
5 BCS theory of superconductivity

Refs: [Mar] Section 27.3, [LP] E.M.Lifshitz et L.P.Pitaevskii, ”Statistical Physics, Part
2” (vol.9 of ”Landau et Lifshitz”), Sections 39,40.

As we have seen, phonons mediate an attraction between electrons. In this section,
we will see how superconductivity emerges in an electron gas with attraction (the theory
of Bardeen–Cooper–Schriffer).

5.1 Superconductivity as spontaneous symmetry breaking

Superconductivity is associated with developing nonzero anomalous averages

〈aαaβ〉 6= 0 , (5.1.1)

where aα and aβ are annihilation operators and α and β denote electron degrees of freedom
(momentum/coordinate and spin). Such an average breaks the U(1) (electromagnetic)
symmetry

a 7→ eiαa , a+ 7→ e−iαa+ . (5.1.2)

The anomalous average (5.1.1) may only be nonzero in a superposition of states with
different particle numbers. Physically, the number of electrons in an isolated piece of a
superconductor is fixed, in which case (5.1.1) should be understood as a long-range order

lim
|x−y|→∞

〈(aαaβ)x (a+
β a

+
α )y〉 6= 0 , (5.1.3)

and the phase of an individual average 〈aαaβ〉 remains undetermined.
A good analogy to think of is the ferromagnetic transition: in a ferromagnet, the

average magnetization is non-zero and points in a spontaneously chosen direction, even
though in an isolated system, formally, the ground state is a superposition of states with
all equivalent orientations of magnetization.

The phase of the average 〈aαaβ〉 is the spontaneously broken symmetry. It is not
observable directly, but only in comparison with other such phases (the Josephson effect).
A spatial modulation of this phase corresponds to the supercurrent (an electric current
which propagates without dissipation).

Superconductors may be classified by the symmetry of indices in the anomalous av-
erage (5.1.1). The most common symmetry (usually favored in superconductors with
attraction due to phonons) is the s-wave superconductivity: the spin indices in (5.1.1)
form a singlet, and the pairing is isotropic in space.

5.2 Model Hamiltonian and mean-field approximation

We consider a model Hamiltonian of the form

H = H0 +Hint , (5.2.1)

where
H0 =

∑
k,α

(εk − µ)a+
k,αak,α (5.2.2)
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is the free part, and

Hint = − 1

2V
∑

k̃1,k̃2,k̃3

a+

k̃1
a+

k̃2
ak̃3ak̃1+k̃2−k̃3Vk̃1,k̃2,k̃3,k̃1+k̃2−k̃3 , (5.2.3)

where V is the system volume and Vk̃1,k̃2,k̃3,k̃4 are the interaction matrix elements (the spin

indices are included in k̃i for simplicity). In this chapter, we use the “sum” notation (the
sum over k instead of integration over d3k/(2π)3), with the electronic states normalized
as {ak, a+

k′} = δkk′ (instead of the delta function of the continuous variable k − k′).
We will use the mean-field approximation: first, replace the products akak′ by their

nonzero averages and then solve the self-consistency equation for those averages.
The structure of the non-zero anomalous averages depends on the interaction Vk̃1,k̃2,k̃3,k̃4 .

We assume that the superconductor is s-wave, with 〈ak↑a−k↓〉 6= 0. Correspondingly, we
only consider the terms of this type in the interaction and neglect the k dependence of the
interaction matrix elements (since, as we will see below, only k values around the Fermi
surface are relevant). As a result, we simplify the interaction term to

Hint = −g0

V
∑
k,k′

a+
k↑a

+
−k↓a−k′↓ak′↑ = −g0

V

(∑
k

a+
k↑a

+
−k↓

)(∑
k′

a−k′↓ak′↑

)
, (5.2.4)

where g0 is some positive interaction constant.
We further define the complex numbers

dk = 〈a−k↓ak↑〉 d∗k = 〈a+
k↑a

+
−k↓〉 . (5.2.5)

These numbers will be later determined from the self-consistency conditions.
By replacing the products in the four-fermion operator by their averages, we get the

quadratic Hamiltonian

HBCS =
∑
k

[
(εk − µ)(a+

k↑ak↑ + a+
−k↓a−k↓) + ∆∗a−k↓ak↑ + ∆a+

k↑a
+
−k↓
]
, (5.2.6)

where
∆ = −g0

V
∑
k

dk . (5.2.7)

5.3 Bogoliubov quasiparticles and the BCS ground state

This quadratic Hamiltonian may be diagonalized by a rotation in the particle-hole space:

γ+
k↑ = uka

+
k↑ + vka−k↓ . (5.3.1)

The coefficients uk and vk can be found, e.g., from the commutation relation

[HBCS, γ
+
k↑] = ε̃kγ

+
k↑ . (5.3.2)

We find the equation on the coefficients:(
εk − µ ∆

∆∗ −(εk − µ)

)(
uk
vk

)
= ε̃k

(
uk
vk

)
. (5.3.3)
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Figure 17: Left: The two sections across the Fermi surface contributing to the spectrum in
the right panel. Each quasiparticle in the right panel corresponds to a linear combination
of an electron with momentum k and a hole with momentum −k and opposite spin. Right:
The BCS spectrum (5.3.4).

The eigenvalues give the spectrum:

ε̃k = ±
√

(εk − µ)2 + |∆|2 . (5.3.4)

Thus |∆| plays the role of the gap in the spectrum (see Fig. 17).
The fermionic Fock space may be now represented in terms of the occupation numbers

for (Bogoliubov) quasiparticles γ+
k↑. There are two ways to label quasiparticles:

• We can consider only spin-up operators, as in (5.3.2). In this case, we get two
solutions for each k vector: one with positive, and one with negative energy.

• Alternatively, we can re-label the negative-energy solutions (5.3.4) as annihilation
operators γ−k↓. Then, for each k vector, we will have two quasiparticles γ+

k↑ and γ+
k↓,

both with positive energies.

In any of these notations, the total number of quasiparticle states (the dimension of the
Hilbert space) is the same as for original electrons: two single-particle states per k vector.
We will use the second notation (with positive-energy quasiparticles).

It will also be convenient to normalize the coefficients so that

|uk|2 + |vk|2 = 1 . (5.3.5)

This would produce the canonical anticommutation relations for the quasiparticles:

{γkα, γ+
k′β} = δkk′δαβ . (5.3.6)

The Hamiltonian (5.2.6) can now be written in terms of quasiparticles as

HBCS =
∑
k

ε̃k
(
γ+
k↑γk↑ + γ+

k↓γk↓
)

+ E0 , (5.3.7)
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Figure 18: The coherence factors (5.3.11) as a function of energy.

The ground state of the superconductor |GS〉 may be found from the condition that
it contains no quasiparticles:

γkα|GS〉 = 0 . (5.3.8)

Since sectors with different k vectors are decoupled in the Hamiltonian, this equation can
be solved independently for each k vector:

|GS〉k = (u∗k − v∗ka+
k↑a

+
−k↓)|?〉k , (5.3.9)

where |?〉 is the state without electrons and the subscript k denotes that only states with a
given k vector are considered. Combining all the k vectors together, we find the expression
for the ground state of the superconductor:

|GS〉 =
∏
k

(u∗k − v∗ka+
k↑a

+
−k↓)|?〉 . (5.3.10)

Note that this state is a superposition of states with different numbers of particles.
If we calculate uk and vk explicitly from diagonalizing the matrix (5.3.3), we find

uk = eiϕ

√
1

2

(
1 +

εk − µ
ε̃k

)
,

vk =

√
1

2

(
1− εk − µ

ε̃k

)
, (5.3.11)

where ϕ is the phase of ∆. The absolute values of uk and vk are plotted in Fig. 18.
We see that superconductivity changes the structure of the ground state only in the
window of energies of the order ∆ around the Fermi level (we usually have ∆ � µ in
superconductors).

5.4 Self-consistency equations for the superconducting gap

The anomalous correlation functions dk and the superconducting gap ∆ are determined
from the self-consistency conditions (5.2.5), where the averages are calculated in the
quadratic system (5.2.6) at a finite temperature T .
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One of the possible ways to compute the anomalous average 〈a−k↓ak↑〉 is to re-express
the a operators in terms of the quasiparticles γ and γ+ and then use the equilibrium
Fermi occupation numbers for the quasiparticles:{

γ+
k↑ = uka

+
k↑ + vka−k↓

γ−k↓ = v∗ka
+
k↑ − u∗ka−k↓

⇒

{
a+
k↑ = u∗kγ

+
k↑ + vkγ−k↓

a−k↓ = v∗kγ
+
k↑ − ukγ−k↓

(5.4.1)

In terms of the quasiparticles γ+
k↑ and γ−k↓, the BCS Hamiltonian is diagonal, so we find

〈a−k↓ak↑〉T = v∗kuk〈γ+
k↑γk↑ − γ−k↓γ

+
−k↓〉T = v∗kuk [2nF (ε̃k)− 1] = −v∗kuk tanh

ε̃k
2T

, (5.4.2)

where ε̃k is the quasiparticle energy given by Eq. (5.3.4).
Substituting this into Eq. (5.2.7), we find the self-consistency equation for the gap

∆ =
g0

V
∑
k

v∗kuk tanh
ε̃k
2T

. (5.4.3)

Using Eq. (5.3.11) for uk and vk, we find

v∗kuk =
∆

2ε̃k
. (5.4.4)

Note that this quantity is significant only in the vicinity of the Fermi surface (since far
away form the Fermi surface either uk or vk tends to zero).

We remark that ∆ = 0 is always a formal solution to the equations (5.4.3)–(5.4.4). But
one can show that at low temperatures this solution does not correspond to a minimum
of a free energy, but to its maximum. In other words, at low temperatures the ∆ = 0
solution is unstable, and the physically relevant solution is a nontrivial one. To find this
nontrivial solution, we divide the equation by ∆ and replace the sum over k by integration
over energies:

1

V
∑
k

→ ν0

∫
dε , (5.4.5)

where ν0 is the density of electronic states (for free electrons) per unit volume and per
spin projection and ε is the free-electron energy. Substituting equation (5.3.4) for ε̃k and
shifting the integration variable to ε = εk−µ, we finally find the self-consistency equation
in the closed form

1 = g0ν0

∫
dε

tanh

√
ε2+|∆|2

2T

2
√
ε2 + |∆|2

. (5.4.6)

This equation, in principle allows to determine ∆ as a function of temperature (see
Fig. 19).

5.5 Superconducting gap at zero temperature

A subtle point in this calculation is that the integral (5.4.6) actually diverges logarithmi-
cally at large ε. Physically, this divergence is removed by introducing a cut-off at energies
of the order of Debye energy ωD (since the attraction mediated by phonons only extends
to those energies).
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Figure 19: A sketch of the gap dependence on the temperature.

At zero temperature, tanh(. . .)→ 1, and the equation (5.4.6) reduces to

1 = g0ν0

∫ ∼ωD

0

dε√
ε2 + ∆2

0

= g0ν0

[
ln
ωD
∆0

+ const

]
, (5.5.1)

where const is a constant of order one. This gives the superconducting gap at zero
temperature ∆0 in the form

∆0 = const ωD exp

(
− 1

g0ν0

)
. (5.5.2)

Note that the gap is exponentially small in g0.

5.6 Superconducting transition temperature

In a similar way we can find the superconducting transition temperature Tc, with the only
difference that now we neglect ∆ in the self-consistency equation (5.4.6):

1 = g0ν0

∫ ∼ωD

0

dε
tanh ε

2Tc

ε
= g0ν0

[
ln
ωD
Tc

+ const

]
, (5.6.1)

with some const of order one (but different from that in the calculation of ∆0 above!). In
other words, Tc is of the same order of magnitude as ∆0.

Remarkably, one can determine the ratio Tc/∆0 without any ambiguity related to the
cutoff. Namely, the difference of the integrals (5.5.1) and (5.6.1) is convergent and does
not depend on the cut-off:

0 =

∫ ∞
0

dε

[
tanh ε

2Tc

ε
− 1√

ε2 + ∆2
0

]
=

∫ ∞
0

dx

[
tanh(x/2)

x
− 1√

x2 + (∆0/Tc)2

]
.

(5.6.2)
From this equation, one finds the universal value for the ratio Tc/∆0:

Tc ≈ 0.57∆0 . (5.6.3)

[This value is easy to obtain by numerical methods. A more sofisticated analytic calcula-
tion gives

Tc =

(
eC

π

)
∆0 , (5.6.4)
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where C = 0.577 . . . is the Euler constant].
The relation (5.6.3) is in a remarkably good agreement with experimental values on

many conventional superconductors, despite the simplifications made in the BCS theory.

7



Problem Set 10

Problem 10.1

By diagonalizing the matrix in (5.3.3), derive the spectrum (5.3.4) and the eigenvectors
(5.3.11).

Problem 10.2

(a) In superconductors, there is a characteristic length scale ξ called the coherence
length. One of its possible definitions is the extent of the pair correlations. Consider the
anomalous correlations in real space

∆(x− y) = 〈a↓(x)a↑(y)〉

It decays at a certain length scale ξ. Calculate this length in the BCS ground state.
Hint 1: In the BCS ground state, different wave vectors k are decoupled, so it is

convenient to do a calculation at a given k vector, and then Fourier transform.
Hint 2: Only a vicinity of the Fermi surface contributes to this anomalous correlator,

so you may linearize the electron spectrum near the Fermi surface.
Hint 3: You will find ξ = vF/∆.

(b) For Aluminum, find in the literature the value of the gap ∆ and estimate the
superconducting coherence length ξ.
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