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Physique Statistique I, 2007-2008

Série 1.
Loi des grands nombres. Théorème de la limite centrale.

Exercice 1.1
On considère N particules ponctuelles, indiscernables et indépendantes équidistribuées

dans une enceinte de volume V ⊂ R3. Soit une région Λ ⊂ V , p = |Λ|/|V | la probabilité de
présence d’une particule donnée dans Λ, q = 1− p et ρ = N/|V | la densité de particules
dans V . Soit K le nombre de particules dans le volume Λ, ρΛ = K/|Λ| la densité de
particules dans Λ.

(a) Ecart type de ρΛ.
Montrer que la probabilité de trouver (exactement) K particules dans Λ est donnée

par

PΛ,V,N(K) = pKqN−K N !

(N −K)!K!
. (1)

Montrer que le nombre moyen de particules dans Λ est donné par

〈K〉 =
N∑

K=0

K · PΛ,V,N(K) = Np = ρ|Λ| . (2)

Montrer que les fluctuations de K sont données par〈
(K − 〈K〉)2

〉
= Npq . (3)

Montrer que les fluctuations de K rapportées au nombre moyen 〈K〉, sont√
〈(K − 〈K〉)2〉

〈K〉
=

1√
N

√
q

p
=

√
q

〈K〉
. (4)

Application numérique : |V | = 1dm3, |Λ| = 1cm3, N ∼ 6 · 1023. Etablir le résultat:√
〈(ρΛ − ρ)2〉

ρ
∼ 10−10 . (5)

(b) Loi de Poisson.
On s’intéresse au comportement de la loi de probabilité (1) en limite thermodynamique,

c’est-à-dire lorsque N →∞ et |V | → ∞ avec ρ = const.
Prenant la limite avec |Λ| fixé, montrer qu’on obtient la loi de Poisson:

lim
N→∞, |V |→∞

ρ=const

PΛ,V,N(K) = Pλ(K) ≡ e−λ λK

K!
, (6)

où λ = ρ|Λ|.
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Calculer la moyenne et l’écart quadratique moyen pour la distribution de Poisson:

〈K〉 =
∑
K

KPλ(K) = λ , (7)

〈(K − 〈K〉)2〉 = λ . (8)

En utilisant la formule de Stirling: N ! ∼
√

2πNNNe−N (voir l’exercice suivant),
montrer que la loi de Poisson s’approche de la loi normale quand λ →∞:

lim
λ→∞

√
λPλ(λ + x

√
λ) =

1√
2π

e−
x2

2 . (9)

Exercice 1.2 Théorème du col de Laplace. Formule de Stirling.
Soit f(y), a ≤ y ≤ b, telle que f(y) possède un minimum unique en y = u, a < u < b.

Alors,

I(N) :=
∫ b

a
dy e−Nf(y)

∼ e−Nf(u)
∫ b

a
dy e−N

(y−u)2

2
f ′′(u) (10)

∼ e−Nf(u)

√
2π

Nf ′′(u)
, N →∞

(a) Montrer que la formule s’obtient en développant f(y) jusqu’à l’ordre quadratique
autour de son minimum dans l’intégrand.

(b) En utilisant ce théorème et la représentation N ! =
∫∞
o dt tNe−t, démontrer la

formule de Stirling:
N ! ∼

√
2πN NNe−N (11)

Exercice 1.3 Théorème de la limite centrale.
(a) Montrer que la moyenne et la variance de la somme de deux variables aléatoires

indépendantes (pas nécessairement avec les mêmes distributions de probabilités) sont
données respectivement par les sommes de leurs moyennes et variances. Ce résultat fournit
une dérivation alternative des formules (2) et (3) de l’exercice 1.1.

(b) Fonction caractéristique d’une variable aléatoire.
Pour une distribution de probabilité P (x) d’une variable réelle aléatoire x, on définit

la fonction caractéristique f(α) comme la transformée de Fourier de P (x):

f(α) =
∫ ∞

−∞
P (x) eiαx dx. (12)

Avec cette definition, f(0) = 1, f ′(0) = i〈x〉, et f ′′(0) = −〈x2〉.
Montrer que la fonction caractéristique de la somme de deux variables aléatoires

indépendantes est donnée par le produit de leur deux fonctions caractéristiques.
(c) Théorème de la limite centrale.
Soit X1, X2, . . . un ensemble de variables aléatoires suivant la même statistique P (X)

et indépendantes. Supposons que l’espérance µ et l’écart type σ de P (X) soient finis.
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Considérons la somme de n variables Sn = X1 + . . . + Xn. On sait déjà (point (a))
que l’espérance de Sn est nµ et que son écart type vaut σ

√
n.

Le théorème de la limite centrale affirme que la distribution de probabilité Pn(S) pour
Sn tend vers la loi normale quand n tend vers l’infini:

lim
n→∞

σ
√

n Pn(nµ + xσ
√

n) =
1√
2π

e−
x2

2 (13)

Ce théorème peut facilement être obtenu en utilisant les fonctions caractéristiques.
Soit f(α) la fonction caractéristique de P (X), celle de Pn(S) est donnée par [f(α)]n [voir
la partie (b)]. Exprimer

Pn(S) =
∫ ∞

−∞

dα

2π
en ln f(α)−iαS (14)

et utiliser la méthode du col de Laplace (Exercice 1.2) pour prouver le théorème.
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