
4 Phonons. Electron-phonon interaction. Attraction

mediated by phonons

Refs: [AM] Chapter 23, [PC] Section 9.7.

Phonons are vibrations of a crystal lattice. They can be viewed as bosonic parti-
cles which propagate through the crystal and interact with electrons. In this section, we
review some basic properties of phonons and show that interaction with phonons pro-
duces attraction between electrons (which is the mechanism of superconductivity in most
superconductors).

4.1 Harmonic oscillators as free bosons

Any harmonic oscillator may be viewed as a single bosonic mode, whcih may be occupied
by 0, 1, 2, etc. bosons. Consider the quantum Hamiltonian

H =
p2

2m
+K

q2

2
(4.1.1)

with the operators p and q satisfying the canonical commutation relations [p, q] = −i
(Planck constant is put to 1, as usual). Then the operators

b =
1√
2

[
q(Km)1/4 + i

p

(Km)1/4

]
,

b+ =
1√
2

[
q(Km)1/4 − i p

(Km)1/4

]
(4.1.2)

obey the canonical bosonic commutation relations

[b, b+] = 1 , (4.1.3)

and the Hamiltonian takes the form

H = ω

(
b+b+

1

2

)
= ω

(
n+

1

2

)
, (4.1.4)

where ω = (K/m)1/2 is the oscillator frequency (= energy, once ~ = 1) and n is the
number of bosons.

4.2 Phonons

The definition of phonons is similar to the one-dimensional example above. In a crystal
with N ions, the vibrations of the lattice can be parametrized by 3N coordinates (dis-
placements of ions) and 3N momenta. Small vibrations can be described by a quadratic
Hamiltonian, which is a 3N -dimensional version of (4.1.1). This Hamiltonian can be di-
agonalized, and its eigenmodes decoupled. Because of the translational symmetry of the
lattice, the eigenmodes can be labeled by the wave vector (just like electron bands). If
the crystal lattice has M atoms per unit cell, the number of bands (the number of phonon
states for each k vector) equals 3M .
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The phonon Hamiltonian takes the quadratic form

H =
∑
k,α

ωk,αb
+
k,αbk,α (4.2.1)

(we have dropped the constant ground-state energy). The index α labels the phonon
bands. At the level of the harmonic approximation, phonons do not interact. Anharmonic
terms would correspond to phonon-phonon interactions.

There are three phonon modes which are special: the acoustic phonons. They corre-
spond to slowly varying displacement of atoms and have a linear dispersion relation

ωk = c|k| as k → 0 . (4.2.2)

The energy of the acoustic phonons tends to zero as k → 0. In this limit, all displacements
are equal, which correponds to displacing crystal as a whole, whcih obviously does not
cost any energy. The sound velocities c for the longitudinal and transverse sounds are
generally different and may also depend on the direction.

The phonons have energy bands which are periodic functions of k. They extend
between 0 and some characteristic energy scale, the so called Debye energy ωD. By the
order of magnitude,

ωD ∼ c/a0 (4.2.3)

(where a0 is the lattice constant), which is much less than the Fermi energy εF ∼ vF/a0.
The typical Debye energy in a metal is between 100 K and 500 K (as opposed to the
Fermi energy of about 104 K).

4.3 Specific heat of phonons

Except at very low temperatures, phonons give the main contribution to the specific heat.
To calculate the specific heat of phonons exactly, one needs to know the distribution of
phonon modes over energies [i.e., the density of states νph(ω)].

For low-temperature specific heat (when only low-energy phonons are excited), the
behavior of at ω → 0 matters, while for the high-temperature limit, it is important that
the phonons have an upper cut-off in energy at ω ∼ ωD. The simplest approximation
accurate in both limits is the Debye theory:

νph(ω) =

{
C ω2 , ω < ωD ,

0 , ω > ωD
(4.3.1)

(see Fig. 15a). The constant C is fixed by the total number of modes

C

∫ ωD

0

ω2dω = 3N ⇒ C =
9N

ω3
D

, (4.3.2)

where N is the total number of atoms in the crystal. The specific heat of one bosonic
mode with energy ω can be found as

cV (ω) =
∂E

∂T
= ω

∂

∂T

1

eω/T − 1
=
ω2

T 2

eω/T

(eω/T − 1)2
. (4.3.3)
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Figure 15: (a): Ansatz for νph(ω) in the Debye theory; (b): The form of the function
f(x) in Eq. (4.3.4).

So the total specific heat is

CV =

∫ ∞
0

cV (ω)νph(ω)dω = 3N f

(
T

ωD

)
, (4.3.4)

where

f(x) = 3x3

∫ 1/x

0

y4ey

(ey − 1)2
dy (4.3.5)

is a universal function (Fig. 15b).
This approximation describes a large number of different materials remarkably well

(with one fitting parameter ωD). At low temperatures, CV ∝ T 3 (the black-body specific
heat), while at high temperatures CV → 3N (the classical specific heat of 3N harmonic
oscillators)

4.4 Electron-phonon interaction

For simplicity, we only discuss here interaction of electrons with acoustic phonons. Acous-
tic phonons correspond to a slowly (on the scale of a lattice constant) varying in space
displacement of atoms u(x), which produces the charge Z div u(x) per unit cell (Z is
the charge of a single ion). This charge, in turn, results in an electric potential for the
electrons. Taking into account screening (see Section 3.3), the electric potential is pro-
portional to this charge, which finally results in the electron-phonon interaction

He−ph =
const

νa3
0

∫
d3x a+(x)a(x) div u(x) , (4.4.1)

where ν is the density of states at the Fermi level, a0 is the lattice constant, and const is
some numerical coefficient of order 1. Note that electrons are coupled only to longitudinal
phonon modes (with the displacements along the k vector).

Next we rewrite the displacement u(x) in terms of the phonon creation and annihila-
tion operators bk and b+

k :

u(x, t) =

∫
d3q

(2π)3

a
3/2
0√

2Miωq

(
bqe

i(qr−ωqt) + b+
q e
−i(qr−ωqt)

)
. (4.4.2)
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Figure 16: (a): the vertex corresponding to the electron-phonon interaction (4.4.5); (b):
The lowest-order diagram describing the renormalization of the electron spectrum due to
phonons; (c): The interaction between electrons mediated by phonons.

where Mi is the mass of an ion and ωq is the phonon frequency at the wave vector q (derive
this formula as a homework). The phonon creation and annihilation operators here are
normalized as

[bq, b
+
q′ ] = (2π)3δ(q − q′) . (4.4.3)

It turns out to be convenient to define the phonon operator as

ϕ(x) =

∫
d3q

(2π)3

√
ωq
2

(
bqe

iqr + b+
q e
−iqr) , (4.4.4)

which results in the electron-phonon interaction written in the simple form (we used the
linear relation ωq = c|q|):

He−ph = g

∫
d3x a+(x)a(x)ϕ(x) , (4.4.5)

where g is an interaction constant (with the above definitions, g ∼ ν−1/2 up to a numerical
coefficient)

This electron-phonon interaction can now be incorporated into the diagrammatic ap-
proach as a triple vertex (Fig. 16a). One can further derive the Green’s function for
phonons and construct the perturbative diagrammatic series in the usual way. For ex-
ample, the leading correction to the electron spectrum due to phonons is given by the
diagram in Fig. 16b.

4.5 Green’s function for phonons

Similarly to electrons, we define the Green’s function for phonons as

D(x, t) = −iT 〈ϕ(x, t), ϕ(0, 0)〉 . (4.5.1)

(T denotes the time ordering). It can be easily computed at zero temperature. Using the
definition (4.4.4), and the fact that there are no phonons at zero temperature, we find

D(x, t) = −i
∫

d3q

(2π)3

ωq
2

{
ei(qx−ωqt) , t > 0 ,

e−i(qx−ωqt) , t < 0 .
(4.5.2)
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Performing the Fourier transform in time and space, we find the Green’s function of
phonons in the frequency-momentum representation:

D(q, ω) =
ωq
2

(
1

ω − ωq + i0
− 1

ω + ωq − i0

)
=

ω2
q

ω2 − ω2
q + i0

. (4.5.3)

4.6 Attraction between electrons mediated by phonons

We are now ready to show that interaction with phonons leads to atraction. This at-
traction appears in the second order of the perturbation theory as the phonon line in the
diagram, see Fig. 16c.

For a formal derivation, expand the evolution operator with respect to the electron-
phonon interaction:

U = e−i(H0+He−ph)t = U0 + U1 + U2 + . . . (4.6.1)

At the second order of the perturbation theory,

U2 =

∫∫
0<t1<t2<t

dt1 dt2 e
−iH0(t−t2) (−iHe−ph) e−iH0(t2−t1) (−iHe−ph) e−iH0t1 . (4.6.2)

If we now substitute the electron-phonon interaction term (4.4.5) and perform the Wick
contraction (= averaging) of the phonon operators, we arrive at

U2 = U0

∫∫
0<t1<t2<t

dt1 dt2

∫∫
d3x1 d

3x2 a
+(x2, t2)a(x2, t2) a+(x1, t1)a(x1, t1)×

× (−i)g2D(x2 − x1, t2 − t1) . (4.6.3)

This equation has the same form as the first-order correction U1 with the usual density-
density interaction, except that this interaction is time dependent. The role of interaction
is played by the phonon Green’s function D(x2 − x1, t2 − t1).

For superconductivity, the interaction averaged over time (or, equivalently, at low
frequency) is important. This low-frequency effective interaction is

Veff = D(ω → 0) = −g2 . (4.6.4)

It has a negative sign, which means that it is attractive.
The physical meaning of this interaction is as follows. An electron distorts the crystal

lattice (creates a positive charge around itself) which, in turn, attracts other electrons.
This interaction is delayed: the characteristic time scale for phonons is ω−1

D while electrons
are much faster (their characteristic time scale is ε−1

F ). As a result, a moving electron
leaves behind itself a positively charged track, which attract other electrons even after
the original electron has moved away. This is also a reason why the attraction via phonons
is not killed by the Coulomb repulsion of electrons: while the overall magnitudes of these
interactions are of the same order, the Coulomb repulsion is instant, and the phonon
attraction has a longer time scale and wins at low frequencies. An accurate treatment
of this competition of the two interactions is technical and goes beyond the scope of this
lecture: see, e.g., the original paper P. Morel and P. W. Anderson, Phys. Rev. 125, 1263
(1962).
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Problem Set 9

Problem 9.1
Compare the specific heat of phonons and electrons in a typical metal [as an example,

think of potassium (K) with ωD ∼ 100K and εF ∼ 2 · 104K]:

(a) Consider first the high-temperature limit, T ≥ ωD (but still T � εF ). In this
limit, the phonon contribution is cphonon ≈ 3N . Assuming that there is one conduction
electron per atom, estimate the relative contribution of electrons to the specific heat.

Hint: you should obtain the result celec/cphonon ∼ (T/εF )� 1.
(b) Consider now the limit of low temperatures, T � ωD, where the phonon specific

heat is proportional to T 3. Estimate the temperature T ∗, below which the electron specific
heat dominates over that of phonons.

Hint: you should find T ∗ ∼ ω
3/2
D ε

−1/2
F � ωD.

Problem 9.2

(a) Derive the coefficient in (4.4.1) up to a numerical coefficient of order one.

(b) Consider a one-dimensional model of a solid: a chain of points of mass Mi con-
nected with springs of stiffness K (see Fig. below). The Hamiltonian reads

H =
∑
i

p2
i

2Mi

+
∑
i

K
(xi − xi+1)2

2
.

Treat this Hamiltonian as quantum-mechanical, find the spectrum and represent the vi-
brations as bosonic operators bq and b+

q . Normalize these operators as in (4.4.3) and derive
Eq. (4.4.2) for the displacment xi.

(c) With the phonon operator defined as in (4.4.4), derive the coefficient g in (4.4.5)
up to a numerical coefficient of order one and show that g ∼ ν−1/2.

A one-dimensional model of a crystal lattice.
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