
3.2 Introduction to Green’s functions

Green’s functions appear naturally in many perturbative calculations. We have seen
an example in Sections 3.1.6 and 3.1.7, where 〈a+(x)a(y)〉 may be interpreted as equal-
time Green’s functions. However, if we choose to extend the calculations of Section
3.1.7 to higher orders in interaction, we would need to introduce time-dependent (or
frequency-dependent) Green’s functions. Indeed, at higher orders, we cannot neglect
noncommutativity between H and V in Eq. (3.1.41). The expansion of the operator
exponent, to any order, is given by:

e−β(H0+V ) = e−βH0 +

∫ β

0

dτ1 e
−(β−τ1)H0(−V )e−τ1H0

+

∫∫
0<τ1<τ2<β

dτ1 dτ2 e
−(β−τ2)H0(−V )e−(τ2−τ1)H0(−V )e−τ1H0 + . . . (3.2.1)

The same type of formula is also valid for time evolution in quantum mechanics (by
replacing imaginary time τ by real time t):

e−it(H0+V ) = e−itH0 +

∫ t

0

dt1 e
−i(t−t1)H0(−iV )e−it1H0

+

∫∫
0<t1<t2<t

dt1 dt2 e
−i(t−t2)H0(−iV )e−i(t2−t1)H0(−iV )e−it1H0 + . . . (3.2.2)

This series can be conveniently represented graphically (Fig. 8). It has the meaning of
the interaction intervening at the moments t1, t2, etc. during the evolution of the system.

3.2.1 Green’s functions in quantum mechanics

Before introducing Green’s functions in the second-quantized formalism, we discuss briefly
their application in quantum mechanics. We define the Green’s function as the propagator
(evolution operator)

G(x′, x, t) = −i〈x′|e−itH |x〉 θ(t) , (3.2.3)

where θ(t) = 1 for t > 0 and θ(t) = 0 for t < 0 (the factor −i is introduced for convenience
to simplify further formulas). Such a definition is usually called the retarded Green’s
function. The Green’s function can be represented either in the coordinate or in the
momentum space (related by a Fourier transformation) and either in the time or in the
frequency space (again, related by a Fourier transformation). For example, passing to the
frequency representation gives

Gω(x′, x) =

∫
dt ei(ω+i0)tG(x′, x, t) = 〈x′| 1

ω −H + i0
|x〉 . (3.2.4)

Figure 8: Perturbation series for the Green’s function.
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If H is a free-particle Hamiltonian (H = εk in the momentum representation), then it is
convenient to represent the Green’s function also in the momentum representation, where
it becomes diagonal:

Gω(k′, k) =

∫∫
d3x′ d3xGω(x′, x)e−ik

′x′+ikx = (2π)3δ(k − k′)Gω(k) , (3.2.5)

where

Gω(k) =
1

ω − εk + i0
. (3.2.6)

The appearance of such Green’s functions can be understood already from the per-
turbation theory in quantum mechanics. If we consider a Schroedinger equation with a
perturbation:

(H0 + V )Ψ = EΨ , (3.2.7)

then we may formally solve it perturbatively by rewriting

Ψ = (E −H0)
−1VΨ . (3.2.8)

The inverse (E − H0)
−1 coincides with our above definition of the Green’s function: we

can also write it as an operator

G =
1

E −H0 + i0
(3.2.9)

The perturbative series for Ψ can be constructed iteratirvely

Ψ = Ψ0 + Ψ1 + . . . (3.2.10)

starting with Ψ0 (an eigenstate of H0 at energy E) and solving iteratively:

(E −H0)Ψn+1 = VΨn ⇒ Ψn+1 = (E −H0)
−1VΨn . (3.2.11)

As a result, we get the perturbative series

Ψ = (1 +GV +GV GV + . . .) Ψ0 , (3.2.12)

where we again recognize the series of the type shown in Fig. 8.
Yet another way to obtain the same series is to expand the full Green’s function:

G̃ =
1

E − (H0 + V )

=
1

E −H0

+
1

E −H0

V
1

E −H0

+
1

E −H0

V
1

E −H0

V
1

E −H0

+ . . . , (3.2.13)

which is the operator counterpart of the usual power series:

1

a− ε
=

1

a
+

1

a2
ε+

1

a3
ε2 + . . . (3.2.14)

(Note: the order of operators in the right-hand side of (3.2.13) is important!) We can see
that it again reduces to the same series in Fig. 8.
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Figure 9: Left: A sketch of the experimental observation in the paper of Kanisawa et al.
Friedel oscillations of the local density of states are observed around impurities. x is the
observation point, y is the position of the impurity. Right: the diagram representing the
first-order correction to the density of states due to the impurity potential.

3.2.2 Application: Density-of-states oscillations around an impurity

Consider the experiment described in the paper K. Kanisawa et al, Phys. Rev. Lett. 86,
3384 (2001): the local density of states at a given energy is measured around an impurity
in a two-dimensional electron gas (Fig. 9). We can express this local density of states in
terms of the retarded Green’s function as

ρω(x) = − 1

π
Im G̃ω(x, x) , (3.2.15)

where G̃ is the full Green’s function (3.2.13) To the first order in the impurity potential
V (x), the distortion of the local density of states is given by

δρω(x) = − 1

π
Im

∫
d2y Gω(x, y)V (y)Gω(y, x) . (3.2.16)

By approximating the potential to be a delta function V (y) = V0 δ(y), we find

δρω(R) = −V0
π

Im[Gω(R)]2 , (3.2.17)

where R = |x| is the distance from the impurity. The Green’s function of a free particle,
in turn, can be expressed as

Gω(x) =

∫
1

ω − (k2/2m) + i0
eikx

d2k

(2π)2
. (3.2.18)

The two last equations solve the problem in principle. The analytic treatment of
integrals is complicated in 2D, but we can simplify it in the limit kωR � 1, where
kω = (2mω)1/2. Performing first the integrals over the angular degrees of freedom in
(3.2.18), we find

Gω(R) =

∫ ∞
0

kJ0(kR)

ω − (k2/2m) + i0

dk

2π
, (3.2.19)

where J0 is the Bessel function:

J0(x) =

∫ 2π

0

dϕ

2π
eix cosϕ . (3.2.20)
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At kR� 1, the asymptotic behavior of J0(kR) is

J0(kR) ≈
√

2

πkR
cos
(
kR− π

4

)
(3.2.21)

The main contribution to the integral (3.2.19) comes from the pole at k = kω and can be
extracted by representing the cosine as a sum of two oscillating exponents. As a result,
we get

Gω(R) ≈ − im√
2πkωR

ei(kωR−π/4) (3.2.22)

and, finally,

δρω(R) = − m2V0
2π2kωR

cos(2kωR) . (3.2.23)

These Friedel oscillations have the same nature as those in the density correlations
〈n(x)n(y)〉 studied in Section 3.1.6, although the Green’s functions are different in these
two problems: equal-time (t = 0) vs. fixed-frequency).
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Problem Set 6

Problem 6.1

(a) For a free particle in 3D, calculate the Green’s functions Gω(R) [in the frequency-
coordinate representation, as defined in Eq. (3.2.4)]. In order to do this, calculate the
three-dimensional version of the integral (3.2.18).

As in 2D, this Green’s functions oscillates at the wave vector kω =
√

2mω and decays
as a power of R. Compare this power with R−1/2 for the 2D Green’s function (3.2.22).

(b) If we study the effect discussed in Section 3.2.2 (density-of-states oscillations
around an impurity) in 3D, then, at large R we would find

δρω(R) ∝ R−α cos(2kωR + ϕ) .

Find the power α.
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