
3.4 Fermi liquid theory

Refs: [AM] Chapter 17, [PC], Chapter 7.

Landau Fermi liquid theory was introduced to describe low-energy degrees of freedom of
a Fermi gas with interactions in a non-perturbative way (to complement the perturbative
diagrammatic approach). It was originally introduced for 3He, but can also be applied to
electrons in metals.

The main idea of the Fermi liquid theory is that, in a Fermi gas, even in the presence
of interactions, the low-lying structure of excitations is the same as in the non-interacting
one. The only two differences are:

• The elementary excitations (named quasiparticles) interact with each other;

• Quasiparticles are no longer given by the creation and annihilation operators for
physical particles.

We first formulate the theory and discuss some of its consequences and then comment
in more detail on its justification and on its relation to the diagrammatic approach.

3.4.1 Interaction of quasiparticles

The main physical assumption of the Fermi liquid theory is that the low-lying states of
the interacting system are adiabatically connected to the noninteracting one (i.e., if we
continuously switch on the interaction, the spectrum is also modified continuously and
smoothly). Then the resulting excitation spectrum may be parametrized by the same
occupation numbers nk as the original one, provided the state is close to the ground
state. The theory is restricted to low excitation energies and to low temperatures. In
the ground state, the occupation numbers n

(GS)
k are one and zero below and above the

Fermi surface, respectively. We can express the energy of the eigenstates of the interacting
system in terms of the deviations of the occupation numbers from the ground-state values
δnk = nk − n(GS)

k . Furthermore, at low energies we can expand the total energy of the
system with respect to δnk. To the second order, the expansion reads

E/V =

∫
d3k

(2π)3
ε
(0)
k δnk +

1

2

∫∫
d3k

(2π)3
d3k′

(2π)3
fkk′ δnkδnk′ . (3.4.1)

The linear coefficients ε
(0)
k are the quasiparticle energies (with the Fermi energy sub-

tracted), and the quadratic coefficients fkk′ describe pairwise interactions between quasi-
particles.

The quasiparticle energies ε
(0)
k are renormalized with repsect to the bare spectrum of

electrons. We can introduce the Fermi velocity of quasiparticles

vF =
∂ε

(0)
k

∂k

∣∣∣∣∣
kF

. (3.4.2)

Furthermore, it is convenient to introduce the effective mass m∗ as

m∗ = kF/vF . (3.4.3)
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Note that this definition of the effective mass differs from the effective mass in semicon-
ductors: in the latter case the effective mass describes the spectrum curvature at the
bottom (or top) of the band, while in our case, it is related to the renormalization of the
Fermi velocity at the Fermi surface.

If we consider a spinful case (e.g., electrons), then the occupation numbers nk are,
in fact, 2×2 matrices with spin indices, nk;αβ = 〈a+k;αak;β〉. The f -function, in turn, also
acquires spin structure,

Eint/V =
1

2

∫∫
d3k

(2π)3
d3k′

(2π)3
fkk′;αγ,βδ δnk;αβδnk′;γδ . (3.4.4)

Note that we had already encounter a similar structure in the Hatree–Fock approxima-
tion, where the exchange term also had a spin structure. If we further assume that the
interaction is inariant with respect to the overall spin rotation (which is the case for
exchange-type interaction), then this restricts the f function to

fkk′;αγ,βδ =
π2

kFm∗
[Fkk′ δαβδγδ +Gkk′ σαβσγδ] , (3.4.5)

where

ν =
m∗kF
π2

(3.4.6)

is the density of states of quasiparticles (including spin) at the Fermi surface. With this
normalization, the coefficients G and F are dimensionless.

If the Fermi liquid is isotropic (which we will assume further for simplicity), then the
Fermi surface is spherical and both Fkk′ and Gkk′ depend only on the angle ϑ between k
and k′. In this model, the effective mass m∗ is constant along the Fermi surface.

3.4.2 Relation between effective mass and interaction in the Galilean-invariant
case

In the Galilean-invariant case (invariance with respect to the choice of an inertialreference
frame), there is a relation between the mass renormalization m∗ and the interaction
parameter F (ϑ). This Galilean invariance is satisfied in liquid 3He, but not for electrons
in metals.

The relation betweenm∗ and F (ϑ) follows from the condition that the total momentum
coincides with the physical mass current. We will omit here the derivation [see, e.g., the
book of Lifshitz and Pitaevskii, Statistical Physics Part 2 (volume 9 of the Course of
Theoretical Physics)] and only mention the result:

m∗

m
= 1 +

∫
dΩ

4π
F (ϑ) cosϑ , (3.4.7)

where dΩ denotes integration over the solid angle.

3.4.3 Occupation numbers of quasiparticles

Adding or removing a quasiparticle at a wave vector k changes the total energy of the
system by the energy of the quasiparticle,

ε̃k = ε
(0)
k +

∫
d3k′

(2π)3
fkk′ δnk′ . (3.4.8)
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Figure 15: The shifts of the chemical potential for spin-up and spin-down quasiparticles
in an externsal magnetic field.

Therefore, at a finite temperature T , the occupation numbers of quasiparticles obeys the
usual Fermi distribution:

nk =
1

eε̃k/T + 1
. (3.4.9)

Note that this relation is, in fact, a complicated self-consistent condition on nk, since ε̃k
in the right-hand side is itself a functional of nk.

3.4.4 Renormalization of the specific heat

For the specific heat CV = (∂E/∂T ), the first term in (3.4.1) gives the leading contribution
at low temperatures. As a result, the specific heat is given by the same expression as for
a free Fermi gas, but with the renormalized mass:

CV = V
m∗kFT

3
= V

π2

3
νT . (3.4.10)

The interaction term can be shown to give a higher-order (in T ) contribution to CV .

3.4.5 Renormalization of the spin succeptibility

The magnetic spin succeptibility is also renormalized. Indeed, without interaction, in a
magnetic field, the spin-up and spin-down electrons acquire opposite shifts in energy, and
thus the total spin of the gas is proportional to the external field. In a Fermi liquid, one
also needs to take interaction into account.

In an external magnetic field H, the energy shift of an electron (and of a quasiparticle)
is

δε = −βσH , (3.4.11)

where β is the magnetic moment of an electron (the same as of a quasiparticle). Without
loss of generality, we assume that the field is applied along the z direction. Then the
chemical potential of spin-up qasipraticles is shifted by some value δµ and that of spin-
down quasiparticles is shifted by −δµ (see Fig. 15). This shift of the chemical potential
is determined from minimizing the total energy

Etot/V = ν
(δµ)2

2
+ 〈Gkk′〉 ν

(δµ)2

2
− ν δµ βH . (3.4.12)
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Here the first two terms come from the two terms in (3.4.1) and 〈Gkk′〉 is the G function
in (3.4.5) averaged over the Fermi surface:

〈Gkk′〉 =
4

ν2

∫
d3k

(2π)3

∫
d3k′

(2π)3
Gkk′ δ(εk) δ(εk′) . (3.4.13)

By minimizing (3.4.12) with respect to δµ gives

δµ =
βH

1 + 〈Gkk′〉
, (3.4.14)

so the magnetic succeptibility is

χ = βν
δµ

H
=

β2ν

1 + 〈Gkk′〉
. (3.4.15)

The interaction affects the renormalization of ν (the same renormalization as in the specific
heat (3.4.10)) and also produces the term 〈Gkk′〉 in the denominator of (3.4.15).

3.4.6 Renormalization of the electron spectral weight

The quasiparticles carry the same charge and the same spin as electrons, but are not
identical to electrons: they contain not only one-electron component, but also three-
and more electron components. Some of the properties of the electron gas (e.g. STM
tunneling) are expressed in terms of single-electron operators, and for them the overlap
between electrons and quasiparticles is important.

We can denote this overlap by

Zk =
∣∣〈k|a+k |GS

〉∣∣2 (3.4.16)

for the quasiparticles |k〉 above the Fermi surface and

Zk = |〈k|ak|GS〉|2 (3.4.17)

for the quasiparticles below the Fermi surface. The spectral weights Zk are real numbers
between 0 and 1.

We can further relate these spectral weights to the residues of the Green’s function. By
inserting the full basis of quasiparticle states between the electron creation/annihilation
operators in (3.2.28), we find

Gc(ω, k) =
Zk

ω − ε(0)k + iδ signω
+ regular part (3.4.18)

(note that ε
(0)
k already has the chemical potential subtracted, in our notation). In other

words, Zk expresses the renormalization of the residue of the Green’s function in its pole.
By comparing this expression with the self-energy correction (3.2.43), we can identify:

ε
(0)
k = εk − µ+ Re Σ

ε
(0)
k

(k) (3.4.19)
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(renormalization of the spectrum) and

Zk =

(
1− ∂Σω(k)

∂ω

∣∣∣
ω=ε

(0)
k

)−1
(3.4.20)

(renormalization of the spectral weight).
An important assumption in this identification is the absence of the imaginary part of

the self energy,
Im Σ

ε
(0)
k

(k) = 0 . (3.4.21)

In fact, Im Σ
ε
(0)
k

(k) defines the decay rate of the quasiparticle excitation. Neglecting the

decay of quasiparticles is one of the key assumptions of the Fermi liquid theory. More
precisely, one assumes that the decay rate of the quasiparticle is much smaller than their
energy,

| Im Σ
ε
(0)
k

(k)| � ε
(0)
k . (3.4.22)

One can see (either from the diagrammatic analysis of Σ
ε
(0)
k

(k) or from the Fermi golden

rule) that the decay of quasiparticles is given by available decay processes (which con-
serve both momentum and energy). Up to the energy-momentum dependence of the
corresponding matrix elements, this rate is proportional to the phase space volume of
available quasipaticles to decay into. One can show that, for a generic Fermi surface
(without nesting), such a phase-space volume scales as [ε

(0)
k ]2/εF . This justifies the Fermi

liquid theory at energies and temperatures much lower than εF .
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Problem Set 9

Problem 9.1

(a) Consider a Fermi liquid in an empty space with the Green’s function given by
(3.4.18). Consider the momentum distribution of physical electrons

nek = 〈a+k ak〉 . (3.4.23)

Show that the jump of nek at the Fermi surface equals Zk (see Fig. 16):

lim
δk→+0

(nekF−δk − n
e
kF+δk) = ZkF . (3.4.24)

Figure 16: The jump in the momentum distribution of electrons in a Fermi liquid.

(b) In the experimental paper S. Huotari et al, Phys. Rev. Lett. 105, 086403 (2010),
the jump of nek is measured in sodium (Na). Note that, in the presence of a crystal
potential, the relation between the jump of nek and Zk is more complicated:

lim
δk→+0

(nekF−δk − n
e
kF+δk) = |Ψ(0)

k |
2Zk , (3.4.25)

where Ψ
(0)
k is the amplitude of the plane wave with the wave vector k in the Bloch state

Ψk:
Ψ

(0)
k = 〈e−ikxΨk〉 (3.4.26)

(with the average taken over a unit cell of the lattice). Explain this formula.

Problem 9.2∗

Show that there is no contribution to the specific heat from the interaction of quasi-
particles, to the leading order in T .
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