3.2 Introduction to Green’s functions

Green’s functions appear naturally in many perturbative calculations. We have seen
an example in Sections 3.1.6 and 3.1.7, where (a*(z)a(y)) may be interpreted as equal-
time Green’s functions. However, if we choose to extend the calculations of Section
3.1.7 to higher orders in interaction, we would need to introduce time-dependent (or
frequency-dependent) Green’s functions. Indeed, at higher orders, we cannot neglect
noncommutativity between H and V in Eq. (3.1.41). The expansion of the operator
exponent, to any order, is given by:
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The same type of formula is also valid for time evolution in quantum mechanics (by
replacing imaginary time 7 by real time ¢):
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This series can be conveniently represented graphically (Fig. . It has the meaning of
the interaction intervening at the moments ¢, t9, etc. during the evolution of the system.

3.2.1 Green’s functions in quantum mechanics

Before introducing Green’s functions in the second-quantized formalism, we discuss briefly
their application in quantum mechanics. We define the Green’s function as the propagator

(evolution operator) ‘
G2, 2,t) = —i(2|e " |z) O(t), (3.2.3)

where 0(t) = 1 for t > 0 and (¢) = 0 for ¢t < 0 (the factor —i is introduced for convenience
to simplify further formulas). Such a definition is usually called the retarded Green’s
function. The Green’s function can be represented either in the coordinate or in the
momentum space (related by a Fourier transformation) and either in the time or in the
frequency space (again, related by a Fourier transformation). For example, passing to the
frequency representation gives
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Figure 8: Perturbation series for the Green’s function.



If H is a free-particle Hamiltonian (H = ¢ in the momentum representation), then it is
convenient to represent the Green’s function also in the momentum representation, where
it becomes diagonal:

Gu(k', k) = // BPr' Px Gy (2, x)eF TR — (935 (k — k') Gy (k) (3.2.5)
where ]
wk)=———"-. 2.
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The appearance of such Green’s functions can be understood already from the per-
turbation theory in quantum mechanics. If we consider a Schroedinger equation with a
perturbation:

(Hy+ V)V = EV, (3.2.7)
then we may formally solve it perturbatively by rewriting
U= (E—Hy) 'VV. (3.2.8)

The inverse (E — Hy) ™! coincides with our above definition of the Green’s function: we
can also write it as an operator

1
G = I _H i (3.2.9)
The perturbative series for ¥ can be constructed iteratirvely

U=W,+W +... (3.2.10)

starting with W, (an eigenstate of Hy at energy F) and solving iteratively:
(E— Hy)V, 1 =V, = U1 =(E—Hy) 'V, . (3.2.11)

As a result, we get the perturbative series

UV=>14GV+GVGV +...)¥,, (3.2.12)

where we again recognize the series of the type shown in Fig. 8
Yet another way to obtain the same series is to expand the full Green’s function:
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which is the operator counterpart of the usual power series:
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(Note: the order of operators in the right-hand side of (3.2.13)) is important!) We can see
that it again reduces to the same series in Fig. 8]
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Figure 9: Left: A sketch of the experimental observation in the paper of Kanisawa et al.
Friedel oscillations of the local density of states are observed around impurities. x is the
observation point, y is the position of the impurity. Right: the diagram representing the
first-order correction to the density of states due to the impurity potential.

3.2.2 Application: Density-of-states oscillations around an impurity

Consider the experiment described in the paper K. Kanisawa et al, Phys. Rev. Lett. 86,
3384 (2001): the local density of states at a given energy is measured around an impurity
in a two-dimensional electron gas (Fig. E[) We can express this local density of states in
terms of the retarded Green’s function as

pu(T) = —% Im Gy, (z, ), (3.2.15)

where G is the full Green’s function (3.2.13)) To the first order in the impurity potential
V(z), the distortion of the local density of states is given by

dpo(x) = —%Im/de Gu(z,y) V(y) Gy (y, ). (3.2.16)

By approximating the potential to be a delta function V(y) = V5 d(y), we find

6p,(R) = —% Im[G,,(R))?, (3.2.17)

where R = |z| is the distance from the impurity. The Green’s function of a free particle,
in turn, can be expressed as

1 ikx ko
Gu(z) = / o (2m) £ 10 e ik (3.2.18)

The two last equations solve the problem in principle. The analytic treatment of
integrals is complicated in 2D, but we can simplify it in the limit k,R > 1, where

k, = (2mw)'/?. Performing first the integrals over the angular degrees of freedom in
(3.2.18]), we find
o kJo(kR) dk
w - ) 2.1
GulF) /0 w— (k%/2m) 440 27 (32.19)
where Jj is the Bessel function:
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At kR > 1, the asymptotic behavior of Jy(kR) is

2
Jo(kR) = || —— cos (k:R— %) (3.2.21)

The main contribution to the integral (3.2.19)) comes from the pole at k = k, and can be
extracted by representing the cosine as a sum of two oscillating exponents. As a result,
we get

m 4
Gy(R) = ————= /(=4 3.2.22
(R) R ( )
and, finally, ar,
dpu(R) = —m cos(2k,R) . (3.2.23)

These Friedel oscillations have the same nature as those in the density correlations
(n(z)n(y)) studied in Section 3.1.6, although the Green’s functions are different in these
two problems: equal-time (¢ = 0) vs. fixed-frequency).



Problem Set 6

Problem 6.1

(a) For a free particle in 3D, calculate the Green’s functions G, (R) [in the frequency-
coordinate representation, as defined in Eq. ] In order to do this, calculate the
three-dimensional version of the integral .

As in 2D, this Green’s functions oscillates at the wave vector k,, = v2mw and decays
as a power of R. Compare this power with R~/2 for the 2D Green’s function ([3.2.22)).

(b) If we study the effect discussed in Section [3.2.2) (density-of-states oscillations
around an impurity) in 3D, then, at large R we would find

dpw(R) o< R~ cos(2k,R + ) .

Find the power a.
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