
3.1.6 Application of the Wick theorem: density correlations of free fermions

First, let us illustrate the application of the Wick theorem with calculating the density-
density correlation function 〈n(x)n(y)〉 in a free-fermion gas (without spin). The density
operator may be expressed as

n(x) = a+(x)a(x) , (3.1.36)

which leads to the Wick-theorem result for the correlation function

〈n(x)n(y)〉 = 〈a+(x)a(x)a+(y)a(y)〉 = 〈a+(x)a(x)〉〈a+(y)a(y)〉+〈a+(x)a(y)〉〈a(x)a+(y)〉
= G(0)2 − |G(x− y)|2 +G(0)δ(x− y) , (3.1.37)

where we have defined
G(x− y) = 〈a+(x)a(y)〉 (3.1.38)

(in particular, G(0) = n is the average particle density).
The contractions can be conveniently represented diagrammatically (Fig. 5). [The

third delta-term in (3.1.37) is not shown: it corresponds to one particle contributing to
both n(x) and n(y)].

The “Green function” G(x) has the form shown in Fig. 6. In 3D at zero temperature,
it can be calculated exactly:

G(R) =

∫
d3k

(2π)3
eikRnF (εk) =

1

2π2R3
[sin(kFR)− (kFR) cos(kFR)] . (3.1.39)

Note that the resulting correlation function 〈n(x)n(y)〉 (Fig. 6) vanishes at x→ y, in
agreement with the Pauli principle. It oscillates at the wave vector 2kF (Friedel oscilla-
tions).

3.1.7 Application of the Wick theorem: perturbative energy of interaction
(Hartree–Fock)

Consider now a spinless Fermi gaz with the interaction (3.1.24). Let us calculate the
interaction energy in a perturbative way, to the first order in V .

If we write the Hamiltonian as

H = H0 + V , (3.1.40)

then we can expand all the thermodynamic quantities with respect to V . The (grand-
canonical) partition function (with β = 1/T )

Z = tr e−β(H0+V ) = tr e−βH0 − β trV e−βH0 +O(V 2) = Z0(1− β〈V 〉0 +O(V 2)) . (3.1.41)

Figure 5: Two diagrams contributing to the correlation function 〈n(x)n(y)〉.
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Figure 6: Qualitative sketches of G(R) and 〈n(x)n(y)〉.

(note that, to the first order, the noncommutativity of H0 and V does not matter).
For the free energy (the “grand potential”), we thus find

Φ = −T lnZ = Φ0 + 〈V 〉0 +O(V 2) . (3.1.42)

In other words, to the first order, the correction to the free energy equals the average
interaction energy calculated in the unperturbed system. Using the Wick theorem, we
can express 〈V 〉0 as the sum of two diagrams (the same as in the previous example), see
Fig. 7.

The first diagram gives the classical contribution to the interaction energy:

δΦ1 =
1

2

∫∫
dx dy 〈n(x)〉V (x− y)〈n(y)〉 = V n

2

2

∫
dx V (x) = V n

2

2
Vk=0 , (3.1.43)

where V is the total volume of the system.
The second diagram is of the exchange type:

δΦ2 = −1

2

∫∫
dx dy G(x−y)V (x−y)G(y−x) = −V

2

∫∫
d3k

(2π)3
d3k′

(2π)3
nknk′Vk−k′ . (3.1.44)

The correction (3.1.44) may be interpreted as a renormalization of energy of each
particle by interaction. The correction to the energy of a particle at the momentum k is
then

δεk = −
∫

d3k′

(2π)3
nk′Vk−k′ . (3.1.45)

As we will see later, this correction to the energy corresponds to the Hartree–Fock ap-
proximation.

Figure 7: Two diagrams contributing to the perturbative interaction energy: (a) Hartree
contribution; (b) exchange contribution.
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Problem Set 5

Problem 5.1

(a) In the subsection 3.1.7, we neglected the spin of the electrons. How would the
results change, if we include spin?

(b) Consider the model of free electrons with Coulomb interaction. Assume the free-
paricle kinetic energy εk = ~2k2/(2m) and calculate, at zero temperature, the average
interaction energy per particle, using the perturbative expression (3.1.44). Do not forget
about spin! Express your result as

δE = εF f

(
rs
a0

)
,

where εF is the Fermi energy and rs/a0 is the dimensionless parameter introduced in
Secion 1.1.5:

rs =

(
3

4πn

)1/3

, a0 =
~2

me2
= 0.529Å

(a typical distance between electrons in the units of the Bohr radius). Find the function
f . If you encounter difficulties in computing integrals, you may either compute them nu-
merically (using your favorite software) or leave them uncomputed as unknown numerical
coefficients.

Note that we only consider the correction (3.1.44), but not (3.1.43), since the latter is
exactly canceled by the background positive charge of the ions.

(c) From the result of part (b), show the stability of a metal: minimize the total
energy per electron

Etot = Ekin + δE

as a function of rs. The average kinetic energy per particle Ekin is proportional to εF .
Remember that εF itself depends on rs:

εF =
~2k2F
2m

=

(
9π

4

)2/3(
a0
rs

)2

Ry , Ry =
~2

2ma20
≈ 13.6 eV

If you have calculated the numerical coefficient in part (b), use it to find the optimal
value of rs. Compare it to the actual values of rs in alkali metals (Li, Na, K: they are the
closest to the free-fermion model).

(d)∗ In the model of free electrons with Coulomb interaction [the same as in parts
(b) and (c)], calculate the correction to the energy of a particle at a wave vector k close
to the Fermi surface, as given by Eq. (3.1.45). You should find a logarithmic divergence
of the Fermi velocity. Show that this divergence comes from the long-range part of the
Coulomb potential (since our calculation does not include screening).
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