular magnetic and electric fields there would be drift cyclotron
motion:

L

8 &F0
SO P il

j=—ogBxE

We call this a drift motion a “bulk” effect because in this analysis we completely ignore the finiteness (the edges) of the
system. In order to “obtain” it we didn’t need any edges.

Now instead we follow an idea due to Halperin ([22]). Consider a sample of finite size which does have edges along the
€, axis: left and right edges:
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In the absence of an electric field the electrons follow circular motion in the bulk, just as before, and this leads to no
overall drift motion. However, at the edges, the electrons “bump” into the end of the sample and as a result are driven
along the edge, in opposite directions in each edge as in the picture. Now as in 1 we have a potential drop from the right
edge to the left edge. But now interpret this not as generating a field E but rather as the difference in the Fermi level of the
skipping orbits. We obtain

qQV = HR—HL

Hence the current is carried by the skipping orbits and results by from their different occupation.

Now we analyze the system quantum mechanically. Here the Hamiltonian is the same as 8, except that ¢ = 0 now and p,
is not quantized because x; doesn’t have periodic boundary conditions (but p; is still conserved). As a result, now p; = hk
where k € R. Thus we get the following diagram of Landau levels versus p;:
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TN S

AT
N

Now observe that the gruop velocity of each Landau level is
dwn l dE,,
dk  hdk

The current from each level n is canceled out between left and right edges and the only part that contributes is the difference
that results from pp # pg. So the current is given by:

1 dwn
In = ¢ J A o Ak dk
~~
density of states in x—space
- of Lide
= 9, 2nn ax
q J'uk
= 2| aE
Rl
. .
= 4 (hr—pr)
2
- 4
= o+ 1
so that the total current is given by
2
I = (#of occupied Landau levels below pp ) x %V
Since I = oV, we find that in the edge-picture, o is equal to
2

og = (#of occupied Landau levels below pp ) x %

The number of occupied Landau levels below py is called “edge channels”. We find that the quantization of oy is equivalent
to an integer number of edge channels.

5.2.1. Remark. We find that the Hall conductivity is o = o between the Halperin pictuer and the Laughlin picture because
the number of edge channels is the number of filled Landau levels.

5.2.2. Remark. Disorder does not affect this result. If there is an impurity on one of the edges as the following picture depicts:

then there is no backscattering possible: orbits coming from very far away below cannot be trapped by the impurity and
so must travel around it.

5.2.3. Remark. In a real world samples usually both bulk and edge currents are observed.
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5.3. Bulk and Edge Equality from a Phenomenological Perspective. In this section we give phenomenological arguments
for the equality of o and og. Note that this argument is not rigorous because the whole premise of Ohm’s law is classical.
Consider a sample of various connected-edge-components:

N o
o 7 & = // K /,/ —Pet- W@ﬁ /@/

O’
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:
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We denote the sample as a subset Q of IR? and its edge as 3Q. We assume that p is constant on each connected component
of 0Q). We denote by t the tangential vector along 9Q and by n the out normal vector to Q.
Consider a cross section along the sample QO between the points A and B:

-4-4/(/(

L ’L/ 25 JM O acéA D
o 4’ 7 2

then the bulk current density in Q is given by

jB = —0B ¢E (10)

whereas the edge current at 0Q) is given by
Ig = og(p—@(x))+const

where ¢ is the potential at 9Q. Note that E = —grad (¢) and t = en. Let xs : RZ — {0, 1} be the characteristic function of a
set S C R?:

x) = 0 x¢8§

Xs o 1 xeS§

then

grad (xo) = -ndzo

where 65 is the delta-distribution supported on 0Q.
Now actually we should write (10) with xo so that outside of Q the current density would be zero. Then we get:

jg = —XxooseE
= Xoopegrad(e)
whereas the edge current density is given by
je = Iedaqt
= 0e(p—¢(x)dpqen
= oe(H—¢ (X)) edaon

= —of (u—@ (x)) egrad (xo)
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Next, we know that in the stationary regime, div (j) =0 and j = jg +je so that

div(jg) = —div(jg)
T
div(xqopegrad(@)) = —div(—og (L— @ (x))egrad(xan))
!
oggrad(xa)-egrad (@) + opxp div(egrad(¢)) = o (u— @ (x))div(egrad(xq))+oE grad (L — @ (x))) -egrad (xa)
N~ —
0in 2D 0 —grad(e)
?

o (—grad (@) - egrad (xa))

(=)

opegrad (@) - grad (xa)

oggrad (xo) - egrad(¢)

<

opgrad (Xa) - egrad (¢)

<

OB O
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6. THE KUBO FORMULA

Above we have computed the Hall conductivity for the Landau Hamiltonian. In a quest to generalize the computation
to arbitrary Hamiltonians we will use perturbation theory, where the perturbation is an electric field.

The Kubo formula is a particular formulation of perturbation theory in quantum mechanics® which turned out to be
extremely useful in explaining the quantum Hall effect as first shown in [46].

6.1. General Formulation of the Kubo Formula. Before presenting the Kubo formula in the context of the quantum Hall
effect, we give a more general presentation which applies to general scenarios. The source for this material is at [28].

Assume there is a quantum system with Hamiltonian H and equilibrium (possibly mixed) state py : H — 3. Note that
for us a state now is given by a density matrix which is a weighted sum of rank-one projectors pg = Y ; wi \pi) (4], where
the weights w; sum to one (see [1] for details). The assumption of equilibrium implies:

[HI pO] = 0
Now apply a time-dependent self-adjoint perturbation of the form
—f(t)AA

where A > 0 is fixed, A is a self-adjoint operator and f : R — IR is some function such that

Iim f(t) = 0
t——o0

and

For concreteness, we will take f (t) = exp (et) where & > 0 is fixed.

The response of the system is measured by probing it with a self-adjoint observable B at time 0 and expressing this to
first order in A.

The expectation value of an observable in state p is given by

(0), = TrlpO]

So the expectation of B at time zero is:
(B)p(o) = (B)po + Mxsa +0 (A2)
where the state p (t) is the perturbed state. We would like to compute lim,_,o xg A, the limit of no time-dependence.

Note that there is a certain ambiguity in the procedure, in the sense that we arbitrarily decided that at time —oco there is
no perturbation and then it would be turned on adiabatically, and only at the end of the calculation we change ¢ so that
it is as if the perturbation was always present. We would indeed get a different result if we were to take the other limit,
where we start with a system which at time 0 is perturbed and at time +oco slowly goes on to be unperturbed. Our choice of

boundary condition thus corresponds to specifying the causality.
Also note that some criticism has been raised about taking the limit ¢ — 0 in the end, which is unjustified. More rigorous

attempts have been presented in [15].

6.1.1. Claim. (Kubo formula)

0

Proof. We follow [27]. The state of the system at time t is denoted by p (t) and it obeys the Liouville equation

ipt) = [H-F(t)AA, p(t)]
with initial condition p (—o0) = pp. Expand p (t) as
p(t) = po+Ap(t)
and obtain
iAp(t) = [MH—=F{)AA, po+ Ap (1)] (11)
= [H, pol + [=f (t) AA, pol + [H, Ap ()] + [—f (t) AA, Ap (t)]
— e

—f (1) AIA, pol +H, Ap (1) + 0O (7\2)
= —f(t)AATpo+H Ap (1) +0O (7\2)

where we used the notation O* (-) = [0, -] (sometimes also denoted by the adjoint notation adg for O)

3Note that we cannot employ the usual time independent Rayleigh-Schrodinger perturbation theory (as presented in [41] pp. 303) since one of its
assumptions is that the spectrum is discrete, something which is not true in general for the perturbed Hamiltonian. For instance, perturbing from the

Landau Hamiltonian we get
H = (p—A)’—Ex
for an electric-field perturbing in the &,-direction. If we now use the gauge A = e 2x,8&; we get see that the Hamiltonian is not dependent on x; so that

p1 may be replaced by hik; (not quantized) and so since the spectrum will (eventually) depend on k1, it is not discrete.
For this reason the Kubo formula is used as a sort of trick, in which time-dependence is only removed at the very end.
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Claim. e%"b = e%be— @

34

Proof. One can proceed either in a pedestrian way by computing the explicit expression for (a*)™ (make guess and

proof by induction) or by defining

F(t) = et%et@ vt e R
and
Gt) = e*'b  WVteR
Next note that F and G both solve the differential equation
F(t) = a*F(t)

with initial condition F (0) = b. Since the solution to a first order ordinary differential equation is unique, F = G and in

particular F (1) = G (1). O
Claim. The solution of (11) is given by:
t
Ap(t) = iJ exp (—i (t—t') H¥) A% pof (1) dt’
t
= iLo exp (i (t—t') H) A[A, polexp (i (t—t/) H) £ (t') dt’
Proof. Using the fact that
d b(x) b(x)
| ulay = b0 - Fly e )+ [ ety dy
a(x) a(x)
the left hand side of (11) would be
t
() = i%ij exp (—i (t—t') H¥) AAX pof (1) dt’
t
= —exp (—i(t—t)H*)AAXpof (1) —J R [exp (—i (t—t") H*) AAXpof (t)] dt’
t
— AT pof (1) _J exp (—i (t— t') H¥) (—iH*) AA % pof (1) dt/
t
= —AAXpof(t) +HXiJ exp (—i(t—t') H) AAXpof (t) dt’
= —AA%pof(t)+H*Ap(t)
where we have used the fact that
[exp (—i(t—t")H*), H*] = 0
and also note that the initial value is obeyed: Ap (—c0) = 0. (I

Then we have

Trlp (0) B]
- Tr [<po FAp(0)+0 (7\2)) B}

—  TrlpoBl +Tr[Ap (0)B] +0 (?\2>
(B

(B)o(o)

00 AXBA
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so that

XBA = %TT [Ap (0) B]

0
= %T‘r iJ exp (—1(0—t") H*) AAXpof (t') dt'B
—0o0

0
= i Tr{[exp (itH*) (AXpo)] B} f (t) dt
NY)

Il
o

Tr[exp (itH) [A, polexp (—itH) B] f (t) dt
)
= 1i Tr[exp (—itH) Bexp (itH) [A, pol] f (t) dt
= 1 [~ Tr[exp (itH) Bexp (—itH) [A, poll f (—t) dt
JO

We now take care of the limit:

limyxsa = limij Tr lexp (itH) B exp (—itH) [A, poll exp (—et) dt
e—=0 e—=0 Jo

We now use Lebesgue’s dominated convergence theorem ([39] pp. 26) with the dominating function being t — [Tr [exp (itH) B ex
(need to show it is L") to take the limit ¢ — 0 into the integrand and obtain our result. |

6.2. Kubo Formula for the Integer Quantum Hall Effect. We now specialize to the IQHE in order to compute the Hall
conductivity (which plays the role of the measurable B in the previous section). For more rigorous treatment see [15].
If we define the axes as follows:

~2

N E

L | : XL
. oo =

y =gy n/// O;‘ & jL(

= =
Then we could write j; = o E;. This relation holds locally (but it is valid only on macroscopic scales). So we allow that
E; is not homogeneous. The current across the fiducial (dashed) line is:

I = dezh

= O'HJdXZEZ

—
Vv

where V is the potential difference between where E starts and where it ends.

We make the approximation that the electrons do not interact so that we may use the single-particle Hamiltonian H
to describe them. Therefore H corresponds to the energy of a single particle before the application of the electric field.
Correspondingly the density matrix will be the single particle density matrix.

6.2.1. Definition. (Switch Function) A switch function is a C* map A : R — R such that
lIim A(x) = 0

X—>—00
and
Iim A(x) = 1

X—00

Using a switch function A, we could write the perturbation which the electric field introduces as

—VoA (x2)
where the magnitude of the potential is the constant V(, which is assumed to be small. Indeed, since
E = -VV
= Voox,Al(x2)

then the electric field will be non-zero in a compact extent of x;, the region where A’ is non-zero.
Let ¢ > 0 be given. Define

f(t) = eft vte R
so that we have f (0) = 1 and
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In the end of the computation we will take ¢ — 0. Using that we could write the perturbed Hamiltonian as
H'(t) = H=VoA(x2)f(t)

observe that x; is an operator on Hilbert space (the multiplication operator) which in the basis { |x) }, g2 acts as by x; [x’) =
x5 |x’) and the meaning of A (x,) as an operator on Hilbert space is then obtained is via the symbolic calculus (see [40]
definition 10.26 via contour integration).

The observable we probe is the current (from which we can compute the Hall conductivity). Current is rate of change
of charge, so that ultimately we need to compute the rate of change of charge to the right of the fiducial line. In the single
particle picture this is merely given by whether the particle is on the right or not, which we encode by the observable:

Ax1)
(if x; is far on the right, it will be equal 1, if x; is far on the left it will be 0) so that the current is the rate of change of this
observable, given by the Heisenberg equation of motion:
aA(x1) = L[H (), Alx)] (12)
i[H, A(xq)]
where the second equality holds only up to zeroth order in V. Note that we shouldn’t take the first order in V,, here because
later on there will be another contribution of a power of V; coming from p.
The initial state of the system (the one particle density matrix) is the Fermi projection P,;:
Pu = X(—oo,u (H)
where x is the characteristic function and p is the chemical potential. We write this as the ground state because we neglect
the interactions.

6.2.2. Claim. The Hall conductivity is

o = iTr PL A (x1), Pul, (A (2), Pyl (13)

Proof. The equation of motion is given by
dwp(t) = —i[H'(t), p(t)] (14)

where p (t) is the density matrix. Note the sign difference between (12) and (14).
The initial condition for (14)
tgrzloo P (t) - Pu

is too naive since the limit lim_, _, p (t) does not necessarily exist. What we would rather impose is that
Hp (t) — e*thPuethH 252

which implies

etMtp () e Mt _p || 25 o (15)
| S —
=p1(t)
Since et is unitary.
In the interaction picture, we define
AHp(t) = e (VoA (x) F(t)) et
pr(t) = eMMp(ye it
and so from (14) it follows that:
otpr (t) = —i[AHp(t), p1(t)]

with boundary condition obtained from (15):
tlim pr(t) =Py
——00

with solution to first order in the perturbation given by:
pr(t) = Pu+ 1Jt et e VoA (x2), Pl et at/
—o0

indeed,

dpr(t) = e VoA (), Pule
—L[F (1) eMVoA (ko) e, Py
= —i[AH[ (t), Pyl
= —AH), pr ()40 (Vo?)

but in zeroth order in Vo, Py, = py (t).
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Then we have that if I = 0,V then

OH = 1 Iim Trlp;(0)1]

Vo e—0+
Tr[Pul]=0 1 .
£ Vo Elg(r)h Trl(pr (0) =Pu) 1]

next note that

_ 7% (eletA (x1)ethf/\(x1 ))
so that
oy = lim Tr_o —i(e—th/\( yetHt A ( )) e“"1[A (x2), Puldt
o= Dot o U dt he X X2)s P
[ (e A G €M A () ) et IA (x2) , P ]‘O n
= liI?(()1+TT Y =
+ o (A (xg) et — A (x7)) & (eFtilA (x2), Pyl) dt
O .
= lim ieTr Lwe“( —UHEA (xp) etHE x1) (x2), P }dt}
also note that
A(x2), Pl = A(x2)Pu—PuA(x2)
= Ax2)Pu—PuA(x2) Pu—PuA (x2) + PuA (x2) Pu
= (I-P)AMX2)Pu—PuA(x2) (1 —Py)
= (I—Pu)A(x2)Pu?—(1—Pu)PuA(x2) Py +PuA(x2) Py (1 —Pu) =Py 2 Afxz) (1 —Py)
~N Y — =

[ 0 Py
= (I—=PuAK2), PulPu+PulA(x2), Pul (T —Py)
so that
on = lim icTr J et (7™M (x1) €M = A (1)) (1= P A (x2), Pyl Py + P [A (x2),, Pyl (n—PH))dt}
= lim ieTr J et (Pu (€A (1) eME = A () ) (1= P+ (1= P) (e MA (1) M = A (x1)) Py ) [A (x2),, Pl dt}
= slggl ieTr J ect (e_lHX (PuA(x1) (1 —=Py) + (]l_Pu)A(X])Pu)> (A (x2), Pyl dt] —

0
— lim 1ieTr U et (PuA(x1) (L —=Pu)+ (L =P ) A(x1) Pu)) [A(x2), Pyl dt]

e—0Tt

Claim. Tim_,o+ ieTr [[° et (€7 (PLA (1) (1= Pu) + (1= PW) A (x1) Pu) ) [A (x2), Pyl dt] =0
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Proof. Start with only one term (the other is complementary):

e—0t

0
lim ieTr U et (e*th (1 —Pu)A(x1) Pueth> (A (x2), Pl dt}

By the spectral theorem ([40] theorem 13.33) we may write schematically

n
Pp = J dP_
—o0
o
PuelHt — J dP)\ el)\ft
—o0
and
o0
1-p, = J dPy,
i
. 0 .
e Mt (1 _p,) = J dpy, e et
n

so that our expression becomes

00 0 0
= lim {ieTr J J J eft (e’”‘*thM/\(x])dPLel?‘*t) [A(x2), Puldt
e—=0T Ar=pJA_=—00J—00

) 0 0
= lim Tr U J dPx, A(xq)dPy_ [A(x2), pu]:| iaJ' eft—1(As—A )t g¢
_=—00 — 0

e—0T" AL=n

the integral over time is

. 0
0 t—1(AL—A_)t
“J et ANty e L
o e—1(AL —AL)
—00
s;O ie
E—1i(Ay —A)
B —&
A —A_+ic

Note that IF A, # A_ then in the limit ¢ — 0T, this expression becomes zero. This situation happens when there is a
spectral gap, so that A_ < A for both integrations. If there is no spectral gap this argument fails, since we could still
get some contributions when A, = A_. Itis also possible to generalize this for when there is only a mobility gap but no
spectral gap, but we refrain from this at the moment.

The second term proceeds analogously.

I = ALt e AQ/ PO
— ( e
e
A A

P A=A 2P0 .
Next note that
PA(x1)) (I —=P )+ (L1 —-P)AX1)Py = A(x1)Pu—2P A (x1) Py +PuA(x1)
= A1) Pu? —PuA(x1) Py —PuA(x1) Pu + P 2A (x1)
= [A(x1), PPy —Pu[A(x1), Pyl
= [[A(x1), Pul, Pyl

so that
0
o = — lir(r)l+ ieTr U et (A (x1), Pul, Pu) A (x2), Pl dt}
0
— T IA ), Pul, Pu)IAG2), Pl lim e[| eftar
_VOO—/
0
= —iTr[[[A(x1), Pul, PullA (x2), Pul]
and using the fact that
Tr[[A, B]C] = Tr[ABC—BAC]

= Tr[BCA—-BA(C]
= —Tr[BI[A, Cl]
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we obtain the desired result. O

6.2.3. Remark. The commutator in (13) reflects the anti-symmetry of exchange x; <« x; this is the anti-symmetry of the
conductivity matrix.

6.2.4. Remark. As noted above, the proof fails if there is no spectral gap, but can be generalized to the case of a mobility gap.
For details see [19].

6.3. Discussion of the Kubo Formula.

Traces. In (13) there is a trace of an operator on Hilbert space. The question arises as to when this trace is well-defined and
finite. The main textbook for this topic is [42] or [38] volume 1 page 206.

6.3.1. Definition. For an element A in a Banach algebra with involution « the statement
A=0

is equivalent to the statement that A = A* and o (A) C [0, c0). Note that the Banach algebra we normally consider is B (),
the bounded linear maps H — K.

6.3.2. Claim. If A > 0 for some A € B (H) and { on }, ¢ is an orthonormal basis for the separable Hilbert space 3( then the (possibly
infinite) quantity

Z <(Pn/ A(pn>
nelN
does not depend on the choice of the basis { on }, cN-

Proof. Since A > 0, according to theorem 11.26 in [40], VA € B (H) exists as an operator such that VA = A and VA is
also self-adjoint. Then if {1 }, ¢y is another orthonormal basis for J{, then

Z (on, Apn) = Z <(Pn/ \/KZ(PTL>

nelN nelN

-5 (R Vo)

nelN

— 3 (VRon V)

nelN

= ¥ [VAe|

nelN

- 3

nelN

- 2 E (o vAon)f

nelN \melN

Z <¢m/ \/K(Pn> PYm

meN

[I*

L [ (b o)

melN \nelN

= 3 [vAun]
melN

> (VAbm, VAUR)

melN

D (bm, Abm)

meN

where x was valid because all terms are positive so rearrangements are possible. O

6.3.3. Definition. If A > 0 for some A € B (H) then define

Tr(A) = ) (on, Agn)
nelN

where { ¢n },, ¢y is any orthonormal basis of 3.
6.3.4. Claim. Forany A € B(H), A*A > 0.

Proof. The self-adjoint condition is easy:

A*A
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because a separable Hilbert space is reflexive ((A*)* = A). Next, if f : C — C is the entire map z ~ zz then A*A = f (A) as
in definition 10.26 of [40]. By theorem 10.28 of [40], since f is entire, we have o (f (A)) = f (¢ (A)). That is,

o(f(A)) = o(A*A)

= f(o(A)
{f(z)lzeo(z)}
{\Z\Z‘ZEG(Z)}

so that 0 (A*A) C [0, co) as necessary and A*A > 0. O

6.3.5. Corollary. Forany A € B (H), VA*A is defined.

6.3.6. Definition. For any A € B (K), define |A| := v/A*A. Note that |A| > 0 by theorem 10.28 of [40]. (also note that |A| is
self-adjoint)

6.3.7. Definition. A ¢ B (H) is trace class, written A € J; (H), iff
Tr (JA]) <
6.3.8. Claim. gy () is a Banach algebra together with the norm |-||; = Tr (|:|). Moreover, we have
J1 () CX(H) CB(H)
where K (H) are the compact operators, and 31 (H) is a two-sided ideal of B (3).
’ Proof. This is the content of theorem VI.19 in [38] volume 1 page 207. O

6.3.9. Claim. Finite rank operators are trace-class and they are dense in J; (3) with respect to ||-||;.

’ Proof. This is the corollary of Theorem VI.21 in [38]. (I

6.3.10. Remark. Note that finite rank operators are also compact, and that they are dense in the space of compact operators
on H with respect to the usual operator norm |-||.

6.3.11. Claim. Forany A € g1 (K), the following expression is absolutely convergent
Z (Pn, Apn)

nelN
where { @n }, e 18 any orthonormal basis of 3, and the expression is independent of the choice of basis { n },, -

Proof. We follow theorem V1.24 in [38]. According to [38] pp. 197 theorem VI.10, we may write A = U|A| where U is a
unique partial isometry determined by ker (A) = ker (U). Then we may write A = U,/|A|/IA] as |A] > 0. Then

{@n, Agn)l = ‘<q>n, Uy/JA| IA\con>‘
- |(VIAIU n, ViATon)|

Cauchy-Schwarz

SN o[V
so that

D Heon, Aen)l < ZH\/WU*%HH IAlcan

nelN nelN
JE (menP) 5 (men])
nelN nelN

Now it is possible to show that since tr (JA|) < oo these two sums converge. Hence, } . cn (®n, A@n) is absolutely
convergent. The fact that this expression is independent of the choice of ¢, is left as an exercise to the reader. g

CS.
<

As a result, it makes sense to make the following
6.3.12. Definition. If A € J; (H), define

Tr(A) = Z <(Pn/ A(Pn>
nelN

where { ¢, },, v is any orthonormal basis of (.
Note that if A € J; (H), then we could also write

Tr(A) = ) A
nelN
where { A }, oy are the eigenvalues of A (the only content of the spectrum as A € X (3()).
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6.3.13. Claim. IfA € J; (H) and B € B (K) then

Tr

First consider the case where B is unitary. Then

Tr (AB)

Indeed,

so that using [
Al <1, note that

If||Al| > 1, Write ﬁ as a sum of two unitaries.
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(AB)

Tr(BA)

Proof. Note that (AB, BA) € 75 (30)? because J; (H) is a two-sided ideal in B ().

Y (@n, ABon)

nelN

> (B*Bgn, ABon)
nelN

> (Bon, BABoy)
nelN
Tr(BA)

where the last equality follows from the fact that { Bon, },, <y is also an orthonormal basis of J{. Since Tr is linear and any
bounded linear operator may be written as the sum of four unitary maps: For an arbitrary B € B (J(), write

1 1

S (B+B*) — 3 (i(B—B")
1 1 . .
= §<@,B<p>+z<<o,B <p>+£<<p,Bcp>*i<<p,B ®)
1 1 1 1
= 3 (¢, Bo) + 7 (B, @)+ % (o, Bp) — 7 (B, @)
1 N o
= 3 ((cp, Bo) + (@, B(O>) +5 (<(P/ Bo) — (o, B(P>)
= (o, Bo)

] the corollary after theorem 12.7 we have the equality. For any A € B (3{) which is self-adjoint and has

A+ivVl—AZ

are both unitary, where the square root is well defined because A% < 1. Indeed:

(A+ivi-A2) (A+ix/ﬁ)*

(A+i\/1l —AZ) (A—i\/l —AZ)

A? HAVI A2 +iV1 - AZA +1 — A2
0

1

and similarly for the other order. Alsonote A = } (A +ivVl — AZ) +1 (A —ivl— AZ) so that A is a sum of two unitaries.

d

6.3.14. Example. Let H =12 (Z; C) =
where 6, : Z — C is given by 6, (n)
action on{8m },cz a8 Adm = dm41-

Claim. A ¢ g7 (H).

(@, A" )

Y:Z—-C ’ 2 neN W (M)I? < oo } H has an orthonormal basis given by { 6m },,,c7
= Om, n, the Kronecker delta. A shift operator to the right A : H — ¥ is given by its

Proof. Note that A is unitary: A* is the left shift operator given by A*5., = 6y —1. This can be seen via

D eM)on, AT ) @(m)dm

5 )

meZ
<A Y em)dn, Y @(m) 5m>
nezZ mezZ
< Z @ (n)dny1, Z @ (m) 6m>
nez meZ
> ) oMo (m)dnir,m
neZ me”Z
Z Z @ M)e (m) 611, m—1
neZ meZ
<Z @(M)on, Y cp(m>5m1>
nez meZ
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the fact that adjoints are unique and the corollary after theorem 12.7 in [40]. As a result, AA* = A*A = 1 (shift left and
the right is doing nothing), so that |A| = 1 and so
Tr(A) = ) (5, 15n)

nez

— Z 1
nez
= o

Contrast this with the fact that
<6TL/ A6n> = <6n/ 5n+1>

so that formally

> (bn, Adn) = 0

nez
< o0

so that one might have guessed that Tr(A) = 0. The point is that in another orthonormal basis we would’ve obtained
another value for ) | . (@n, A@n). The independence of choice of basis only follows when A € 7y (3().

6.3.15. Example. Choose the same Hilbert space  as in the previous example. Now let A be the multiplication operator by
f:Z — C, that s,

(Ab)(n) = f()bMn) vmeZ
Claim. If f € ' (Z; C) then A € J; (H).

Proof. Note that A* is multiplication by f (verify) and so A*A is multiplication by |f|* so that |A| is multiplication by [f|
(spectral theorem). Then
Tr(A) = Y (8n, |AISn)
nez
= ) (8n, [F()I5n)

nez

= > lf(m)

nez
< o0

by assumption. O

Tight Binding Models. Now that we have a concept of traces in separable Hilbert spaces in general, we turn to a more
concrete description of the Hilbert spaces which will be used in the applications of (13).

As an approximation, we use Z? instead of R?: this is the tight-binding approximation. Correspondingly the Hilbert
space is 3 = 12 (Z?; C). This space is spanned by an orthonormal basis { 55 },cz2 Where &, : Z? — C is given by

dn(m) = dn, m

= 6“1, my 6“2, my

0 n=m

with 8nm = { . We will use ||n| = [nq] + nyl.

T m#m

6.3.16. Fact. The Hamiltonians we consider are local. That is, 3D > 1 such that (5n, Hom) = 0 if [n —m|| > D. Note that if D = 0
then H is entirely diagonal, which means it has no hopping terms, that is, the kinetic energy is zero. We thus exclude that possibility.

6.3.17. Example. The value D = 1 corresponds to the nearest neighbor approximation.

6.3.18. Example. Define T: }{ — H by

1 |n—m| =1
on, TO =
(8, Tom) {0 otherwise
and V:3H — Hby
V(n) |n-m|=0
On, VO =
(n m) {O otherwise

where V: Z2 — R is some map. Then we have for H = T+ V that D = 1, and T is called the discrete Laplacian.
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6.3.19. Claim. If P, is the Fermi projection of H:
Pu = X(—oo,u (H)
and if w lies in a spectral gap of H then P, is “almost local”, that is,
|{(8n, Pudm)l < Cexp(—c|n—m]|)
for some C and c positive constants. If w is not in the spectral gap then the decay is merely polynomial. This is almost true even for u
in a mobility gap.
’ Proof. The contents of this proof can be found in [2]. O

The Kubo Formula is Well-Defined. The goal in this section is to show that (13) is indeed well defined. That is,
6.3.20. Claim. Py [[A (x1), Pul, [A(x2), Pyl € 31 (30)

Proof. Our first goal is to determine the range of the operator [A (x1), P.J. For that matter, pick any m € Z2, to which
there corresponds a state 5m. Then

A(x1), ij dm = Ax1) Puém_Pp./\ (x1) dm
A(x1) Puém - Pu/\ (m1)dm
= A1) =A(m)]Pudm

Now using the fact that 6.3.19 we may infer that P,,6,, is non-zero mostly around m. In particular, we may assume that
[(Pdm, X1Pudm) —mq|is not a large number.

As such, if my is very large positive number, so that the switch function A (m;) is 1, then (P,,6m, X1 Pudm) should also
be quite large, in fact large enough so that A (x;) acting on P,,6m will give 1 as well, so that all together [A (x1), P,] dm for
very large m; will be zero.

If on the other hand m is a very large negative number, then A (my) =0 and (P.dm, x1P.0m) should also be large and
negative, so that A (x1) acting on P8, should give 0. Again we get zero for [A (x1), Pu]dm.

The conclusion is that [A (x1), P.] 8m is non-zero only if m is such that m; is in A’ —1 (R\ {0}), which, by assumption
on A, is a bounded region in space. Note that this argument is heuristic, in reality, since P,, has exponential decay, more
precise estimates must be dealt with.

Exactly the same argument can be made for [A (x2), Py 6m so that the following picture describes the area in Z? where

both are supported:
_ /Qﬂ - /@/m 7LPAT

,,,,, = . - el e c
= ! Y/ &%/ca J’f%%

Oy, Py
< £ /g‘:f/()

féé/‘ v PBce P ¢“/)Z/D‘4 /
Zad)/
/éfﬂe)ﬂﬁ}’ﬁ/g D)

or [A(xz2), PuJ[A(x1), Pyl and as such in the range of P, [[A (x1), Pul, [A(x2), P.ll. Since finite rank operators are trace
class, we arrive at our result. Strictly speaking, if we were to take the precise estimates mentioned before then we
wouldn’t say the operators are finite-rank, but merely trace-class.

If one defines Ayj == P (A (xi), Pul [A(x5), Pu] for (i, j) € {(1,2), (2, 1)} then we have actually shown that A, and
A7 are separately trace class, and we have the additional formula

oy = iTr(A2—A27)
i(Tr(Aq2) =Tr(A21))

6.3.21. Claim. We have

The upshot is that only finitely many lattice sites (that is, finitely many states 5m) are in the range of [A (x1), Pu] [A (x2), Py
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Proof. Note that

Py A (x1), Pyl PuA (x1) Py —PuPLA (x1)

= Pu/\(X])(Puf]l)
—
,pﬂ_
= —PuA(x1) Py
and
PriA(x2), Pyl = PrA(x2)Pu—PirPuA(xa)
0
= PrA(x2)Py
and so as a result
A]Z = PlJ. [A (X])/ P],L] [A (XZ) 4 P;J
= (“PuA G P ) (A (x2), Pud

= —PuA(x1)PrAlx2) Py

6.3.22. Corollary. We can now write
on = —iTr (PuA(x1) PEA (2) P) +1Tr (PuA (x2) PEA (x1) Py ) (16)
— _iTr (Pﬁ/\ (x2) PuA (x7) Pj) ATy (Pﬁ/\ (x1) PuA (x2) Pj)
where in the second line we have used the fact that Py A (xi) Pﬁ € J1 (H) separately.

6.3.23. Claim. oy does not depend on the choice of the switch function A.

Proof. Actually in our formulation so far, the switch function was identical when it was used with the argument with x;
or x,. But that did not have to be the case. Here we show what happens if we change merely the switch function that is
used to compute hte current, that is, the term A (x7).

So let A be another switch function. Define AA (x7) := A (x7) — A (x1). Note that AA is compactly supported in x7,
because sufficiently far to the left or right, both A and A are either both 0 or both 1, so that their difference, AA is 0
sufficiently far to the left or right.

Also note that Pi: A (x3) Py, has compact support in x,.

Now if we want to see the difference in o}, we examine the expression in (16):

PuAA (x1) P A (x2) Py
which will give us the difference in o} between computing it with A or with A for the x; argument. Then because AA (x1)
has compact support in x; and Pﬁ/\ (x2) P, has compact support in x;, all together AA (x1) Pi/\ (x2) Py € J1 (H). Note

that this is now stronger than what we used in (16) because now we may use the cyclicity to move P alone (P is bounded,
AN (x7) P A (x2) Py is trace class, so we may employ cyclicity):

Tr(AA7;) = —Tr(PHA/\(m)PﬁA(xz)PH)

—Tr (A/\ (x1) PLA (x2) Py 2)
- Tr (A/\(m)Pi/\(xz)Pu)
Similarly we have
Tr(AAy;) = Tr(PﬁA/\(mPHA(XZ)Pﬁ)

= Tr (A/\ (x1) PuA (x2) Pi)
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so that
Aoy = iTr(AA12 —AAL)
— iTr (7A/\ (x1) PuA (x2) Pir + AA (x71) PuA (x2) Pi)
= iTr (A/\ (x1) (—Pu/\ (x2) Py + PuA (x2) Pi))
= ATr(AA (x1) [A(x2), Pul)
= i) (8n, AA(x1)[A(x2), Pyuldn)

nezZ?

= i) (5n, AA(x1) (A (x2) Pu— PuA (x2)) Bn)
neZ?2

= i) (8n, AA(M1) (A(N2) Py —PuA (12)) Bn)
nezZ?

=0

O

6.4. The Kubo-Thouless Formula in the Infinite Volume Limit. Next we want to consider the limit when supp (A’) be-
comes infinite.

J/z
o ///“—’ Ay

°p

where L = (L7, Ly).
Then except for small errors in the boundaries of the rectangle, we have

oy = Tr (xLPy [x1, Pul, [x2, Pul) 17)

lim
IL—oc0 L1L2
X4

This works because where the functions A change, they are linear of the form A (x;) = * and otherwise they are zero far

1

enough to the left and unsupported by the whole operator far enough to the right. Thus the characteristic function captures
most of this information. If the limit exists, we may write

op = iTr' (Pullxq, Pul, [x2, Pull) (18)
where Tr' is trace per unit area. Similarly to (16) we can also write

oy = —iTr’ (Pux1Pfgx2Pu—PszPfgx1Pu> (19)

6.5. Explicit Computation for the Landau Hamiltonian. As usual we start with a classical picture:

A= W
r= iﬁ_;v—//[)’

0
Our model is that of independent electrons moving freely under the influence of a magnetic field (and the electric field
is later added as a perturbation). The classical unperturbed orbits are circular motion. We denote by G the vector from the
particle’s position x to the center of the circular motion. The from the origin, the center of the circular motion, called “the
guiding center”, is given by G + x.

We know that the radius is
I 1%
a¢
or in appropriate units (m = 3 =h =1) r = § so that
7é\3 XV
G
B

Classically, x + G is a constant of motion (obviously from the picture the centers of the circular motion are constant).
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6.5.1. Exercise. In fact also quantum mechanically we have
H xi+Gid = 0

Recall also that for the Landau levels we had degeneracy of -2 states per unit area (see 3.0.3). As a result,

B
Tr! (Pone Landau Level) =
where P [ andau Level 18 the projector onto one of the Landau levels. Thus
B
! — -
T (Pu) = Zﬂn

where n is the number of Landau levels with energy below .
Since [H, x; + Gi] = 0, we have [P, x; + G{] = 0. But that means P, (x; + G;) P;i =0 whence P,,x;P;; = —P.G{P.
Note also that x; is an “extensive” quantity in the sense that it grows as we take L; — oo and G; is an “intensive” quantity,
it does not change with L, since it is essentially the velocity.
Thus we start from (19) and make the replacement x; — G; to get:
oy = —iTr’ (P“G1 PirG2Py — PuG2Pi Gy Pp)
= —ATr'(PuGy (1 —Py) G2Pu —PuGy (1 —Py) GiPy)
= —iTr’ (PHG1 GzPH — PHG2G1 PH — PuG1 PHGZPH + PHG2PHG1 P}l)

—iTr! PH [G1, G3] P}l 7PHG1 PHGZPH + PuGZPuGIPu

o0 by cyclicity
= —iT’ (Pu [G1, G2l Pp.)
we evaluate the commutator
1
[G1, G2l = B2 v, —v1]
1
= 2 [vi, v2l

1
= @hﬂh — Ay, p2— Al

1.
= @1(31/1\2—52/\1)
_ 1
T B
As a result we find
op = —iTr’(P.[Gy, G2]Py)
1
= gTr/(PuPu)
_
T 2n

which is what we obtained previously in (9). Note that we can get different signs for oy, by working with holes rather than
electrons (thus changing the sign of q).

6.5.2. Remark. There is one transition in * where we used the cyclicity in order to argue that one term in the trace is zero.
Actually this term should be

lim Tr (XLPuG1PuG2Pu) = lim Tr(PuGZPuXLPuG1Pu)
L—oo 1Ly L—oo L1L2
= lim Tr (XLP}LGZPMG] PH) + lim Tr [P;J.GZPLL/ XL] PuG1 PH
L—oo L1y L—oo L7112 —_————

supported at bdry of rectangle

and we may neglect the second surface term as it L1L, is much larger than it. The support is at the boundary because i,
only changes on the boundary and G is proportional to the velocity. Note that it was crucial to change from x; to G; because
xq x L at the boundary and so we couldn’t have neglected the surface term with x;.
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7. LAUGHLIN’S PUMP REVISITED

7.1. The Index of a Pair of Projections. There is another way to compute the Hall conductivity which is closely related to
the argument of Laughlin’s pump. In order to describe this, we need to introduce the mathematical concept of an index of
a pair of projections, which was first developed in [6] and in [8].

In what follows, P and Q are two orthogonal (meaning self-adjoint) projections on a Hilbert space 3. Note we do not
assume Q = PL.
7.1.1. Definition. If P and Q are both of finite rank, define

Ind(P, Q) = dim(im(P))—dim (im (Q))

which measures the difference in the “size” (i.e. rank) of the projections.

Our main goal is to extend this definition for the case when P and Q are not necessarily of finite rank. To this end,
consider the following

7.1.2. Example. (Hilbert's Grand Hotel) Let 3 = 1? (N1) and define two self-adjoint projections

P =1
and

Q = 1-8 (51,
Then im (P) = 3 and im (Q) = 12 (N ;). Even though strictly speaking 7.1.1 does not apply here because dim (im (P)) =
dim (im (Q)) = oo, intuitively it seems like the difference between the two projections, spanned by the vector &7, should
result in an index of 1. Perhaps
md(P, Q) = Tr(P-Q)
= 1

Indeed when 7.1.1 does apply then

ne{neN | gn€im(P)uim(Q) }
= (@n, Pon) — > (@n, Qpn)
ne{nelN | pneim(P)uim(Q) } ne{neN | pneim(P)uim(Q) }

dim (im (P)) — dim (im (Q))
More generally we make the
7.1.3. Definition. Whenever the right hand side of the following equation is finite, we define

Ind (P, Q) := dim (im (P) Nker (Q)) — dim (ker (P) Nim (Q)) (20)

7.1.4. Claim. 7.1.3 agrees with 7.1.1 when both are defined.
Proof. Since P and Q are finite rank, we may use the rank-nullity theorem, which says that if T : V — W is a linear map
between two finite vector spaces then
dim (ker (T)) = dim (V) — dim (im (T))
Apply this on the map Q : im (P) — im (Q) given by ¥ — Q (). Then
ker(Q) = {PYeH|QPY =0}

= {beXH|Peim(P)nker(Q)}

= im(P)nker (Q)
and the rank-nullity theorem on Q gives

dim (im (P) nker Q) RNT dim (im (P)) — dim (im (Q))

= dim(im(P)) —dim (im (QP))
Next, define P : im (QP) — im (P) by ¥ — P ().
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Note that P is injective:

P € ker(P)
I
PQP¢ = O for some ¢ such that QP¢ =

1

(9, PQPp) = 0
1

(9, PQQPy) = 0
J

(QPo, QPp) = 0
1

v = 0

then we have

dim (ker (P)) = dim(im(QP))—dim [ im (P)
| R ——— ~—
0 im(PQP)
so that
dim (im (QP)) = dim (im (PQP))
< dim (im (PQ))
and similarly for the opposite direction so that dim (im (PQ)) = dim (im (QP)). Thus we have

dim (im (P) nker (Q)) —dim (im (Q) Nnker (P)) = dim (im(P)) —dim (im (QP)) —dim (im (Q)) — dim (im (PQ))
m

= dim (im (P)) —dim (im (Q))
(]
7.1.5. Claim. im (P) nker (Q) =ker (P—Q —1).
Proof. [C|If ¥ € im (P) Nker (Q) then Py = 1 and Qi = 0. Then
P-Q-1Y = -1
= 0
as desired.
Assume (P—Q—1)¢ =0. Then
W, (P=Q-1)p) =
— (b, QY)+ W, (P-1)) =
(W, QU)+ (b, Pry) = 0
(QU, QU) + (P, PLp) = 0
2
IQulP+|Prw|” = o
since the last two terms are both non-negative, they must be separately equal to zero and the result follows. O

7.1.6. Corollary. We can now rewrite the index as
Ind(P, Q) = dim(ker(P—Q—1))—dim (ker(Q—P—1))
= dim(ker(P—Q—1))—dim (ker (P—Q+ 1))
In words, the index is the difference in the multiplicity of the eigenvalue 1 of P — Q with the multiplicity of the eigenvalue —1 of P — Q.
7.1.7. Claim. The index is stable: If ||P — Q|| < 1 then
Ind(P,Q) = 0

Proof. Let{ € ker (P—Q —1). Theny = (P— Q). So
]|

(P=Q) |l
I[P = QIll[wll
1wl

([l

VASEVANIV/AN
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and we must conclude that ) = 0, so that ker (P — Q — 1) = 0. Similarly ker (P — Q + 1) =0. O

7.1.8. Claim. The index is unitary invariant: If U is a unitary map then

Ind(P, Q) = Ind(UPU*, UQU¥)
Proof. Let U be a unitary transformation. Define A :=P — Q.
Ind(P, Q) = dim (ker(A —1))—dim (ker (A +1))
and
Ind (UPU*, UQU*) = dim (ker (UPU* — UQU* — 1)) — dim (ker (UPU* —UQU* + 1))
= dim (ker (U(A —1)U*)) —dim (ker (U (A + 1) U*))
But
P € ker(UA-T1)U*)
I
UA-T)U*p = 0
I
(A—1)Uu*y = 0
I
u*p € ker(A—1)
where we have used the fact that U is an isomorphism. Since it is, the dimension of the kernel may be evaluated in the
transformed space U*J instead of J{ to yield the same number. The same goes for A + 1. O

7.1.9. Claim. If P and Q are as above then

(P-Q?P = P(P-Q)
P —PQP

so that
(P-?,p] = o
and similarly

(P, Q] = o

Proof. We have
(P-Q?,P] = P-Q?P-PP-Q’
= (P+Q—PQ—QP)P—-P(P+Q—-PQ—QP)
= P+QP—PQP—QP—P—PQ+PQ+PQP
= P—PQP—P+PQP
0
by symmetry the same holds for Q. O

7.1.10. Claim. If (P — Q)*™ ™" € g; () for some ny € N then
(P-Q*™ ! € 41 (%0
and
Tr(P—™) = Tr(P-Q?mt)
foralln > ny.

Proof. From 7.1.9 we have
{(P— Q)PP =(P—Q)*™ (P—PQP)
(P—Q)*™*2Q =(P—Q)*™(Q—-QPQ)

subtracting the two we obtain

(P o Q)2n0+3 _ (P _ Q)2n0+1 _ (P _ Q)Z‘n.o [PQr QP] (21)
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Next note that
[PQ, QPI = PQP—-QPQ
= PQQP—QPPQ—PQPQ + PQPQ
= [PQ, [Q, P]]
= [PQ QP-Q*-PQ+Q?]
= [PQ,[Q, P—-QI
so that

(P—Q)*™ [PQ, [Q, P— Q]
PQ [Q (P—?™*]

(P—Q)?™ [PQ, QP]

[

where in x we have used 7.1.9.
Now, Tr ([PQ, [Q, (P—Q)2mot! } D = 0 because:

1) (P—Q)*™*! gy (30).
(2) 1QJl =1 so that Q is bounded.
(3) {Q, (P— Q)zn“]} € g1 (H) as g1 (H) is a two-sided ideal in B (H).
(4) PQisbounded as [[PQl < [P[I[|Q[ = 1.
(5) Hence PQ {Q, (P— Q)Z“OH} and [Q, (P— Q)Z“OH} PQ are trace-class, again as J; (K) is a two-sided ideal in
B ().
(6) Thus we obtain
e R R
= mr(PQ[Q -]} -Tr([Q (P-Q?™"'] PQ)

LA, (PQ {Q, (P— Q)2n0+1D —Tr (PQ {Q, (P— Q)ZnoHD
= 0

where in »x we have used 6.3.13.

7.1.11. Claim. (Avron, Seiler, Simon in [8]) If Ing € N> such that (P — Q)Z“O+1 € J1 () then
md(P,Q) = Tr ((Pf Q)Z“ﬁ‘)

Proof. Writing the trace in the eigenbasis of P — Q (which exists because P — Q is compact by assumption) we get
Tr ((P _ Q)2n+1) _ Z A2 T
A

where A is an eigenvalue of P — Q, and m, is its multiplicity. Next note that ||P — Q|| < 1 so that o (P— Q) C [-1, 1] and so
in the limit n — oo, all eigenvalues which are strictly smaller than 1 in their absolute value converge to zero, and we are
left with

Jim Tr((P=Q?™") = (#)mr+(-Dmy
= my-—m_
= Ind(P, Q)

but on the other hand, 7.1.10 has showed us that Tr ((P - Q)Z“H) =Tr ((P — Q)Z“"H) for any n > ng so that the left
hand side becomes

lim Tr ((P—Q)Z“”> — lim Tr ((PiQ)Zno+1>

n—oo n—oo

Tr ((P . Q)Zno+1)

as desired.

The proof is now complete. For the record, we also recount here the other proof which was presented during the
lecture.

Start by defining:

and
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Claim. A2+B2=1

Proof. First compute

A? = P24+ Q*>-PQ-QP
= P+Q-{P, Q
and then
B2 = (1-P+Q*—(1-P)Q-Q(1L—P)

= 1-P)+Q—{1-P,Q}
- (1-—

P)+Q—-2Q+{P, Q}
— 1-P-Q+{P, Q}
O
Claim. {A, B} =0
Proof. We start with
A1} = {P-Q, 1}
= 2(P-Q)
and
{A,P+Q} = {P-Q,P+Q}
= (P-Q)(P+Q)+(P+Q)(P-Q)
— 2P-2Q
so that
= {A, 1}—{A,P+Q}
= 0
as desired. 0

Next define the multiplicity of the eigenvalue A of A (possibly zero):
m, = dim (ker (A —2)) VYA e C
Claim. my =m_, forall A ¢ {£1}.

Proof. Let A ¢ {£1} be given. Define B : ker (A —A) — ker (A + ) by By := Bip. We want to show B is a bijection. So let
P € ker (A — ) be given.
Using the fact that {A, B} = 0 we have
(A+ANBY = —-BA-ANUV
= 0
so that By € ker (A 4+ A) and B is well-defined.
Assume ker (B) #{0}. Then 3y € ker (A —A)\{0} such that By = 0. Hence B2} = 0. But B> = 1 — A2 so that

B2y (11 — A2> W

= (1-2%) v

as € ker (A —A). Since A € { &1 } then { = 0, which is a contradiction. We must conclude that ker (B) ={0}
Finally let ¢ € ker (A +A) be given. Then from the above By € ker (A —A) so that 121;2 € ker (A —A), which is
well-defined as A ¢ { £1}. Then
2
(%) -

1—A2 1—A2
(1-A2) %
1—A2
=

so that B is surjective. O
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Finally we can compute Tr ((P — Q)ZnOH ) Let { @1 ;¢ be an eigenbasis of P — Q with eigenvalues { A }; . Then we
have

Tr((P—Qf) = Tr(aZnet?)

= ) <<P1, 7\%“0+](91>

lelN

_ Z ?\fno+1

lelN

_ Z 7\2“°+1m>\
A2no+1 eO.(AZn0+1)

_ Z )\2110—0—1 (mA"ﬁ—mf)\)
A2no+1 EG(AZnOH)A)\ZnOH ~0

mp —m_q
Ind (P, Q)

]

7.1.12. Remark. We were able to do all the above manipulations with an eigenbasis of P — Q because P — Q was compact,
which follows from the fact that (P — Q)ZHOH € J1 (). However, it should be noted that it is possible that Ind (P, Q) is
defined via 7.1.3 even when (P — Q)Z“H ¢ J1 (H) for any n € N> (but such cases are exotic).

7.1.13. Claim. If P and Q are two orthogonal projetions such that Ind (P, Q) is defined, then
Ind (P, Q) =Ind (Cqp)

where Cqp : im (P) — im (Q) is given by Py — QP for all b € im (P) and the right hand side of the equation is the Fredholm
index of the Fredholm operator Cgp. Thus we obtain an expression for the index of a pair of projections as the Fredholm index of some
operator.

Proof. This is from [6] (proposition 3.1):
Note the definition (where we use coker (F) ~ ker (F*))

Ind(Cqp) = dim (ker (Cqp)) — dim (ker (Cgp))
But
ker (CQP) = {(veim(P):QPY =0}
= {veim(P): QP =0}
= ker(Q)Nim(P)
= ker(P—-Q-1)
where in the last step we have used 7.1.5 and
ker (cgp) = {Veim(Q):(QP)*p=0}
— (Y eim(Q):PQY =0}
= {beim(Q):PYp=0}

= ker(P)Nim (Q)
= ker(P-Q+1)
where we used the fact Q and P are self-adjoint. O
7.1.14. Corollary. If U is a unitary map then
Proof. From 7.1.13 we have

But U is a bijection, and is thus Fredholm with index 0. So im (UPU*) ~ im (P) and Ind (U) = 0. In addition, the Fredholm
index is additive under composition of maps so that we get the result. O
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7.1.15. Claim. The index is additive: For any self-adjoint projections P, Q and R we have
Ind(P,R) = Ind(P,Q)+1Ind(Q,R)
assuming either P — Q or Q — R are compact.
Proof. Using 7.1.13 we have to prove is:
Ind(Cgp :im(P) »im(R)) = Ind(Cqp:im(P) = im(Q))+Ind(Crq :im(Q) — im(R))

we know that the Fredholm index is additive under composition (using the “snake lemma” for instance, see [11] pp. 6)
so that

Ind (Cqp :im(P) = im(Q)) +Ind (Crg : im(Q) = im(R)) = Ind(CrgoCqp:im(P) — im(R))
but Cgp : im (P) — im (R) is given by
im(P)39 +— RPY
and Crq o Cqp :im (P) — im (R) is given by
im(P)>¢y +— RQPY
so that their difference map is (CRP —Crgo CQP) :im (P) — im (R) is given by
im(P)>9 ~— RPy—RQPY

— RO-QPY

= R(P-Q)PY
but we have assumed P — Q to be compact, and the product of compact and bounded operators is again compact, which

means the difference map (CRP —CrqgoC Qp) :im (P) — im (R) is compact. Now we can use a well-known result ([11]
pp. 37 Exercise 7) which says that if two maps differ by a compact map then their Fredholm index is the same. O

7.1.16. Claim. If U is unitary such that U —1 is compact then
Ind (P, UPU*) = 0

Proof. We use the representation via the Fredholm index to get
Ind (P, UPU*) = —Ind(PUP)

= —Ind|PUP—P(U—1P)

—_—
cpt.
= Ind(P)
= dim (ker (P)) — dim (ker (P*))
= 0
([l
7.1.17. Claim. If Uy and U, are two unitaries such that Uy — U, is compact then
Ind (U;PU3, U,PU3) = 0
Proof. Using the additivity we have
Ind (U;PU}, UpPU5) = Ind(U;PUS, P)+Ind (P, U;PU%)
O

7.1.18. Claim. If U is unitary such that |U—1| < % then
Ind (P, UPU*) = 0
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Proof. We can write

[P—UPU*| = [(1—WP+UP(1-—U"
< JUP (T —=U9)|[ + [T —U) P
< U P — U]+ [T —uf [Pl
YOY Y
= [[T-U*+[IT-u
< 1
and now use 7.1.7. O

7.1.19. Claim. If U is unitary and has an eigenbasis, and (P — UPU*) € J; (HH) then Ind (P, UPU*) = 0.

Proof. Since (P —UPU*) € 7 () we can use 7.1.11 with ng = 0 in this case. So if { pn },,c is the eigenbasis of U with

eigenvalues { Ay, },, cpy then
Ind (P, UPU*) Tr (P — UPU¥)

= Y {on, (P—UPU") @)

S o (-0 o)

nesome smaller set

‘)\n:|:1 O

O

7.2. The Hall Conductivity via Laughlin’s Pump and the index of a Pair of Projections. We now want to apply the
“machinery” of the previous section to calculate the Hall conductivity for a generic system. This exercise is thus parallel
to the one where we have used the Kubo formula, and later on we shall prove the two formulations are in fact equal. The
material in this section may also be found in [19].

We will use again the same idea of the Laughlin pump, but in a slightly different geometry:

We now have a sample which is an infinite two-dimensional plane, with magnetic field which is perpendicular to it, and
the electric field will now be radial into the origin. To produce an electric field, we imagine there is a magnetic flux which is
increased from 0 to ¢ which passes through the origin perpendicular to the plane. This change in flux produces an electric
field which is radial inwards into the origin. Then the charge Q traversing the fiducial dashed-line C inwards is given by

Q = oud
where we use units of c =h = 1.
The flux quantum is now ¢ = 2.
The flux is generated by a gauge potential A such that

jEA-ds = ¢
C

One possible choice is A = V (% arg (x)) = Vx where x = % arg (x). Now observe that if x were single valued, then a

gauge of A = 0 is equivalent to A = Vx and the Hamiltonian H is equivalent to UHU* with U a unitary map given by
U = exp (ix). Note that even though x is not single valued, U is single valued when ¢ = 2m.

7.2.1. Claim. If C is the circle at infinity then the Hall conductivity is given by

on = ;—ﬂlnd (P, UPU¥) (22)

where U is as above with ¢ = 27t (so U = e*a8(¥) = %) and P is the Fermi projection of the system with ¢ = 0. Note that in our

convention, Tr (P) is the number of particles, so that Tr (P) is infinite.

Proof. Note that because H and UHU* are the Hamiltonians of the systems with and without magnetic flux, UPU* is the
Fermi projection for the system with ¢ = 2.

Now assume that ¢ is time dependent and increases from time t = 0 to time t = to such that ¢ (0) =0 and ¢ (to) = 2m.
Let U (t, 0) be the propagator (time evolution operator) of a state from time 0 to time t for some t € [0, to] of the system
described by H.
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Then because the index of a pair of projections “somehow” measures the difference between the two of them (the
difference in the number of states they project onto, their rank), it follows that
Ind (U (to, 0) PU (to, 0)*, UPU*)

measures how many states (that is, how much charge) moved from the circle C at infinity as t went from 0 to to,
U (to, 0) PU (to, 0)* being the time-evolved Fermi sea and UPU* being the Fermi sea which had no time evolution and
with flux of ¢ = 27 to begin with. So we write

Q - Ind (U (to, 0) PU (to, 0)*, UPU)

dditivit _ .
ACCEVY na (U(to, 0)PU(to, 0)*, P) 4+ Ind (P, UPU™)

= Ind (U (t, 0)PU(t, 0)*, P) |t:t +Ind (P, UPU*)
,P)

Since U is continuous in t, f (t) := Ind (u (t, 0)PU(t, 0)*
for t = 0. Thus it must be zero at all other times. Thus

is a continuous function of t which is integer valued and 0

Q = Ind(P, UPU")
so that
1
oy = =—Ind(P, UPU*)
27
as desired. 0

7.2.2. Remark. Note that our way to associate the charge that moved inward into the circle at infinity with
Ind (U (to, 0) PU (to, 0)*, UPU¥)

is not entirely well-founded, because there is no concrete physical reason to associate the index of a pair of projections with
the number of states differing between them. All we have done in the discussion about an index of pair of projections is
merely show that when both notions are defined (i.e. in the finite case) they agree. However in the infinite case it is not
completely clear what the index of pair of projections exactly measures. Thus the more cautious way to show the claim
would be to work with a finite circle C, get some expression for the charge that passed into the circle, and only in the end
take the limit of the radius of C going to infinity. In the end one would get that this limit should converge to

Ind (P, UPU*)

7.2.3. Remark. One might wonder why was it necessary to assume that the electric field is small (so that we could use
perturbation theory) whereas in the above proof there was no mentioning of how big or small the electric field (that is, the
rate of change of the flux ¢) has to be for the derivation to be valid. It appears that if one were to really follow through with
the purist derivation which is suggested in 7.2.2, then for the calculations to go through with a finite radius for C, it must be
necessary for ¢ to be small for the adiabatic approximation to hold.

7.2.4. Claim. (P —UPU*)? € 7 ()

Proof. First note that (P — UPU*) ¢ J; (H(). This can be substrantiated from the following heuristic argument (this is not a
proof yet):

(bn, (P=UPU*)dm) = (6n, Pbm)— (&n, UPU*om)

6n/ P5m < —iarg(n 5 o Pe—iarg(m)6m>
(8, POm) (1 _ eilarg(n )farg(m))>

= (50, Pom) (1—et4mom)

since we are inquiring about the question if this object is trace class or not, we consider the case when ||n|| is large. Recall
that (65, Pdm) decays exponentially with ||m —n||. So that we get

In| large, |m—n|| small
_>

(8n, (P —UPU*) bm) (6n, Pom) (—i£ (m, 0, n))

when ||m —n|| is held fixed, £ (m, 0, n) < O (m) However, this is not summable in two dimensions. Similarly one

would find for the third power that the matrix element is x O < ), which is summable.

1
In]l®
The reason this is not a proof is that, as in 6.3.7, in order to compute the trace, one first has to ascertain that

Tr(JP—UPU*) < oo

which we have not done, so it is illegitimate to compute } .2 (5n, (P —UPU*) &,,) which happens to be equal to zero
(but this sum is not the trace, because, again, the trace is not defined). This is very similar to the situation in 6.3.14.

In order to properly prove that (P — UPU*) ¢ J; (3(), one would have to show that } .2 (on, [P —UPU*|8y,) does not
converge. One way to see that is to explicitly compute [P — UPU*|. Another way is to compute the Hilbert-Schmidt norm
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of P — UPU*. If this is infinite, then the trace-class norm is also infinite, as it is known that the Hilbert-Schmidt norm is
smaller than the trace class norm:

IP—UPU*||f;s = Tr((P—UPU*)(P—UPU*))
= Tr((P-urur?)
-y <5n, (P—UPU*)26n>
nez?

= ) ) (8n, (P=UPU")8m) (5, (P—UPU")5p)
nez? mez?

= Y ) (8n, (P=UPU*)8m) ((P—UPU*) b, bn)

nezZ? meZz?

= Y ) ldn, (P—UPU") &)

nez? mez?
= 2 2 \ Sn, Pdm) (1 - ei(afg(n)*arg(mn) ‘2
nez? mezZ?
1 2
= Y Y l(5n, Pom)P4 {sin <24 (m, 0, n))]
nez? mez?
and now we obtain something which is proportional to O ( HH]HZ ) , again, not summable in two-dimensions. O

7.2.5. Claim. If H is invariant under the reversal of time, then oy = 0.

Proof. Time-reversal is implemented on the Hilbert space as a map 6 : 3 — H such that:

(1) 6 is an anti-C-linear, anti-unitary map.

(2) 82 = —1 (because we deal with Fermions).
And the invariance under time-reversal implies [H, 8] = 0. Thus the Fermi projection also obeys [P, 8] = 0, that is,
P = 0P0~'. Then we have

on = lend(P, uPU*)
_ —Ind( e*‘,uepe*‘u*)
x —Ind(ePe 1 eu*PUO~ )
= ;—ﬂlnd(P,U*PU)

= lInd (urPu*, pP)

27
= —on
where in x we have used the fact that
pu = getars(x)
e*iarg (x) 0
u*e
which follows from the anti-C-linearity of 6. O

7.2.6. Claim. Let g: IR — R be a bounded odd function such that
g(oc):oc+(9(oc3> (23)
near o = 0, ul) € Z2 pe given forall 1 € {1, 2, 3}. Then

(2) (3) (3) (1) (1) (2) — (1) (2) (3)
ZZ*(9<4(u ,p,u ))—i—g(l(u ,p,u ))—i—g(i(u ,p,u ))) ZnArea(u ,uv u ) (24)

peZ
Proof. First note that if g = 1, then the value of the expression

(5 (46902 (< (52,7 9)) (4 (07 5.5 g

N =N —

where we assume / (u(i), p, u(i)) € (—m, ) is the angle of viewed from p € R? of uld) relative to uV) and 7%+ .= 72 + [
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is quite simple and given by
peA (um, u®@ u(s))
peoA (um, u®@ 43
péA (um, u® um) A (u(l), u® u(s))

the way to see this is to draw a triangle A (u(l), u?), u(3)) three times and consider the possible cases.

27

O N= =

As a result, (25) measures whether p is inside the triangle, on its boundary or out of it, with certain weight, and so the
sum over the whole of Z* gives us the number of lattice points inside the triangle, that is, its area times 27.
Thus we seek to prove that for f := g — 1 we have

Z (f (4 (um, P, u(3)>) +f (Z (u(s), P, um)> +f (4 (u(l), P, um))) = 0 (26)

peZ?

Note that due to our assumption (23) we have f («) «x O (oc3) so that f (4 (u(i), P, u(i))) o HP1H3 for large ||p||. As a result,

even though each of the three summands in the left hand side of (24) is not summable because g (4 (u(i), p, u(j)>) o m,

now each of the three terms in the left hand side of (26) is summable and so we need to prove:
Z f (4 (u(z), p, u(S))) + Z f (Z (u(3), P, u“))) + Z f (Z (u(l), p, u(z))> = 0 (27)
PEZz* pEZZ* pEZZ*
But for any (i, j) € {1, 2, 30,
y ot (4 (u(i), P, u(i))) - 0
Pezz*

This is because we may split this sum from a sum on the whole lattice Z2* into two sums on two half-lattices, where the
line dividing the two is given by the vector ul) —u!). The point is that for each point on the first half-lattice, there is a
symmetric point on the other half lattice. The two contribute exactly the same magnitude with opposite signs, because if
p* is the reflected point corresponding to p then

/ (um, p, u(j)) - (u(j), P, u(i))
—/ (u(i), P, u(j))

so that the whole sum is zero. O

7.2.7. Claim. The area of a triangle is given by

D A —p1) =AM —p)) (A2 —p2) —A(l2—p2)) — (1 2)] = 2Area(m, n, 1)
pez2*

for any triangle with the vertices (m, n, 1).

Proof. Note that
D Ami—pi)—Ani—pi)]
piEZL*

roughly gives the number of lattice points between m; and n;, that is, it gives the number m; —n; where “roughly”
means if A were a sharp step function which is 0 for negative values and 1 for positive values. Since we are working on a
lattice, the Kubo formula goes through when we exchange the smooth switch function A with a step function. Thus we
assume that is what is being done throughout and so for the rest of the proof A is a step function (Note that we could
have also instead integrated over a continuous p over R?).

Then we have

> A —p) =AM —p)) Az —p2) —AL—p2) = (1 2)] = (my—n)(nz—1p)—(ma—n3) (n — 1)
peZ2*
[(m—n) x (n—1)[&

= 2|Area(m, n,1)|é

where the vector & gives the orientation of the triangle and so all together we obtain the result. O

7.2.8. Claim. (Bellissard et al. or in the present form [8]) The expression for oy via the Kubo formula given in (13) is equal to the
expression for oy via an index of pair of projections given in (22), provided that the Fermi energy w is in a mobility gap. That is,

ler ((P _ upu*)3) — iTr(PIA (), Pl, [A(x2), PI))
vis

In particular, this proves that the Kubo formula results in an integer number for the Hall conductivity.



NOTES ON TOPOLOGICAL ASPECTS OF CONDENSED MATTER PHYSICS 58

Proof. The proof may be found in [2] and in [19] pp. 9.
We start by computing the matrix elements in the position basis:

<5nl, (P—UuPU*)3 5n2> = (8n,, (P—UPU) T (P—UPU*) L (P —UPU*) 6y, )
= > (8ny, (P—UPU*)8n; (8nj, ) (P—UPU*) 8n, (8, -) (P—UPU*) 5p, )
(n3,ny)eZ4
= 3 i (8ny, (P —UPU*) 8p, ) (8ny, (P—UPU*) 8y, ) (8n,, (P—UPU*) 8n,)
(n3,ng)eZ*
) 3 i (5ms) Pbny) (] _ islmg, O,nl)) (5, POn,) (] _ ei(ng, O,n3]) (8n,, Pon,) (1 _ iy, 0,n4])
(n3,ny)eZ4
Tr((Pupu?) = 3 (on, (P—UPUT 5, )

l‘l]EZ2
= D (Sny Poay) (1- M Om) (5, oy, ) (1 M4 0ma)) (5, Pog ) (1 et (me0ma))

(nq,n3,n4)€Z8
= Y (5n PE) (81, Pom) (8m, PO (1—et4hOm)) (7 et lm O (7 isin 0 m))
(n,1, m)eZé

next we simplify

(] _ il o,n)> (1 _ei4(m, o,1)) (1 _ei4m, O,m)) = ]_ei4L0n) _ ,iZ(m,0,1) _ ,i4(n,0,m) _ ,iZ(1,0,n),iZ(m,0,1),i4(n,0,m)

1
_ +eié(l, O,n)eié(m, o1 +ei£(m, O,l)eié(n, 0, m) + eié(l,O,n)eié(n,O,m)

ei4(m, 0,n)

_eié{l,O,n) iZ(m,0,1) ié(n,O,m)_’_

—€ e
Jreié(m, 0,n) + eié(n, o,1 + eié(l, 0, m)

= 2i(sin(£(m, 0, n))+sin(Z(n, 0,1)) +sin (£ (1, 0, m)))
Next note that the expression for Tr ((P, UPU*)s) cannot depend on the choice of the origin as we could have picked any
translate U (x) = exp (iarg (x + p)) to do the job. Thus:
Tr ((P, UPU*)3) = Z (6n, P81) (81, Pdm) (6m, Pdn) 21 (sin (£ (m, 0, n)) +sin (£ (n, 0, 1)) +sin (£ (1, 0, m)))
(n,1,m)eZ¢

= D> (5n, P8)) (81, Pdm) (8m, Pdn) 21 (sin (£ (m, p, n)) +sin (£ (n, p, 1)) +sin (£ (I, p, m))) Vp€R?
(n,1,m)ezZ6

« 1
£ o > ) (8n,P8) (51, Pdm) (8m, POn) x
PEA] (n,1,m)eZb

x2i(sin (£ (m, p, n)) +sin(Z(n, p, 1)) +sin (£ (1, p, m))) VL>0
. 1
= lm 5 > > (8a, P8) (51, Pom) (Bm, Pa) x
PEA] (n,1, m)eZé
x2i(sin (£ (m, p, n)) +sin (£ (n, p, 1)) +sin (£ (1, p, m)))

where in x we used the fact that since the expression does not depend on p, we could also take the average instead and
we have denoted A} == {p e Z?* | |p|| < L}.
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Because the projectors are localized, we could replace the ranges of the two sums without a big error (see [19] pp. 10)

Tr ((P, upu*)3) — lim — Y Y (5n, P8)) (51, Pom) (Sm, Pon) x
PEZ2* (n,1,m)EN}

%21 (sin (£ (m, p, n)) +sin (£ (n, p, 1)) +sin (£ (1, p, m)))
lim - > (8n, P81) (51, POm) (8m, Pn) 2i x 27Area (m, n, 1)

L5 L2
(n, 1, m)eA}
. 1 )
= Jim - > (8n, P81) (51, POm) (8m, Pon)
(n, 1, m)eA}
X2 Y [(A(my —p1) = Ay —p1) (A2 —p2) — Al —p2)) — (1 4 2)]
PGZZ*

o .
= lim 5 > ) (8n, P8)) (81, Pom) (5m, Pon) i
PEA] (n,1,m)eZ2*

X2 [(A(mg —p1) =AM —p1)) (A(ma —p2) = Al —p2)) — (1 < 2)]

2w > (8n, P8) (81, Pdm) (Sm, Pon) [(A (m1) — A (1)) (A (n2) = A(L2)) — (1 4 2)]
(n,1, m)eZ2*
2 Y (81, Pdm) (8m, Pdn) (8n, PO (A7 (m) — Ay (n)) (A2 (n) = Az (1)) — (1 ¢ 2)]
(I, m,n)cZ6
= 2m Y (8, P((AMP—PA1) (A2P—PA2) — (1 4 2)) 5y)
lez?

= 2miTr(PI[A;, P], [Az, PI])

where we used in x 7.2.6 since sin satisfies the conditions required by the claim, and in «x we used 7.2.7, and in | x| we
again used the fact that the summand does not depend on the choice of origin, so it is equal to its average.

7.2.9. Remark. 7.2.8 can be thought of schematically as an analogy to the Gauss-Bonnet theorem ([30] pp. 167), which roughly
says that if M is a compact smooth orientable manifold of dimension two and g is its genus then

1
1—g = GjMRdA (28)

where R is the scalar curvature of M and dA is the element of area on the surface. The analogy with 7.2.8 is based on the
fact that

(1) The index of a pair of projections, being a difference of the dimensions of two spaces, is obviously an integer. In
addition we have seen that it is stable under smooth deformations. So is the left hand side of (28): the genus is stable
under smooth deformations.

(2) The Kubo formula is a sort of curvature (in the sense that will become clear below in the periodic sample case, or
using non-commutative geometry): One can make the following analogies:

R(X,Y) = VxVy—VyVx—Vixy
VX ~ [Ar }

JM dA ~ Tr(Y)
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8. THE PERIODIC CASE

Even though we already have two expressions for the Hall conductivity, namely the one that arises as a linear response
via the Kubo formula, (13), and the one that arises from the Laughlin argument as a charge pump, (22), we will now develop
(13) further for the case when the sample is periodic. Even though this is not justified physically (as a completely periodic
sample will have no disorder, thus no mobility gap and thus no plateaus, thus giving an incomplete description of the
quantum Hall effect), it was historically the first explanation for the fact that the conductivity is an integer value at integer
values of the filling factor (see [46]) and further, the geometric and topological nature of the effect is seen via this description.
To maintain this geometric perspective for the non-periodic case one could follow [10], though in our treatment we do not
venture so far.

8.1. Vector Bundles. To understand the periodic case we need the concept of “vector bundles”, which we present below. A
good reference for this section is the first part of [5] (math), or [35] (physics). Intuitively, one should think of a vector bundle
as a family of vector spaces parametrized by an arbitrary topological space, such that locally the whole space looks like a
Cartesian product of the parameter space times the vector space. Thus the “point” of vector bundles is the global structure,
analogously to manifolds which locally “look” like Euclidean space.

8.1.1. Definition. Let X € Obj (Top) be given, which is called the base space. A family of vector spaces over X is the following
set of data and conditions:

(1) E € Obj (Top), called the total space.
(2) p € Mortoyp (E, X), called the projection map.
(3) Local continuous vector space structure: for each x € X, we define

Exi=p ' ((x)})
together with the subspace topology, and call it the fiber over x. The data is then a local vector addition map
ax € Mortep (Ex X Ex, Ex)
and a local scalar multiplicaiton map
mx € MoTTep (C x Ey, Ex)
such that these maps and E form a topological vector space:

(Ex, ax, my) € Obj (TVS)

8.1.2. Definition. A section of a family p : E — X is some continuous map s € Mort,y, (X, E) such that:

pos=1x

8.1.3. Definition. A homomorphism from one family p : E — X to another § : £ — X (or a “morphism of families of vector
spaces over X”) is a continuous map ¢ € Morr,y, (E, E) such that:

(1) ¢ “respects” the base-space:
poo=p
Equivalently, the following diagram commutes:

E
|
X

(2) For each x € X, the induced map ¢« : Ex — Ey defined via ¢y := @lg, is also C-linear, that is,

N
bS]

heil
rm

(p|Ex € MorVectC (F—X/ Ex)

8.1.4. Definition. An isomorphism from one family p : E — X to another { : E — X is a morphism of families of vector spaces
over X,
e:E—E

1

which is bijective and such that ¢~ is also continuous.

8.1.5. Remark. Note that then, automatically, we have

and
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8.1.6. Example. (The product family) Let n € N> be given and X € Obj (Top). Define E := X x C™ with C™ having the
standard topology and E having the product topology and p : E — X as the projection onto the first factor:
(x, v) B x

By definition of the product topology, p is continuous. If x € X, then

Ex = p '({x)
= {x}xC"
= C"
where the last isomorphism is in Moryectp. E is called the product family over X with fiber C™. If E is any other family

XxCn
of vector spaces over X which is isomorphic (as a family of vector spaces over X) to some product family, then F is called a

trivial family.

8.1.7. Claim. (The restriction of the basespace) Let Y C X and E be a family of vector spaces over X with projection p. Then p :
p~ ' (Y) = Y defined by
ple)=ple) Veep ' (V)
is a family over Y.
It is called the restriction of € to' Y and is denoted by
PIEIY Y

Proof. Leti:Y — X be the inclusion map and i* : E|Y < E be also the inclusion map. Then $ = p oi* so that p is also
continuous.

The vector space operations are also continuous with respect to the subspace topology. Indeed, consider vector addi-
tion in E|Y. Lety € Y be given, and denote the fiber aty in E|y by £y and the fiber at y in E by Ey as usual. Then vector
addition aty in E|Y, @y : Eﬁ — £ is defined via vector additionin E, ay : Eﬁ — Ey, by

dy (e, e2) = ay(i*(er),i"(e2)) V(ehez)EEﬁ

and because ay o (i* x i*) is continuous, d is continuous. Similarly for scalar multiplication. O

8.1.8. Definition. A family E of vector spaces over X is said to locally trivial iff for every x € X there exists U € Nbhdx (x)
such that E|y, (asin 8.1.7) is a trivial family (as in 8.1.6). A family E of vector spaces over X which is locally trivial is a vector
bundle (unlike a family of vector over X, which is not required to be locally trivial). A trivial family is a trivial bundle.

8.1.9. Definition. Let p : E — X be a vector bundle. A sub-bundle F is a subset of E such that poi: F — X is a vector bundle
over X, where i : F — E is the inclusion map, and F is considered with the subspace topology.

8.1.10. Claim. For p : E — X a vector bundle, the fiber is locally fixed. As a result it is fixed on each connected component of X.

Proof. Because p : E — X is a vector bundle, for each x € X there is some neighborhoud U € Nbhdx (x) such that
@ : Ely = UxV for some V € obj (Vectc), where ¢ is a isomorphism of family of vector spaces over X. In particular ¢
is C-linear when restricted to a particular point, ¢|, : Ex = {x}x V for all x € U. Thus, in U, all the fibers E, are really
(UxV),
isomorphic to V as vector spaces.
Now for this given V, define

S = {x’eX|3Uu’eNbhdx (x’) AJisomorphism of families ¢’ : Ely;, - U’ x V }

Then S € Open (X) because such a U’ as in the above condition actually has U’ C S (with the same U’ for all its points).
But S € Closed (X) as well. Thus S must be a connected component of X, and on it, V is “fixed”. O

8.1.11. Corollary. For connected X and finite fiber, X > x — dim (Ex) € IN is constant. It is called the rank, or dimension, of the
bundle.

8.1.12. Definition. (Transition Maps) Let p : E — X be a vector bundle, and let x € X be given. Let U; and U, be two

©1 ©2
neighborhouds of x in X such that there are family isomorphisms El;;, = Uj x Vand E[y, = Uz x V. Then we have the

restricted maps which are also isomorphisms

o1luynu, ¢ Blugau, — WinUzxV
@ZhhﬁUz:Ehhﬁuz — UijNnuU, xV
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so that the following map is defined and is an isormorphism of U; N'U; x V to itself:
er2:U1NU;xV — UnNUxV
given by

—1
¢12 = @1ly,nu, © (‘Pl|umu2)
Since the range of @1, is Uy NU; x V, we can compose it with a projection onto the second factor to get a map with range V:
UnuUxVvV-yv
or better yet we get the map
t12:U;NU; — Aut (V)
That is,
@125, v) =(x, tiz(xJv) e Uy NUz x V
When dim (V) < oo, we call the transition maps tqg (x, -) transition matrices.
8.1.13. Claim. For the transition maps we have the following properties:
(1) taa (x) =1y.
(2) tap (x) = tpa (07",
(3) tap () otpy (X) =ty (x).
Proof. Let o, B and vy label three different trivializations, whose intersection contains some given point x € X. That is,

©x
Ely, = Ux x ViforallX e {a B, v}

Then
— -1
Pax = Palu,nu,© ((ch|uomuo¢>
= 11u(xxv
so that the corresponding ty« (x, -) must be 1.
Next,
N
-1
(0p«) = (‘Pﬁ|uﬁmua°(¢’cx‘uﬁmua) >
-1
Palugnug © (‘PB |uﬁmua>
= Pu«p
so the corresponding transition map obeys the same constraint.
Similarly for the last statement. 4

8.1.14. Claim. Let V and X be two given topological spaces, with an open cover { Uy }ca for X, and a set of continuous transition
functions top : Ue NUpg — Aut (V) on each nonempty intersection, such that tog satisfy the conditions of 8.1.13. Then these data
determines uniquely a vector bundle over X (up to vector bundle isomorphisms).

Proof. Define
E o= (Haealox V)/~

where Ug x V3 (x, v) ~ (y, u) € Uy x Viff x =y and t4p (x) v = u. This is indeed an equivalence relation:

e Reflexive: (x, v) ~ (x, v) asx = x and to (x) v = Tyv =.

e Symmetric: If (x, v) ~ (y, u) then x =y and t4p (x) v =u, so that y = x and

-1
v = (tap(x)) u
tpa (X) U

= 1tp« (yu

so that (y, u) ~ (x, v) indeed.
e Transitive: If (x, v) ~ (y, u) and (y, u) ~ (z, w) then x = z and
tay (X)v = top (Xx)otpgy (X)Vv
= top(Ylotpy (x)v
= tup(ylou
= w
The topology on E is given by the following heirarchy:

(1) Each U has its subspace topology inherited from X and V comes with a predetermined topology.
(2) Uy x V has the product topology.

(B) (Ixealy x V) has the disjoint union topology.

(4) E has the quotient topology.
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We then define the projection p : E — X by
pxVv)]) = x
and also define maps for each x € A, @ : Ely, — U x V by
oo ([, V) = (x,v)

Claim. p is continuous.

Proof. Let q : lIycaUy X V — E be the quotient map, which is continuous and open by definition of the quotient
topology, and let iy : Uy x V — IIxecaly x V be the canonical injections, which are continuous and clopen by
definition of the disjoint union topology. Let U € Open (X). Then

p (W) = {lx,v)]eElxeU}
= {ql(x,v)) eElxelU}
= {qia(x,v)) EE|xeUnNUy}
= U (aoia) (UNUy)

xEA
€ Open(E)
as the composition of two open maps is again open. O

Note that p also respects the base space.
Then if V is a topological vector space then each fiber is

Ex = {llyviletly=x}
also has continuous vector space operations, so that E is indeed a family of vector spaces over X.
Claim. @ is well-defined.

Proof. Letx € Ug. If (x, v) ~ (x, u) then we want @« ([(x, v)]) = @« ([(x, u)]). But (x, v) ~ (x, u) means tyy (x)v = u. But
tao (x) = 1y so that v = u indeed. O

Claim. @ is a family isomorphism.
Proof. ¢« is injective: If @« ([x, v]) = ¢« (ly, ul) then (x, v) ~ (y, u). Butsince too =1, (x, v) = (y, u). @« is surjective.
Note that @' : Ux x V — Ely is given by

(9;1 = (oiq
and since these two maps are both continuous and open, ¢« is continuous and so is @'
Lastly, restricted to one point, we have

((Poc)x = (ch|EX
= {[lyv)l€eEly=x}—={x}xV:ityp (x)
for some «, 3, so that this is indeed a linear map. O

8.1.15. Remark. If we are given two trivializations, (¢, U) and ($, U) (U being the same), then
oo ':UxV — UxV
for some vector space V. Call the map onto the second factor g : U x V — V, that is

exv) = (xg(xV)
Then g (x) € Aut (V) for any x € U. In fact, any map U — Aut (V) defines another trivialization ¢ from ¢.

One may ask how the transition maps t change from via gauge transformations g. Then we have
Ppa = Ppody
= gpololody’
= Ppowg'owpory 00ao Py
(¢p005") o (0po0a') o (0aoda')
— (#powp')o0pac(0aoda’)
so that on the level of the vector component

Tpa (6 ) = gplx Jotpa(x, Jogalx, )"
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8.1.16. Example. (The Tangent Bundle of a Manifold) In this example we consider Vectr instead of Vectc. Let X be a differen-
tiable real manifold of dimension n. At each point x € X, a real vector space TyM is defined as the vector space of all linear
and Leibnitz maps from ¥ (X) = {f: X — R | fis smooth } to R. Via the charts we get transition maps, which we can use to
define a vector bundle as in 8.1.14.

Explicitly, the tangent bundle is defined by

X = [J{x}IxTM
xeX
and a projection is defined by p : TX — X by
TX> (x, V) > xeX
Then TX is a vector bundle with fiber R™. In fact, let A be an indexing set, and (O«, V) 4c anatlas for X, thatis Py : Ox —
U is a homeomorphism for some Uy € Open (R™), where O, € Open (X). Then for each x € X there is some oy € A such

that O«, > x. In this case,
n

{70031 (0 (fowa!)) Wa, () eR |

is a basis for T, X, and so we obtain a local trivialization of p~' (O, )

i=1

(o™ :'Pil (Ox,) — Og, xR"
given by
ToX3 (V) B (3 v (wh), e VE,)
(recall that V (wfxx) is the ith component of the vector V € T,/ X when T,/ X is spanned in the basis above).
Then we define the topology on TX by
Open (TX) = {W C TX ) Ou (me*‘ (ocx)) € Oq x R™Wa € A}

For instance, note that TS! is a trivial vector bundle, that is
TST=s" xR

whereas TS? is not
TS? 52 x R?

8.1.17. Example. (The tautological line bundle) Let V € Obj (Vectc) (not necessarily finite dimensional) and let
X = PV
= Gr (V)
= {&vCVi]|veV{0}}
Thus every point in the base space X is really a line Cv (a one-dimensional subspace) in V. Define
E = {(Cv,9)eXxVI]velv}
with the subspace topology on it, with p : E — X given by (Cv, ¥) — Cv.
Then E is a vector bundle over X.
Proof. First, as restriction of a projection map, p is continuous. Next, let Cvy € X be given. Then
Ecoy, = P ({Cvo))
= {(Cv, V) eE[p((Cy,¥)) e{Cvo}}
= {(Cv,V)eE|Cv=Cvy}
{(Cvp, M eXxV|velv}

= {CVO } X C\)O
~ C
. . . . . . . 2
where the last equivalence is a morphism in Moryect.. The vector space operations are defined as ac,, : E¢v, — Ecve

given by
((Cvo, AMvo), (Cvo, A2vo)) = (Cvo, (A1 +22)vo)
This is continuous because it is the restriction of a : V2 — V to Cv3, that is, the composition of two continuous maps,
(with the inclusion map which is by definition continuous) and thus a continuous map. Similarly, mc¢,,, : C x E¢,,, — Ecy,
given by
(o, (Cvp, Avp)) = (Cvp, advg)

is continuous because it is the restriction of m: C x V — C to C x Cvy.

Then E is a family of vector spaces over X indeed.

Next, we want to show E is locally trivial so that it is also a vector bundle. For simplicity assume that V has the
structure of a Hilbert space (this is not strictly necessary but will make notation easier). Then define U,,, € Nbhdx (Cvo)
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as

Uy, = {Cvl{v,vo)#0}
which is open because
{veV]|{v,vy) =0}€ Closed (V)
and the the quotients map V — X is open. Then we should have
E|U\, = UVO x Cvyg
—_——
=p~! (leO)

Indeed,

P~ (Uvo)

= {(Cv, V) €E|p((Cv, V) €Uy, }
= {(Cv,ﬁ)eE!Cvero}

= {(Cv, V) €El(v,vo) #0}

E|u

Vo

this is homeomorphic to U,; x Cvy via the map ¢ : (Cv, V) — (Cv, %vo), because if (v, vo) # 0 and ¥ € Cv then
Cv = Cvy via the orthogonal projection. This map is continuous, with continuous inverse, and bijective. O

8.1.18. Example. Let H be a Hilbert space over C, X be a manifold and let Ex C H be a subspace of H which depends
smoothly on x € X. Then we define

E = {(x,W)eXxH|lueE }JCXxH

with the subset topology, and p : E — X by (x, u) — x. Then p : E — Xis a complex vector bundle, which is a subbundle (to
be defined later) of the trivial bundle X x H. Even though X x X is trivial, E may be non-trivial. For instance, one way to
obtain the subspaces E is to assume we have an operator H : H — J{ which depends on a parameter x € X, and which has
an isolated eigenvalue A (x) € C with corresponding eigenspace E.

8.1.19. Remark. Let s : X — E be a section of a vector bundle. For any x € X, we have some U € Nbhdx (x) such that
Ely ; U x V for some V € Obj (Vectc). Then

p(s(x)euxv vx' el
and if 7, : U x V — V is the projection onto the second slot, then

m(e(s(x)ev welUu
so that we have a continuous vector valued function

mpo@os:U—V

8.1.20. Claim. Let a vector bundle p : E — X be given such that x — dim (E) is constant, say, with valuen € N~ . Then E is trivial
iff there are n sections { s; }{—_; such that for each x € X,

span(si (x) [t e{1,...,n}) =E«

Proof. First assume that we have such a set of sections {s; }i* ; with
span(si (x)[ie{l,...,n}) =Ex

for all x € X. Let e € E. Then p(e) € X. Then there is some U € Nbhd,, (e (X) such that ¢ : El; — U x Vis a linear

isomorphism for V = C™. Then let (¢, ..., ¢n) be the expansion coefficients of 7, (¢ (e)) € V in the basis { s; (p (e)) K4,
that is,

@i :=(si(p(e)), m2 (¢ (e)))
where (-, -) is the inner product in V = C™. Now we can define
Vv:E — XxCmV
by
ele) = (ple), @1,..., on)
and must verify that { € Moryecp(x)- By construction we have that { respects the base space X. Next let x € X be given.
Then Py : Ex — {x} x C™ is a C-linear, because e — (s; (p (e)), 72 (¢ (e))) is linear inside the same fiber (p (e1) = p (e32)):
aer+ex = (si(ple)), ma (@ (xer +e2)))

= (si(p(e)), amy (@ (e1)) +m2 (¢ (e2)))

= o(si(ple)), m (¢ (e1))) + (si(p(e)), ma (¢ (e2)))
Routine verifications show that 1 is a continuous bijection with continuous inverse.
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Conversely, if E is trivial, then we have some ¥ : E — X x C™ which is a vector bundle isomorphism. Then we may
define the secitons as

si(x) = v (eq)

where e; is the ith basis vector of C™. [l

8.1.21. Example. Consider X = S! (the circle) and V = R. Then there exactly two possibilities up to isomorphisms. Using

8.1.14 we can work with transition maps. To trivialize S' = {e!® € C| ¢ € R }, we choose a covering of two open sets:

Uy :=S"\{—T}and U; := ST\ {+1}. Then U; NU, = S"\{+1}. Then to specify E we only need to specify a map
tio:UjNU; xR —- R

Then because t;; € Aut (R) (that is, t1, cannot be zero and thus cannot change sign along U; N U;) we obtain that the two
possibilities, up to isomorphisms, are

t12 (ei"’,v> = v vet? e ST veR
and
. g{ete .
ti2 (ew,v) = J{e. 3 >0 vel? e ST veR
—v J{e*} <0

The first option corresponds to the trivial bundle S! x R whereas the second one corresponds to the Moebius band.

r\’
A \—-/

0;7&2(,&‘_1/(] M Q’:\///z»a f
e V! o« —Arii ko)

Then there are exactly two possibilities up to vector bundle isomorphisms.

8.2. Bloch Decomposition. In this section we will be working in two space dimensions.

8.2.1. Definition. An affine space is a set together with a group homomorphism t : V — Sym (A) where V is a some vector
space considered as a group under vector addition, and Sym (A) is the group of bijections A — A, such that for any a € A,
the map ¢4 : V — A given by v — t (v) a is bijective.

8.2.2. Remark. Thus, an affine space is a vector space without an origin, and the maps ¢, make this identification: ¢, ' (a)
maps to 0 € R?.

We allow for two possibilities on the physical space:

Case 1. (Continuous) Physical space X is the affine space [E? (the affine space associated with R?).
Case2. (Discrete) Physical space Xis a lattice L C [E?, that is, after choosing an origin, we would get the set { nya; + nya; € R? | |
with a; and a, two linearly independent vectors of R? which determine L.

8.2.3. Definition. (Translation Symmetry Group) The translation symmetry group, £, is a group isomorphic to Z?, which acts
on X by

X = x+njar+nrax = Tpx (29)

for any n € Z2. a; and a; are two linearly independent vectors in R.

8.2.4. Definition. (Unit Cell) The unit cell is defined as € := X/£. In the continuous case, we have

e = E?/¢
= T?
where T? is the 2-torus, but the isomorphism is not canonical. In the discrete case we have
C = L/L (30)
= {1,...,N}

that is, a set of finitely many points.

8.2.5. Definition. (Characters) If G is a locally compact Abelian topological group, a character of G is a continuous group
homomorphism G — S'.
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8.2.6. Definition. (Dual Group) The dual group G* is the group of characters of G, with the group operation given by
pointwise multiplication of characters, and inverse being the complex conjugate of a character, and topology being the
compact-open topology as a subset of all continuous maps G — S'.

8.2.7. Definition. (Exponential of classes in the 2-torus) Let k € T? and n € Z?. Recall that T? is the 2-torus defined by
T2 = (IR/ZTcZ)Z, so that k = (k7 4+ 2nZ) x (k3 + 2nZ) (a product of two sets) for some k € R? (the choice of « is not unique).
Define

exp(ik-n) = exp(ik-n)

This is well defined. Indeed, if k’ € R? is another choice such that k = (k| + 2nZ) x (k} +2nZ) as well then (ki —«!) € 2nZ
so that

2
exp (ik’-n) = exp <1Z K{ni>
i=1

1=1

= exp (1Z (k{ni + K)nl))

i=1

(i)

Note that this was possible because n € Z2. If n were in R? this would have failed, and so

exp (ik - x)

is not defined for arbitrary x € R?.

8.2.8. Definition. The Brillouin zone is the dual group of £, £*. Explicitly, it is the set of all maps
Z?’s5n — eknes!
where the maps are indexed by k € T2.
The wave functions are then maps ¢ : X — C belonging to a Hilbert space

H = 12(X)

which is the space of all square integrable or summable maps.

£ is represented on 3 by a group homomorphism U : £ — U (H) into the group unitary maps on H. We actually also
allow that U (n) : H — 3 act on arbitrary maps X — C and not just on J{. The fact that U is a group homomorphism implies
that

UMm)oU(m)=UMm+m)
8.2.9. Example. One example for a choice of U is simply ordinary translations, that is,
(UMDY (x) = b(T-n(x)

where T, was defined in (29). Then

UMUmMP)(x) = UM (Tm(x))

= ¥ (Tm (Ton (%))
but T is also a group homomorphism so that
TmTn = T(nim

as desired.

The following material about direct integrals may be found in [37] section XIIL.16 for the case of constant fibers or in
[31]. Its essence is the generalization of complete reducibility to the case of unitary representations on infinite dimensional
Hilbert spaces.



NOTES ON TOPOLOGICAL ASPECTS OF CONDENSED MATTER PHYSICS 68

8.2.10. Definition. (Direct Integrals of Hilbert Spaces) Let (X, ) be a measure space. Assume that for each x € X, 7 (x) is a
Hilbert space. Define

&)
J F(x)du(x) = {[¢:x—> U ﬂ(x)} llb(x)eﬂ:f(X)VXEX/\(XH|1])(x)|j~f(x) 12 (X, u))}

X xeX

where 1\ ~ ¢ iff they agree p-almost-everywhere. As usual we will drop the class notation [{] in favor of the lighter 1.

Define vector addition and scalar multiplication on f;‘? F (x) du (x) pointwise in x. An inner product on f;‘? H(x) du (x) is
defined via

00 st = | 00,0 (XD disx) G

8.2.11. Remark. If pis a finite sum of delta measures then we recover the usual notion of direct sum of Hilbert spaces. Thus,
we obtain a sort of “continuous direct sum of vector spaces”.

8.2.12. Claim. j;‘? FC (x) dw (x) is a Hilbert space, separable if (X, ) is separable.

8.2.13. Claim. (Complete Reducibility) For a given separable Hilbert space H we have

@ ~
o= J 7 (k) dk
TZ
where
F(k) = {we}f‘unq):e*ik'“w Vneﬁ} Vk € T2

and any given \p € H may be written as
v o= | B0
T2

where (P : T? — Uye2 F (k) € f% FC (k) dk (an integral of vector-valued functions, defined for instance in [40] pp. 77)
Proof. One has to show an isomorphism between
e
H - J F (k) dk
T2
Let} € K be given. Define the map 1 : T2 — H by

B Ly etenyy 32)

2
(27) nez?

Then the claim is that
Hop — pex
is a linear isometric bijection. First we show ¥ (k) € F( (k). f m € £,
- 1 -~
U (k) = po > e MU Un
(271) nez?2
1 .
= Z elk'nun+m1b

2
(271) nez?

1 e (T—
n—on4m (zn)z Z elk (n m)unll)
nez2

— efik-mlb (k)

Next,

T _ L ik-n
Jthl)(k) = er ((27()2 Z ¢ unq)) dx

nez?
1 J ikn
= e dk Un
nezm (2m)” Jr b
8n,O
= U
= )
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8.2.14. Claim. A vector bundle is defined via

E o= {(k,q))ejrzxﬂf(xpeﬂ(k)}
where E is given the subspace topology, and the projection map is defined by p : E — T2 by (k, ) + k.
’ Proof.

69

8.2.15. Remark. Using the above construction of 8.2.13, for any 1, P : T2 — E is a section.

8.2.16. Claim. For each k € T?, 7 (k) = L? (C) where C is from 8.2.4.

primitive cell
PCcX

n) = 1b|g>
For any x € X, thereis a n(, ) € £ unique such that (x — n(XO,X)) e
Then the inverse of 1 on some f € L? () is given by

(n“ (f)) (x) = e*Mof (x—n(xw)) Vx € X
Then using the fact that 1y, y4mn) = N(xg,x) + 1 foralln € £ we have
(Un (') = (07 (0) (Tax)
= (n70) x+n)
et M xg, x4m) £ (X+n*ﬂ(xo,x+n))
eikem (¢ (X _ n(XO’X))
= e (07 (1) ()

so thatn ! (f) € H (k) indeed. It is the inverse because M(xo, x)

=0and
xEP

_ ik-
(M) x) = Mo (x =iy, )
— eF Moy, ¥ ()

= VP(x)
Next use the fact that € = P to conclude L2 (€) = L2 (P).

(xo,x

which is bijective with €, and simply connected. Now define a map 1 : F (k) — L2 (P) on any 1\ € H (k) by:

Proof. Letk € T2. Note that € = X/£ = {[x] [xe X}and [x] = {y e X|3Ine L:Tax =y ). Make an arbitrary choice of a

(33)

8.2.17. Corollary. p : E — T? is a trivial vector bundle.
Proof. Define amap ¢: E — T? x L2 (€) by
ik, ) = (kb))

( is bijective, continuous and with a continuous inverse, and restricted to each k, it is n, which is linear.

8.2.18. Claim. E also has a local trivialization using “Bloch waves”.

such that
n:U—mn(U) € Open (1R2>

write simply k instead of n (k) and x instead of ¢} 0] (x).
Now pick any
(kW) € Ely
By definition it follows that k € U and ¥ € ¥ (k). If we define a function

ug (x) = e T XP(x) ¥xeX

Proof. We will show that the fiber can be chosen as F( (0). Let ko € T? be given. As T2 is a manifold, 3U € Nbhdr2 (ko)

is a homeomorphism. Let xo € X be given, and declare it to be the origin of X, so that @3 (x) € R? or ¢y (x) € Z for all
x € X (recall the map ¢, from 8.2.1 which converts an affine space into a linear space). For notational simplicity, we will
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Then we can write the trivialization map as
Ely — UxH(0)

kP) = (k uy)
Let us show that this map is well-defined. So we should show that uy € F (0), that is, that
Uhug = uvnedl
Indeed,
(Unwe) (x) = u (x —n)
= e*ik'("*n)lb (x—n)
e G (%)

hae Il

PpekH(k)

et () pikemyy, (1
e kXY (x)
ug (%)
The map wu, is usually called a “Bloch wave”. Unlike ¥ € 5 (k), wy is £-periodic. It is also customary to write
Y(x) = e M (x) e F (k)
for all k € U (but not all k € T?), x € X. O

8.2.19. Remark. 8.2.18 relies on the isomorphism ¢} 01 : X = R? or oy o X Z? and more importantly on the chart
n:T? 2 U—n(U) C R?

This is something that is swept under the rug in physics textbooks such as [4] (pp. 133), where equation (8.3) does not
mention that the k values for which it holds are restricted to a chart of T2, and that this equation cannot hold globally on
T2! In this sense, [4]'s equation (8.6) is much more accurate because it does not rely on a chart for T2, but rather only on
8.2.7.

8.2.20. Remark. Note that even though for the trivialization of 8.2.18 requires more than one chart on the base space T?, the
bundle E is of course still trivial as shown in 8.2.17 (a bundle being trivial is an intrinsic property which does not depend
on any one choice of charts). This can also be shown explicitly with the choice of trivialization given in 8.2.18, which is left
as an exercise to the reader.

8.2.21. Fact. We assume the Hamiltonian H : 3 — 3 is L-invariant:

[Un, H =0 vnel (34)
8.2.22. Definition. (Direct Integrals of Operators) Let a function

A:X— 8 (F )

xeX
be given (where 8 (5 (x)) is the set of self-adjoint linear operators (not necessarily bounded) D (ﬂ (x)) — H (x)) such that
N _ 5 _ 2
H(x) € 8 (F (x)) for all x € X and x — <(p (x), (H(x)+1) ! P (X)>§c( : is measurable for all (¢, V) € (Ix x)) . We
X

define a new operator

S o e
J H(x)du(x):D (Jx H(x)dp (x)) — J;( H (x) dp (x)

X
by
@ ~ ~
((JX H(x') du (x’)) (11))) (x) :==H () (x) vx € X
where
® _ ® - 2
D (JX H (x) du(x)) = {11) € JX H(x)du(x) [P (x) € D(H(x))ae /\J [A ()W (X)Hﬂ(x)d”(x) < oo}

8.2.23. Claim. fx x) d (x) as defined above is self-adjoint.
’ Proof. Theorem XIIL.85 in [37]. Note that we have a slightly different form where the fibers are not constant. O
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8.2.24. Claim. As a result of (34), we have
®
H = J H (k) dk (35)
T2
where for each k € T2, H(k) : D (H(k) — F (k) is some self-adjoint operator. Furthermore, F (k) has discrete spectrum (as
F (k) = L2 (C) and € is compact) with eigenvalues which we label (en () nen-

Proof. Define H (k) : D (H (k)) — (k) by

]:[(k) = H‘fc(k)
with
D((K) = DH)NT(K
For H (k) to be well defined, we need that H{ (k) € F (k) for all | (k) € F (k):

UnH) (k) = HUn (k)
He*ikﬂq) (k)
e M THY (k)

so that is indeed the case.
Then we would like to have H = f% H (k) dk. So we let f%az H (k) dk act on some ¥ € D (H), where for any ¢ € ¥,

P : T? — H was defined in (32):
® @
(J H (k) dk) P <J H (k) dk> <J P (k) dk)
T2 T2 T2
er (A () (k) dk

ikn
er (H ((zn)z nezzze " w))

1 .
j e dk Uy Hy
TZ

nez?2 (27T)2
‘Sn, 0
= Hyp
O
A schematic view of the spectrum would be as follows:
Ev@;l&/’)ﬁzuf /&f(ﬁ{)
Goudy
=
g&ff A =
[{ﬁﬁu}{f
And we would have
o (H) = o (A (k)
- kgz ( v )
continuous discrete

8.2.25. Claim. Let P be a projection associated to an isolated part of o (H) (one or more bands). (34) then implies that

As a result, we may also decompose P as
e
P= J P (k) dk
T2
Proof. We may write
P = LJ (Hfz]l)f1 dz
21 r

where T is a closed contour around the isolated part of the spectrum. Then we may write

a1 (1)
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which converges if |H|| < |z|. Then, we have
P, Un] = LJ (H—2z1)"" dz, Uy,
21 r
i TS 1Y
= |:27T Jr_z Z <2H) dz, Un]
j=0
= ZLJ ! <1) [H, Un] az
TIr Z)':() z
= 0
the rest follows (8.2.24). Explicitly,
P(K) = Plgy)  VkeT?
O

8.2.26. Corollary. Because P is associated with an isolated part of the spectrum, dim (im (P (k))) is constant in k. As a result, a
sub-bundle of E is defined via im (P (k)) — Ey. Denote this sub-bundle by 2.

’ Proof. Use [5] lemma 1.3.1 with the map i: & — E which is a monomorphism because the dimension is constant. O

8.2.27. Remark. & may be non-trivial, despite E always being trivial (8.2.17).

8.3. Magnetic Translations. The work on magnetic translations was first presented in [47].
For this section, let xo € X be given and then we have the bijection @y, : R? — X so that for all intents and purposes in
this section X is R? (continuous case) or a subset of R? (discrete case). Again we have £ = Z?2.

8.3.1. Fact. The system is under the effect of a magnetic field B : X — R such that B is periodic:
B(x+n) = B(x) vnel

8.3.2. Remark. As before, our system is two dimensional on X and we always assume that the magnetic field is perpendicular
to it, so that really it is simply a scalar.

8.3.3. Example. A homogeneous field B (x) = B, for some fixed By € IR? is an example of a periodic magnetic field.
8.3.4. Definition. Define the flux through the primitive cell P ((33))as ¢ := [, B (x) dx.
8.3.5. Claim. The magnetic vector potential A corresponding to B cannot be chosen to be periodic if ¢ # 0.

Proof. Since B is periodic, we may write a Fourier decomposition of it as

B(x) = ) B(ge™
qe(2nz)?
with
~ 1 :
B(q) = B (x)e 94
In particular,
é = JB(X)dX
P
= (2m)*B(0)

If A is chosen to be periodic, then it may also be decomposed as
Alx) = Y A(q)elax
q

Now we have the relation (repeating indices are summed over {1, 2, 3})
B = (VxA);
€3ij0iA;
= €34j0¢ Z A;(q)etd™
q

= &35 ) iqiAj(q)eld™
q

from which it follows due to the orthogonality of e'9"* that
B(q) = iesi59iA(q) (36)
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Hence

Thus we have shown that if A is periodic, ¢ = 0.
For completeness, the solution of (36) is given by

Alq) = {qTqB(Q)ﬁsiij q#0
free q=20
Indeed,
. = . i =~
ie315q9iA5 (q) = 1531j‘11ﬁ3(q)£3j1ql
= %qiisijisleL
B
= %qiéi,lm
= Bilq)

O

8.3.6. Corollary. Since for a general system, ¢ # 0, and the magnetic vector potential A appears in the Hamiltonian H (for example as
in (1)), H cannot be be chosen to be L-periodic unless we restrict to the uninteresting case that ¢ = 0.

8.3.7. Claim. (Magnetic Translations) For every n € £, there exists a map xn : R?> — R such that H is invariant under the magnetic
translations, defined as:

U, = eXnu,

That is, for such xn we will have:

M0y = 0 vnel (37)

Proof. Denote the Hamiltonian, which depends on A, by H (A). Then as stated above, we will not have

U,H(A) = H(A)Uyn
but rather since A is not periodic we will have:
U,H(A) = H(AR)Un
where Ay, (x) := A (x —n). On the other hand with an arbitrary gauge transformation x we have
eXH(A) = H(A+Vx)eX
Then
eXUpH(A) = eXH(An)Un
= H(An+ Vx)eXU,
L H(A)exu,
and the last equation would be fulfilled if
An+Vx = A
I
Vx(x) = AKx)—A(x—n)
this last equation has a solution iff curl (A (x) — A (x —n)) = 0, which is equivalent to the fact that B is periodic. Hence
there is a solution to the last equation, which we denote by xn. [l

8.3.8. Remark. The magnetic translations n +— U, do not form a group homomorphism as a representation £ — B (H):

Unlym = eXnUpeXmUy,
eXnetxm =y,
= eXnegixml—mly .
etXnt+xm(—n)=Xn+m) gixnim Unim

i
e Xn+mun+m

RN

un+m

Hence, since

Xn+Xm(—N)—Xntm ¢ 2nZ
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in general, n +— Uy, forms a projective representation rather than a linear representation.

8.3.9. Claim. Xn (x) +Xm (x —N) — Xn+m (x) is equal to the magnetic flux through a plaquette spanned by (n, m) € £2 at x and is
hence independent of x as the magnetic field B is assumed to be periodic.

Proof. Consider a plaquette P spanned by (n, m) € £? whose top right corner is at some x € X:

The flux through it is given by

bnm = J Bdx
P

Stoées J A ds
P

= L] (A (' —m)—A (') -ds+L2 (A (X))~ (A" —n)) -ds
=—Vxm(x’) =Vxn(x’)

= —[xm (x) =xm (x = )] + [xn (x) = Xn (x —m)]

Next note that
Ax)—Ax—m—m) = AKX)J—-Ax—m)J+Ax—m)—A(x—m—m)
so that curling this last equation we obtain the relation
Xn+m (X) = Xm (x)+Xxn (x—m)
from which we get
dnm = Xm (x=n)+xn (X) =xn (x =M) = Xm (x)
= Xm (x=1)+xn (x) =Xn+m (x)
as desired. O

8.3.10. Corollary. The magnetic translations obey

[ -

for all (n, m) € £2. Since the magnetic flux ¢n, m is independent of x, this defines a projective representation.
Furthermore, if
bay, a, €212 (38)
where (a7, a;) € R? are the two vectors which span the unit cell then so that e*®nm =1 for all (n, m) € £2 then this defines a linear
representation.

8.3.11. Remark. The requirement of (38) can be somewhat alleviated by assuming that

Cb(l], a = 27.[%
for some (p, q) € Z? which are relatively prime. Then
d)nm, ma; — 2mp

for suitable (n, m) € Néo, and we are back to the integer case. So one merely has to work with larger unit cells and one
recovers linear representations rather than projective representations. Thus with slight loss of generality (slight as Q is dense
in IR) we shall assume (38) in what follows and thus we will have

Lfntm = ﬂn+m
so that n ~ U, is really a linear representation, under which H is invariant. Again we may perform a Bloch decomposition
of H into invariant subspaces

F(k) = {w e K ‘ ﬂnq):e*ik'“lp\mea}
8.4. Classifying Quantum Hall Systems-The Chern Number. Working in the same setting as in the preceding section
(still having chosen an origin for X so that it is a linear rather than affine space).
8.4.1. Claim. Equation (37) implies that
[PU] = 0 Vnesl
where P is the Fermi projection, projecting onto the subspace associated with an isolated part of the spectrum o (H). As a result, again

D
po— J P (k) dk
']1"2
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’ Proof. We follow the same way as in (8.2.25). O

8.4.2. Claim. We have

®
ilP,x] = J (94, P (k) dk
T2
where x; is the ith-coordinate position operator.

Proof. We start by seeing how the ith-coordinate of the position operator, x;, behaves on an arbitrary vector ¢ € ¥,
evaluated at some y € X:

xiw) (y) = yib (y)
= w0 y) ak
now we choose a trivialization as in 8.2.18 (the integral on T2 will then be divided into charts, but we suppress this now):

D)y = eFYux(y)
so that

xi) (y) = yier et Yy (y) dk

er yie™ Yy (y) dk

er (—i0k,e™Y) i (y) di

- er {(akiﬁ’ (k) (y) — e Yo uy (9)} die

but the first term is zero. For, WLOG i = 1, we have

21 27
[ owbioae = [ [ agbmaqa
T2 =0

k=0

27
= [ e ) -9 0 k)]

ky=0
= 0
because 0 = 2t on S'. So we have found that
i) () = | e (y) dk
and similarly
PO ) = | e (Pl (y) di

so that
(P, xd) (y) = 1(Pxpd) (y) —i(xPU) (y)

= IJ e VP (k) 10y, u (y)dk—i(J e iy, (P (k) ux (U))dk)
T2 T2
= LLFZ etk y 1ak w (y) — iaki (f’ (k) ug (U))) dk

eV (3y, P (k) uk (y) dk

2

e
.

- |, (k) (y) dk
O

8.4.3. Claim. If A is L-invariant, so that we may write

®

A = J A (k) dk

T2

then we have |
/
try (A) = 20? JTZ e (A (k) dk

where trl is the trace per unit volume in the total space H.
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Proof. The trace per unit volume is defined as (recall (17))

.1
troc(A) = lim 5 trac (X A)

where x| is the characteristic function which is zero outside [—%L, %L]z C R%. Next note that if p € H (k) for some
k € T2, then using (33) we have:

(W, XL A5 - JX T xe (%) (AW) (x) dx

_ 5 L)lb(ern)(Atb)(ern)dx

nelLAn|<L

= Y| SR A e nan

neLAIn|<L

- 5 L)w ) (AD) () dx

neLAm|<L
W (x) (A) (x) dx

= I—Z <1~|)1A(k)1b>LZ(e)
Using the fact that A commutes with U and Ay € F( (k) as well. Note that if {ox,n }n cN 1S some orthonormal basis

L2 unit cells 12 J
P

of F (k) then %(pk, » is an orthonormal basis for L2 ([—%L, %L} 2), with periodic boundary conditions which means k; €

27Z. Then the area of any one point is Ak = (ZL“ZJZ so that
1 1 1 1
Lﬁ”}( (xLA) = 2 Z Z <i(pk,nr XLAL(Pk,n>A
nelN k L
1
= @ > D {0k XLAQK n)p
nelN k
1 ~
= L7 Z Z<‘Pk,n/ A (k) (Pk,n>(p
nelN k
1 ~
= 32t (AK)
Kk
1 -
= Dt (AK) 2
k AkL2
@m?
1 ~
= —5 ) tryq (AK) Ak
(2m)? 5
a Riemann sum
L—oo 1 ~ %
 (2n)? Jke?l"z Tt (A k)
O
8.4.4. Corollary. As a result the Kubo formula for the periodic case becomes
1 - - ~
= ot Jy T (P 09 (04, P (), (9P (1))
Proof. Starting from (18) we have
OH = iTT/ (Pu [[X1/ ij ’ [XZI Pu]])
o1 ; U A5
= 1(27r)2 er Trice) (P () [(10%, P (k) , (10x,Pu (K))]) dk
1 - ~ ~
= lan? er Trsc (1) (P (k) [(31 P (k) (3, P (K))]) dke
O
8.4.5. Remark. Note that
1 ~ - ~
Chi (2) = 5 | Trge (P (6) [0y P (), (2P (4)]) etk (39)

is the first Chern number of the bundle & (defined in the appendix), so that we have found that in the periodic case,

1
OH = ﬂC}H (2)
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8.4.6. Remark. The remainder of this section and the next is devoted to showing explicitly some of the characteristics of the
functor Chy : Vectc (X) — Z in the concrete context of quantum mechanics, even though the mathematical derivation of
this functor (as it appears in the appendix) would make this whole presentation redundant. For those readers who don’t
wish to venture into the appendix, (39) may be regarded as a definition of a certain quantity (which turns out to be an
integer), Chy (&), associated with the occupied sub-bundle & of E defined by k — P (k).

8.4.7. Claim. (Sanity Check) Even though we know Chy (£) « oy and oy is a physical quantity, so that it is real, it’s possible to
explicitly see that:

Chy (e@) e R

Proof. Using the fact that tr (A) = tr (A*) we have

— 1 - - -
CTZ) = 5 | T (P01 [0 P (), (P (1)) etk
1 - - o *
= —RJTZ Trspo (P (0) [0, P (K)), (01, P (K))]) ") di
1 - - -
= g | T (0P (1), (@1, P ()] P (1) ek
1 - - -
e TG0 (P09 [0 P (), (0P (10)])
= Chy (2)
where we have used the cyclicity of the trace. O

8.4.8. Claim. (Time-Reversal Invariance) A time-reversal invariant system (as in 7.2.5) has
Chy(#) = 0

Proof. We assume that [0, U,] = 0 to be compatible with the existing structure of the system. Then if € H (k), we have
Unp = e~ ™ and so

Un 60 - oUW
_ etk My,
o is an’g-linear eikmy,
so that it turns out that 6y € 5 (—k), and so it turns out that 8 maps F (k) — F (k). Also we have
OH = HOo
so that if { € H (k) then
OHY = Heyp
b (R = Higg)
OH (K = H(—k)op
so that we obtain the have the relation
(ko' = H(-k)
and similarly because [P, 6] =0,
P (k)0 ' = P(—k)
and
001, P (k)0 = —0y,P(—Kk)
Also, the anti-unitary of 6 means that
Ob, 0) = (0%
e*:9_1
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so that
tr (A) = Z <(Pn/ A(Pn>

({e @nl}, is also a basis of }c)
= Z <6(Pn, Ae(Pn>

n

= Z<‘Pn/ 971A9(Pn>

mn
= tr (6-1A0)
so that

Chy (2) _ . "TZ T (P (k) [(3, Py (k) , (3k, Py (K))]) dk

T2 Trfff(k) (971 P~H (k) [(ah P~u (k)) ’ (akz]fu (k))] 9) dk

. Tricaey (07 TP (k) 0071 [(di, P (K)) , (9%, P (K))] ©)dk

Trgeqie) (P (k) [(=01, Pu (=K)) , (=0, P (k)] )dke

Chi(Z)eR

8.4.9. Claim. (Even though it is an integer in general, for now we present a proof that Chy () € Z for the special case of line bundles.
8.4.16 shows the general case.) If rank (?) = 1 then Chy () € Z.

Proof. We have that & — T? is a line bundle, and so we may pick a (not-necessarily global) section ¥ (k) for all k € U for
some U € Open (Tz). Without loss of generality we pick it such that || (k)| 5, ) = 1 for all k € U. Then

Pk) = v(®@(K),) vkelu

Note that:

(1) Even though P (k) is defined globally for all k € TZ, ¢ (k) is only defined for k € U.
(2) Of course even though we chose a normalization the section is still not unique: it still has a U (1) gauge-freedom:

Pk) = ey (k) (40)

for some continuous « : U — R.
Anyway, define a vector field on U by

Then
Claim. We have
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Proof. Note the two identities

O, P (k) = 0y, (W (k) (W (k) ->)

= (ak V¥ (k) (b (k) ) k) Ok, W (K), -)
and
W2 = 1
I
W), (k) = 1
1
O, (W(k), w(k) = 0
I
(b (), ¥ () + (b (K), d b (k)) = 0
1
(W (X)), dp, W (k)> = — (A (k), (k)
and then
QP (K) = ((d b (k ))(lb() DA+ () (i (K), ) b (k)
= O (K) + (k) (O, W (K), W (k)
and
WK, Y0Pk = WK, ) (AW (k) (W (Kk), )+ (k) (i, (k), -))
= (W (k), d, b (k) (W (K), )+ (B, W (K), )
and then

Trsciey (P (K) [(dk, Pr (K)), (3, Py (K))])

= i £3ijTrj?((k) (PL (k) (akiPlL (k)) (ak]. PL (k)))

1,j=1
= eayTra (W @), ) (3 Py () (24P (1))
= ey <w(k),(ak.P 1) (3P (6)) ¥ (1))
= ey (b ><akP (k) (31;Pre (1)) W ()
= e (W19, 3 (k) (b (K), )+ (@i (), ) (3 (k) + (k) (31 (),  (K)))
= ey (B (K), A (k) (W (K), D (K)) + €35 (W (K], D () (B (), W (k) ) +
3 <ak b (K), O (K)) + 355 (3 (K), ¥ (K)) (31 (k) () )
31 <akiw( ), i (k)
= ey (0 (W0, 3 (k) — (W (1), k0 (K)))
3150k, (W (K), i (K))

= €31j0x;Vv (k)
= [curl (v (k))]5

O
Remark. We have found
Ch (#2) = L J [curl (v (k))]5 dk
2mi T2
and one might be tempted to use Stokes’ theorem to conclude that
m() = g v
2mi T2
T2 =0 0

However, this would be a false, since v (k) is only defined for k € U and not for all k € T2! Thus when performing the
integral one would have to stitch between different charts, in each of which v might be different.
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It follows from 16.4.16 that if X is contractible, then
Vectn (X) = [X— Gn (C*)]
= [point = G, (C*)]

so that all vector-bundles over X are isomorphic, and in particular, all are isomorphic to the trivial one X x C™. Now as a
result of 8.1.20, if X is contractible, there is a global section on every vector bundle over X.

Thus our strategy is to cut the torus T? so that the resulting base manifold is contractible, define a global section on
this new base manifold, and express Ch; (&) in terms of transition functions of the global sections between different
boundary lines of this new base manifold.

1

|

If we make two cuts on the torus, T2, we obtain the square, which is contractible.
T2 = [—m, @?> < R2
Hence there is a global section on E'T'Z = T2 x C, k — ¥ (k), such that b (k)| =1forall k € T2. Choose two continuous
maps 0; : [-m, 1] = R by the relations
Y, m) = ey (g, —m)
and
bim k) = ety (o k)

which can indeed be chosen because 1 never vanishes and is always normalized. Then, in particular, at the opposite
corners we have

bimm) = ey (m, —m)
et01(m) 102 (=) (g, —71)
going first via 6; and then via 6,. However, we could also go the other way around:
11’ (7T/ 7'() = eieZ(N)w (77-(/ 7-()
e102(7) 510, (*71)1]) (—m, —m)

Hence we obtain

et (ﬂ]eiez(*ﬂ)ll) (—m, —m) = e102(7) 5161 (*ﬂ)lb (—m, —m)
which implies
01 () + 05 (—m) — 0 () — 0; (—m) € 2nZ| (42)
Now we compute
B (ki M) = B, [y (ky, —)]

= 1) [e] (kq) P (ky, —71) + Ay, W (g, —0)]
hence
vilky, 1) = (P(ky, 1), 0k, ¥ (kq, 7))
= (W, m), &0V [i0] (1) (i, =) + 0, Ky, —1)] )

= 0] (k) <w (k1, ), €011y (K, —vr)> + <e—191 (R (kq, ), dg, W (K1, —m>
P (kq, ) WPk, —m)
1 v(ky, —m)

= 167 (k1) +v(k, —70)
for v, we have
O, b (m k) = 0y, {eiGZ(kZ)lb (—m, k2)

= e10202) [i) (ky) W (—71, Ka) + D, (—71, k2)]
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(¥ (75, k2), di, W (71, k2))
(W (m, k), 20202 [16] (1) (1, ka) + Dy (=1, k2] )

103 (ko) <w (7, k2), et02k2)y (—r, kz)> + <eiez(kz)w (7, k2), i, ¥ (7, k2)>

G AS)) V(-7 k2)

= i85 (k2) +v2 (-, k2)

all together we obtain
Ch (2) =

up to a set of measure zero

Sto:kes

where the last line follows by (42).

1

1 ki=m 1 ky=m
7‘[ v1 (k1, —m) dkq +f.J V2

(7'[, kz) dkz +
k] =—T7T 27-[1 kzzfﬂ

] k] =—TT ] kz——T[
T J vi (K, +7) dg + — J va (=7, ¥a) dks
=TT 2mi ky=Tt

] k] =TT
TJ v (k1, =) — vy (kq, +m)] dkg +

m k] =—T7T

] kz 7T

+— J v (7, k2) —v2 (—m, k)] dka

27 Jy,——n

] k] =TT ,
— —i0/ (k
Zﬂl Jk] =—TT [ !

] k.2 7T
— i05 (k k
to Lriﬁ [105 (k2)] dk2

1)] dkq +

]

8.4.10. Remark. From 8.4.9 it is clear that if 3 a global section on & then by definition of 6;, 6; = 0 and so Ch (£?) = 0.
Conversely, if Chy (&) = 0 then the bundle is trivial (see the appendix, or 8.4.11 for an explicit construction), so that by

8.1.20, there is a global section on it.

8.4.11. Claim. Ifrank (%) =1and Chy (&) = 0 then there is a global section on & which is normalized to 1.

Proof. As we remarked in (40), there is an additional gauge transformation after choosing the normalization

¥ (k)

ety (k)

vk € T2

for some continuous « : T2 — RR. This gauge transformation gives rise to new transition functions 8; which are related to

the old ones via:

P(m k) =

etalki, My, (kq, )
o(kq,7T) 191(k1)¢(k1 —1)
(k1 7) 101 (k1) g—tex(kr, =) () gq)

IT) (k1/ 7-[)

ei

so that

el

ey (k)

o (ky,m) 4+ 07 (k1) — o« (kq, —m)
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for 6,:
B(m k) = et*lmkaly (g, ky)
= etelmka)pi®2(ka)y, (o k5)
= etxl(mk2)i02 (k) p—ia(—m k) (_gp k)
so that

02 (k2) = «fm ko) +02(ka)—a(—m, ka)

Thus with an appropriate choice of «, we might be able to eliminate 6 or 6, (but it will turn out that we cannot in general
eliminate both). Indeed, if we demand

61 () € 2nZ VK el-m
!
a(ky, ™ +067 (k) —a(ky, —m) € 2nZ Vkq € [-m, 7
!
alky, k22T 401 (ki) € 2nZ Vi € [-m, 7
!
alky, k2T, € 2nZ—01 (k1) kg € [-m, 7]
so that if we pick
x(ki, kz) = m%?;(mkz
(any choice of n € Z will work) the relation is obeyed. As a result, we were able to obtain 01 (k1) € 2nZ so that elf1(ki) =7
and we may forget the cut along k, = n. Thus instead of a square
T2 = [-m n?
we obtain a cylinder
™ = [—mt, 7] x S!

And we have a global section on the cylinder T2 (which is by the way not contractible). Any additional gauge transfor-
mation must respect
!
alky, 2ZT, € 2Z Yk el-m 43)
otherwise it will re-introduce a 6; transition function. After eliminating 0, we find

1
=3 02 (1) — 02 (—m)]

Chy (22)

Thus, Chy (£) is the winding of the map S — S given by:
STk, — exp(ifs (k2)) € S'
Now if we wanted to also eliminate 6, as well we would have to require that

a(m ko) + 602 (ko) —o(—m ky) € 2nZ ko 651

!
o (k, k2) Ei’fﬂ € 2nZ —05 (ky) ko GS]
and again we pick
2m —0; (k
a(ky, ka) = ﬁh

2
(any choice of n € Z will do) and now employ the constraint (43) to get:

27— 2 — 0 (— !
mmn — 0, (TE)]q_ mm — 03 ”)]q € 2nZ vk € [—m, n

21 21
7
— — !
02 (m) +6; (=) k1 € 2nZ Vky € [—m, 7
21
)
|
—Chy (:@)k] € 2nZ vk € [—mt, m

101 (k1) 102 (k2

which can only happen for all k; when Ch; () = 0. But the possibility of setting e =e ) = 1is equivalent
to the existence of a global section. Thus we see that, indeed, when Ch; () = 0 we explicitly constructed a global
section. 0

8.4.12. Corollary. As a result we obtain the fact that Chy (&?) # 0 is an obstruction to choosing a global section on &2, and if
Chy () = 0 there is a global section.
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8.4.13. Remark. The following sequence of statements about the first Chern number of bundles of rank higher than 1 ap-
peared in the lecture without proof. Their proofs are a very slight generalization of the ones above. In keeping with the
order of presentation of the lecture, a redundancy is introduced into this section. It would have been more efficient, in fact,
to immediately present the proof for bundles of arbitrary finite rank.

8.4.14. Claim. If rank (&) = N, then one can pick N-linearly-independent global sections (a section of the “frame bundle”) on
T2 C T2
Proof. As in 8.4.9 we know that on the cut torus, T2, which is contractible, there is a global section of the frame bundle.
We denote it this section by

i}y, v keT?

where without loss of generality we assume that at each k, { ; (k) }\_; are not merely linearly independent, but even form
an orthonormal basis of #y. Again, as before, we may introduce transition matrices (rather than functions) between the
boundary lines: Pick two functions T; : [-m, ] — U (CN) forallie {1, 2}such that

N
S ki, —m) M ()l Vie(l, ..., N}
j=1

Py (kq, m)

N
Pilmk) = Y ejmk) Mkl Viel{l, ..., N}
j=1

Note that the on the left hand side of these equations we have vectors, not components of vectors.
We have an additional gauge transformation as in (40) in the form of amap A : T2 — U (CN) such that the transformed
frame is

N
Pi(k) = D by (k) IAK);
j=1

So that
B N
Pi ki, M) = ) kg, A (kg Wy
j=1
N N
= > Y Wik, =) [Ty (ko) (A (kg, 7055
j=11=1
N
= ) Wy (ky, =) [Ty (ke) A (ky, )3
j=1
N ~
= Y by, ) Ak~ T ) A G, )
j=1
and we find that
Ti(ki) = Alky, =)' Ty (k) Ak, )
and similarly
Ta(ka) = A(-m k) To(ka) Al k)

Is there a choice of A such that T; or T; will be Inxn?
T (k1)

Aky, =) Ty (k1) A (g, )
1

]lNXN Vk] S [—7’[, 7

]1N><N Vk] S [—7’[, 7'[}

Ak, M)A (ky, =)~ Ti(k)™" k€ l-m 7

so that if we pick

k2
— 21
Alkik2) = (Tita) ™)
the relation is obeyed (Note that we can raise Ty (k1) to arbitrary powers since it is non-singular). As a result, we obtain
that
~ !
Tik)=Inxn VK € [ 7
and we may forget the cut along k, = 7. Thus instead of a square
T2 = [—7w n?

we obtain a cylinder
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And we have a global section on the cylinder T2 which is not contractible. Any additional gauge transformation must
respect

Alky, MA (K, —m~" = Anxn Yk € -

otherwise it will re-introduce a T; transition matrix function. |

8.4.15. Corollary. Ifrank (&) = N, then on cylinder T2 C T2, we have a global section of the frame-bundle
(Vi (L, ¥V keT?

(orthonormal basis of Py for each k € T2) with a transition matrix-valued function T, : S' — U (CN) such that
Pi (71, ka) lej —7, k2) [T (k2)]j vie{l,...,N}

8.4.16. Claim. For a bundle & of any finite rank,
Chi (&) = winding number of the map ST 5k, — det (T, (k2)) € S!

where Ty is as in 8.4.15.

Proof. Since { ¥ (k) }]i\’:] spans & we have

D i (k) (i (k) )
io1

We define similarly to (41) N-vector-fields

, ._<MMﬁme], -
vi (k) = [<1bi(k)/ak21bi(k)> vie{l,...,N},keT

And like before the integrand can be expressed in terms of this vector field. It is a miracle that it splits completely:

Claim. We have the following relation

N
Tracgi) (Pu () [(3k, P (), (31, P — Y lewrl (v (
i=1
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Proof. Note the two identities

N
A, P (k) e, Z P (k) (¥ (k) -)

N
= Z O, Wi (K)) (Wi (K), ) + Wy (k) (d b (K), -]
=1
and
(Wi (K), b5 (k) = 8y
!

(O W1 (K), b5 (k) — (W1 (K), Dy (K))

Then we have

(21, P () w1 € _ 5 (0 0m () (o (), ) + W (k) (D0 (K], )] 1 (K)

—_

m=

(3rym (190) (Wim (), P1 (K)) +bm () (B rm (K), (1))

6m, 1

—_

N
= ALK+ Y b () (Qim (), Y1 (K))
m=1

and
N
(W (k), ) 9, Pulk) = ) D (@i r (K) (r (K), ) + 1y (k) Qi i (K), -]
r=1
N
= ; (B (), B,y (K)) (W (K), ) + (Uy (k)é , Wr (K)) (B, W (K), -
N '
= > (Wi(K), dr (K)) (r (K), ) + (D, (K), -)
r=1
so that

Trseiy (P (K) [(dk, Pr (K)), (3, Py (K))])

= i 53ijTrg?((k) (PL (k) (akiPlL (k)) (ak]. P’L (k)))

i,j=1

N
= e3yTra ((Z P (k) (W (K), ->> (3, P () (01, Pre (k)))

_ 531]Z<1|)1 (9, P () (3P () () )

= egl,Z b)) (3 P () (3 P (1) o (1)

N N N
= €35 Z (Z (W1 (k), A r (K)) (W (K), )+ (Db (k) ->> (akjun K+ D bm (k)<aijpm (k), ¥ (k)})

T m=1

N N
= ey ) Y (b9, dabr (1) (b (K), gy (k) +

1=1r=1

0

+e31]ZZ<¢1 , e (k) (g by (K), Wy (1)) +
1=1r=1

0

z

+ezi ) <ak Wy (k), O (k)> +

1=1

N N
+ezig ) Y (Qbi(k), bm (k) <akjll)m (k), by (k)>

1=1 m=1

0

85

These terms are zero because the sum of entries of an anti-symmetric matrix is zero. The result then follows as in the

line bundle case.

O
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O, i (71, k2)

vi (7, k2)],

1\12
If

,ﬂ
I
A

T2(k2) unitary

As a result we have

Chy (2) =

up to a set of measure zero

Stokes

Jacobi’s formula
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Next to compute the first Chern number we need

= aKZZw] —7, k2) [T (k2)lj;
N N
= ) (b (= k) M2 (k)] + ) by (=7, ko) [0k, Ta (k2) 5

j= j=1

—_

z

N N /N
+ Z > <Z Yr (=7, k2) [T2 (k2)]1i, ¥y (=, k2)> [0k, T2 (k2)] 54

N N
> (s (- ka), (Bigby (- k) + Y Y [T (ka) ]i [0, T2 (k2)];;

j=1 i=1j=1

> (Wil k), (Wi (- k2)) + Tr (T (k2) ™' 31, Ta (1))

i=1

N
> Wil ko)l + T (Ta (k2) ' 01, Ta (ka))

.d.
[
S

ﬁ er ; [curl (vq (k)3 dk
1 N

5 e 3 feurt (s ()
N

; 5 LTZ vi (k) - dk

k=7 ky=—mt
J vi (71, k2], dka +J vi (-7, k215 dk2+>

k2:7'(

Mz
[\)

5| -
N

,...
Il
-

k2:7'[

M2
3 -

vi (7, k2) —vi (=, k2)], dkp

2=—TC

~

,_‘
I

kz =TT

Tr (Tz (k2)"" 0y, T2 (kz)> dk;

J k2:—7'(
Tr (T2 (k2) 7' 31, T2 (k) ) diy
0y, det (T, (k2))

i Ji,est det(T (k2))
winding number of map k; — det (T, (kz))

ko€S]T

N N N
A= 3~ 3|
= =2 =8

2

8.4.17. Corollary. 8.4.16 shows that

also for bundles of rank higher than 1.

Chy (32) e Z

8.4.18. Remark. This discussion could have also been phrased using the concept of the fundamental group of a space. Recall
(or learn from [34] page 321) that 7y is a functor from the category of pointed spaces into Grp which is defined as follows.

If X € Obj (Top) and x4 € X then:

m (X, x0) = loopsbased atxp/ ~

where ~ is identification up to continuous deformations, the group composition law is concatenation of loops, and the
inverse of a loop is a loop that runs in the opposite direction.
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Next note that
m (X, x0) = m (X, x7)

for all x¢, x7 in the same path-connected component of X. In particular if X is path-connected we may forget about the base
point and simply write
m (X)
It is well known that U (CN) is path-connected, and also that

m(u(eY) = z

m(XxY) = m (X) xm(Y)

To see this, one has to prove that

and note that
u (CN) = su (CN) % U (1)
and that 7y (SU (CN)) ={0} (as the determinant is always 1) and of course
UM =m(s) =z

is just the plain old winding number of a map S' — S'.
We find that indeed Ch; () computes the corresponding element of 71y (U (CN)) to which the loop

319](2 — Tz(kz)EU(CN)

belongs to.
Finally note that if T, (kz) € U (CN) then the winding number of the map
ky — det(Ts (k2))
is equal to the sum of winding numbers of the maps
ka2 = Ai(kz)
where A; (k;) is the ith eigenvalue of the matrix T, (k3).

8.4.19. Example. Take for example a tight-binding model on Z? in which each unit cell has N sites. Then

k) = r?2eE=ch
as was established in the combination of (30) and 8.2.16. In this example, let us choose
N = 2

Then we assume exactly one state is occupied and that there is always a gap between the eigenvalues, with the Fermi energy
in between:

e— (k) <p< eq(k) (44)

and we have rank () = 1. Then the Hamiltonian in each fiber is given by
k) e End(C?)

And there are some restrictions which must be imposed to make it into a Hamiltonian:

(1) It should be self-adjoint.

(2) It should always have a gap to satisfy (44)
If we denote 0y := 1,4, and { 0} }f:] as the three Pauli matrices then it is known that { o; }{j’:o spans Mat; > (C). To satisfy
the two conditions, the coefficients of this linear span must be real (as the (four) Pauli matrices themselves are self-adjoint)
and the two eigenvalues must never be equal. We write

3
A(k) = > hi(koy
i=0
for some h; : T2 — IR* and the eigenvalues are given by (straight forward computation of 2 x 2 linear algebra):
3
ex(k) = ho(k)x,| ) (hi(k)?
i=1

so that for the eigenvalues to never be equal we need
3

S (k)2 £ 0 VkeT?
i=1

hy (k)
so that if we denote h (k) := [hz (k)] then we have a map defined

T?>k — h(k)eR3\{0}
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which in turn induces a map
h (k)
[ (k) || Rs
| S ——
—e(k)

T?>k €s?

This map has a degree, and its degree is precisely Chy (£?). Let us see this explicitly. The projector onto the occupied state
is given by
5 e (K 1oy —H(K)
et (k) —e— (k)
1

= 5 (Laxz2+e(k)-0)

o1
with ¢ = |0, |, and so

03

and

tr((a-g)(b-6)) = 2a-b
and
(a-0)(b-0)(c-6) = (a-blyy,+i(axb)-0)(c-0d)
= (a-b)(c-d)+i((axb)-6)(c-7)
= (a-b)(c-0)+i(axb)-clyyr—((axb)xc) o

tr((a-6)(b-6)(c-6)) = 2i(axb)-c

Chi(2) = 5| Trgeg (PR [0k, P (X)), (9, P (K)]) dk (45)

,ﬂ.
<.
Il
-

o
N
I
-

o
N
Il
-

> 3
) ﬁjr% 2) ey (e (R) - (de (k) +2ie (k) Y esiy (dke (k) x e (k) | dk
ij=1 ST
0
10
_ ﬂhz 7€ 092 (0, (k) x 0y e (k) ik

_ 4‘? er e (k) (3x, e (k) x d,e (k) dk

Schematically we have a map T? — S

f o / C"\J— C"/»f» )
/ //L > JL ey //)(
e — ; 26
\ é N =
e o e
i =
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Compare this formula with the area of a parametrized surface in R3:
R*5k — f(k)eR?

Area — J 101£ (k) x 92f (k)| dk
k

Since 0y, e (k) x 0y, e (k) is always parallel or anti-parallel to e (k), we get that
e (k) (0x,e(k) x d,e(k)) = =0k, e(k)xdx,e(k)|gs
So that in this case, Chy (?) gives us the (signed) number of times the map
e:T? — §2
wraps on $2.
Let us elaborate a bit further on these concepts in a more formal way:.

8.4.20. Definition. (Regular Value) Let f : M — N be differentiable, where M and N are differentiable manifolds. The point
y € N is called regular iff for all x € f~1 ({y }), the tangent map

fo (xi) : M — TyN
given by
X 5 X(of)

is surjective, where we consider the tangent vector X as a derivation (a linear map from functions M — R into R which is
Leibniz).

8.4.21. Claim. (Sard’s Theorem) The set of values of a map f : M — N which are not reqular has measure zero.

’ Proof. For example see [13] page 80. O

8.4.22. Definition. (Degree of Map at Regular Value) Let f : M — N be smooth where M and N are compact, oriented smooth
manifolds. The degree of f at the regular value y € N is defined as

deg(f,y) = ny(fy)—m_(f y)
where

ny (f,y) = H xef! ({y}) | f« (x) is orientation preserving (+) or reversing (—) }‘
8.4.23. Claim. deg (f, y) = deg (f, §) for any two regular values y and .

Proof. One way to see this is to prove the equivalence of this definition with the one given in 8.4.25. For a direct proof see
[14] page 103 theorem 13.1.2. 0

8.4.24. Definition. (Degree of Map) We thus define
deg(f) = deg(f, y)
for any y a regular value of f.

8.4.25. Remark. In algebraic topology there is also a definition of the degree of a map as follows: For closed connected
orientable manifolds of the same dimension n, the top homology group is (not canonically) isomorphic to Z, and the map
f induces a morphism in Grp

fs :Ha (M) — Hn (N)

which sends a generator of Hy, (M), [M] (equivalent to a choice of orientation for M) to a generator of Hn (N), [N] (equivalent
to a choice of orientation for N) via

Ml 5 dN]
for some d € Z. Then we define the degree of the map f as
deg(f) == d

For more details see [33]. The two definitions are of course equivalent.

8.4.26. Example. If f: ST — S then deg (f) is the winding number.

8.4.27. Example. Let e : T2 — S2. The formula we have found in (45):
1
Chy (2) = i er e (k) - (9, e (k) x d,e (k) dk
actually computes the degree of the map e, so that we have that in the special case of a two-level system,
Chi (&) = degle)
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Proof. We want to prove that

deg(e) = 4]—7[ JTZ e (k) - (9, e (k) x Oy, e (k) dk
Write TZ as
T? = ILU;
(disjoint union, which holds true up to a null set) so that e : U; — e (U;) is a diffeomorphism Vi, and then
J e (k) (0x,e(k) x d,e(k))dk = iJ dy
u; e(l)

where the sign is determined by whether the diffeomorphism is orientation preserving or reversing for that particular 1,
so that the integral on the whole is

| et Puetxanetnac = | (nlew—n_te )y

= deg(e)4n

8.4.28. Example. For concreteness, consider the following Hamiltonian, with M € R a parameter of the model:
H(k) = sin(kj)oq +sin(ky) oz + (M4 cos (ki) +cos (kz)) o3
We want to compute the first Chern number of this model.
Picking up from (45) we have
sin (k1)
h(k) = sin (k)

M + cos (k1) + cos (k2)
so that

Ih(Kgs = /sin (k1) +sin (ka) + M+ cos (k) + cos (kz)1>

\/2+ M2 +2Mcos (k1) +2M cos (k) + 2 cos (k1) cos (k2)
Then

Claim. ||h(k)||gs # 0 forall k € T2 iff M ¢ {0, 2, —2}.

Proof. We have

[h(k)lgs = 0
!
sin (k1)
sin (kz) = 0
M + cos (k1) + cos (k2)
7
k1 € iz
k2 enZ

M+cos (ki) +cos(ky) =0

From this last expression it is clear that if M ¢ {0, 2, —2} then the last line will never be zero, and conversely, if M €
{0, 2, =2}, then there are certain points k € T2 for which the last line will be zero. In particular:

Casel. If M =0, then cos (k1) L 41 and cos (k2) L F1 so that k = (0, ) and k = (7, 0) both do the job.

Case2. If M = 42, then cos (k1) L F1 and cos (k3) L F1 so that k = (7, 7r) does the job for M = +2 and k = (0, 0) does
the job for M = 2.

O

0
Claim. The north and south pole, [ 0 ] € S?, are regular values of e.
+1

Proof. If (kq1, k2) € (7rZ)2 then hy (k) = 0 and h; (k) = 0 so that e (k) = +1 necessarily (assuming M ¢ {0, +2}). For this
scenario, there are only four possible points on T?:

k e {(0,0), (0, n), (m 0), (m, ) } (46)
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In order to avoid using charts we consider the torus as a subset of R3 using the parametrization of T2 = (R/21Z)* as
a donut in R3:

[R 41 cos (kz)] cos (k1)
VT2 — [R+rcos (kz)]sin (ki)
rsin (ky)

for some (R, 1) € (0, oo)2 with R > r. We have

Px
cos(ky) = ——n
V¥R + g
sin(ky;) =

Py
VAR
cos(k2) = y/bZ+WvZ—R

sin(ka) =

so that h : T2 — IR? induces a map h : R3 — R3 explicitly given by

(1) =)

m
/N
—
N x
.
~—

Il
< |-
+
X
(S
-~

N———
N
<
+
X
X
=
i

«
x N
)

+
<
[
|
-~

() 00+

The four points we are interested in,

(k1/ kZ) E{(O/ O)/ (O/ 71:)/ (ﬂ/ O)/ (ﬂ/ 7[)}

X +RE7r
correspond to [y] € { [ 0 ] } and so the tangent map, evaluated at these points, is

z 0
R+ [0x &1 ayé1 0,64 R+
Deé 0 O0x€ 0y€y 0.8 0
0 |0x€3 Oyeé3 083 0
0
0

1 0
(R+1)(M~+1+71) .
= 0 FVCE T
0 0 0
which is indeed surjective onto the xy-plane in R?, which is isomoprhic to the tangent spaces to S? at the south and north
poles. The other three points follow similarly. O

Then we can immediately compute the degree of e via its characterization in 8.4.22:

The four points in (46) correspond respectively, to values of e3 (k) given by:

e3((0,0)) = —sgn(M+2)
e3((0,) = —sgn(M)
e3((m 0)) = —sgn(M)
e3((m ) = —sgn(M-2)
so that we have
| Value of M [ # of pre-images of south pole [  # of pre-images of north pole |
M< -2 2] =0 {(0,0), (0, m), (m, 0), (m, m)}| =4
—2<M<0 {(0,0}=1 {(0, m), (m, 0), (m, m)}| =3
0<M<2 {(0,0), (0, ), (m, 0)}| =3 {(m, m) } =1
M >2 [{(0,0), (0, ), (m,0), (m, m) =4 2] =0

so that using the definition 8.4.22 we have:
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| Value of M | deg (e) \

5
M< =2 deg (e) = deg (e, 0 ) =0

5
—2<M<0 | deg(e) =deg (e, 0 ) =41
0<M<2 deg(e)—deg(

:O_
e, |0 =+1
| +1

N
M>2 deg(e)=deg|e | O =0

_+1_
and all that is left is to determine the sign for the two cases. Near (k1, k) = (0,0),

k1
h(ky, k) ~ [kz ]

M +2

so that e, near that point is e, ((0, 0)) ~ {0 (])] and so is orientation preserving. The other case has opposite orientation.

Thus we conclude
| Valueof M [ degl(e) |

—2<M<0|deg(e) =+1
0<M<2 |deg(e)=—1
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9. CONNECTIONS AND CURVATURE ON VECTOR BUNDLES

In an attempt to explain the classification of vector bundles in a more systematic way (rather than the enigmatic definition
we presented; see 8.4.6) we now turn to what is referred to as the Chern-Weil description of characteristic classes. This
section follows Appendix C in [33] or [35] chapter 10. Also see the appendix for yet another way to define characteristic
classes.

Our goal is to define a connection and a curvature on a vector bundle (as a generalization of the connection and curvature
which one would encounter in general relativity) and see that the first Chern number is really an integral on this curvature,
which would close the circle with 7.2.9.

9.1. Preliminary Notions about Vector Bundles.

9.1.1. Definition. (Cartesian Product of Vector Bundles) Let py : E; — M and p; : E; — M, be two vector bundles. Then we
define the product bundle

E] X EZ — M] X Mz
as follows:

(1) The total space is the Cartesian product of the two total spaces. The product topology is used for the total space.
(2) The projection map p: E1 x E; — M x M; is defined by

pler, e2) = (p1ler),p2lez))

which is continuous by definition of the product topology.

(3) There is a natural vector space structure on (E; x E;) ) defined as

(my, m;

(B1 X E2)my,my) = (E1)m, @ (E2),

9.1.2. Definition. (Whitney Sum of Vector Bundles) The Whitney sum is defined via 16.2.2 using
@ : Vecte x Vectc — Vecte

as a continuous functor. Explicitly, Let E and E; both be vector bundles over the same base space M. We define the Whitney
sum of E1 and E;, denoted as

E1okE
as the vector bundle whose fiber at each m € M is given by
(B1@E)m = (B1)n @ (E2)y
Note that
itM - MxM

m — (m,m)

defines an induced vector bundle i* (E4 x E3) (as in 16.2.4) which is isomorphic to the restricted bundle (E; x E2)l; (- This
is how the topology of the Whitney sum is defined.

9.1.3. Definition. (Tensor Product of Bundles) Simiarly the tensor product bundle is defined via 16.2.2 using
® :Vectc x Vectc — Vecte

as a continuous functor.

9.2. The Ehresmann Connection.

9.2.1. Definition. (The Vertical Subspace) If m: E — M is a vector bundle and M is a smooth manifold, then E is a smooth
manifold as well, and so, it also has a tangent bundle over E which we denote by

TE — E

Its typical fiber at u € E, Ty E, is comprised of maps C* (E, C) — C which are C-linear and Leibniz at u and its projection is
defined as

q:Z = u

where 2" : C*® (E, C) — C is such a tangent vector to u.
But the initial vector bundle projection map
nm:E—-M

can also be considered as a map between manifolds; for any u € E we have the tangent map

(ﬂ*)u : TuE — Tﬂ(u)M

Z = Z(omn
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7, is the pushforward differential, also denoted as D7 or dz. Actually via 7, one could also consider TE as a vector bundle
over TM. So we have two base spaces for TE:
TE 4 E
TE & ™

Note that 7t and g are not linear (M and E are not even vector spaces), but (7, ),, is linear by definition (as a map between
two vector spaces—the tangent spaces). As such, its kernel ker ((7,),,) defines a vector subspace of its domain T, E, which
we call the vertical subspace and denote by V,:

Vi = ker ((ﬂ*)u)

=F

9.2.2. Claim. Let 7t: E — M be a vector bundle over a manifold M, u € E be given. We know that €y, is the fiber at 7t (u), which is
a finite dimensional vector space over C, and thus also a smooth manifold (the simplest example of such). So it also has a tangent space,

TE(w); The fiber of TE () at w is denoted by Ty, (Eﬂ(u)). We claim that

Ve = Tu (Eﬂ(u))

Proof. We now characterize T, E via curves in E and their derivatives: Lety : [0, 1] — E be a curve in E such thaty (0) = u.
Then this curve defines a tangent vector

Z = 0l ov)lio

[2] Assume that 2” € Ty, (Em)). Then v (t) € Eny) forall t € [0, 1]. Thatis, m(y (1)) = n(u) forallt € [0, 1. Asa
result,

() ) () = Z(om
= Ot | -omoy
m(w) / li=o
= 0 -o7r(u)
—
does not depend on t/ |, _,
= 0
so that we find
X e ker((m),)
= Vy
Assume that 2” € V,,. Thus ((7,),,) (Z7) = 0. So
X (o) = 0
!
Ot (moy)lig = O
!
moy does not depend on t
so that moy : [0, 1] — M must be a constant, equal to u. Hence the result follows. O

9.2.3. Definition. (Ehresmann Connection) We would like to have a canonical assignment of a complement of V,, in T,E. An
Ehresmann connection on E is a smooth assignment u +— H,, C T E such that
(1) TuE = Hy @ Vy, for each u € E, that is TE = H® V where H and V are the bundles over E with fibers H,, and V,, at
each u € E respectively.
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(2) His a vector sub-bundle of TE.
Note that the splitting in the first requirement is equivalent to the specification of a projection

v:TuE — Vyu (47)

such that vov = v via the fact that ker (v) = H,, (Recall that a projection is always defined by two subspaces if there is no
inner product, which we do not necessarily have).

9.3. The Covariant Derivative.

9.3.1. Remark. (Definition of Ehresmann Connection via Covariant Derivative) An equivalent definition of the Ehresmann con-
nection is as follows. Let s : M — E be a section on E. That is,

mos = 1m

We denote by I' (E) the space of all sections on E and by F (M) the space of all smooth maps M — C together with pointwise
multiplication and addition. Then I (E) is an F (M)-module: for all f € (M) and s € T (E) we have

(fs)(p) = f(p)s(p)

(s1+s82)(p) = s1(p)+s2(p)
There is also a tangent map induced by a section: s : M — E induces
(s*)p M = Tgp)E
which is given by
X = X(os) ¥XeT,M

9.3.2. Remark. Note that (contrary to what was written in earlier versions of this document) if f € (M), g € F(E) and
X € T, M then in general

(fs), (X) # fs. (X)+X(f)s
Example. Define M := R, E := R?, p € M. There is only once tangent vector on R up to proportionality, 9 b € HR. A
section s : R — IR? is a map
X1+ (x1,8(x1)) €R?
for some §: R — R. A scalar on R? is a map g : R? — R. Then
X(gos)

01l (gos)
= O, (g (IR, 3))

= O1l(p,5(p)) 9 01lp IR + (aZ‘mé(pn 9) o1l 8
1

Otlp,5p) 9+ (52‘<p,§(pn 9) lps
Pick g: R? = R as g := 7. Then 31l(;, 5(py) 9 = T and 2/, 5(p)) 9 = 050 that

X(gos) = 1
Note that this result is independent of the choice of 3. In particular, for any constant scalar map f : R — R which is not
equal to 1, we have

X(gofs) = 1
Yet

@gosﬁ(p)x(gos) =f(p) #1

0 1
Such an ¥ (M)-linear relation only holds for the covariant derivative (as will be seen below), but not for the differential d.

9.3.3. Definition. Using the projection v: T, E — V,, in (47) we define, for any given s € ' (E), amap V (s):
Vv (S) : Tﬂ(u)M — Vu
by
X = v(s(X)
~—
=:Vx(s)

9.3.4. Claim. Vx (s) is tensorial in s € T (E) and F (M)-linear in X € TM.
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Proof. Let f e F (M), (X1, X2) € TM2, (s1, s2) € T'(E)* and g € F (E). Then:
Vx (s1+5s3) = v((s1+s2), (X))
= v(X(-o(s1+52)))
(X is linear>
= v(X(-os1)+X(-052))
(v is linear)
= v(X(-os1))+v(X(-0s3))
= Vx (s1) +Vx (s2)

Vix; (s1) = v (X (-os1))

(v is linear)
= fv (X7 (-os7))

= fVx, (s1)

Vx;+X, (1) = v (st (X1 +X2))

(differential is linear)
= v(Xq (ros1)+Xz(-0s2))
(v is linear)
= Vx, (s1)+ Vx, (s2)

For brevity define s := s7 and X := X;. Define m := dim¢ (M), let p € M, define n := dim¢ (E; ), pick some U € Nbhdp (p)
such that there is a chart ¢ : U — ¢ (U) € Open (C™) at p which is also a trivialization of E, that is, there is a family-of-
vector-spaces-isomorphism n:

n:Ey — uxcn
Define
® = (P, I¢gn)on
so that
O:Ely — PU)xC™eOpen(C™xC™)
and we define @, := 7y, 0 @ and @y, := 7, o @ as the projections to the two components. Then
god (W) xC* = C

fop ':p(U) = C
and
®osop P (U) =P (U) xC™
such that

(qnosoqr‘)(x) — (%, 3(x) Wxe (U

for some map §: 1 (U) — C™ (this is to preserve basepoints). Thus we write

®osop! = (Lyw)3)
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Now we have (Vx (fs) acts on g, but we write - instead for brevity)

Vx (fs) = v((fs), (X))
= V(X[ ofs))
m
= v ;X(ﬂiiw) adwp) (-ofswp_])
:3X1
m
_ V(ny) il (p) (.ocp‘ocpofsoq)‘))
i=1
m m+n
= V(ZX 95| (@orsop 1wy (°@7") Ao (q)Ofso‘]’])j)
i=1 j=1
m m+n
= ZX Z o d)ofs)(P)( _]) Otly (p) (CDOfsod’_])j
i=1 j=m+1
m m+n
= Y X" Y ¥l igers) )(.o(I)_1>((ai\w(p)fod)_])(((I)osow_l)j>(1b(p])+f(p) il (p) (moso¢—1)j>
-1 1
1‘TTL ) " m+n
= D Xl fov ™ D ¥l igore)p) ('O(Dq) (((Dosowq)) (W ip)+
im1 j=m+1 )
X(f)
m—+n
wa Y Olwersip (2@7") iy (‘Dosoﬂﬂ)j
j=n+1
m+n m+n
= X(0) Y (@505 () 35 (qgore)p) (07T H D) Y (Zx 3ilyp(py (Posow™). > 5l (orerp) (00 7")
j=m+1 j=n+1 \i=1
Next, note that by 9.2.2,
Vsp) = Tsip) (Bp)

and v projects onto the vertical subspace, so that
Vx (fs) € Ts(p) (Ep)

But since E,, is a vector space, it is linearly isomorphic to its tangent space at any point, that is,

Pp e

lle =

Ep Te (Ep)

via the map

m+n
-1 . —1
(Pp,eoq)|{¢(p)}><(jn~ (ﬂf’(p)ruh...,un> — Z Uy aj|®(e) (-OCD )

eCn j:m—H
We get that
(p;,1f(p)s(p) (Vx (fs)) = X(f)s+f(p)e ,1 (Vx (s))
which is the more precise statement meant by
Vx(fs) = X(f)s+f(p)Vx(s)

9.3.5. Remark. Now we want to genralize this from tangent vectors X € T, (,,)M to vector fields X € I' (TM).
Solet X € T'(TM). Then forany p € M, Xl, € ToM, and a section s € T' (E), we have

MBP — Vx‘p (S) Gvs(p)
But according t0 9.2.2,
Vi) = Tsip) (Ep)
and for any vector space, the tangent space is isomorphic to the vector space itself
Tsp (Bp) = B
so that we have an induced map map
Msp — Vx‘p (s) e Eyp

Since this depends on X only through its value at p, we get a map tensorial in X, or 7 (M)-linear in X. That is, we have a
section, which depends on X. Thus we have a covariant derivative: A map from sections to sections of the tensor-product
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bundle T*M ® E (1-forms with values in E):

’V:F(E)—>F(T*M®E)

s V (s)
——
At each pem, takes a vector XeT, M and produces a value v (s)cE,
Note that V is not ¥ (M)-linear in s: If f € ¥ (M), s € T' (E) and X € TM then using 9.3.4 we have
Vx (fs) = fVx(s)+X(f)s (48)

9.3.6. Definition. (The Parallel Transport induced by the Ehresmann Connection) A parallel transport is the assignment to every
curve

v:00,1 - M
And to every (s, t) € [0, 1% a map

T(t,s): Ey(s) — Ey(t)
such that:
(1) t(s, ) =Tg
2) T, s)t(s, ) =71(t, 1)
(3) Letu € E, (o). Then the vector field tangent to the curve
0,1 — E

given by
t = (t(t,0))(u)
which we denote by X should be horizontal. That is,
Xiet,opay = ele (Tt 0)) (W)l € Tixe, 00w E

and the requirement is that

Xlet,onw) = Hixr, 0w
which is equivalent to

!

v (X‘(T(t,omm) =0
where v is the vertical projection, which is also equivalent to

Vy (t(t, 0)) (u) v (o (T (t, 0)) (w))
0

9.4. Gauge Potentials.

9.4.1. Definition. Let r: E — M be a vector bundle with typical fiber F € Obj (Vect{:‘). Let (¢, U) be a local bundle chart:
@:Ey — UxF
Then we have defined a horizontal subspace of T (El;) given by
ToUx{0}

which is different than the Ehresmann connection (the sub-bundle H from above). Now instead of what was called v above
(a projector onto the vertical subspace) we need a projector onto

Top)F C Tplx TgpF
for some section s : U — F. Then sections on E|{; are maps
s:uU — F
and have pushforwards given by
se:TpU = Top)F

and the connection associated to the horizontal subspace T, U x { 0 } is denoted by d and is given by

dx (s) = s.(X) €Tgp)F
(since it is already in T () F, the vertical subspace, there is no need to apply a projection).

9.4.2. Claim. (Vx (s)—dx (s)) (p) depends on s only through s (p) and is thus linear in X, and in s (p). Equivalently stated, it is
F (M)-linear in s.
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Proof. Let f € F(M). Then
Vx (fs) —dx (fs)

vifs), (X) = (fs). (X)
(v=1) (F(P) (s.) (X) +X () 5. )

= f(p)(Vx(s)—dx (s))+ (v—1) X (f) s«
N

9.4.3. Definition. (Local connection 1-form) Since Vx (s) — dx (s) is ¥ (M)-linear in s, we can define
A(Xp)s(p) = Vx(s)—dx(s)
for some A (X;,) : F — F linear (matrix), that is,
A(Xp) € gl(F) =Lie(GL(F)) =End(F)

and for short we may write this relation as

with A € gl (F) ® T*U which is called the local connection 1-form. If { f*} is some basis of F, then let w (X, ) be the matrix
of that linear map in the basis { f* }:

AX) () = Y wX)® o
B

Then w itself can be thought of as a matrix where each entry is a 1-form (it takes a vector X € T, M and produces a complex

number, which is just the definition of a one form). These matrix 1-forms w (X)* g are also called connection 1-forms. If we

define the constant sections as

f*.u — F
P — f%
then for some X € TU we have
dx () « (X)

I
x
o
-
R

constant map

tangent vector zero on constant maps

so that
Vx (?“)

Vx (%) —dx (f%)
A (X) (%)
> wrg(X)fP

B

)

is a basis for TU and with respect to it we define the Christoffel symbols:

rf[% =w%g (ai (-01])71)>

9.4.4. Claim. (The Connection 1-forms under Gauge Transformations) Let 7 : E — M be a vector bundle and let ¢; : Ely — U x F for
i e {1, 2} be two local bundle trivializations of the same set U € Open (M). As we have seen in 8.1.15, the map

If{:U— ¢ (U)is a chart on M then

@097 :UxF — UxF
is of the form
(p, f) = (p,glp)f)
where g is some matrix-valued map U — Aut (F). Then we have the following transformation law of the connection 1-forms:

Ar=g 'Asgtg (dg)]

Proof. If s : M — E is a section, then restricted to U, we may write this section as s; : U — F as follows
si(p) = m(ei(s(p))
where 7, : U x F — F is the projection. Then by definition of g we have

s2(p) = g(p)si(p)
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so thatif X € TU then Vx (s) : U — Fis also a section so that we have
(Vx(s)), = g(p)(Vx(s))
Then plugging in V = d + A we get

(dx +A2 (X)) (s2 (p)) g9 (p) ((dx + A1 (X)) (s1 (p)))

7
(dx +A2 (X)) (gp)s1(p)) = g(p)((dx+Aq (X)) (s1(p))
!
g(p) " dx (g(p)s1 (P)) —dx (s1 (P)+g(P) ' A2 (X)g(p)s1(p) = A1 (X)(s1(p))
(9(p) " (ax(g(p)))s1(p)
so that the result follows.
Note that this transformation law is not tensorial. O

9.4.5. Corollary. Note that if rank (E) = 1 then g (p) € Aut(C) so that we are not dealing with matrices but rather with numbers,
which commute, and so the transformation law becomes

A1 = Ay+g ' (dg)
9.5. Curvature.
9.5.1. Definition. (The curvature corresponding to a connection) Let w: E — M be a vector bundle and let
V:IF(E) — T(T*M®E)

be a connection on E. Then the curvature corresponding to V is the operator

R:T(E) — T (/\ZT*M ®E)
——
2—forms
defined via

R(X,Y) = VxVy—VyVx—Vixy
for all vector fields (X, Y) € TM.
9.5.2. Claim. Fors € T (E), (R(X, Y)) (s) is tensorial in X, Y and s.
Proof. Let f € ¥ (M). Then using (48) we have
(R(X, Y))(fs) = VxI(Vy(fs))=Vy (Vx(fs)) —Vix v (fs)
= Vx({Vy(s)+Y(f)s) = Vy (fVx (s) +X(f)s) —fVix v (s) =X, YI(f) s
= fVx(Vys)+X(f)Vy (s)+Y(f) Vx (s) +X(Y(f))s
—fVy (Vxs) =Y (f) Vx (s) =X (f) Vy (s) = Y (X (f)) s
—fVix, v (s) = [X, Y (f) s0
= f (Vx (Vys) = Vy (Vxs) = Vix, v] (S))
And using 9.3.4 we have
(R(X, fY)) (s) = VxViys —=ViyVxs = Vix ry)s

X, FY]=X (f) Y-+£[X, Y
VXYY g (ys) + X (£) Vy (s) — FVy Vs — X (F) Vys — FVx ys

9.5.3. Corollary. As a result of this tensorial property, R determines not just a map
R:T(E) — T (/\ZT*M®E)
but actually a R € T (A’T*M ® End (E)) where
End(E) = E*®E

and has fibers (End (E))p =End (Ep) = gl (Ep). Then in alocal chart, R is given by F € gl (F) ® A2T*U where F is called the curvature
2-form. It is a matrix whose entries are 2-forms on U € Open (M).

9.5.4. Claim. We have
F = dA+AANA

Proof. The definition of the exterior derivative and the wedge product are as follows:
(dA) (X, Y) = X(A(YV))=Y(A(X) = (A(X, YD) (s)
(the fact that A (Y) is really a matrix of one-forms and not a bona-fide one-form doesn’t matter as X acts linearly) and
(AANAJX,Y)) = AXIAY)-A(YIA(X)
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Then using the same basis as in 9.3.4 we have
FXY) = (ax+A () (dy +A (V) = (X Y) = (dix vy +A (X, V)
= dxdy+ dxA(Y)  H+AX)dy+AX)AY)+...
NEA
X(A(Y))+A(Y)dx
which follows as
dxA(Y)s = X(oA(Y)s)
= X(A(Y))s+A(Y)X(-0s)
= X(A(Y))s+A(Y)dxs
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Now use the fact that
(dxdy —dydx)(s) = X(Y(-0s))=Y(X(-05s))
= dix,vs
]
9.5.5. Claim. Under the same transformation as in 9.4.4 we have that the curvature 2-form transforms as
Fi= g 'Fayg
Proof. Using the above formula, the fact that d*g = 0 and
dg~' = —g '(dg)g”"
we have
Fi = dA;+ATAA
= d (9*‘/\29 +g! (dg)) + (g”Azg +g (dg)) N (9*‘/\29 +g (dg))
= dg 'Ayg+dg ' (dg)+9 'A29/Ag 'A2g+g 'Az9gAg ! (dg)+9g ' (dg)Ag TAsg+g ! (dg) Ag! (dg)
= (dg7")AAzg+g " (dA2) g+g 'Ardg+ (dg ) Aldg)
+9 'A2AA2g+g A2 A(dg)+g ' (dg)Ag TAzg+g " (dg)Ag! (dg)
= —g '(dg)g ' AAzg+g ' (dAz)g+g 'A;Adg—g ' (dglg ' Adg
+9 "A2AA9+9 "A2Adg+g ! (dg) Ag T A2g+g ! (dg) Ag ! (dg)
= g 'A;Adg+g 'A2Adg+g ' (dA2)g+9g TAZ A ALg
= g ' (dA2)g+g 'A2 A Axg
U
9.5.6. Remark. The above transormation rule is tensorial. Note that even though F is not gauge invariant, its trace is.
tr(F) = tr(F)
9.5.7. Claim. In a local basis { f* }, of F, we have
FIX, V)f* = Q%a (X, V)P
for some matrix Q (X, Y) € gl (F) and then
0% = dw*pg+w yAwYyg (49)
O

’ Proof. Use the identity F = dA + AAA.

9.5.8. Claim. (The Bianchi Identity) If [A, F]l = AAF—FAA then

dF+[A, F1=0
Proof. A straight-forward computation shows
dF+[AF] = d(dA+AANA)+AN(AA+ANA)—(dAA+ANA)NA
= dAANA-ANAA+ANAA+ANANA—-AdANA-ANANA

=0
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9.5.9. Example. (Electrodynamics) Let M be the spacetime manifold. Let E be a vector bundle with typical fiber R (so

gl(R) = R
(Note that in physics the Lie algebra of U (1), u (1), is defined as iR and in math it is R)
Then
gl(R)@T"U = ReT'U
T"u
so that
A = Apdxt

is the vector potential, F = dA is the electromagnetic field tensor (since A A A = 0 because the typical fiber is of rank 1). The
Bianchi identity implies

\d/F/ +[F,A] = 0
d2A=0
)
[F,A] = 0

9.5.10. Example. (Differential Geometry on Manifolds) Let
and

with V being the Levi-Civita connection. Then
w* g (4)
are the connection 1-forms. Then (49) is the second Cartan structure identity, and the Bianchi identity says
dF+[F, Al = 0

dQCXBJr[_O.“B,w“B} = 0
which is precisely the second Bianchi identity.
9.6. The Berry Connection.

9.6.1. Definition. (The Berry Connection) Let w: M x F — M be the trivial bundle with typical fiber F, such that F is equipped
with an inner product. Let & be a (possibly non-trivial) sub-bundle of M x F with fibers (£?), determined by orthogonal
projections

P(k):F — F
(2), = im(P(¥)

Then a connection on & is defined via

vV = P(k)d
that is,
Vx(s) = P(k)dx(s)
= P(Kk) s« (X)
= PK)X(-o05s)

9.6.2. Remark. (Analogy with Levi-Civita Connection) Let N be a Riemannian manifold with a Levi-Civita connection Vy
and M C N be a sub-manifold. Then the Levi-Civita connection on M is

Vm = PVn

with P : T,N — T, M the orthogonal projection. The analogy is complete for N = IR™, Vy = d and a sub-bundle TM C
TN'M = M X Rn.

9.6.3. Remark. Lets € T (£2). Then

so that
V = d—(dP)P (50)
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However,
A # —(aP)P
since V is not expressed in a local bundle chart!

9.6.4. Claim. The Berry curvature is given by

R(X,Y) = [XP,YP]P
Proof. We start from
R(X,Y) = VxVy—VyVx—Vix v
and use (50) in the form
Vx = dx—(XP)P
so that
VxVy = (dx— (XP)P) (day—(YP)P)
— dxdy — dx (YP) P— (XP) Pdy + (XP) P (YP) P
= dxdy —X(YP)P— (YP) (XP) — (YP) Pdx — (XP) Pdy + (XP) P (YP) P
But
(XP)P (YP)P—(YP)P(XP)P = 0
so that the result follows. O

9.6.5. Corollary. If dim (M) = 2, we have

2mi JM ~—— 2mi
2—form on M

tr(R) . JM tr (R (3, Ox,)) dky dkz

1

JM tr ([0x, P (k), 9k, P (K)] P (k)) dkqdk;

2mi
= Chy (9)
and if dim (M) = 4 we have
1 1
= tr (RAR = Chy (&
z(zm)ZJ r(RAR) 2 (2)

4—form on M

which is the second Chern number, and is also an integer.

9.6.6. Remark. There is a way to show that the Chern numbers are independent of the particular connection chosen (see
appendix).
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10. THE BULK-EDGE CORRESPONDENCE IN THE PERIODIC CASE

Recall from 5.2 that one can consider the integer quantum Hall effect as an edge effect. In fact, we even presented a
phenomenological proof that the Hall conductivity in the two perspectives is equal (5.3). In this section we will present a
rigorous proof of this fact for the case (in the periodic setting) using Levinson’s theorem, a proof which was published in

[20].
10.1. The System. We consider a two-dimensional sample in a tight-binding model on
X = z7°
(for the bulk) or
X¥ = ZxN
(for the edge) where the Hilbert space is 17 (X; C) or 12 (X¥; C) and such that there is an operator
Hoe B(12(x0)
and an operator
HE e B(2(X50))

which obey the following relation: If (H),, ,,,, € C for (n, m) € X? is the matrix element of H with respect to the position
basis, then

(9 = Olm ¥l ()

Vacuum Material

Edge

10.2. The Edge. The edge Hamiltonian now only has translation symmetry along the first axis and the second axis has no
translation symmetry. As a result, the edge unit cell is not compact and so has continuous spectrum.
E

0 e ki

10.2.1. Definition. Define the signed number of times that the Fermi energy crosses the discrete spectrum of the edge (after
having done Bloch decomposition on the axis on which it is possible) by

Index (Hﬁ) := signed # of crossings of Er with the discrete spectrum

for example in the above picture we have Index (H*) = +1.
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10.2.2. Remark. Index (H¥) is an integer. Due to the stability of the spectrum it is also clear that if we perturb H* compactly
this integer remains constant. This index is also sometimes called “spectral flow” or the Maslov index of kq ~ H# (kq).

10.2.3. Claim. The Hall conductivity in the edge system is given by
oy = 2mindex (Hﬁ>

Proof. We assume the chemical potential on one edge is p4 and p— on the other edge, where p # p_ (otherwise the
current on one edge cancels out the current on the other edge as they flow in opposite directions). Using the formula
j = pv where p is the density of carriers and v is the velocity of the carriers, we have

K,

I = ;—ﬁZij(k)dk
.

k

1 K 19K
= 205 ax

- Rl -£ ()

11
= ﬂEZ[HJr*Hf]

11
= ——Yv
h2m ;
where the sum is on intersection points of either pi or u_ with the gapless edge states, v is the velocity, and V is the
potential between the two edges. Thus we obtain that for each ascending crossing of the gapless edge mode with either

py+ or p— we must count +1 for the conductance (given by o = %) and —1 for a descending crossing. O

10.3. The Equality

E

10.3.1. Claim. The Hall conductivity as computed in the edge system is equal to its analog in the bulk system. That is, we have
Tndex (Hﬁ) — Chy (2)
where & is the occupied sub-bundle of €, the Bloch-bundle corresponding to the bulk system.

Proof. We will not give the whole proof, but rather just establish the context. As the picture above shows, instead of
having the Fermi energy in the middle of the gap, we can just as well have it be infinitesimally close to the upper
occupied band edge and count the incipience or disappearing of edge states from that band edge.

Assume that rank (#?) = N and concentrate on just one band in this bundle, that is, some rank-1 projection l5j (k) with
je{l,..., N}

Assume that for fixed k; € ST, k3 — g5 (k) has two extremum points, namely one maximum and one minimum, which
we denote by kJ*%* (k) and k’z“"m (k7). Then these two curves

ki =k (k)
and

ki K3 (k)
cut T2 into two open domains in which k; + ¢; (k) is either increasing or decreasing with respect to the orientation of
S1. In these two subsets of T2, as we have seen in 8.4.11, one can find global sections for the line-bundle, and the first

Chern number is given by the winding number of the transition matrix along the cut. Since we have two cuts, we need
the difference of the two windings (requires more explanation) of two transition matrices. One goes from the region of
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decreasing to the region of increasing, which we call T, * (k;), and traces the path

ki KB (k)
in T and the other goes from the region of increasing to the region of decreasing which we call T;~ (k;) and traces the
path

ki = kM (k)
in T2.

Chy (&) = Winding Number (T; ) — Winding Number (T, ")

However, these transition matrices also have a physical meaning: they can be thought of as scattering S-matrices, where
a particle scatters with the edge and bounces back in the other direction. Indeed, since for fixed k1, k2 + ¢; (k) is either
increasing or decreasing, and v; ~ 9y, ¢; (k) we can think of these curves as points of scattering, as the sign of the speed is

reversed.
The point now is to use Levinson’s theorem

2)
. +_ k _
%135 arg (T (k1))|k§” = 2nN

where N is the signed number of discrete eigenvalues of H* (k) emerging (counted as minus) or disappearing (counted

as plus) at the upper band edge ¢; (k1 , KV (kq )) as kq runs from k%” to kgz). For the full details see [20] page 19 and
the actual proof on page 41. O
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Part 2. Time-Reversal Invariant Topological Insualtors

As we have seen in 7.2.5, the Hall conductivity of a system with time-reversal invariance is zero. This makes perfect
sense, because a magnetic field breaks time-reversal invariance, and of course without magnetic field there is no Hall effect.

Despite this, there is still some interesting topology associated with such systems. Because in this section we restrict
ourselves to the periodic case (even though we don’t have to. See [24] for an analog of the index of pair of porjections in
the time-reversal invariant disordered setting) mathematically one could say that the case of no time reversal invariance
corresponds to complex vector bundles whereas the addition of extra symmetries changes the field of the vector space of the
typical fiber of the vector bundle. For instance, time reversal invariance on Fermions corresponds to quaternionic vector
bundles. For Bosons, one could say it corresponds to real vector bundles. Then there is a rich theory for the classification
of vector bundles over other (than C) fields, for instance, pontryagin classes for quaternionic bundles and Stiefel-Whitney
classes for real bundles (see [33]).

Our goal here is to describe the discovery of [23].

11. TIME-REVERSAL INVARIANT SYSTEMS

11.1. The Time-Reversal Symmetry Operation. Let H be a single particle Hilbert space over C, and assume that we have
some symmetry operation © : 5 — H which reverses the direction of time.

By Wigner’s theorem, we know that any symmetry must be implemeneted as a C-linear (unitary) or anti-C-linear (anti-
unitary) map H — H (see [9]).

If Uy is the one-parameter group of time-translations (typically U; = exp (iHt) with H € B (H) the Hamiltonian), we
expect time reversal © to be a map J — J( such that

Uy = U6y v e H
so that
®iH = —iHO
and if © is anti-C-linear we have
©O,H = 0
whereas if © is C-linear we have
{®H} = 0

The anti-commutation relation with the Hamiltonian implies that o (H) is symmetric about zero. Thus, if o (H) is bounded
below and unbounded above © has to be anti-C-linear. So it is usually assumed that © is indeed anti-C-linear, which we
also assume in what follows. However, there are some condensed matter physics systems that have symmetric spectrum
so that it makes sense to allow also for the other possibility.

11.1.1. Definition. (Time-Reversal) Time reversal is an anti-C-linear anti-unitary map © : 3 — .

11.1.2. Claim. ©% = +1 and the choice is determined by the system under consideration rather than by our choice of how to implement
time reversal.

Proof. Since © is an involution (reversing time twice gives the same direction of time), applying it twice must give at
“worst” a phase, which we denote by ¢ € C (with [c| = 1):

e’ = c1

Then
e = e’
cO

and
@ = ee?
Oc
= ¢O

so thatc =cand soc = =+1.
Next assume that © is some other choice of a time-reversal symmetry operator. Then © = &0 for some ¢ € C and [¢| = 1.
Thus

6% = (e)?
= OO
= &coe?
_ \5|2@2
= @2

11.1.3. Remark. For half-integer-spin systems we choose @ = —1 and for integer-spin systems we choose ©% = +1.
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11.1.4. Remark. Note that an anti-C-linear map © : 5 — H on a complex vector space H with © = +1 defines a real-structure
on K. © can be thought of as complex conjugation on ¥, so that the “real” vectors in 3 are those for which @ = . If we
define the projectors

1

P+ = 7 (1+0)
then P13 is an R-vector space with
dimg (P+H) = dim¢ (H)
and
HR = (PLH) @ (P_H)

where HR is the R-vector-space obtained from 3 by forgetting how to multiply vectors by i. Note that R-vector bundles
(which arise in the translation invariant case) are classified by the Stiefel-Whitney classes.

11.1.5. Remark. An anti-C-linear map © : 5 — H on a complex vector space H with ®* = —1 defines a quaternionic structure
on K. ©, iand 1O are the three generators of quaternionic algebra. IH-vector bundles are classified by the Pontryagin classes.

11.1.6. Example. (Electron with spin-1) Let

H = L*X)eC?
where X is either R4 or Z4. Then define
O = Ty @0
with
0:C* — C?

v = o0y WeC?

and o, the second Pauli spin matrix. If we denote complex conjugation by € : CN — CN then we can write 0 = 0,€.
(1) Squares to minus one:

2
0 = (Lpx ©0)
= ]1[_2()()@62
and
92 = 0,C0,C
_ -~ 2
= 02(=02) &7
1
= —(02)*
\_\,_/
1
= -1
(2) Anti-commutes with Pauli-matrices:
Ol®o)0 " = 1®600;07"
and
90'1971 = czeaie*‘a;‘
= 0,2C0;Co;

= 03 (=0;,202+ (1—5,2) 0y) 02
= —61,2(72 + (1 —51’2) 0204 02
1€12i01
ier2i1e1250j
~——
84,95
= —8i,200—(1-38i,2) 01
Then the spin vector S = }h& is odd under 0, just like angular momentum L = x x p.

11.2. Kramers’ Theorem.

11.2.1. Claim. If the Hamiltonian of a system H is time-reversal invariant, then any eigenvalue A of H has a degenerate subspace of

dimension at least 2.

Proof. Time reversal invariance of H is equivalent to
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Now assume that A € R is an eigenvalue of H, with some eigenvector ) € H. Then

Hbx = Ay
so that
HOY, = OHyp,
= OMpy
= O,
AER O,

109

so that @), is also an eigenvector of H with the same eigenvalue A. However, for degeneracy we still need that 1y, and

O, are linearly independent. Assume otherwise. Then G ~ 3, that is @ = ap, for some o € C\{0}. But then

%Py = —Ua
and
%y = OOy
= O,
= O,
= woapy
= lo® Py
and since VP # 0 we have |«|> = —1 which is a contradiction.

d

11.2.2. Claim. If the Hamiltonian of a system H is time-reversal invariant, then any eigenvalue A of H has a degenerate subspace of

even dimension.

vectors { P }f;‘f” for some n € N> where 1; are linearly independent and

Hby = Ay

for some n we have

{11)1/ 64’1/ 1I)Z/ 611)2/ ey ll)n—h @d)n_1, ll)n}

n—1

Obn = onbn+ Y (i +BiOW;)

iz1
for some (i, pi) € CZ not all zero. Then
@’ Pn = —Pn
and yet
©%*

©0n
n—1

= O |onPn + Z (i + Bi1OWV;)
i=1

n—1
= @WOPn+ ) (05O —Pibs)
i=1
n—1 n—1 .
= ®n (anlbn + Z (i + Bi@ll)i)) + Z (xiOW; — Bibi)
i=1 i=1
n—1
= Jonl* Yn + D [(wno — Bi) Wi + (@nBi + o) Oy
i=1
so that «,, = 0 and so
n—1
[Bibi +TOY;] = 0
i=1

and 1, ©1; are all linearly independent, so that o; = 3; = 0 as well. Thus (51) is a contradiction.

Proof. Let A be an eigenvalue of H and assume that the eigenspace of A is odd-dimensional. That is, assume there are

and without loss of generality (s, 11)]-) = 8;,j. We proceed by induction on n to show that the set of vectors in the
eigenspace must be of the form {11, @, ¥, O3, ...}. For the case n = 0 we have the claim above. Now assume that

as the eigenspace where all vectors above are linearly independent, and that ©1, is in the span of the above set. Then

(61)

12. TRANSLATION INVARIANT SYSTEMS
12.0.1. Fact. Assume that lattice translations (as in 8.2.9) U,, commute with ©:

[un/ G)] = 0 Vnel
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12.0.2. Claim. On the Bloch-decomposed Hilbert space

@ ~
% = | %k
T2
the map © : 3 — 3 obeys: if k € T? is given then O € F (—k) for all P € FC (k).

Proof. Lety € H (k). Then U = e~ *™. Then
Up®p = OUn
— @efik-nll)
eik~n®¢

12.0.3. Example. We have [©, U,,] = 0 when © is local, that is, if H = 12 (X) ® CN with
U, = Un®@1Len

and
O = T ®0

for some 6 on CN.

12.0.4. Corollary. As a result, we have as in the proof of 8§.4.8

OH(k) = H(-K)©  VkeT?
in particular,
o(H(k) = o(H(—k))
and likewise for the Fermi projection
OP(k) = P(-k)©
and, the conclusion in 8.4.8 of course still holds:
Chy(#) = 0

12.0.5. Definition. Define the time-reversal-invariant-momenta (henceforth denoted by TRIM) as the following subset of
T?:
TRIM = {keTZ [ k=—k}
= { ) ( )/(7.[/0)/(7-[/71)}

12.0.6. Remark. Note that for one dimensional systems on T = S' we would have

TRIM = {0, m}
12.0.7. Corollary. Note that
O, HK)] = 0 vk € TRIM

so that the discrete eigenvalues of the edge system ¢; (k) are Kramers degenerate at k € TRIM. This also shows (as the rank () must
be constant in k € T?2) that rank (2) € 2N.

12.0.8. Remark. The general mathematical structure of such a system is that of an equivariant vector bundle (or a complex
vector bundle with a real structure). We have the bundle 7: E — M with amap t: M — M such that t> =1y, 7 :E = E
with 72 = —1 such that the following diagram commutes:

E—7 ., E

ﬂl in
M—"—M
Note that, in particular, we have e € E;(,,) foralle e E, andp e M. If M = T? then we usually define tk := —k.

Note that we now use the symbol 7 for the time-reversal operation in the level of bundles (whereas © was the time-
reversal operation in the level of the single particle Hilbert space).

13. THE FU-KANE-MELE INVARIANT

This work was first published in [17] (which is a more correct prespective of the slightly earlier work [23]).
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13.1. The Pfaffian. For a general discussion of Pfaffians see [15].
13.1.1. Definition. Pf(A) is the Pfaffian of an anti-symmetric 2n x 2n matrix, given by
] n
PEA) = 5 D sgn(0) [ [ (A)ozio), 020 (52)

0ESHn i=1

where S, is the symmetric group of all permutations of the set{1, ..., 2n } and sgn is the signature of a permutation (being
—1 iff the permutation is composed of an odd number of transpositions and +1 otherwise).

0 a]) _ 0 al\_ >
13.1.2. Example. Pf([,a O]) =aand det([ia O]) =a“.

Proof. We have n =1 for [—Oa g] =: A so that:
0 a 1 1
Pf([_a 0]) T2t 2 sgn(o) [T (Asiai1), o2
0€S; i=1
As(1),0(2)
1
= 3 (A1,2—Az1)
= Jla—(-a)
= a
(I

13.1.3. Claim. Pf(A @ B) = Pf(A)Pf(B) where A is a 2n x 2n anti-symmetric matrix and B is a 2m x 2m anti-symmetric ma-
trix.

Proof. First note that

Ai,j i<2nAj<2n
(A@B)i,j = Bi 2n,j-2n i1>2nAj>2n
0 i>2nVji>2n

and indeed A @ B is anti-symmetric iff both A and B are. Next, let us examine the expression for the Pfaffian of A @ B:

n+m

1

Pf (A@B) = m Z sgn(G) H (A®B)G(Zif1),(‘f(2i]
0E€S 2 (ntm) i=1
1
()l Y sgn(0) (A®B) (1), 0(2) (ASB)o(3), 00a) - (ADBlo(ani2m 1), 0(2nt2m)

OESIn42m

From this expression it is clear that there are many permutations in the sum for which the summand is zero, indeed,
all o such that there is some i € {1, ...n+m} with 0(2i—1) > 2n and o(2i) < 2n or alternatively o (2i—1) < 2n and
0(21) > 2n. Thus thesum } ;cs, . reduces to asum only on the internal blocks 2n and 2m: }_;cs, 2 rcs,, - Thesign
of the composition of two permutations is the product of the two signs. One only has to take care that the sum }_;cs, .

contains a redundancy of <n —;m) combinations (the answer to the question where to place the n pairs within the string

of n +m pairs, for instance, the permutation 2134 and 3421 in S4 are identical for our purposes if n =1 and m = 1) so that
all together we have

1 n+m e s
Pf(A@B) = m( ) Z Z SgT‘L Sgn( )H o(2i—1),0(21) HBT[ (2j—1) 2j)
N ,0ES)y TES m i=1 j=1
e
1 n 1 i
= Junl > Sgn(g)HAG(2171),U(21)72mm| Y san(m [ [Brizj-1), i)
’ 0ESHn i=1 TTESom j=1

Pf (A) Pf(B)

13.1.4. Claim. det(A) = [Pf (A)}2 if A is anti-symmetric.

Proof. This is [35] Proposition 1.3.
Here is a recipe for an alternative proof:
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Show that in the Leibniz formula for the determinant

2n

det(A) = ) sgn(o)[[As 00
0ESon i=1

the sum over all permutations is actually not necessary: due to the fact that A is anti-symmetric, all terms corre-

sponding to permutations that contain cycles of odd length will be zero. Define S§Y™ as the set of all permutations

which contain only even length cycles. Then one will have shown:

2n
det(A) = >  sgn(o)[]Ayoq)
i=1

even
oeSSY

Define any two permutations (o7, 02) € Sy, ? to be “equivalent” iff o, can be obtained from ¢ by flipping pairs
and then permuting them. Explicitly, there should beaset S C {1, ..., n}and a permutation « € S, (note we use
Sy here and not S,,,) such that foralli e {1, ..., n}

6y (2i-1) = o1 (2 (1)) ies

2 o1 2 (i)=1) ie€{1,...,n]\S
oy (21) = 01 2a(i)—1) ieS
2 oy 2a(i) ie{1,...,n\S

Then we write 07 ~ 0. ~ defines an equivalence relation on S;4,, the class corresponding to o is denoted by [o]
and the set of all classes by 85°'"°.

Note that |[o]| = 2™n! for any [o] € 852" and that if [07] = [02] then the corresponding summands in (52) are
equal:

mn n
sgn (o7 H (2i—-1),07(21) = sgn (o2) H (rz (2i—1), 02(21)
i=1 i=1

As a result, (52) becomes:
n
PRA) = ) sgn(o) [T (A)opicn), o)

[o]espair i=1

Prove that there is a bijection
©: S'gairs « Sgairs N ngen
. n n n
and that
sgn (¢ (lo1], [o2])) = sgn(o7)sgn(oz)

. 2
for all (o], [0]) € (85577°)"

13.1.5. Claim. Pf (BABT) = det (B) Pf (A) where B is any 2n x 2n matrix and A is an anti-symmetric 2n x 2n matrix.

Proof. First note that if A is anti-symmetric then BABT will be anti-symmetric as well:

n
(BABT)J/ - > BjiALmB i
1, m=1
2n
Z Bj, 1AL, mBi, m
1, m=1
2n
Z Bj,1Am, 1B, m

1, m=1

— Y BimAm1Bj1
1, m=1

(A:;AT)

= — > BimAm1B;

1, m=1

- (BABT)

ij
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Next we have using 13.1.4:

[P (BABT)] * o et (BABT)
= [det(B)]* det(A)
= [det (B))* [Pf (A))?
so that
pf <BABT> — +det(B)Pf(A)
Now the sign must be + by using the special case B = 1 x2n.- O

13.2. The W Overlaps Matrix.

13.2.1. Definition. (The W Matrix) Letnt: E — T? be a 7 -equivariant bundle with fibers E equipped with an inner product.
By 8.4.8 we know that

Ch(E) = 0
so that by 8.4.11 there is an orthonormal frame (which is a basis for Ey) with respect to which .7 is antiunitary:
(e (1) 12,
for some M € N> 1. Define a matrix k — W (k) with entries in F (T?) by the following equation:
W(k)ij = <¢1 (k), ,71])]' (*k)>
which makes sense as .7; (—k) € Ey so that both elements are in Ey and the inner product makes sense.
13.2.2. Claim. W (k)*W (k) = 1 for all k € T?.
Proof. We have

(W (k)" W ()] = D Wy W (k)
1

= > W W (k)]

1

= Z W (), T (—K)) (W1 (k), T; (—k))

1

= > (Thi (=K, b (k) (W (k), Th; (—k))

1

(T k) (i (k), ) =1) (T (—k), T (—k))
= 1 7 )

(7 is antiunitary)

(Wi (=K, bj (—K))
{Wi(k)}is an OBN
( = ) (W5 (—k), Wi (—k))

i'/j

= 1]:

4j
(]
13.2.3. Corollary. det (W (k)) # 0 for all k € T?.
Proof. Taking the determinant of the equation above we have
det (W (k)*W (k)) = det(1)
!
det(W(k))det(W (k)) = 1
!
det (W (K))* = 1
O

13.2.4. Claim. W (k)" = —W (—k).
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Proof. We have

W (k)]
(B (k), Ty (—k))
(=725 (<), T (K))
— (T TV (kK), Tbi (—k))

wivr]

D]

(72=-1)

(7 is antiunitary)

- —(Tj (k) bi (—K))
_ — (Wi (=Kk), T (K), )

= - W (_k”ij
(]
13.2.5. Corollary. det (W (k)) = det (W (—k)).
Proof. Taking the determinant of the equation in the preceding claim we obtain
det(W(K)") = det(~W (k)
!
det(W(k)) = (~1)”det(W (k)
!
det(W(k)) = det(W(—k))
]

13.2.6. Corollary. W (k) is an anti-symmetric matrix for all k € TRIM and thus its Pfaffian is defined on TRIM.

13.2.7. Corollary. Lety :S' — T? be the loop defined by

0,21)32 ¢ — (0, ¢) e T?
N——

S]
or
0,21)2 ¢ — (@, 0)eT?
——
Sl
or
0,21)3¢ — (m, @)eT?
———
S]
Then

det (W (y () :S" = S!
has winding number zero.
Proof. First it is clear from the proof of 13.2.3 that the range of the map det (W (v (-))) is indeed S! C C. Next, because
of 13.2.5, any winding that the path does until its midpoint must be undone on the way back to the end which travels

through the negative part of T2 (the path is constructed in such a way that half of it is in k and the other half is in —k), so
that all together any winding motion must be undone by the time we get back to the base point. O

13.2.8. Corollary. As a result, a consistent choice (between the two possible choices) of a sign for the square root of det (W (k)) can be
made for all k € TRIM by defining the sign arbitrarily at one point and then determining the sign by a continuous path to the other
points.

13.3. The Fu-Kane Index.

13.3.1. Definition. (The Fu-Kane Index) Define

PE(W (K))
Index(E) := | | _— 53
et reTrim Vv det (W (k) )

where the sign of the square root of the determinant is chosen consistently on TRIM.
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13.3.2. Remark. From the discussion about it is clear that this qauntity is well-defined and that
Index(E) € {1,-1}

because of 13.1.4:

Index(E) =[] sign(Pf(W (k) (54)

kETRIM
For this reason one often speaks of the Fu-Kane index as a Z, index, although strictly speaking
Z, Z/2Z
{0+2Z, 1427}

is an additive group and {1, —1} is meant in the sense of a multiplicative group. There is a slight misfortune with the
notation, as the symbol 1 for the multiplicative group means trivial group element whereas it is a generator for the additive
group.

13.3.3. Remark. It can be shown that Index (E) = +1 corresponds to the 7-isomorphism class of a trivial .7-equivariant
vector bundles and Index (E) = —1 is the other possible .7 -isomorphism class.

13.3.4. Remark. The Fu-Kane index does not correspond to a response of the system to a perturbation, as the first Chern
number did (with relation to the Kubo formula which was a response to perturbating the system by an electric field).

13.3.5. Claim. Index (E) does not depend on the choice of the orthonormal basis { }21}.

PFW(K))
Vdet(W (k)
S e {{(0,0),(0,m}, {(m0), (m, M)}, {(0,0), (m, 0)}, {(m 0), (7, m) } }
so that one could naively propose two indices being associated with E. However, consider how the index transforms if

we work with

Proof. Actually from 13.2.7 it is clear that [ [, < has an unambiguous sign where

Py (k) = ZTij (k) W; (k)
j

for some T: T2 — U (C?M). Then
(W (k)]

(D1 (x), TP; (—k))

= <Z T (1K), 7Y Tim (k) bm (—k)>
1 m

(? is anti—linear)

= D T () Tjm (—K) (W1 (k), Tbm (k)
1,m

D)

_ > [T09], W (R [T
>
1

’

[T W ()l [T
= [TIW 0T ()T

det (W(K)) = det (T(k))det (T(Kk])det (W (k))

so that

and at TRIM we have by 13.1.5
PF(W(K)) = det (W) P (W (k)
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so that
I PRWK) det (W) PE (W (k)
kes \/det (W (k) kes \/det(Ti) det( )det( (k)
det (Ti) Pf (W

1};[5 \/det )zd
= 1 sign (det (T(k))) sign (Pf (W (k)))

kes

= (=)™ [ sign (Pf (W (k)
kesS
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where ng is the winding of T (k) along the line defined by S. By continuity it must be independent of which path we take

along T? and so even though

Pf (W (k)
det (W (k)
might change sign upon changing basis } — 1, for any choice of S,
Pf (W (k P (W (K
W) _ g2 (W (k)

keTRIMm WKGTRIMW

so that the result follows.

13.3.6. Claim. Index (E; @ E;) = Index (E7) Index (E5).

Proof. The 7-bundle E; @ E; is composed of fibers that are the direct sums of the fibers of E; and E,. As a result, the
W-overlap matrix corresponding to E; & E, will be a direct sum of the Wj-overlap matrix with the W-overlap matrix.

Then one can use 13.1.3 in (54).

O

14. THE EDGE INDEX FOR TWO-DIMENSIONAL SYSTEMS

14.1. The Spectrum of Time-Reversal-Invariant Edge System. In this section we assume that we have exactly the same

setting as in 10.1, with the additional condition that
Off (k1) = F*(—k1)©

O‘“(% 7))

ijMe%l\C
e

— —
=T

14.1.1. Claim. oy (Ff (k1)) = opp (FE (—K1)).

Proof. Let A € opp (F* (kq)). Then H* (k1) = A for some . Then
Hf(—kney = O (k)b
- o
= A
DER) o

14.1.2. Remark. Note that at k; € {0, } (the Time-Reversal-Invariant-Momenta in one dimension), we can also invoke

Kramers’ theorem to obtain that there is even degeneracy at those points.
14.2. The Edge Index.
14.2.1. Definition. Define

Index (Hﬁ> = (-1 )N

where N is the number of eigenvalue crossings of Fermi line at half the values of kq, that is, ky € [0, 7.
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14.2.2. Remark. Note that if we took N to be the number of crossings for k; € [—m, 7], then we would always get an even
number by 14.1.1.

14.2.3. Remark. Note that we would get the same result if instead we counted the signed number of crossings, analogously
to the quantum Hall half-periodic edge index. However, it is easy to see that in the case of time-reversal invariant systems
it is not necessary to discern the signs.

14.2.4. Remark. If we perturb H* in a compact fashion, Index (H*) remains constant. Additionally, if we move the Fermi
level (within the gap) Index (H*) also remains constant.

14.2.5. Claim. We have
Index (Hﬁ) —  Index(E)

’ Proof. For a proof see [20]. (]

15. THE RELATION BETWEEN THE FIRST CHERN NUMBER AND THE FU-KANE INDEX

It should be noted that in general there is no relation between the two quantities defined in (39) and (53). It is only in a
special case of taking the direct sum of two quantum Hall systems that there is a direct relation, which we describe below.

Let Hy be the Hamiltonian (not necessarily time-reversal invariant) on a Hilbert space 3 with corresponding Fermi
projection Py. Define

Ho = ©yHo0}
where O : H — H is time reversal on H. Define, on H & K the following two operators:
__ |Ho O
o= { 0 ﬂo]
and
. 0 O
o [@0 > }
15.0.1. Claim. [H, ©] = 0.
Proof. We have
Ho 0][0 ©] [0 ©][Ho 0] _ 0 Ho®| [ 0 ©oH
0 FHol||® 0 © 0|0 Hy| ~— |H©® 0 OoHo 0
_ 0 Hp© — OoHo
~ |Ap©y —OgH, 0
but
M@ —OoHy = OgHp @509 —BHo
~———
1
= 0
and
Ho®o —BOoHy = HeBOp—Br0,HoO}
= HeO%0000 — 00, HoOj
~—— =
1 —1
= 7H0®3 + Ho@é
= 0
([l
15.0.2. Remark. The Fermi projection of H is
_ |Po 0
P [ 0 f’o}
15.0.3. Example. Let Hy be the Hamiltonian for a spinless electron with H := L2 (X) and then H does include spin:
HoH = L*(X)@C?

Then we have
Index (2) = (—1)EM(Z) (55)
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where & is the occupied sub-bundle corresponding to P and & is the occupied sub-bundle corresponding to Py.
Proof. We will use the bulk-edge correspondence to show (55) in the edge perspective.

Claim. A% (k1) = HY (—kq).

’ Proof. The proof is identical to the beginning of 8.4.8. O

Then Chy (&) is equal to the signed number of crossings of eigenvalues of H% (k1) on kg € [—m, ] by the bulk-edge
correspondence for the quantum Hall effect.

Claim. The signed number of crossings of eigenvalues of Hg (k1) onk; € [—m, 7] is equal to the signed number of crossings
of eigenvalues of H* (k1) on kg € [0, 7.

Proof. 1f Hj is a crossing of Hf at kq € [0, 7] then
waly = el
I
Hi(a) 0 qu _ . [ﬂn}
0 (k)| (W2 "l
I
{H% (k)1 =Eriy
A§ (ki) b2 = Epbs
I
{H?) (k)P =Epdy
HY (—ki)wy = Epd,
([l

Now by the bulk edge correspondence for time-reversal-invariant topological insulators, this latter quantity is equal
to Index (£2). O

15.0.4. Remark. Note that if we now perturb H compactly so as to lose the block-diagonal form but preserve time-reversal
invariance, the index remains constant. Thus, one approach to compute the index of a time-reversal invariant system using
the first Chern number is to perturb it compactly (if that is possible) to a time-reversal-invariant system so that it has the
block-form and then compute the first Chern number of only one block. The parity of the first Chern number will be the
Fu-Kane index.
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Appendix

The following material did not appear in the lectures.

16. MORE ABOUT VECTOR BUNDLES

The material in this section is taken from [5].
16.1. Basic Properties.

16.1.1. Claim. (Slight generalization of (8.1.12)) Let ¢ : E — F be a vector bundle morphism between two vector bundles over
X. Assume the fibers of E and F are constant, and are given respectively by V and W. Then ¢ determines a continuous map @ :
X — Motvectc (V, W), and conversely, any continuous map ® : X — Morvect (V, W) determines a vector bundle morphism
o:E—F
Proof. Letx € Xbe given. Since E is a vector bundle, 3U € Nbhdx (x¢) such that there is an isomorphism ¢ : El{; = U x V
and another U € Nbhdx (x) such that there is an isomorphism 1 : Fl; — U x W. Then UN U € Nbhdx (xo) and we have
the restricted isomorphisms
Y Elyag — (UNT) xV
and
P Flyag — (Unl) xw
Then for all x € UN U we define a map @ (x) : V — W by
(@) (v) = mobogod ' (x,v) WeV

If V and W are finite dimensional, then Moty (V, W) is also a finite dimensional vector space (= V* ® W) which has
the standard topology, in which @ is continuous. If V and W are infinite dimensional one has to choose with which
operator topology one wants to work with.

Conversely, any such map @ : X — Motvyectc (V, W) can be used to define a morphism ¢ ¢ MoTvecte(X) (E, F) by

(elynn) (6) = (x, ®omo(e))

16.1.2. Remark. Note that since the group of invertible elements G (B (V, W)) in B (V, W) is open in norm, O T (G(B(V, W) e
Open (X), where @~ (G (B (V, W))) is the set of all points x € X for which @ (x) is an isomorphism.

16.2. New Bundles out of Old Ones.
16.2.1. Definition. (Continuous Functor) Let T be a functor of n covariant arguments
T: (Vecte)™ — Vectc

where n € IN.,. ((Vectc)", the category of n products of Vectc, is not to be confused with Vectg, the category of n-
dimensional vector spaces over C).
Examples for T are the direct sum functor

(V,W) —» VoWw
the tensor product functor
(V,W) —» VoW
the homomorphism functor
(V, W) = Morvectc (V, W)

=V*QW

and so on (Recall that any contravariant functor on € may be regarded as a covariant functor on the opposite category C°P
so there is no need to consider here contravariant functors at all). Then T is called a continuous functor iff for all

(Vi -o0) Vn), (W, ..., Wa)) € (Obj ((Vecte)™))?
the map
T Mot (yeerer (Vi -oos Vo), (W1, ..o, Wa)) = Motvecre (T(Vi, ..., Vi), T(Wh, ..., Wa))
is continuous, where we use the standard topology on
Mot (yeceo)m (V1,00 Vi), (W1, ..., Wh))
and
Morvecte (T(Vi, ..., Vo), T(Wq, ..., Wy))

This topology is defined for instance when we use instead of Vect¢ the category of finite dimensional vector spaces or of
Hilbert spaces and use the operator norm.
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16.2.2. Claim. (Induced Bundle from a Continuous Functor) Let p1 : E1 — X, ..., pn : En — X be n given vector bundles over X and
let T be a continuous functor of n covariant arguments

T: (Vecte)™ — Vectc
Then there is defined a vector bundle T (Eq, ..., Ex) over X, such that
(T(E1/ ey En))x :T((E1 )xr ooy (En)x)

for all x € X. For example, with the direct sum functor,

E1 0 = (E1)y @ (E2)y
—_———

———
direct sum on bundles, which will be defined below /]  direct sum on vector spaces, which is already defined

Proof. We divide into cases.

Case 1: E; are all product spaces: E; = X x V; for some vector spaces V;. Then define

T(Ey, ..., En) == XxT(Vi,...,Vy)

with the product topology. The projection is defined naturally.

Case 2: E; are all trivial. Then let the isomorphisms

&4 - Ei — X x Vi
be given for some vector spaces V;. Now define
T(Er, ..., En) == [ TUEND, ..o (En)y) (56)
xeX

as a set, with the projection p (x, T (ey, ..., en)) := x. Note that we also have a bijection T («) naturally defined:

T(x): T(Eq, ..., En) — XxT(Vy,..., Vn)

by

(, Tler, ooen)) S (x, T(moa (e1), ..., 70 an (en)))

We define Open (T (Eq, ..., En)) as the unique topology on T (Eq, ..., Ey) such that T («) is a homeomorphism. Note that
since T (o) is bijective, this is the initial topology on T (Eq, ..., Ey) generated by T («). If
&t By — X x \71

is another set of isomorphisms, then T (x) and T (&) induce the same topology, since T (&o o(‘) =T(®T(x) 'isa
homeomorphism.

Case 3: E; are not all trivial. Then we define T (Ey, ..., En) again as in (56) as a set, and its topology is defined as
follows: W C T(Ey, ..., En) is defined to be open iff WN (T (Eq, ..., En)ly) € Open (T (Eqly, ..., Enly)) forall U e
Open (X) such that E,|; are all trivial, where Open (T (Eqly;, ..., Enly)) has been defined in Case 2 already. O

16.2.3. Claim. Let ¢ : F — E be a bundle monomorphism (two bundles over X). Then ¢ (F) is a sub-bundle of E and ¢ : F — ¢ (F) is
an isomorphism.
Proof. Let xo € X. Then 3U € Nbhdx (xp), (V1, V2) € Obj (Vectc)z, and two isomorphisms

Py : E‘U - UxV;

Now choose some Wy, C V; as a subspace which is complementary to 7 o7 0 @ (Fx, ). Then p; " (U x Wy,) is a sub-
bundle of E|(,. Define

0:Fy@vy! (UxWy,) — Ely
by
fovb (xw) = U7 (U1 (e () +w)
Then 6], is an isomorphism for any x € U so that 3Q € Nbhdx (x) such that G\Q is an isomorphism. Since Fly; is a sub-
bundle of Fl 691])1’1 (U x Wy,), w is a sub-bundle of 0 (F\u @1])1’1 (U x on)) on Q. Thus, locally, ¢ (F) is a direct

|y (F) E
summand of E. O

16.2.4. Claim. (The Pullback Family of Vector Spaces) Let f € Mortop (Y, X), and p : E — X be a family of vector spaces over X.
Then the following definition gives a new family of vector spaces over Y: Define the induced family t* (p) : * (E) — Y as follows:

P(B) == {(ye)eYxE[f(y)=ple)}
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where t* (p) : £* (E) — Y is defined as the projection onto the first coordinate. The topology on * (E) is defined as the subspace topology
fromY x E.

Proof. * (p) is continuous, because it is the composition of the inclusion map * (E) < Y x E (which is continuous) with
the projection map Y x E — Y (which is also continuous).
Then a typical fiber is

f(E)y, = ()" {yo))
= {(ye)ef (B)[(f(p))(y e =yo}
= {(yo,e)eYxElp(e)="flyo)}
= {(yo,e) e{yoltxElpl(e)=Ff(yo)}
= {yotx{ecElple)="f(yo)}
= {yoltxp ' ({flyo))
{yo } x Ef(y,)

so that we can define the continuous vector space multiplication on f* (E)y ,asfr (m)y o i f" (E)fJ s > f7 (E)y o by
£ (m)y, (Yo, ©), (o, &) = (yo, meryy (e, )
and addition f* (a)y, : C xf* (E)y, = " (E)y, by
£ (a)yy & o, @) 1= (vo, argyy) (A )
These two maps are indeed continuous since m¢(,,,) and a¢(y,) are continuous, and the map
* 2 2
T (E)‘Jo — {yol}x Ef(yo)
((HO/ e)/ (90/ é)) — (90/ (e/ é))
and
Cxf* (E)y0 = {yo} x C x Eg(yy)
(>\/ (90/ e)) = (UO/ ()\/ e))
are continuous. U

16.2.5. Claim. If g: Z — Y then there is a natural isomorphism of vector families over Z,
9" (f* (E)) = (fog)" (E)

Proof. Define the map ¥ : (fog)* (E) = g* (f* (E)) by
(z,e) = (z,(g(z),€)  V(ze)€(fog)" (E)
We claim that 1 is an isomorphism of families of vector spaces over Z. To do that we must show that:
(1) ¥ is continuous: (fog)* (E) C Zx Eand g* (f* (E)) C Z x (Y x E). Define the map
| S —
ZXYXE
o = lzxgx1lg

which is continuous on Z x Z x E as the Cartesian product of continuous functions is again continous. Also define

themapn:ZxE—ZxZxEgivenbyn:(z e) — (z z, e). Note that { is the composition of restrictions of these

two maps to the corresponding bundles. Thus we have to show that ) is continuous. Suffice to work with a basis

for Open (Z x Z x E), so that we assume U; x Uy x U3 € Open (Z) x Open (Z) x Open (E). We want to show that
1" (U x Uy x Uz) € Open (Z x E).

n~' (Ug x Uy x U3)

{(z,e)€ZxE|(z,z €e)eU; xU; x U3z}
(UyNnUz)x  Us
N— ~~
€Open(Z) €Open(E)
€ Open(Z) x Open (E)
As aresult 1\ is continuous, as a composition of two continuous maps.

(2) The projection onto Z is respected by 1 by construction, so that projecting before or after performing 1 leads to
the same point in 1.
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(3) Let zo € Z be given. Then we have the two fibers, (fog)* (E)ZO and g* (f* (E))z, and wl(fog)*(E) should be a
20
vector space morphism between between them. We found out above that (fo g)* (B),, ={z0 } X Efog(zy)- Next,

g" (f (B)),, = { (zo, (y,e)) € ZxY X E | g(zo) =p1(y, e Af(y) =p(e) }
y
= {(zo0, (g(z0),e)) €ZxYXxE|f(g(z0)) =pl(e)}
= {20} x{9(20)} X Eg(g(zy))
so that w\(fog)*(E)zo : (zo, €) = (20, g(20), e), being the identity on the factor E¢4(,,)), is a vector space morphism.
(4) Itis also clear that 1 is injective, and it is surjective because
g* (f* (E)) {(z,(y, e)) e Zx " (E)|g(z) =y}
= {(z (g(z), e)) € Zx " (E) [true}
= V¥ ((fog)" (E)

(5) Lastly, the inverse map V' :(z (g(z), e)) — (z e) is continuous because it is a restriction of a projection map
ZxYXE—ZXxE.

O

16.2.6. Claim. (The Pullback Bundle) If p : € — X is a vector bundle and f € Moty (Y, X) then £* (p) : £* (E) — Y is also a vector
bundle (rather than merely a family of vector spaces over Y).

Proof. Letyp € Y be given. Then 3U € Nbhdx (f (yo)) such that we have a family of vector spaces over U isomorphism:
e:Ely — UxV

for some vector space V. Since f is continuous, f~1(U) € Open (Y). Furthermore, yo € f~! (U) since f (yo) € U. Thus
f~1 (U) € Nbhdy (yo). Thus we have an induced vector bundle f* (Ely) over =1 (U). We want to define an isomorphism
of families over ! (U)

i (Bl — WXV
Define
Yy, e) = (ymoeple)) V(y e e f (Bl

where 7; : U x V — V is the projection to the second factor. Thus { is continuous (as the composition of continuous
maps), with inverse given by

-1
FrWxvsyv % (y e (Fy),v) € (Bl
which is also continuous. 1 is linear on each point because 7, o ¢ is. O

16.3. Pullbacks of Homotopic Maps are Isomorphic.

16.3.1. Claim. (Bundle form of the Tietze extension) Let X € Obj (Top) be compact and Hausdorff, Y € Closed (X) and E be a vector
bundle over X. Then any section s : Y — Ely can be extended to X.

Proof. Recall the Tietze extension theorem ([34] pp. 219): If X’ is a topological space normal space, Y’ € Closed (X’) and
V'’ € Obj (Vectgr) and f € Mort,p (Y/, V'), then there exists an extension g € Mortop (X/, V') of f: gly, = f. The statement
of the theorem is equivalent to the normality of X’.

Lets:Y — El|y be a given section. Let xo € X be given. Then JU € Nbhdx (x) such that ¢ : Ej[yy — U x V is a family
isomorphism for some vector space V. Then as in 8.1.19,

myopos:U—V
is a vector valued function. Note that UNY € Closed (U) so that we apply the Tietze extension theorem on 7, o @ o s~y
to getanew map t: U — V such that tl vy = T2 0 @ o slyny-
Since X is compact, there is a finite open cover { U }, of such sets, in each of which there is such an extension, call it
to Uy = V. Let{p« : X = R}, be a partition of unity with supp (p«) C Ug.
Then define, Vo, a section s : X — E by
t elu
so(x) = Po (X)te (x) x o
0 x ¢ Uy

and then ), s« is a section whose restriction to Y is s. O

16.3.2. Claim. (Extending Bundle Isomorphism) Let Y € Closed (X) where X is compact Hausdorff, and let E and F be two bundles
over X. If f: €|y — Fly is a family of vector spaces isomorphism, then there exists some U € Open (X) such that U 2 Y and some
g: Ely — Fly which extends f and which is also a family of vector spaces isomorphism.
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Proof. Note that the space of morphisms E|y, — Fly, Motyeci(v) (Ely, Fly), is also a vector bundle over Y, in which f is
a section. This is a sub-bundle of the space of morphisms E — F, Mory.c¢(x) (E, F). Thus we use 16.3.1 on f to obtain
a section of Mory.cy(x) (E, F), g : E = F. Define U to be the set of x for which g is an isomorphism. Since the subset of
isomorphisms is open in the set of all morphisms, and g is continuous, we obtain that U is open. O

16.3.3. Claim. (Homotopy Invariance of Pullbacks) Let (f, g) € Mort,p (Y, X)? such that [f] = lg] in MoThTop (Y, X) (that is, f and
g are homotopic). Let p : E — X be a vector bundle over X. If Y is compact, then the two vector bundles f* (E) and g* (E) as defined in
16.2.6 are isomorphic as families of vector spaces over X.

Proof. LetI =10, 1], F: Y x I — X be the homotopy between f and g (so that F(-, 0) =fand F(-, 1) =g), 71 : Y x I = Y, and
define maps, G¢: Y — X, Vt € I, by
Ge(y) = Fly t) Wyey

Let tg € I be given. Observe that Y x {to } € Closed (Y x I), and that Y x I is compact and Hausdorff, as Y is. Next observe
that the following isomorphism of restricted bundles over Y x { to }:

F Bllyxiegy = 7 (G EDlyuiro) (57)
Indeed, using 16.2.5 with

Y x {to) v S x
and
Y x{tg} £ x

we have F = Ggomy on Y x { g }, resulting in (57). Call the isomorphism (57) s. Now employ (16.3.2) on

S:F Bllyqey = 7 (G5 EDlysiey)
to obtain an extension,

§: F (Bllywu — m (GE (B))lyxu

which is also an isomorphism, where U € Nbhd; (tp). Hence G§ (E) is locally isomorphic as a function of t € I. But I is

connected so that F* (E)ly, are all isomorphic, for any pair of values of t on I,so and the result follows by using t = 0
andt =1. O

16.4. Homotopic Characterization of Vector Bundles.

16.4.1. Definition. (Grassmannian) Let V be a complex vector space of some finite dimension and n € IN~( be given such
that n < dim (V).

Gn (V) = W C H | Wis a vector subspace of VAcodim (W) =n

| S —

dim(V/W)
Each element W € Gy (3{) determines a projection map V — V via the following construction. Let { e; }?i:n;(v) be an or-
thonormal basis for V, such that there is some subset N C {1, ..., dim (V) } such that { e; };.y is a basis for W. Then the
projection is defined as

V= Z <€i, V> eiWweV
ieN
In this sense we obtain a map
VP:Gn (V) = End(V)

Now, End (V) = V* ® V so that it is also finite dimensional and has a topology induced by the standard topology of Cdim(V)?

after an isomorphism End (V) = C4m(V)* We thus give Gy, (V) the initial topology with respect to the map : the smallest
topology such that 1 is continuous. One can then prove that this topology is independent of the choice of bases.

Note that G (V) can be genralized to the case that V is an infinite dimensional separable Hilbert space. In both the finite
and infinite case, one could define a differentiable structure on G, (V) thereby making it into a smooth manifold. In fact it
is possible to show that

Gn (C™™) = U(n+m)/(U(n) x U(m))

as a smooth manifold isomorphism.

Also note that for reasons which will become clear below, G, (V) is known as the classifying space of the group GL (C™),
which is the structure group of any complex vector bundle considered as a fiber bundle (defined for instance in [43] pp. 89).
Thus, Gy, (V) is also denoted BGL (C™).

16.4.2. Claim. Gy (C™*™) = Gy (C™™) for all (n, m) € (No)2.

16.4.3. Example. One can prove that G; (C?) is diffeomorphic to the 2-sphere $2 in R3. In fact, this map is closely related
to the Hopf fibration $3 — $2. A point W € G; (C?) is determined by a non-zero vector v € C? = R*. Any non-zero vector
in R* determines a point on $3, at which point one may use the Hopf-fibration map to reach S?. Explicitly, one could also
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think of quantum mechanics: A point in Gy (C?) is the vector subset Cv determined by some v € C?\{0}. This defines the
projection

1 2 vy
(vl o g (c?)
[viiga [Vivz vzl

where v; € C is the ith component of v € C2. Now physicits will recognize that the most general self-adjoint projection in

C? can be written as :
5 (1252 —hjo7 —hy0 —hzo03)

2
hy
for some [h2] € $2 C R3 where o; are the Pauli matrices. This means that we can map
h3
1 —2%R1{v1v3}
Gy (Cz) 5C [W} — 5 23{vivz} | €§?
V2 IMIE2 {2 =y 2

using the fact that Jtr (030) = 8;,;. This is precisely the Hopf fibration map when H"Hé 2 = 1. One can show that this map
is indeed a diffeomorphism.

16.4.4. Definition. (The Tautological Bundle, slight generalization of (8.1.17)) Let Gy, (V) be a Grassmannian manifold as
above. Define the tautological vector-bundle, a vector bundle over the manifold G, (V), as the total space

Fe.ovi = {W,v)eGn(V)xV]|veW}

together with the subspace topology from G, (V) x V and the natural projection. Then the fiber above a point W € Gy, (V)
is exactly W C V.

16.4.5. Definition. (The Classifying Bundle) Let G (V) and Fg (v be as above. Define the quotient bundle

Ec.(vi = (Gn(V)xV)/Fg, (v) (58)
where G, (V) x V is the trivial vector bundle over Gy, (V). Then Eg, (v is called the classifying bundle over Gy, (V).

16.4.6. Definition. (The Induced Map) Let E be a vector bundle over a connected space X (so dim (E«) =: n is constant), V a
finite dimensional vector space, X x V the trivial bundle over X, and ¢ : X x V — E be a bundle epimorphism. Then we have
a map

feo: X — Gn(V)
induced by . It is given by

fo (x) = ker(¢x)
where @y is the restriction of the map ¢ to the fiber {x } x Vof X x V.
16.4.7. Claim. f, is continuous.

Proof. Without loss of generality assume that V = C™ for some m € N>,,. (If m < n then ¢ cannot be an epimorphism).
Let xo € X be given. We need to show that f, is continuous at x¢. Since E is a vector bundle, there is some U € Open (X)
such that there is a bundle isomorphism ¢ : E|;; — U x W for some vector space W. Then ¢ restricts to a bundle morphism
el UxV = Ely
so that @ o ¢l is an epimorphism
Pooly:UxV — UxW
which is 1, on its first factor, and
modoely:UxV W
is also surjective. Thus, 7, o @ o @l is some matrix of dim (V) columns and dim (W) rows with entries continuously
dependent on x € U. As such, the projection onto its kernel is also a matrix whose entries are continuous in x. O

16.4.8. Claim. Ifp : E — X is a manifold over X and ¢ : X x V — E is a bundle epimorphism for some V and f, : X — Gy (V) is as
above, then

Ex= f:kp (EGn(V])

where f7, (EGn(V)) is the pull-back of the classifying bundle Eg_ (v defined in (58).
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Proof. Before we start we must describe more concretely the quotient bundle. Since Eg, (v) is defined such that its fiber
above a point W € Gy, (V), denoted by Eyy, is the quotient vector space

Ew = {WixV/{W}xW
—_———— — —
=V =W
= {(Wix(V/w)

then a generic point in this fiber is given by

(W, v+ W)
with v € V. Recall from 16.2.4 that

fo (Eauv)) = { (% W, v+W)) €XxEg, (v | fo () =WAVE V]

= { (x (ker(gx), v+ ker (9x))) € X x Eg, (v) \ vev)
Thus we define the map i: 7, (EGn(V)) — Eby
i(x, (ker(@x), v+ker(ox))) = ¢x V)
We show that i is well defined: If ¥ + ker (¢« ) = v + ker (@) then
@ (x, V) = o, v+V—v)

linearit
Y ety 3-v)

cker(px)
—_—
0

= @ (x, v)

and that i is injective: its inverse i~ : E — f, (EGn(V)> is given by

i) = (ple), (fo P (), Xl (€)))
where x« : V/ ker (¢x) — Ex are bijections which are naturally defined by ¢ : {x} x V — Ex. Then

(r’ oi) (x, (ker (@x), v+ker(@y)) =

I
~
‘d

( 0 (P (0 06 V), X (g vy (0 (V) )

= (x, < (o (x, V))>)

ker (@x), X3! ((P (x, v))
_ker(cpx)+v
= (x, (ker (x), ker (px) +V))

indeed. Next, if e € E then X;(1e) (e) =v+Kker ((pp ) for some v € V such that ¢ (p (e), v) = e so that and

(ict7") () = i(ple), (fo P (e), Xyl (@)
= o¢(ple),Vv)
= e

as necessary. iis linear on fibers because ¢ is a bundle morphism and is hence itself linear on fibers. One still has to show
that 1 is a homeomorphism. O

16.4.9. Claim. Let n € N~ and m € N~y,. Then there is a continuous injective map

tm—1—m : Gn (Cm_]) — Gn (CM)

Proof. LetW € G, (C™ ') be given. Then dim (W) = m—1—n. Then dim (W=) =n. Thus W x{0}is an n-dimensional
subspace of C™. So map

1
W (W x{0})
This map is continuous because the corresponding map on the projections
End (€™1) = End (C™)

is continuous. O
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16.4.10. Definition. If (1, m) € Nén and | > m, we define

tn1:Gn(C™) = Gn (Cl)
as

lm—=1 = WU-1-1°" " O%lmtloam+2°%tm—am+1

16.4.11. Claim. Letn € INwg and m € N~,. Then

Li:n_] (EGn(Cm)) = EGn(Cm*])
where Eg  (cm) is defined in 16.4.5.
Proof. We have

m—1 (F—Gn(cm))

L (W, €) x € Gn (C™1) x Eg,(cm) | tm1 W) =PEg, cm, () }

(W, (W, W+v)) x € Gy (C™1) x Eg icm) | tm1 (W) =WAvEC™ }

I
— A

(W, (tm1 (W), tm1 (W) +v)) X € Gn (C“H) x Eg.(cm) ‘ veCQm }
Sousethemap i:Eg (em-1) = Gy (EGH(Cm)> given by

(W, W+ v ) — W, | tme1 (W), tm1 (W) + (v, 0)
~~ ——
eCm-1 eCcm

and show that it is a bundle isomorphism. O

16.4.12. Claim. Let E be a vector bundle over X with dim (E) = n € .. Then for sufficiently large m € N, there is a unique
homotopy-class of maps [f : X — Gn, (C™)] such that t* (EGH(Cm)) = E for any representative of the class.

Proof. Using [5] 1.4.13 for any vector bundle p : E — X there exists some m € IN such that there is a bundle epimorphism
@ : X x C™ — E. Then we know that

E = (Euicem)

by 16.4.8. We would like to define the homotopy class as the class of the induced map [f], where f, is as above. However,
one must show that this class does not depend on the choice of ¢.

So let two possible choices be given: ¢; : X x C™i — E withi € {0, 1}. Our goal is to show that f,, is homotopic to f,
if both of their domains are placed into a large enough space.

Define for all t € [0, 1],

Pe: XxCMoxC™ — E
by
Ve (x, vo, vi) = (1—t) 9o (x, vo) +teq (x, v1)
addition in a fiber of £
Note that this is an epimorphism, since ¢; are epimorphisms. Note that the map induced by 1. (in the sense of 16.4.6) is

fp : X = Gn | CMo x C™
CmogC™
Then note that
fpo = tmo—mi+my ©fe,
by construction. However,
fy, 7 tmyosmiemy 0o,

because f, sends x to the kernel of ¢, whereas fy,, sends x to the kernel of 1;. But the kernel of {»; will project to all the
coordinates corresponding to C™°, whereas tm, —m,+m, Will inject from the first coordinate of C™o*™1. Thus we define
an isomorphism

T:Gp (C™Mot ™) o G, (CMot™)
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which takes a subspace W € G, (C™0+™1) and permutes its coordinates so that the first m coordinates are always zero.
Then we have

fy, = Totmyomirm, ofe,

However, note that T is homotopic to the identity, so that

[Lm1—>m1+mz °© f‘m] []lGn cmotmr) ©tmy—my+m; © fﬁm}

Totmsmi+m, Of(PJ

fll)t]
fipo ]

lmo—my+m; © f@o]

[
[
vtelo, 1] [
[
[

16.4.13. Remark. Note that for fixed n € N~ o we have a natural monomorphism
X Gn(C™] = [X—Gn(C™)]
given by
[fl — [mof]

With this inclusion we get a direct system
{X = Gn (€™ cn

so that we may define the direct limit

1_1}r£11 X = Gp(C™)] = ( |_| X = Gn (Cm)]) / ~

m=n
where { my } x [f] ~{m; } x [g] iff 3M € N such that
[Lm1~>M o f} = I:l'mzﬂM © g]
16.4.14. Definition. (Stable Homotopy) An equivalence class in lim_, ., [X — G, (C™)] is called a class of stable homotopies.

16.4.15. Claim. If X is compact then
im X G (C™)] = X = Gy, (C)

where
n(C®) = limGyn (C™)
with the direct limit topology. Grn, (C) is called the infinite Grassmannian. It gives us a more convenient way to classify maps up to
regular homotopy rather than stable homotopy, at the price of working with a direct space. Alternatively, one could define
Gn (C®) = Gn(H)
where H is a complex-infinite-dimensional separable Hilbert space with the same topology as in 16.4.1.

16.4.16. Corollary. As a result we obtain that there is a bijection between the set of isomorphism classes of vector bundles of rank n
over X, denoted by Vecty, (X), and the set of homotopy classes of maps X — Gn (C*):

\ [X = Gn (C®)] = Vectn (X) \

so that we obtain a complete homotopic characterization of vector bundles. This is the culmination of the first part of [5]

16.5. Classification of Vector Bundles and the Chern Number.

16.5.1. Example. If X = S™, the m-sphere, which is compact, then we obtain the following result:
Vecty (S™) = [S™ — G (C*™)]
= 7mm (Gn (C%))

where 7y, (+) is the m-th homotopy group functor. The computation of 7t (Gn (C*°)) follows from Bott’s periodicity [12] to
give, for n sufficiently large:

o (G (€)= {Z mez 59)
{0} m¢2Z
In fact a similar result may be proven when the sphere S™ is replaced with the m-torus T™, which produces exactly the
“A” row of the Kitaev table [25].
The remaining rows of the Kitaev table may be computed by the notion of G-bundles (see [5] section 1.6) for some group
G (the group would be the group of symmetries of a particular symmetry class in the Kitaev table).
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16.5.2. Remark. We give a sketch of the approach outlined in the book [33]. The main goal is to give an explicit formula for
the computation of the integer in (59) when X = T?, as given in [7] equation (3). This number is usually called the first
Chern number.

Using 16.4.16 we come up with a general strategy to distinguish vector bundles which are not isomorphic:

(1) Letp : E — Xand q : F — X be two given vector bundles over X. We want to ascertain whether E = F (bundle-
isomorphism).
(2) Then by 16.4.12, there are two maps,

fE X = Gn (Cm)

fr:X — Gn (C‘)

and E = Fiff
(mnofel = fionofel (60)
for some N € N where jr_,s : Gn (CR) — Gy, (C®) is the natural inclusion map for S > R.

(8) In practice it is, however, extremely difficult to determine the condition (60). What we can do is pass on to algebraic
categories, which are easier to compute. This is the point of algebraic topology.

(4) One such algebraic category which is often used in mathematics is the group (or ring) category using the functor
F := H" (-; Z) of singular cohomology with integer coefficients. Then if F ([fg]) # F ([fr]) we will know that E 2 F.
This is not going to be a full classification since it is known that there are spaces with completely trivial cohomology
groups which are non-trivial.

(5) Thus we obtain a map

f2:H? (Gn (C™); Z) — H¥ (X Z)

which is induced by [fg], and for a certain choice of an element ¢, in the group H2" (G, (C™); Z) (these choices
are a matter of mathematical conventions which someone felt was natural) we obtain ff (c,), which is called the rth
Chern class of E.

(6) Note that we have taken only even homology classes because the odd ones are zero for the Grassmannians. In
addition, it is known that if the dimension of a smooth manifold is D then all singular cohomology classes above D
are zero. Thus, there is a notion of a “top” Chern class, which corresponds to the dimension of X. Then ¢, is chosen
such that the “top” Chern class is the Euler class of X.

(7) When X = T?, there is only one Chern class, the first Chern class, becuase dim (X) = 2.

(8) The first Chern number for a vector bundle over a base space which is a smooth manifold of dimension two is
defined to be the top Chern cohomology class acting on the fundamental homology class (the generator of the top
homology group which is also isomorphic to Z).

(9) In the appendix of [33] it is proven how to show that this definition above is equal to the one given in (39).
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