
2.2.9 Product of representations

Besides the sums of representations, one can also define their products. Consider two
groups G and H and their direct product G×H. If we have two representations D1 and
D2 of G and H respectively, we may define their product as

D(g · h) = D1(g)⊗D2(h) , (1)

where ⊗ is the tensor product of matrices: (A⊗B)ij,kl = AikBjl. The dimension of such
a representation equals the product of the dimensions of D1 and D2, and its character is
given by the product of the two characters.

Note that if both D1 and D2 are irreducible, then their product is also irreducible (as
a representation of G×H). In other words, if a group is a direct product of two groups,
then its table of irreducible representations can be obtained as the product of the tables
of irreducible representations of its factors.

One can also encounter a situation, where the two groups G and H are equal, and
their product is also viewed as a representation of the same group:

D(g) = D1(g)⊗D2(g) . (2)

In this case, the product of two irreducible representations is not generally irreducible. For
example, the product of two spin-1/2 representations of the rotation group is decomposed
into a singlet and a triplet (which can be symbolically written as 2⊗2 = 1⊕3, if we mean
by 1, 2, and 3 irreducible representations of SU(2) with the corresponding dimensions).

2.3 Band structure and lattice symmetries: example of diamond

We now apply the general formalism developed in the last lecture to the example of the
crystal structure of diamond. The first part of the discussion (about the Bloch waves)
is general for any crystal structure, the rest is specific for the space group of diamond.
Note that there is an additional complication for the diamond space group, since it is
non-symmorphic (see definition below): we will remark this complication, but will not
discuss it in detail. We will also not discuss the possibility of spin-orbit interactions.
Please refer to literature for those details.

Recommended reading:

[BP] F. Bassani and G. Pastori Parravicini, Electronic states and optical transitions in
solids (Pergamon Press, Oxford, 1975)

[DDJ] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory: Applications to the
physics of condensed matter (Springer, Berlin, 2008)

2.3.1 Crystal symmetries

The full symmetry of the crystal structure is usually called space group or crystallographic
group. It includes translations (in three noncollinear directions) as a subgroup. We may
further define the point group as a factor of the space group modulo translations. The
point group is a finite group of isometries preserving one fixed point. It may contain both
proper (preserving the orientation) and improper (reversing the orientation) rotations.

Sometimes, the point group is a subgroup of the space group: in this case the space
group is called symmorphic. Otherwise (if it is not possible to realize the point group as
symmetries of the crystal with one common fixed point) it is called non-symmorphic.
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Figure 1: Diamond lattice.

2.3.2 Translational symmetries and Bloch waves

Consider first the classification of states with respect to translations. Pick the three gener-
ating translation vectors e1, e2, e3. These translations commute, so the full translational
part of the crystal symmetries is a direct product of the three one-dimensional translation
groups. So it is sufficient to consider each of them separately, and then take the product
of the three representations.

The group of one-dimensional lattice translations is abelian and is generated by an
elementary translation T . The decomposition into irreducible representations is obtained
by diagonalizing the matrix T . Each eigenstate of T (called a Bloch wave), is multiplied
by a phase factor under such an elementary translation:

TΨ = eiφΨ . (3)

Note that the we only consider the case of phase factors and disregard the possibility
of eigenstates TΨ = cΨ with |c| 6= 1: such eigenstates would diverge at one of the two
infinities and therefore do not belong to the space of physical states. In other words, only
unitary representations appear in physical states.

After we combine the translations along the three directions, we find for the full
translation group the set of irreducible one-dimensional representations:

Tn1e1+n2e2+n3e3 = ei(n1φ1+n2φ2+n3φ3)Ψ . (4)

The three phases φ1, φ2, and φ3 parametrize the representation and define a point in the
Brillouin zone. In other words, the Brillouin zone is the set of all irreducible representa-
tions of the translations of the crystal lattice.

If translations exhaust the symmetries of the lattice, this would be the end of the
story. If, on the other hand, the point group is nontrivial, it mixes some of the points in
the Brillouin zone and introduces degeneracies. Below we illustrate how it works in the
example of the crystal lattice of diamond.

2.3.3 Diamond crystal lattice

The diamond crystal lattice (see Fig. 1) may be described in terms of positions of the
carbon atoms. It contains two superimposed FCC (face-centered cubic) sublattices. The
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Figure 2: Dual lattice of k points and some points and lines of special symmetry.

positions of the points are:
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with (n1 + n2 + n3) even. (5)

The lattice constant a = 3.57 Å (at room temperature) is the length of the side of the
cube in the FCC pattern.

The elementary lattice translations are

e1 =
a

2
(0, 1, 1) , e2 =

a

2
(1, 0, 1) , e3 =

a

2
(1, 1, 0) . (6)

The unit cell contains two atoms.

2.3.4 Diamond Brillouin zone

The dual lattice of k points is defined as lattice of k vectors which give trivial (multiple
of 2π) phases under all translations of the lattice. From (6), we find the general formula
for the lattice of k points:

k =
2π

a
(−m1 +m2 +m3,m1 −m2 +m3,m1 +m2 −m3) , (7)

where m1, m2, and m3 run over all integer numbers. This defines the BCC (body-centered
cubic) lattice (Fig. 2).

One usually chooses the Brillouin zone (BZ) to be the set of k points that are closer
to k = 0 than to any other k point of the lattice. This construction gives in our case the
Brillouin zone in the shape of a truncated octahedron. We distinguish the points of special
symmetry Γ (at k = 0), X [the center of a square face of the BZ, e.g., k = (2, 0, 0)π/a],
and L [the center of a hexagonal face of the BZ, e.g., k = (1, 1, 1)π/a]. We also consider
two lines of special symmetry: ∆ (connecting Γ and X) and Λ (connecting Γ and L).

Our goal will be to find the level degeneracies at these points and on these lines.

2.3.5 Point group of the diamond lattice

If we look at the lattice of diamond (5), we find that the point group is the symmetry
group of a cube (including both proper and improper rotations), but the full space group
is non-symmorphic.
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The total number of group elements of this symmetry group (denote it by Oh) is 48.
The simplest improper rotation is the inversion (the simultaneous change of sign of

all the coordinates). Let us denote this transformation by I. It commutes with all the
rotations, and therefore the full point group Oh can be decomposed into a direct product
of the group of proper rotations (denoted by O, contains 24 elements) and the ”inversion”
group {0, I}. The latter has two irreducible representations (both are one-dimensional):
the trivial one and the “parity” one. Therefore for constructing the irreducible represen-
tations of Oh, it will be sufficient to construct the representations of O and then multiply
them by one of the two representations of {0, I}.

2.3.6 Representations of O and Oh

To construct the table of characters for O, start with counting the classes of conjugate
elements:

1 (1 element): unity;

690◦ (6 elements): rotations by 90 degrees;

3180◦ (3 elements): rotations by 180 degrees about a face of the cube;

6180◦ (6 elements): rotations by 180 degrees about an edge center;

8120◦ (8 elements): rotations by 120 degrees about a cube diagonal.

Total 5 classes. Therefore there will be 5 irreducible representations in the character table.
The trivial representation is always there. We can also guess another one-dimensional

representation (denote it by P ): if we color the vertices of the cube in black and white
in a checkerboard pattern, then the transformations can be classified into odd and even
by whether they change the color of vertices. Finally, we also know a three-dimensional
representation (by considering a cube in a 3D space), which is also obviously irreducible
(can you explain why?). This three-dimensional representation may, in turn, be multiplied
by P to produce yet another 3D representation. So we know already 4 out of 5 irreducible
representations. The last one (or rather, its character) can be found from the orthogonality
relations. As a result, we find the character table of O:

1 690◦ 3180◦ 6180◦ 8120◦

1 1 1 1 1 1
P 1 −1 1 −1 1
2 2 0 2 0 −1
3 3 1 −1 −1 0

3P 3 −1 −1 1 0

Multiplying it by the character table of {0, I},
1 I

1 1 1
PI 1 −1

we can write the character table of Oh (here we use the traditional crystallographic
notation for the representations):
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1 690◦ 3180◦ 6180◦ 8120◦ I I690◦ I3180◦ I6180◦ I8120◦

Γ1 1 1 1 1 1 1 1 1 1 1
Γ2 1 −1 1 −1 1 1 −1 1 −1 1
Γ12 2 0 2 0 −1 2 0 2 0 −1
Γ′15 3 1 −1 −1 0 3 1 −1 −1 0
Γ′25 3 −1 −1 1 0 3 −1 −1 1 0
Γ′1 1 1 1 1 1 −1 −1 −1 −1 −1
Γ′2 1 −1 1 −1 1 −1 1 −1 1 −1
Γ′12 2 0 2 0 −1 −2 0 −2 0 1
Γ15 3 1 −1 −1 0 −3 −1 1 1 0
Γ25 3 −1 −1 1 0 −3 1 1 −1 0

2.3.7 Projective representations and non-symmorphic space groups

So far, we were assuming that we indeed had a linear representation of the symmetry
group in the space of electron states. In fact, quantum states are defined up to a phase
factor, and the group may also be represented only up to phase factors:

D(g1)D(g2) = eiφ(g1,g2)D(g1g2) . (8)

In some situations, the phase factors φ(g1, g2) may be compensated by redefining D(g):

D(g) 7→ eiα(g)D(g) , (9)

and then the problem reduces to the conventional representation theory. In other situa-
tions, the phase factors φ(g1, g2) cannot be compensated, and we obtain a different type
of representation, not included in the conventional character table.

The more general definition (8) of a representation is called a projective representation.
The theory of projective representations may be reduced to the conventional theory of
linear representations by extending the group (writing the phase factors as separate group
elements commuting with the rest of the group) and then studying the conventional
linear representations of the extended group (sometimes called the double group in the
crystallographic context).

Examples of nontrivial projective representations include 3D rotations of a half-integer
spin and translations of a charged particle in a magnetic field. In our example, we neglect
the spin-orbit interaction, so no phase factors appear due to spin. However, one still needs
to consider projective representations in order to classify the energy levels at some points
at the boundary of the Brillouin zone in the case of a non-symmorphic space group. In
our lecture, we will skip this part of the calculation.

2.3.8 Free-electron band structure

As a very crude approximation of the low-lying states, we may consider the band structure
for a free electron by folding the parabolic spectrum centered at the lattice of k vectors
(7) onto the BZ. This way we get the structure shown in Fig. 3. Note the very high
degeneracies of levels. These degeneracies are reduced in a lattice potential down to the
dimensions of the corresponding irreducible representations.
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Figure 3: Sketch of the free-electron band structure of the diamond. Level degeneracies
are marked.

Figure 4: Sketch of the actual band structure of diamond, as calculated numerically in
Bassani and Yoshimine, Phys. Rev. 130, 20 (1963).

2.3.9 Numerically calculated band structure

The band structure calculated with a numerical method (orthogonalized plane wave) is
schematically shown in Fig. 4. The degeneracies can be understood in terms of irreducible
representations as discussed below.

2.3.10 Classification of states at the point Γ

The symmetry operations of the space group may be written as

g : x 7→ Rx+ L , (10)

where R is an element of the point group (with respect to some center) and L is a
translation. At the point Γ, translations do not produce extra phase factors (since k = 0),
and therefore we have a conventional linear representation of the point group Oh. This
representation may be decomposed into a sum of irreducible representations from the
table above. Numerics shows that the three representations with the lowest energy are
Γ1, Γ′25 (in the valence band), and Γ15 (in the conduction band). The appearance of these

6



representations in the low-energy spectrum may be understood from the orbital model
(see section 2.3.14).

2.3.11 Classification of states at the line Γ−X

At this line, the point group is reduced to those operations preserving the wave vector k
(the so called small point group), i.e., preserving the direction along one of the crystallo-
graphic axes (e.g., (1, 0, 0)).

One can check that, since the direction is preserved, the translation in (10) contributes
a phase factor, which may be compensated by putting α(g) = −k ∆x, where ∆x is the
vector of the translation L. Therefore it is again sufficient to consider the conventional
representations without phase factors.

The small point group consists of only those group elements of Oh which preserve one
of the faces of the cube. There are 8 such elements which fall into five classes of conjugate
elements. The character table is

1 290◦ 1180◦ 2+ 2×
∆1 1 1 1 1 1
∆2 1 −1 1 −1 1
∆′1 1 1 1 −1 −1
∆′2 1 −1 1 1 −1
∆5 2 0 −2 0 0

2.3.12 Classification of states at the line Γ− L

The same argument is valid for the line Γ − L, except that now the small group only
contains elements preserving the diagonal (1, 1, 1). In terms of the symmetries of a cube,
this group corresponds to fixing one corner of the cube.

The group has three elements and is equivalent to the group S3 considered in the
previous lecture. There are 6 elements, 3 conjugacy classes, and the representations have
dimensions 1, 1, and 2.

2.3.13 Classifications of states at the points X and L

At these points, the phase factors cannot be compensated, since now the direction of the
k vector may also be reversed. The classification of the states in this case requires the use
of projective representations (or, equivalently, doubling the group). We do not discuss it
in the lecture, but those interested may find details in the literature.

2.3.14 Symmetry classification from electron orbitals

The appearance of the representations Γ1, Γ′25, and Γ15 in the low-energy spectrum may
be understood if we assume that the relevant valence and conduction bands are mainly
composed of the (hybridized) 2s and 2p orbitals of the carbon atoms. For each k vector,
the linear space spanned by these orbitals is 8-dimensional (two atoms per unit cell, each
atom containing one s and three p orbitals).

The symmetry analysis at the point Γ proceeds as follows: we first decompose the rep-
resentation of the point group in this 8-dimensional space into irreducible representations
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and then deduce the ordering of those irreducible representation by energy, based on a
tight-binding description.

The point group Oh acts in the 8-dimensional space of orbitals by rotating the p
orbitals and (for some of the operations) exchanging the two sublattices of atoms (the
red and blue atoms in Fig. 1). Namely, the operations 690◦ , 6180◦ , I, I3180◦ , and I8120◦

change the orientations of the tetrahedron of the interatomic bonds around each atom
and therefore must be accompanied by a translation exchanging the two sublattices. For
these conjugacy classes, the character thus equals zero. For the remaining operations of
the point group, the orientation of the tetrahedrons is preserved, therefore the atomic
sublattices are also preserved, and the characters can be calculated from analyzing the
rotation of a single atom (the s orbital always contributes 1 to the trace, while the triplet
of p orbitals contributes 1 + 2 cosα, where α is the rotation angle). Thus we arrive at the
following character for this 8-dimensional representation:

1 690◦ 3180◦ 6180◦ 8120◦ I I690◦ I3180◦ I6180◦ I8120◦

Γs+p 8 0 0 0 2 0 0 0 4 0

Projecting this representation onto each of the irreducible representations, we arrive
at

Γs+p = Γ1 ⊕ Γ′25 ⊕ Γ′2 ⊕ Γ15 . (11)

The ordering of these representations in energy can be deduced from arguments based
on simple assumptions about interatomic coupling. Namely, we assume a tight-binding
model with the hopping amplitudes between the nearest-neighbor atoms (i.e., between the
blue and red atoms in Fig. 1) being the largest energy scale (larger than the energy differ-
ence between the orbitals 2s and 2p and larger than the next-nearest-neighbor hopping).
Then we expect that, among the four representations (11), the one with the lowest energy
will be Γ1 (since its wave function does not change sign and therefore minimizes the kinetic
energy). At the same time, if we only consider the nearest-neighbor hopping terms, then
changing the sign of the wave function components on one of the two atomic sublattices
reverses the sign of the hopping energy. Therefore, the representation Γ′2 should be the
highest one in energy. The two representations Γ′25 and Γ15 have intermediate energies,
and their competition is decided by the behavior under the inversion I. The representa-
tion Γ′25 is even with respect to I and therefore is even on each nearest-neighbor bond,
thus gaining energy from the nearest-neighbor hopping. On the other hand, Γ15 is odd
with respect to I and therefore it loses the same amount of energy on the nearest-neighbor
bonds. Thus we can predict that the order of the levels (increasing in energy) is Γ1, Γ′25,
Γ15, and Γ′2. Remarkably, this order agrees with more detailed numerical calculations
(Fig. 4).
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Problem Set 3

Problem 3.1

In the numerical calculation, the valence band at point Γ is three-fold degenerate and
belongs to the representation Γ′25. How does this three-fold degeneracy split along the
lines Γ − X and Γ − L? Calculate the result by treating Γ′25 as a representation of the
small point group and by decomposing it into irreducible representations.

Problem 3.2

If one adds a weak potential to the free-electron band structure in Fig. 3, how would
the 8-point degenerate level at the Γ point split? Hint: this degenerate level comes from
the eight nearest-neighbor k points of the dual lattice in Fig. 2. They transform into each
other under the Oh group as eight vertices of the cube.
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