
5.4 Self-consistency equations for the superconducting gap

The anomalous correlation functions dk and the superconducting gap ∆ are determined
from the self-consistency conditions (5.2.5), where the averages are calculated in the
quadratic system (5.2.6) at a finite temperature T .

One of the possible ways to compute the anomalous average 〈a−k↓ak↑〉 is to re-express
the a operators in terms of the quasiparticles γ and γ+ and then use the equilibrium
Fermi occupation numbers for the quasiparticles:{

γ+
k↑ = uka

+
k↑ + vka−k↓

γ−k↓ = v∗ka
+
k↑ − u∗ka−k↓

⇒

{
a+
k↑ = u∗kγ

+
k↑ + vkγ−k↓

a−k↓ = v∗kγ
+
k↑ − ukγ−k↓

(5.4.1)

In terms of the quasiparticles γ+
k↑ and γ−k↓, the BCS Hamiltonian is diagonal, so we find

〈a−k↓ak↑〉T = v∗kuk〈γ+
k↑γk↑ − γ−k↓γ

+
−k↓〉T = v∗kuk [2nF (ε̃k)− 1] = −v∗kuk tanh

ε̃k
2T

, (5.4.2)

where ε̃k is the quasiparticle energy given by Eq. (5.3.4).
Substituting this into Eq. (5.2.7), we find the self-consistency equation for the gap

∆ =
g0

V
∑
k

v∗kuk tanh
ε̃k
2T

. (5.4.3)

Using Eq. (5.3.11) for uk and vk, we find

v∗kuk =
∆

2ε̃k
. (5.4.4)

Note that this quantity is significant only in the vicinity of the Fermi surface (since far
away form the Fermi surface either uk or vk tends to zero).

We remark that ∆ = 0 is always a formal solution to the equations (5.4.3)–(5.4.4). But
one can show that at low temperatures this solution does not correspond to a minimum
of a free energy, but to its maximum. In other words, at low temperatures the ∆ = 0
solution is unstable, and the physically relevant solution is a nontrivial one. To find this
nontrivial solution, we divide the equation by ∆ and replace the sum over k by integration
over energies:

1

V
∑
k

→ ν0

∫
dε , (5.4.5)

where ν0 is the density of electronic states (for free electrons) per unit volume and per
spin projection and ε is the free-electron energy. Substituting equation (5.3.4) for ε̃k and
shifting the integration variable to ε = εk−µ, we finally find the self-consistency equation
in the closed form

1 = g0ν0

∫
dε

tanh

√
ε2+|∆|2

2T

2
√
ε2 + |∆|2

. (5.4.6)

This equation, in principle allows to determine ∆ as a function of temperature (see
Fig. 20).
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Figure 20: A sketch of the gap dependence on the temperature.

5.5 Superconducting gap at zero temperature

A subtle point in this calculation is that the integral (5.4.6) actually diverges logarithmi-
cally at large ε. Physically, this divergence is removed by introducing a cut-off at energies
of the order of Debye energy ωD (since the attraction mediated by phonons only extends
to those energies).

At zero temperature, tanh(. . .)→ 1, and the equation (5.4.6) reduces to

1 = g0ν0

∫ ∼ωD

0

dε√
ε2 + ∆2

0

= g0ν0

[
ln
ωD

∆0

+ const

]
, (5.5.1)

where const is a constant of order one. This gives the superconducting gap at zero
temperature ∆0 in the form

∆0 = const ωD exp

(
− 1

g0ν0

)
. (5.5.2)

Note that the gap is exponentially small in g0.

5.6 Superconducting transition temperature

In a similar way we can find the superconducting transition temperature Tc, with the only
difference that now we neglect ∆ in the self-consistency equation (5.4.6):

1 = g0ν0

∫ ∼ωD

0

dε
tanh ε

2Tc

ε
= g0ν0

[
ln
ωD

Tc
+ const

]
, (5.6.1)

with some const of order one (but different from that in the calculation of ∆0 above!). In
other words, Tc is of the same order of magnitude as ∆0.

Remarkably, one can determine the ratio Tc/∆0 without any ambiguity related to the
cutoff. Namely, the difference of the integrals (5.5.1) and (5.6.1) is convergent and does
not depend on the cut-off:

0 =

∫ ∞
0

dε

[
tanh ε

2Tc

ε
− 1√

ε2 + ∆2
0

]
=

∫ ∞
0

dx

[
tanh(x/2)

x
− 1√

x2 + (∆0/Tc)2

]
.

(5.6.2)
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From this equation, one finds the universal value for the ratio Tc/∆0:

Tc ≈ 0.57∆0 . (5.6.3)

[This value is easy to obtain by numerical methods. A more sofisticated analytic calcula-
tion gives

Tc =

(
eC

π

)
∆0 , (5.6.4)

where C = 0.577 . . . is the Euler constant].
The relation (5.6.3) is in a remarkably good agreement with experimental values on

many conventional superconductors, despite the simplifications made in the BCS theory.
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